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Abstract. Let S be some type system. A typing in S for a typable term M

is the collection of all of the information other than M which appears in the
final judgement of a proof derivation showing that M is typable. For example,
suppose there is a derivation in S ending with the judgement A ` M : τ

meaning that M has result type τ when assuming the types of free variables
are given by A. Then (A, τ ) is a typing for M .
A principal typing in S for a term M is a typing for M which somehow
represents all other possible typings in S for M . It is important not to confuse
this with a weaker notion in connection with the Hindley/Milner type system
often called “principal types”. Previous definitions of principal typings for
specific type systems have involved various syntactic operations on typings
such as substitution of types for type variables, expansion, lifting, etc.
This paper presents a new general definition of principal typings which does
not depend on the details of any particular type system. This paper shows
that the new general definition correctly generalizes previous system-dependent
definitions. This paper explains why the new definition is the right one. Fur-
thermore, the new definition is used to prove that certain polymorphic type
systems using ∀-quantifiers, namely System F and the Hindley/Milner sys-
tem, do not have principal typings.

All proofs can be found in a longer version available at the author’s home page.

1 Introduction

1.1 Background and Motivation

Why Principal Typings? A term represents a fragment of a program or other
system represented in some calculus. In this paper, the examples will be drawn
from the λ-calculus, but much of the discussion is independent of it. A typing t
for a term in a specific type system for a calculus is principal if and only if all
other typings for the same term can be derived from t by some set of semantically
sensible operations. It is important not to confuse the principal typings property
of a type system with the property of the Hindley/Milner system and the ML
programming language often referred to (erroneously) as “principal types”.

Principal typings allow compositional type inference, where the procedure of
finding types for a term uses only the analysis results for its immediate sub-
fragments, which can be analyzed independently in any order. Compositional-
ity helps with such things as performing separate analysis of program modules
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(and hence helps with separate compilation) and also helps in making a com-
plete/terminating type inference algorithm. For a system lacking principal typ-
ings, any type inference algorithm must either be incomplete (i.e., sometimes
not finding a typing even though one exists), be noncompositional, or use some-
thing other than typings of the system to represent intermediate results. An
example of a noncompositional type inference algorithm is the W algorithm of
Damas and Milner [6] for the Hindley/Milner (HM) type system which is used
in programming languages like Haskell and Standard ML (SML). For an SML
program fragment of the form (let val x = e1 in e2 end), the W algorithm
first analyzes e1 and then uses the result while analyzing e2.

Why Automated Type Inference? Principal typings help with automated
type inference in general. For higher-order languages, the necessary types can
become quite complex and requiring all of the types to be supplied in advance
is burdensome. It is desirable to have as much implicit typing as possible, where
types are omitted by humans who write terms. With type inference, the compiler
takes an untyped or partially typed term, and it either completes the typing of
the term or reports an error if the term is untypable.

Algorithm W for HM is the most widely used type inference algorithm. HM
supports polymorphism with quite restricted uses of ∀ quantifiers. In practice,
HM’s limitations on polymorphic types make some kinds of code reuse more
difficult [19]. Programmers are sometimes forced into contortions to provide code
for which the compiler can find typings. This has motivated a long search for
more flexible type systems with good type inference algorithms. Candidates have
included extensions of the HM system such as System F [7, 25], F≤, F+η, or Fω.

This search has yielded many negative results. For quite some time it seemed
that HM was as good as a system could get and still have a complete/terminating
type inference algorithm. Indeed, for many systems (F, Fω, etc.), typability
(whether an untyped program fragment can be given a type) has been proven
undecidable, which means no type inference algorithm can be both complete and
terminating for all program fragments. Wells proved this for System F [32, 34],
the finite-rank restrictions of F above 3 [16], and F+η [33]. Urzyczyn proved
it for Fω [29], Pottinger proved it for unrestricted intersection types [24], and
Pierce proved that even the subtyping relation of F≤ is undecidable [22]. Even
worse, for System F it seems hard to find an amount of type information less
than total that is enough to obtain terminating type inference [28].

Along the way have been a few positive results, some extensions of the HM
system, and some with restricted intersection types (cf. recent work on intersec-
tion types of arbitrarily high finite ranks [17, 15]).

A New Principal Typing Definition vs. ∀ Quantifiers For many years
it was not known whether some type systems with ∀ quantifiers could have
principal typings. The first difficulty is simply in finding a sufficiently general
system-independent definition of principal typings. The first such definition is
given in this paper. A typing t is defined to be a pair (A ` τ) of a set A of type



assumptions together with a result type τ . The meaning Terms(t) of a typing
t = (A ` τ) in a particular type system is defined to be the set of all the
program fragments M such that A ` M : τ is provable in the system (meaning
“M is well typed with result type τ under the type assumptions A”). A typing t1
is defined to be stronger than typing t2 if and only if Terms(t1) ⊂ Terms(t2). This
is “stronger” because t1 is a stronger predicate on terms than t2 and provides
more information about M ∈ Terms(t1), allowing M to be used in more contexts.
A typing t is defined to be principal in some system for program fragment M if
and only if t is at least as strong as all other typings for M in that system.

Comparison with prior type-system-specific principal typing definitions shows
the new definition either exactly matches the old definitions, or is slightly more
liberal, admitting some additional principal typings. The new definition seems
to be the best possible system-independent definition.

Importantly, the new definition can be used to show that various systems
with ∀ quantifiers do not have principal typings. Using this definition, a this
paper proves that HM and System F do not have principal typings. Because the
definition used here is liberal, the failure of HM and System F to have principal
typings by this definition can be taken to mean that there is no reasonable
definition of “principal typings” such that these systems have them. The proof
for System F can be adapted for related systems such as F+η, and System F’s
finite-rank restrictions Λk for k ≥ 3.

If polymorphism is to be based only on ∀ quantifiers, it is not clear how to
design a type system with the principal typings property. Even systems with
extremely restricted uses of ∀ quantifiers such as the HM system do not have
principal typings. The lack of principal typings has manifested itself as a diffi-
culty in making type systems more flexible than the restrictive HM system that
also have convenient type inference algorithms. But this difficulty appears to
have been due to the use of the ∀ quantifier for supporting type polymorphism,
because many type systems with intersection types have principal typings.

1.2 Summary of this Paper’s Contributions

1. An explanation is given of the motivations behind the notion of “principal
typing” and how this has affected type inference in widely used type systems
such as the simply typed λ-calculus and HM.

2. A new, system-independent definition of principal typings is presented. It is
shown that this definition correctly generalizes existing definitions.

3. The new definition is used to finally prove that HM and System F do not
have principal typings. Proving this was impossible before.

2 Definitions

This paper restricts attention to the pure λ-calculus extended with one constant c

of ground type. The type systems considered here derive judgements traditionally
of the form A ` M : τ . Many interesting type systems derive judgements with



more information. To extend the machinery here to such type systems, the extra
information should be considered part of the typing which is defined below.

Types Each type system S will have a set of types Types(S). Let σ, τ , and ρ
range over types. Included in the set of types are an infinite set of type variables,
ranged over by α, β, and γ. There will also be one ground type, o, added to help
illustrate certain typing issues. For a type system S considered in this paper, the
set Types(S) will be some subset of the set Types of types given by the following
pseudo-grammar:

σ, τ, ρ ::= α | o | (σ → τ) | (σ ∩ τ) | (∀α τ)

The free type variables FTV(τ) of the type τ are those variables not bound by
∀. Types are identified which differ only by α-conversion. Let s range over type
substitutions, finite maps from a set of type variables to types.

Typings A pair x:σ is a type assumption. A finite set of type assumptions is
a type environment. Let A range over type environments. In this paper, type
environments are required to mention each term variable at most once. Let A(x)
be undefined if x is not mentioned in A and otherwise be the unique type τ
such that (x:τ) ∈ A. Let Ax = { y :τ (y :τ) ∈ A and y 6= x }. Let FTV(A) =⋃

(x:τ)∈A FTV(τ). Let s(A) = { (x:s(τ)) (x:τ) ∈ A }.
Let a typing judgement be a triple of a type environment A, a λ-term M ,

and a result type τ with the meaning “M is well typed with result type τ under
the type assumptions A”. Rather than the traditional notation A ` M : τ , this
paper instead writes judgements in the form M : (A ` τ). Although this notation
change simplifies the presentation, its real importance is that the new perspective
will help dispel widespread misunderstanding of principal typings in the research
community. The pair A ` τ is called a typing . Let t range over typings. If
t = (A ` τ), let FTV(t) = FTV(A) ∪ FTV(τ) and let s(t) = (s(A) ` s(τ)).

For a type system S, let the statement S B M : t hold iff the judgement M : t
is derivable using the typing rules of S. A type system S assigns typing t to
term M iff S B M : t. Let TermsS(t) = {M S B M : t } and let TypingsS(M) =
{ t S B M : t }.

Ordering Typings This paper introduces a new ordering on typings in a type
system S according to how much information they provide about terms to which
they can be assigned, with typings that are lower in the order providing more
information. Let t1 ≤S t2 iff TermsS(t1) ⊆ TermsS(t2).

Remark 1. Suppose t1 ≤S t2. Then typing t1 can be viewed as providing more
information about any M ∈ Terms(t1). If t1 and t2 are viewed as predicates on
terms, then t1(M) implies t2(M) for any M . In practice, if all that is known about
a term is whether t1 or t2 can be assigned to it, then knowing that M ∈ Terms(t1)
represents an increase in knowledge over knowing that M ∈ Terms(t2). This
increased knowledge enlarges the set of contexts in which it is known that it is
safe to use M .



Some Specific Type Systems The formulation of the simply typed lambda
calculus (STLC) presented here is in Curry style, meaning that type information
is assigned to pure λ-terms [5]. The set Types(STLC) is the subset of Types

containing all types which do not mention ∀ or ∩. The typing rules of STLC are
CON, VAR, APP, and ABS:

CON ⇒ c : (A ` o)

VAR A(x) = τ ⇒ x : (A ` τ)

APP (M : (A ` σ → τ) and N : (A ` σ)) ⇒ (MN) : (A ` τ)

ABS M : (Ax ∪ {x:σ} ` τ) ⇒ (λx.M) : (A ` σ → τ)

The Hindley/Milner type system (HM) is an extension of STLC which was
introduced by Milner for use in the ML programming language [19, 20]. The HM

system introduces a syntactic form (let x = M in N) for allowing definitions
with polymorphic types. The set Types(HM) is the subset of Types containing
all types which do not mention ∩ and which do not mention ∀ inside either
argument of a function type constructor (“→”). In a typing (A ` τ), the type
τ must not mention ∀. The typing rules of HM are CON, APP, and ABS from
STLC and the new typing rules VARHM and LET:

VARHM (A(x) = ∀~α.τ and dom(s) = {~α}) ⇒ x : (A ` s(τ))

LET
(M : (A ` τ) and {~α} = FTV(τ) \ FTV(A) and N : (Ax ∪ {x:∀~α.τ} ` σ))

⇒ (let x = M in N) : (A ` σ)

Girard formulated System F [7] (independently invented by Reynolds [25]) in
the Church style, with explicitly typed terms. The Curry style presentation of F

which is given here was first published by Leivant [18]. The set Types(F) is the
subset of Types containing all types which do not mention ∩. The typing rules
of F are CON, VAR, APP, and ABS from STLC and the new typing rules INST

and GEN:

INST (M : (A ` ∀α σ) and s = {α 7→ τ}) ⇒ M : (A ` s(σ))

GEN (M : (A ` σ) and α /∈ FTV(A)) ⇒ M : (A ` ∀α σ)

3 History of Principal Typings

3.1 Basic Motivations and STLC

The notions of principal type and principal typing (which has also been called
principal pair) first occurred in the context of type assignment systems for the
λ-calculus or combinatory logic using simple types. The motivation was deter-
mining whether a term is typable and finding types for the term if it is typable.
The key idea is to define the typing algorithm by structural recursion on terms.
This means that in calculating types for a term M , the algorithm will invoke
itself recursively on the immediate subterms of M . For this to work, the result
returned by the recursive invocations must be sufficiently informative.



Example 1. This example illustrates the need for some sort of “most general”
typing in the process of inferring type information. Consider these λ-terms:

M = λz.NP N = λw.w(wz) P = λyx.x

A type inference algorithm Inf for STLC defined using structural recursion would
generate a call tree like this:

Inf(M) = Cmbλ(z, Inf(NP )) = Cmbλ(z, Cmb@(Inf(N), Inf(P )))

Here the algorithm Inf uses two subalgorithms Cmbλ and Cmb@ to combine the
results from recursively processing the subterms.

Suppose the recursive call to Inf(P ) were to return the typing t1 = (∅ `
α → α → α), which is a derivable STLC typing for P . Unfortunately, there would
be no way that Cmb@ could combine this result with any typing for N to yield
a typing for NP . The application (w(wz)) inside N needs w to have a type
of the shape σ → σ for some σ. This could be solved by using a typing like
t2 = (∅ ` (α → α) → α → α) for P .

However, the only thing that Cmb@ knows about the subterm P is the typing
t1, which does not imply the typing t2. This can be seen from the following
example of a term P ′ ∈ Terms(t1) \ Terms(t2):

P ′ = λxy.(λz.x)(λw.wx(wyx))

To see more precisely why P ′ ∈ Terms(t1), here is a type-annotated version:

P ′ = λxα.λyα.(λz(α→α→α)→α.x)(λwα→α→α.wx(wyx))

It should also be clear why P ′ /∈ Terms(t2) — the types of x and y are forced
to be the same by the applications (wx) and (wy), and this prevents P ′ from
having a result type of the shape σ → σ. Thus, t1 � t2.

The problem here is that the result that Inf(P ) returned is not the most
general result. It would have been more useful to have returned the result t3 =
(∅ ` β → α → α). In fact, t3 is in a certain sense the best possible result, because
it can be checked that t3 ≤ t for every t ∈ Typings(P ).

To avoid the kind of problems mentioned in example 1, type inference algo-
rithms have been designed so that their intermediate results for subterms are,
in some sense, most general. There have been several different ways of charac-
terizing the needed notions of “most general”. Hindley [9] gives the following
definitions which were intended for use with STLC.

Definition 1 (Hindley’s Principal Type). A principal type in system S of
a term M is a type τ such that
1. there exists a type environment A such that S B M : (A ` τ), and
2. if S B M : (A′ ` τ ′), then there exists some s such that τ ′ = s(τ).

Notice that definition 1 completely ignores the type environments! Hindley
used the name “principal pair” for what is called here “principal typing”.



Definition 2 (Hindley’s Principal Typing). A principal typing in system
S of a term M is a typing t = (A ` τ) such that
1. S B M : t, and
2. if S B M : t′ for some typing t′ = (A′ ` τ ′), then there exists some s such

that A′ ⊇ s(A) and τ ′ = s(τ).

Clearly, if t = (A ` τ) is a principal typing for a term M , then the result type
τ is a principal type. The key property satisfied by STLC w.r.t. these definitions
is the following. (See [9] for the history of this discovery.)

Theorem 1 (Principality for STLC). Every term typable in STLC has a prin-
cipal typing and a principal type. Also, there is an algorithm that decides if a term
is typable in STLC and if the answer is “yes” outputs the principal typing.

Hindley gave a further definition of a principal derivation (called by Hindley
“deduction”) which is not needed for this discussion. These definitions of Hindley
essentially represent the earlier approaches of Curry and Feys [5] and Morris [21].
There are two important aspects of this approach:
1. The notion of “more general” is tied to substitution and weakening. For STLC,

this exactly captures what is needed, but this fails for more sophisticated type
systems.

2. The literature using these definitions freely switches between “principal type”
and “principal typing” (or “principal pair”). The algorithms for STLC which
are described as having the goal of calculating the “principal type” in fact
are designed to calculate principal typings. Because for STLC every term has
both a principal typing and a principal type, many people did not pay much
attention to the difference. For more sophisticated type systems the difference
becomes important.

3.2 Type Polymorphism and HM

Although STLC is well behaved, in practice it is quite insufficient for program-
ming languages. To overcome the limitations of STLC, various approaches to
adding type polymorphism have been explored and for each approach efforts
have been directed to the problem of type inference.

One approach to adding type polymorphism is System F, which was discov-
ered around the beginning of the early 1970s. Towards the end of that decade
people were thinking about Curry-style presentations of F and how to perform
type inference for it [18]. In the mid-1990s, I proved that typability for F is un-
decidable and that therefore there is no complete and always terminating type
inference algorithm for F [32, 34]. Later in this paper, the further result that F

does not have principal typings is proven.
So far, the most successful and widely used approach to adding type poly-

morphism is the Hindley/Milner (HM) system, an extension of STLC and also
a restriction of F. The approach to type inference for HM differs from that for
STLC, because Hindley’s notion of principal typing (needed by the type inference
algorithms used for STLC) quite clearly does not hold for HM.



Example 2. This example illustrates why definition 2 is not useful for HM. Con-
sider the λ-terms M = (let x = (λy.y) in N) and N = (xx). The term M is
typable in HM. For example, the judgement M : t where t = (∅ ` α→α) can be
derived in HM. A derivation of this typing might use as an intermediate step the
assignment of the typing t1 = ({x:∀β.β → β} ` α→α) to the subterm N . Given
any σ, let σ0 stand for σ and let σi+1 stand for σi → σi. Thus, using the new
abbreviation, t1 = ({x:∀β.β1} ` α1). The subterm N can in fact be assigned for
any i ≥ 0 the typing ti = ({x:∀β.βi} ` αi). And for distinct i, j ≥ 0, there is
no substitution s such that ti = s(tj). Note that the type ∀β.βi is closed and
s(τ) = τ for any closed type τ and substitution s. Furthermore, it is not hard
to check for i ≥ 0 that for any other typing t′ assignable to N , that there is no
substitution s such that ti = s(t′). So N has no principal typing using defini-
tion 2. In contrast, the term M does have a principal typing by that definition,
namely t. Although some HM-typable terms (e.g., N) have no principal typings
by definition 2, it turns out that any HM-typable term with no free variables
does.

Until this paper, it was not known whether we were simply not clever enough
to conceive of a set of operations which would yield all other HM typings from
(hypothetical) HM principal typings. Later in this paper, it is shown that there
is no reasonable replacement definition of principal typing that will work for HM.

Milner’s cleverness was in finding a way around this problem. The key lies in
in the following definition (a clear statement of which can be found in [8]).

Definition 3 (A-Typable and A-Principal).
1. A term M is A-typable in HM iff there is some A′ mentioning only monotypes

(types without any occurrence of “∀”) and some type τ such that M : (A∪A′ `
τ) is derivable in HM.

2. A typing (A ∪ A′ ` τ) is A-principal for term M in HM iff
(a) A′ mentions only monotypes,
(b) M : (A ∪ A′ ` τ) is derivable in HM, and
(c) whenever M : ((s(A)) ∪ A′′ ` τ ′) is derivable for A′′ mentioning only

monotypes, there is a substitution s′ such that A′′ ⊇ (s′(A′)), τ ′ = s′(τ),
and s′(α) = s(α) for α ∈ FTV(A).

The property that HM satisfies w.r.t. the above definition is the following,
due to Damas and Milner [6].

Theorem 2 (Principality for HM). If a term is A-typable in HM, then it has
a A-principal typing in HM. Also, there is an algorithm that decides if a term is
A-typable in HM and if the answer is “yes” outputs its A-principal typing.

It is not hard to see that a closed term (with no free variables) is A-typable
iff it is ∅-typable. So theorem 2 implies that typability is decidable for closed
programs and that closed programs have ∅-principal typings. This is good enough
for use in a type inference algorithm for a programming language implementation
and, indeed, the HM type system has been very widely used as a result. There
are some drawbacks that should be noticed:



1. In order to take advantage of the notion of A-principality, any polymorphic
types to be used in a term M must be determined before analyzing M . So
in analyzing a subterm of the shape (let x = N in M), the subterm N must
be completely analyzed before M and the result of analyzing N is used in
analyzing M . This is the behavior of Milner’s algorithm W [19].

2. Because the only notion of principality requires fixing the part of the type
environment containing polytypes, for an arbitrarily chosen HM-typable term
there does not seem to be an HM typing which represents all possible typings
for that term. Later in this paper it is shown in fact that this is not mere
appearance — individual HM typings can not be used to represent all possible
HM typings for a term. This makes it more difficult to use the HM type
system for approaches that involve incremental or separate computation of
type information. So HM may not be right for some applications.

3.3 Principal Typings with Intersection Types

At the present time, for a type system to support both type polymorphism and
principal typings, the most promising approaches rely on the use of intersection
types. There is not room in this paper to go into much detail about intersection
types, so the discussion here gives only the highlights.

The first system of intersection types for which principal typings was proved
was presented by Coppo, Dezani, and Venneri [2] (a later version is [3]). The same
general approach has been followed by Ronchi Della Rocca and Venneri [27] and
van Bakel [30] for other systems of intersection types. In this approach, finding
a principal typing algorithm for a term M involves
– finding a normal form (or approximate normal form) M ′ for M ,
– assigning a typing t to M ′,
– proving that any typing for the normal form M ′ is also a typing for the original

term M , and
– proving that any other typing t′ for the normal form M ′ can be obtained from

t by a sequence of operations each of which is one of expansion (sometimes
called duplication), lifting (implementing subtyping, sometimes called rise),
or substitution.

This general approach is summarized nicely in [31, §5.3]. This is intrinsically an
impractical method and hence is primarily of theoretical interest. The definitions
of the operations on typings are sometimes quite complicated, so they will not
be discussed in this paper.

The first unification-based approach to principal typing with intersection
types is by Ronchi Della Rocca [26]. An always-terminating restriction is pre-
sented which bounds the height of types. Unfortunately, this approach uses a
complicated approach to expansion and is thus quite difficult to understand.

The first potentially practical approaches to principal typing with intersec-
tion types were subsequent unification-based methods which focused on the
rank-2 restriction of intersection types. Van Bakel presented a unification al-
gorithm for principal typing for a rank-2 system [30]. Later independent work
by Jim also attacks the same problem, but with more emphasis on handling



practical programming language issues such as recursive definitions, separate
compilation, and accurate error messages [14]. Successors to Jim’s method in-
clude Banerjee’s [1], which integrates flow analysis, and Jensen’s [12], which
integrates strictness analysis. Other approaches to principal typings and type
inference with intersection types include [4] and [11].

The most recent development in this area is the introduction of the notion
of expansion variables [17]. The key idea is that with expansion variables, the
earlier notions of expansion and substitution can be integrated in a single notion
of substitution called β-substitution. This results in a great simplification over
earlier approaches beyond the rank-2 restriction. However, there are still many
technical issues needing to be overcome before this is ready for general use.

3.4 An Observation about all Previous Definitions

The following holds for each system S with principal typings that I know about.
In S, each typable term M can be assigned a typing t which is principal for M
in the sense that for every other typing t′ assignable to M , there exist operations
O1, . . ., On such that
– t′ = On(· · · (O1(t)) · · ·), and
– the operations are sound in the sense that for any term N , if S B N : t, then

S B N : ti where ti = Oi(· · · (O1(t)) · · ·) for 1 ≤ i ≤ n.
For some (but not all) systems a stronger statement about the soundness of the
operations holds:

For 0 ≤ i < n and any term N , if S B N : t′, then S B N : Oi(t
′).

For STLC, these operations are substitution and weakening, which are sound
in the stronger sense (provided weakening is defined to do nothing on typings
already mentioning the term variable in question). For various systems with
intersection types, these operations are expansion, lifting, rise, as well as substi-
tution and weakening. In some systems with intersection types, these operations
are sound in the stronger sense, and in others, they are sound in the weaker
sense.

Observation 3 In each such system S, if t is principal for M , then t ≤S t′ for
every t′ ∈ TypingsS(M).

4 A New Definition of Principal Typing

In designing a general definition of “principal typing”, the important issue seems
to be the following:

A principal typing in S for a term M should be a typing for M which
somehow represents all other possible typings in S for M .
This paper has already introduced the new technical machinery necessary to

capture this notion in the information order ≤S on typings. This suggests that
the following new definition is the right one.

Definition 4 (Principal Typing). A typing t is principal in system S for
term M iff S B M : t and S B M : t′ implies t ≤S t′.



4.1 Positive Results

The first thing to check about the new definition is whether existing definitions
for specific type systems are instances of the new definition. In all cases, every
typing that is principal by one of the old definitions is principal by the new one.
This is justified by observation 3.

It remains to be considered whether every typing in a system S that is
principal by the new definition is also principal by the old one for S. For STLC,
the new definition corresponds exactly to the old definition.

Theorem 4. A typing t is principal in STLC for M according to definition 2 iff
t is principal in STLC for M according to definition 4.

For some other type systems, the new definition will be slightly more liberal,
accepting some additional typings as being principal. For example, consider the
term ω = (λx.xx). The usual principal typing of ω in a system with intersection
types is t1 = (∅ ` ((α → β) ∩ α) → β). With the new definition, t2 = (∅ `
((α → β) ∩ α ∩ γ)→ β) is also a principal typing, because in some systems with
intersection types a term can be assigned t1 iff it can be assigned t2. This is
merely a harmless quirk. The old definitions ruled out unneeded intersections
with type variables because they were inconvenient.

4.2 Type Systems without Principal Typings

The new definition 4 of principal typings can be used to finally prove that certain
type systems do not have principal typings. These results are significant, as
clarified by this statement by Jim in [13] about the best previous knowledge:

“This imprecision [in the definition of principal typings] makes it impos-
sible for us to prove that a given type system lacks the principal type
property.”

Theorem 5. The HM system does not have principal typings for all terms.

It is quite important that the research community is made aware of Theo-
rem 5, because as Jim points out in [13], “a number of authors have published
offhand claims that ML possesses the principal typings property”.

Theorem 6. System F does not have principal typings for all terms.
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