The Algebra of Expansiort

Sébastien Carlier and J. B. Wells

2008-03-25T04:51

Abstract

Expansion is an operation on typings (pairs of type enviremi®and result types) in type systems for t
A\-calculus. Expansion was originally introduced for cadting possible typings of a term in systems with |
tersection types. Unfortunately, definitions of expangeven the most modern ones) have bedfiatilt for
outsiders to absorb. This paper aims to clarify expansiahnaake it more accessible to non-specialists by i
lating the pure notion of expansion on its own, independétype systems and types. We show how expans
can be seen as a simple algebra on terms with variablesitatibsts, composition, and miscellaneous constr
tors such that the algebra satisfies 8 simple axioms and as@temas: the 3 standard axioms of a monoic
standard axioms or axiom schemas of substitutions (inetudne that corresponds to the usual “substitut
lemma”), and 1 axiom schema for expansion itself. This preg®n should help make more accessible fti
wider community theory and techniques involving intergectypes and type inference with flexible precisiol

1 Discussion

Expansionwas introduced nearly 3 decades ago by Coppo and DeZani f§j aperation oitypings
(pairs of type environments and result types) in order t@iokgrincipal typingsin type systems for
the A-calculus withintersection types Expansion transforms a typing in a way that correspond
the dfects of introducing uses of typing rules (such as intergedtitroduction) at positions inside
corresponding proof of the typing, but without needing acgess to the proof.

Early definitions of expansionl[6, 10,110,113 14] 12] wereeadificult for outsiders to follow.
Kfoury and Wells attempted to make things easier vagpansion variablegE-variableg in Sys-
tem 1 [4,[9], which combined substitutions with expansionsl @allowed in some cases composi
expansions, but System I's definition of expansiofiexed from a confusing scheme of renaming ty
variables. Later, Carlier et al. made further improvemavith System E[[2], which made expansiol
fully composable, extended expansion to introducing otyyg@ing rules than intersection-introductic
(such as the rules for introducing theand ! type constructors), and made expansion a uniform ey
tion on types and typing proof terfns

Carlier and Wells give a survey of the history of expansidn [® that survey, the following simple
example is given of a use of expansion. (See the survey foe fetails on why expansion is needed |
this example.) In a typical system with intersection typleej-termM = (Ax.x(\y.y2) can be assigne
the typing®, = {(z: a) + (((a— b) — b) — ¢) — ¢), which happens to be its principal typig'l.'he term
M can also be assigned the typig = ((z: ay map) + (((ax — b)) = b)) A ((ap = b)) - by) — ¢€) — ¢©),
and an expansion operation can obt@infrom ®; (using the early definitions of expansion). Becat
the early definitions of expansion were complicated, Ealdeis were introduced in order to make t
calculations easier to mechanize and reason about. FompéxamSystem E (using this paper’s new
notation), the typing: from above is replaced b93; = ((z: ee a) + (ee ((a— b) — b) — ¢)), which
differs from®, by the insertion of the E-variablkeat two places, an®, can be obtained fror®3 by
substituting fore the expansion ternfoften just called amxpansiohE; = (a:=a;,b:=by,@) " (a:=
ap, b := by, @), which is done by applying the expansiga = (e:= Ej, ) to the typing®s.

Unfortunately, even System E isfluaiently complex that it is dficult for outsiders to absorb. Thi
paper clarifies things by isolating the pure notion of expamsen its own, independent of type syster

*This is a draft which corresponds roughly to the contentstaflagiven at the ITRS 2008 workshop.
1System E also uses expansion on subtyping proof terms atyp@udpconstraint sets, but this paper will not discuss. tt
2We write typing judgments in the forml » (A + T) and call(A + T) atyping



and types, and thereby makes the following contributions:

i) We show how expansion can be seen as a simple algebra onwétmeariables, substitutions
composition, and miscellaneous constructors such thalfebra satisfies 8 simple axioms or axic
schemas: the 3 standard axioms of a monoid, 4 standard axiparsom schemas of substitutior
(including one that corresponds to the usual “substituégmmma”), and 1 axiom schema for expansi
itself.

i) We show how the expressions written using the operatorsenélgebra can be put into canonic
forms via a confluent and terminating rewriting system whegeational theory corresponds to t
axioms required by the algebra.

iii) In addition to human-oriented proofs, the key propertiethe canonical forms, the term rewri
ing system (TRS), and the TRS'’s correspondence to the @gabralso formalized in the Coq pro
assistant with details provided in appendix B.

iv) We extend the expansion algebra with a notiorsofts allowing the algebra to be tailored t
particular uses and modify the definition so that sorts agegived.

v) We then explain how System E can be redefined with its typdsyging proof termsgkeletonk
as instances of the entities of the expansion algebra.

As a result of these contributions, this paper should maleasier for others to learn how to u:
expansion with E-variables to implement and reason abq& systems with intersection types a
other advanced type features.

2 Mathematical Preliminaries

This section presents mathematical definitions which at@audicular to our work.

Leth,i, j, m, n, p, andgrange ovelN = {0, 1, 2,.. .}, the set of natural numbers.

We rely on an operator-( -) for building ordered pairsand correspondingrojection operatordst
andsnd, such that ifZ = (X, Y), thenfst(Z) = X andsnd(Z) = Y. Let arelation be a set of pairs and le
R range over relations. We let the statemeftY() € R be written with the alternate notatiog %> V.
Let R* be the reflexive and transitive closure®and letR= be the reflexive, symmetric, and transiti
closure ofR; in both cases we use the convention that the reader musttirfesetS w.r.t. which to
take the reflexive closure. L& % Y meanX %5 VY, and letX <% Y meanX £5 Y. We say that a
relation®R is terminatingiff there is no infinite sequenég % X, & ..., If X %5 Y, and there exist:
noZ such thaty % Z, then we callY aR-normal form of X A functionis a relationf such that for all
X,Y,andZz, if {(X,Y),(X,Z)} € f thenY = Z. If (X, Y) € f for someY, thenf(X) denotesy, otherwise
f(X) is undefined. Given a functiof, let f[X — Y] = (f \ {Z € f [fst(Z) = X}) U {(X, Y)}.

If Ris arelation on syntactic entities from s®{the reader must infer whicE), then we write R]
for the compatible closure oR w.r.t. S, defined as follows: ifX] is a context oves (i.e., a term from
S with one subterm replaced by a hole), axd®> X,, thenX[X1] &L X[X,] where[X][Y] denotes
the term inS resulting from filling the hole ifiX] by a termY. Given two syntactic entitieX andY, let
Y C X mean thaly occurs in Xand letY — X mean that¥ occurs inX andY # X.

We use the standard puxecalculus defined as follows

X, ¥, Z € Term-Variable == x;
M,N e Term == X| AXM | M @N

A term of the formix.M is anabstractionand a term of the fornrM @ N is anapplication Using
an infix constructor @ for application instead of simply awdijog the operands is slightly unusual, b
helps when reasoning explicitly about the application aymbnstructor independently of its subtern



Let = be the smallest compatible equivalence relatiofEotity satisfying all instances of these axioms:

(E1) BoX=X (E4) (i=Xi,Xo)ov=Xy
(E2) Xoem=X (E5) (=X X))oV =XyeV if vV
(E3) (X]_ © X2) e Xg= X0 (X2 o] X3) (E6) Soe (V = Xy, X2) = (V =Soe0X;,Se Xz)

(E8) c(Xy,...,Xn)eX=c(X1eX,...,X,0X) (E7) Soec(Xy,...,Xn)=c(SeXy,...,SeXy)

Figure 1: Axioms of Expansion Algebra

3 Expansion as an Algebra

This section presenthe algebra of expansiowhich is a more abstract and general presentatiol
expansion than all earlier versions. Although expansios wr@ginally defined in the context of in
tersection types, the algebra given here abstracts awaydhodetails of type systems. Expansion
presented here as a fundamental operation on syntax obgdatisd tosubstitution and substitution is
presented as a special case of expansion.

The expansion algebra is parameterized over (1) &/aédble of (object-level)variablesranged
over byv, and (2) a seConstructor of constructorganged over bg. The expressions of the expansit
algebra are calledntitiesand are generated by the following pseudo-grammar:

X eEntity := X1 0 Xo | @ | V]| V:i= Xy, Xo | ¢(Xg, ..., Xp)

Whenever we use the algebra, we will use each constractath a fixed arity, but there is nothing i
the definition that requires this.

The expressioX; o X, is the operation oéxpansion applicatiomvhich applies the entitx; to the
entity X,. We call an entityX anexpansion ternjsometimes called just aaxpansiohif it is intended
to be used as the left argumenteptthis distinction is informal here but is made formal via St Ex
in the sorted expansion algebra presentdd in section 5elexpressiorX; o Xy, if X; is an expansion
term then the operation may be callexpansion compositiofthat this name is reasonable is justifi
by axiom[ESB, as discussed below). The nullary operata thenull expansion Entities of the form
V= X3, Xp aresubstitutionganged over bys; these are a special case of expansion terms. \Mhen
not an expansion term, the express®n X acts like ordinary substitution which replaces variabies
X as determined b$. The expressio; e S, composes the two substitutioBs andS,.

In addition to their use in formingxpansion variablege-variable$ and expansion terms, the mea
ing of variablesy and constructed expressiot(¥, . . ., Xn) can depend on the particular use of exp:
sion algebra. In the case of using expansion algebra to limdiee definition of System E (given il
Eection B), the variables will includype variablesand the constructed expressions will include b
typesand typing proof terms.

defines the equivalence relatioon Entity which defines the meaning of expansion. T
axiomdELEPR, arld B 3 characterizenanoid(ensuring that composition works smoothly). The axio
[E4,[EB[E6, an@H7 axiomatize simultaneous substitutianpditicular, axioni_.H6 composes simt
taneous substitutions by stating as an axiom what is oftéedcthe “substitution lemma”). Finally
axiom[EB handles expansion.

Theexpansion algebrés the algebra that uses as its carrier theEsity— which results from quoti-
enting Entity by = and that has the binary operatore ¢, the nullary operatomn, the binary operators
of the formv = ¢, ¢ (one for eachv), and thek-ary operatorg(0, .. ., ©) (one for eaclke and arityk).
The subalgebragntity—, ¢ o <, @) is a monoid due to axiomMiSHIL E?2, dnd ES3.

Observe that the complexity of the definition of expansiooastained in the one-line definition ¢
Entity and the axioms ifi figurd 1. In comparison, the complexity vimus definitions was somewh:
awkwardly distributed:



Let e-canon be the smallest relation dintity satisfying the following rewriting rules:

0o X e-canon (l) X
X o e-canon @ X

(Ve Xy)o X, £L81M 5, Vo (X1 Xp)
(Vi= X, Xp) 0 (Vo X) &L, Xio X

(Vi=Xg, Xo) o (V 0 X) ELBNON, o0y Xs 0 (V0 X) if vV
(35)
(Vi= X, Xp) ov S8R ) X
(Vi= X, Xp) o v EC2OL, o Xo 0V if vV

Soe (V = X1, Xz) w)(@) Vi=Soe X;,Se X,
Soec(Xy,..., Xn) gm,m c(Se Xy,..., Soe X))
C(Xl ..... Xn) o X gm)(g) C(Xl o X, ..., Xn @ X)

Figure 2: Rewriting Relation for Canonicalization

i) Early definitions of expansion (before E-variables) 6, 10,13/ T4 12] as well as System | (tt
first system with E-variables)|[¥] 9] were missing the edierntof axiomdENL[H2, and E3, becau
these systems did not possess expansions that repredemtemhiposition of arbitrary pairs of expa
sions. Some of the pre-E-variable systems had a notion afi€lofexpansions which represented t
composition of expansions but were not themselves expasisém the overall complexity was at lee
as high but less well integrated. System | could compose sxpansions to form new expansions, t
could not correctly compose arbitrary pairs of expansi@ystem E[[2] hafH3 only as a lemma ratt
than an axiom (the equivalent[of lemma A.11).

ii) All pre-E-variable definitions of expansion were missimg tequivalent of axiomBEL B IE
and[EY, because these systems treated substitution sdpdiram expansion, and so the complexi
of these axioms was represented in the definitions of subsetit When present, axiomE6 has oft
been proven as a lemma instead. System | also treated atibetiseparately, and irffiect duplicated
axiomdEX[EB, andE7; only some case&_df E6 were handled.

iii) The pre-E-variable definitions of expansion and also Systead complicated notions of automat
renaming of type variables integrated into the equivaléaxam[EB, while in the definition presente
here (and therefore in System E) this can be handled via tbgrated substitution machinery.

iv) All definitions of expansion prior to System E only definegh@msion as an operation on types a
typings. System E was the first to define expansion on sked€fmoof terms which represent typir
derivations) and other kinds of entities like subtyping stogint sets; in previous systems the notion
expansion on typing derivations was buried inside proofsene details were sometimes left implic
and not even written. In contrast, the definition here enassgs all these kinds of expansion.

v) As already mentioned, the definition here abstracts away &ll details of type systems, while &
earlier definitions had type-system-specific details miredith their definitions of expansion.

4 Canonical Forms

This section defines a rewriting relatidﬁ—cm operating on terms intity that can be used to pt
any entity X into acanonical formX such thatX = X. The contributions of this section have sor
important consequences. First, in a sen§ganonl, implementsexpansion: while the relatios is
sufficient to define expansioA&ca"l, gives an fective procedure for deciding which termsgintity
are equivalent by. Second, the characterization of the canonical forms wiielgive allows seeing
that= is sensible in that it does not relate too many entities, éansion algebra onsistent



The definition of the rewriting relatioA®<a"1, s given in[figure P. Let theanonical entities
(which will be proven to be the normal forms &<3"1L,) pe the subseEntity c Entity defined as
follows: _ _

X e Entity =m | Xt
X1 eﬁtity1 n=ve XV vi= Xy, Xo | e(Xe, ..., Xn)

Inspecting the definition allows easily seeing that caralréatities have the following properties. Firs
no occurrence afi can be removed bi{g€a1, - Second, all application¥; e X, are such tha; = v
for somev.

We prove a number of properties of the rewriting relati&&"2", and the canonical entitidntity.
First, we prove thafe-canonl, g terminating and confluent, implying that any rewritingasegy can be
safely used to find normal forms. Second, we prove that ouastin definition ofEntity precisely char-
acterizes the normal forms &30, Third, we prove (using the previous results) that the dqoat
theory derived fromieanonl, coincides withe, i.e.,= and«&<anonl, are the same relation. This shov
that the declarative definition of expansion given by thewes for= inffigure 1 is equivalent in a sens
to the more procedural definition of expansion given®§2nl, |t follows from this that reasoning
modulo= on any entityX can be performed by working on its canonical foxnfobtained by reducing
X into [e-canon]-normal form), andX is a useful canonical representative of thequivalence clas:
containingX. Consequently, if occurrences of expressions of the ymX, whereX; ¢ Variable are
treated as calls to a function that calculates tregnon]-normal form, the axioms 1 will'ir
effect become equalities.

All of the interesting results in this section except confice are proven with a formally checke
proof in Coq in addition to a human-checked proof.

Now we begin the proofs. For proving thE21°1; s terminating, we define the metric functic
|I-|| to be the function mapping all membersHitity to N such that all of the following hold:

IVl = ll=ll = 1 IV i= Xq, Xoll = [IXll + X2l + 1
Ie(Xa, - ..o Xl = L+n+ X [IXil] X1 @ Xall = (IIXall [[Xoll + L)Pal
Lemma 4.1 ([e-canon] strictly decreases the metiig]). If X L&€anonl, X7 then||X|| > ||X|I. O

Lemmd4 is proven in appendix’A.1 and is also lenRRadecreases_size in the Coq proofs.
Theorem 4.2([e-canon] is terminating)

Every rewriting sequence}d&<anonl, x, lecanonl, ... hag 3 finite number of steps. O
Proof. Easy by[lemma4l1. O
Lemma 4.3(Local confluence ofd-canon]). If X 1&=canonl, x; and x le=canonl, ¥, then there exists X
such that X {&canonl, x/ and x, le-canonl, O

[CemmaZ.B is proven in appendix’A.2.

Lemma 4.4(Confluence ofg-canon]). If X 1&€anonl, %, and x lecanonl, X then there exists %uch
that Xl e-canon Xl and )@ e-canon Xl.

Proof. The result follows by Newman’s Lemma frdm theorem 4.2 andiend. 3. O
Lemma 4.5(Canonical entities areefcanon]-normal forms) —(X &€2onl, X/ for any X. O
Proof. By induction onX. O
Lemma 4.6(Progress ofd-canon]-reduction)

For all X, either X is canonical or there exists somésxich that xle-canon], /. O

Proof. By induction onX.



Lemma 4.7. The canonical entitieEntity are exactly thge-canon]-normal forms.
Proof. Follows directly from lemmag4.5 and#.6. This is also Len@nB&2 in the Coq proofs. [

Theorem 4.8, Je<canonl, _

[Theorem 418 is proven in appendixX’A.3 and is also thedReayuiv-R3 in the Coq proofs.

Note that the Coq proof follows a slightlyftierent strategy which does not depend on the way
proof oflemmaATD uses confluence. This explains why it wassible to omit proving confluence i
Cog. We omitted proving confluence formally because thereneareason to doubt this portion of tt
proofs and it would have been too much work (and proving angtformally in Coq is very expensive
in terms of human time) to find or develop a formulation of Neawr's Lemma that could be combine
with our results to obtain confluence. (We found a previodslyeloped version of Newman’s Lemm
but at the wrong type.)

5 Sorted Expansion Algebra

In any actual use of the expansion algebra, one is not itéetés using all the syntactically possibl
terms in the seEntity. To allow restricting attention to some subsetkitity, this section develop:
sorted expansion algebrahich parameterizes the expansion algebra with sorts desl far determin-
ing the sorts of entities.

Let Sort be the set okortsranged over bySort. The setSort must contain at least the consta
Ex, the sort ofexpansion terms Additional parameters are a functiersort that mapsvariable to
Sort and a functiorc-sort such that for any constructarand sortssy, .. ., s, (for anyn), it holds that
c-sort(c, Sy, ..., Sh) € Sort. Furthermore, it-sort(c, s1,..., Sh) = Ex, thens; = --- = 5, = Ex. Given
v-sort andc-sort, the entity sorting functior (used in infix notation) is the smallest function satisfyi
the following statements:

Xi>ExXAXop S

Vv > v-sort(v) o> Ex XieXo> S
X1 » v-sort(v) A X > Ex Xi>SIA-AXg> S
V= X1, Xo » EX c(Xg,...,Xpn) > c-sort(c, S, ..., S)

With the constraints imposed on the paramet®ost, v-sort, and c-sort, note that axioni_H8 of
is the only axiom that can require relating entitiéglistinct sorts; this can only happen |
the case of a nullary use of a constructor which can haveEsorBecause our intended application
System E needs a concept of theéype which will have sorfy and a corresponding concept of the
expansion which will have soEx, this is a problem. For example, using the constructors artthg
rules for System E defined [D_Secfioh 6, it would hold using @d not-yet-fixed version of) axion
[E8 thatw® o (T1 — T2) » Ty, thatw™ o (T; — To) = ™, and thatw® » Ex. Because we wan
expansion to preserve sorts in general, we need to changmB® and the corresponding rewritir
rule appropriately.

To make sorted expansion sort-preserving, we take as a&fysérameter a functiamsort that maps
some members @@onstructor x Sort to Constructor such that ifc-sort(c) = Ex, then for eactsthere
exists some’ such thatresort(c, s) = ¢’ andc-sort(c’) = s. (Note this can only apply for a nullar
usage of.) We restrict the old axiofai B8 to require> 1 and handle the nullary case with axiom’E
as follows:

(E8) c)eX=c() if X»sandresort(c,s)=c¢

We correspondingly restrict rulg<2in; ) to the cases where> 1 and augment it by a rulg<anon;
with a similar change. Only the constructor in the right-thaide of axiom E8differs from axioni E8,
and it is easy to check that these changes do not invalidgtefdahe properties proved in the previot
section. With these changes, the following lemma holds:



Lemma 5.1(Expansion preserves sortdj X; » s and X = Xp, then % > s. O

6 Application to Intersection Types: System E

System E is a type system for the purealculus featuring intersection types and E-variablas.
contrast with the earlier definitionl[2], we redefine Systerhdte with its key entities as instanc
of sorted expansion algebra. We present a simplified anppstiidown version of System E th
has no subtyping, is fully linear (omitting support for nlimear types via the ! type constructor ar
subtyping), and omits other secondary features (e.g., xplci substitution operator that aids tt
subject reduction proof, the presence of accumulated pintgfyconstraints in typing judgements us
to aid reasoning about type inference, etc.). Properti€dysfem E other than how expansion wot
are discussed and proved elsewhere.

6.1 Instantiating Sorted Expansion Algebra

This section introduces the syntactic entities of Systens Brainstance of sorted expansion alge
(defined in sectiofh sectioh 3 and refinefinsectlon 5), fronchvBystem E inherits some of its essent
properties.

Recall that expansion algebra is parameterized by (1) ¥assé&tble and (2) a seConstructor, and
that sorted expansion algebra further requires (3) &egt (4) a functionv-sort assigning sorts tc
variables, (5) a function-sort assigning sorts to constructed terms, and (6) a funeéisort supporting
sort-preservation for constructors with nullary uses &t Bg.

Define parameters (1), (2), and (3) as follows:

e € Ex-Variable := e
a,b,c e Ty-Variable := a;
Ve Variable := e| a
Se Sort == Ex | Ty | Sk(M)
ce Constructor := 0 NG| 0| O = O XO|AXO| O @O

Note that there is a so8k(M) for each purer-term M and that there is a constructef for each
sorts. (Thex-term M in Sk(M) allows the skeletor»® to fully determine the typing judgement i
which it can appear; see below.) Define parameter (4) savtbattt(e) = Ex andv-sort(a) = Ty. Define
parameter (5) as follows:

c-sort(¢ M <,8,9) =S c-sort(x©, Ty) = Sk(X)
c-sort(ws) = s c-sort(AX. ¢, Sk(M)) = Sk(Ax.M)
c-sort(¢ — O, Ty, Ty) = Ty c-sort(¢ @ ¢, Sk(M), Sk(N)) = Sk(M @ N)

Note that the constructay m ¢ is “sort-polymorphic” and can be used inside entities oftipld sorts.
(In the full System E, the constructor ! is also sort-polyptoc.) Finally, define parameter (6) ¢
resort(w®, 8) = s

Given parameters (1) to (6), recall that sorted expansigaba& provides (i) a sé&intity of entities,
(i) an equivalence relatios on entities, (iii) a seEntity of canonical entities, (iv) a confluent, term
nating, sort-preserving rewriting relatidf<"l, that can rewrite any entity into an equivalent (w.
=) canonical entity, and (v) an entity sorting functien

6.2 Conventions and Quotienting

This section introduces convenient names for various sudamis of what has been defined abo
This section also declares conventions for how to read espmes, for which entities to allow, and f
which entities to treat as equal.



Let E range over the sdixpansion c Entity of entities that are of sofx; we name these entitie
expansion termsr expansions Let T range over the subs&ype c Entity of entities that are of sor
Ty; we name these entitiggpes Let Q range over the subs8&keleton c Entity of entities that are
of sort Sk(M) for someM; we name these entitieskeletons A skeleton of sortSk(M) is shorthand
notation for atyping derivation(a tree of typing judgements) proving thisk can be assigned sorr
typing (A + T). (The typing rules given below are carefully designed so@aniquely determine,
A, andT, and indeed the complete contents of every typing judgeimehte derivation.)

Define that an entit is well sortediff there exists some sosisuch thaX » s. Recall that an entity
has at most one sort. Recall that canonical entities are il the smallest number of usesmand
where every use 6f is of the formv o X for somev andX.

Convention 6.1. Henceforth, only well sorted entities are considered, arakpressioix; e X, stands
for the unique (canonical) (possiblyX; e X» itself) such thatX; o X, [&-canonl, O

Note thafconvenfion 6.1 allows us to safely work on entitiesiulo the equivalence relatien

To disambiguate when not enough parentheses are suppledefine precedence for operatc
(including ordinary function applicationf(a)) and modification {[a — b])) so that precedence fror
highest to lowest is in this ordeffi(a), f[ar b], Ee X, X1 M X5, T1 — To, X1 @ Xo, (V:= X, E), Ax.X.
For examplege a; Ma, — az = ((ee a1)) Maz) — ag, andix. X% @y = x. (x* @y#). Application
is left-associative so thél; @ M, @ M3 = (M1 @ M3) @ M3 (similarly for skeletons) and the functio
type constructor is right-associative so tiiat> T, — T3 = T1 — (T2 — T3). Terms and skeletons ar
quotiented by-conversion as usual, wheke&. M bindsx in M (and similarly for skeletons).

The set of System E types is modified by imposing equalitieshien andw™ constructors, and tc
preserve consistency also for expansion application. &kgsalities apply only to types, and not
entities of other sorts. We takeon types to be (1) associative, (2) commutative, and (3) hd¥as its
unit. (The constank™ can be viewed as a nullary versionmif) We also take E-variable applicatic
to (4) distribute over and (5) be absorbed hy"™ (this simply implements the nullary version
distribution). Formally, these equalities hold:

OTiAMAT)=(TAT)ATs  @OTiAT,=TonTy ©@uVaT=T
@ eo(TinTy)=€eoTineeTs G ol =wV

Given equalities (4) and (5), the following further equeltare a consequence:
EO(TlﬂTz)IEOTlﬁEGTz EowW=wV

We have made heavy use of these equalities throughout diargamblications on System EI[Z] 3
Without these equalities, we would have had to define a lotiiliary machinery to replace them, ar
the papers would have been much longer and more of a burdénefoeader.

6.3 The Type System

This section gives the typing rules of System E. Like for ntgpe systems for calculi with free var
ables such as the-calculus, typing judgements depend on a notion of typerenmients, which we
also define here.

Type environmentganged over byA, are functions that map all members Term-Variable into
Type, and which furthermore map only a finite number of term vdesho types other than™. Let
»E" denote the type environment mapping every term variable™pi.e., o"V(x) = »" for all x.
Let (X1:Tq,..., %: Tn) abbreviatew®™[x; = Tq] - [X, — Tn]. We define the following additiona
operations on type environments:

Eo A={(X EeA(X)|Xe Term-Variable }
A1 Ay = { (X AL(X) M Ax(X)) | X € Term-Variable }



Q»r M:(A+T)
eoQr M:(eoAreoT)

e-app (E-variable application)

Q]_PMZ(A;LI-T;L) Q2>M:<A2FT2>

(A M (A A TinTy (m introduction)
w . .
oSKM) b M 1 (B E o) (w" introduction)
: var .
XT e X ((x:T) - T) (variable)
Q» M:(A+T) b
abs .
AX.Qr AXM : (A[X— ] - A(X) > T) (abstraction)

Qur M1 (AtrT1—>To) Qo Mo (Ax+Ty)
Q@Q» M @M : (AN A To)

app (application)

Figure 3: Typing rules of System E.

Note that the way is extended to handle type environments means that aXiolEE Bnd EB of
expansion algebra given[infigure 1 are also satisfied whetieeeightmosiX in the axiom is replacec
by anA. In effect, for the purposes of expansion, a type environmentTs, .. ., X, : Tn) acts roughly
like a constructed terra(T, ..., Tn), and if viewed this way one sees that axiom E7 also holds.

Note also that all of the following equalities hold:

Alﬂ(AzmA3)=(AlﬂA2)ﬂA3 AlNA=An A oFVA A=A
eo (A1 N AY) =(eoA)) N(ee Ap) eo oE"V = FV

The typing rules of System E are given[in Figufe 3. These rdées/e typing judgementsf the
form Q » M : (A + T), which can be read as stating th& tienotes a proof tha¥l can be assigne
the typing(A + T)". Although the sort ofQ uniquely determine$/, we still include M in typing
judgements because it makes the typing rules easier toarddecaus# is the real “subject” of the
typing judgement, unlik€& which is just a piece of syntax denoting a typing derivation.

In System E, every operatidae Q applying an expansioh to a skeletorQQ corresponds tsplicing
in a number of uses of typing rules as determinedebyVe can now finally present the key propel
that the expansion machinery was designed to achieve, pdh&tlan expansiok can be applied tc
the typing derived by the skeletd@ to obtain the typing that would be derived Bye Q, without
needing to inspedd:

Lemma 6.2(Expansion preserves derivability of typings)
fFQr»r M:(A+-T),thenEe Qr» M:(Ec A-rEoT).

Proof. By induction onE andQ.

We now give infigure 4 an extended example illustrating hopa@sion works on skeletons ar
types inside skeletons.

References

[1] F Baader, T. Nipkow.Term Rewriting and All ThatCambridge University Press, 1998. One citation in se@&h

[2] S_Carhe-[J. Paolakovr. J. B. Wells, A. J. Kfouly. Systembxpansion variables for flexible typing with linear and AoTear types and intersection types
In Programming Language$ Systems, 13th European Symp. Programming 2986 ofLNCS Springer-Verlag, 2004. 4 citations in sectiofifdlIL]13,rel[E2.
[3] S._Carlie[J. B. Wells. Type inference with expansionasles and intersection types in System E and an exactspmnelence wit-reduction. InProc.
6th Int’l Conf. Principlesé Practice Declarative Programmin@004. Completely supersedgs [4]. 2 citations in sect)Bband6.B.

[4] S.CarlierJ.B.Wells. Type inference with expansionafles and intersection types in System E and an exactspmnelence witjs-reduction. Technical
Report HW-MACS-TR-0012, Heriot-Watt Univ., School of Ma Comput. Sci., 2004. Completely supersededifly [3]. Oreioin in sectiof813.


http://www4.informatik.tu-muenchen.de/~nipkow/TRaAT/
http://www.macs.hw.ac.uk/~sebc/
http://www.cs.cmu.edu/~jpolakow/
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Polakow+Wells+Kfoury:System-E:ESOP-2004.pdf
http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Wells:Type-Inference-with-Expansion-Variables-and-Intersection-Types-in-System-E-and-an-Exact-Correspondence-with-Beta-Reduction:PPDP-2004.pdf
http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/

Assume the following definitions:
E=o0no S=(a=Db,m) Q= @
Ei1=SeE S;=(e=Ey,m) /
E;=SAS  S,=(e:=E,n) yeE-a-a ele
AX.
I
X:a
These equalities hold:
Sl [©] Q = @ = @ = @
| | AN | -~
y.Ele(aﬁa)aa E;e y.S@Ee(aﬁa)ea S|® y.S@((a—>a)m(a—>a))—>a S|®
I
AX. Eo A
I_ I 7\
xa AX. }\>|<. Xi(.
Xl:a X:b X:b
I
Sz o Q = @ = @ = @
7 e
yEre(aa)-a \E2 o Yo N A yi(b=D)(b—b)—a N A
| | 7N\ 7\
XT( /—> Slo Sle }\>|< XT(
a A \a X AX xP xP
VRN I |
Soe Soe xa xa
|
a—a a—a
This examples composes i the substitutiors with the expansiofe. The expansiofk; is the result of this
composition, and botlk; and E; have the samefkect when applied t&@. In fact, it is easy to check that
E; = E».

Figure 4. Example of expansion composition.

[5] S.Carlier[J.B. Wells. Expansion: the crucial mechanisr type inference with intersection types: A survey anpla®atioi. InProc. 3rd Int'| Workshop
Intersection Type& Related Systems (ITRS 2002005. The ITRS '04 proceedings appears as vol. 136 (200B3)df Elec. Notes in Theoret. Comp. S@ne
citation in sectiofL.

[6] M. Coppo! M. Dezani-Ciancaglirl. B. Venneri. Principal &/pchemes anttcalculus semantics. |n J. R. Hindley. .. P. Seldin, édsH. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formaligwmademic Press, 1980. 3 citations in sectioplE] 1, 1[hnd 3.

[7] A, J. Kroury,lJ. B. Wells! Principality and decidable g/mference for finite-rank intersection types.Gonf. Rec. POPL '99: 26th ACM Symp. Princ. ¢
Prog. Langs. 1999. Superseded Hy|[9]. 4 citations in sectiop(E] =3, 6 d5.B.

[8] IA.J. Kroury,.J. B.Wells! Principality and type interence fotersection types using expansion variables. Supessafle2003. One citation in sectior
E3

[9] JA. J. Kroury,lJ. B. Wells.  Principality and type inference iatersection types using expansion variablégheoret. Comput. S¢i311(1-3), 2004.
Supersede§[7]. For omitted proofs, see the longer redpr8[&itations in section(§J I 3, abd®b.3.

[10] |S..Ronchi Della Roc¢a. Principal type schemes and tifin for intersection type disciplineTheoret. Comput. S¢i59(1-2), 1988. 2 citations in
section(sflL andl3.

[11] 'S RonchiDella Roc¢a. B. Venneri. Principal type sckerfor an extended type theofjheoret. Comput. S¢i28(1-2), 1984. 2 citations in sectionl3)
and[B.

[12] |S.van Bakel k. _Barbaneia. M. Fernardez. Polymorpti@rsection type assignment for rewrite systems withrabtibns ancetarule. INnTYPES1999.
2 citations in section(§]1 afdl 3.

[13] [S.J.van Bakel. Principal type schemes for the strigetgssignment systerd. Logic Comput.3(6), 1993. 2 citations in sectiond) 1 id 3.

[14] S.J.van Bakeél. Intersection type assignment systdimgoret. Comput. S¢il51(2), 1995. 2 citations in section[3) 1 &ihd 3.

10


http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Wells:Expansion:ITRS-2004.pdf
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~dezani/
http://www.dsi.unifi.it/php/prof.php3
http://www-maths.swan.ac.uk/staff/jrh/
http://www.cs.uleth.ca/~seldin/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/Kfo+Wel:POPL-1999.html
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/electronic/Kfo+Wel:PTI-2003.pdf.gz
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/Kfo+Wel:TCSB-2004-v311n1-3.html
http://www.di.unito.it/~ronchi/
http://www.di.unito.it/~ronchi/
http://www.dsi.unifi.it/php/prof.php3
http://theory.doc.ic.ac.uk/~svb/
http://www.dipmat.unict.it/~barba/
http://www.dcs.kcl.ac.uk/staff/maribel/
http://theory.doc.ic.ac.uk/~svb/
http://theory.doc.ic.ac.uk/~svb/

A Human-Checked Proofs

This appendix presents additional proof details that ateppropriate for the main body of the pap
because they are either too technical, or they are not impoenough and also use too much space

A.1 Termination of [e-canon]

LemmaA.1l. Forany X, X, and S, we havigX]| > 1, [[X e X'|| > 2, and||S|| > 3. O
LemmaA.2. Letab,ne Nsuchthatab > 1and n> 2. Then(a+b)" >a"+b" + 1.
Proof. By induction onn.
LemmaA.3. Letmn,a;,...,an€ Nsuchthatmn> 2and a,...,an > 1. We have:

1+ a)">m+ Y at =y (@ +1) O
Proof. By induction onm, making use of lemmaAl.2. O
Lemma A.4. If X1 © X, then|| X4l < [IXall. O
Proof. By induction onXo. O
Lemma A.5. If X3 C Xo and X C X4 then|| Xy o X3|| < [|[X2 @ X4l O
Lemma A.6. If [|X1]] < [IX2]] then||X; e X]|| < [|X52 e X]|. O

Proof of (éemmaZ.1 By induction on the derivation of Lecanonl, .
e Rules 1, 2, and 5 are by lemfah.4.

e Rule 4ais by lemmBZAl>5.

e Rules 4b and 6 are by lemmash.6 4ndlA.4.

e Rule 3.
I(v e X1) © Xall
= ((IXall + DIXl| + Lyal+t
= (IXalllIXall + 1 Xl + 1)l
> (IXlIXall + 1+ 1)l
> (|IXalllIXz] + 1)l 4+ 1
=|Ive (Xy e Xo)Il

Rule 7.

IS © (V= Xq, Xl
= (ISI(IXall + (Xl + 1) + L)S!
= (ISHIXall + ISIIXall + S]] + 1)1S!
> ((ISIXall + 1) + (ISIHlIXzll + 1))'S!
(lemmaZ&2) > (ISIIIXll + 1) + (ISIIIXll + 1)ST+ 1
=|lvi=Se X, Se Xy

Rule 8.
— Casen = 0is byllemma AH.

— Casen = 1is similar to the case for rule 7. This case needs to be ceresicseparately because the next case reqt

n > 2 when usinlemma Al 3.

11



— If n>2then
[ISec(Xy,..., Xl
= (ISIH@+n+ Ly 1Xll) + 1)S!
= (ISI(L + S, (%l + 1)) + 1S
= (L+1ISIH A+ XL, (Xl + 1))
= L+ IS+ S (ISIIXill -+ IS])!s!
> (L+ X0, (ISI Xl + L))t
(lemma&2) > 1S+ (S, (ISI] Xl + 1))'S!+ 1
=1+ (I (ISIIXill + 1)1+ 1
(lemmaZ3B) > 1+ XL ((ISIIXill + 1)1 + 1)
=1+n+ X (ISIHIX] + 1)
=c(Se Xy,...,Se X))l

e Rule 9.
Letp = [lc(Xy, ..., Xo)ll = 1+ n+ 2L Xl Thenjie(Xy, . ..., Xn) @ X|| = (plIX|| + 1)P.
— Casen=0:
llcO) o X|I = IX|[+ 1> 1= Ol
— Casen=1:

lI6(X4) o Xoll
= (1Xall + (1%l + [IXall 1Xa2]l) + 1)Z+Xal
> 2+ ([IXall [1Xall + 1)l
= lle(Xy @ Xo)I

— If n>2,thenp > 2 and:
lle(Xa, - .., Xn) @ X|
= (pIIXIl + 1)
= ((L+n+ 2 IXIDIX +1)P
> (L+ S, UK+ 1)P
(lemma&2) > 1° + (S, (IXll X[ + )P +1
= L+ (XL (X IX] + 1)P + 1
> 1+ (S (I XIS+ 1
(lemmaAB) > 1+ Xy (XX + 1)1
= Lo n+ S (A + 1))
=llc(Xye X, ..., %X, X)I|

 Assume the property holds fof [£-€a000, X, (i.e.,||Xy|| > |[Xal).
All cases of compatibility, listed below, simply useTemmaland IH.
— Xp o x [E€00N, X, 0 X
— Xo X; le-canonl, w o Xo
— vi= X, X [, v o= X, X
— vi= X, X, lecanonl, . x X,
(X, ..., X0 X, X X! ) [85CRNON, (s X0, X, X, K)

nels e

12



A.2 Local Confluence of{e-canon]

Proof of Cemma 4.3 Joinability of all critical pairs implies local confluencé,[6.2.4]. There are ¢
critical pairs, all of which are joinable usin§<21°n,:

(1) Ooe e-canon 1 o

o e-canon > O

(2) (Vem)e X ££NN, 45 yvo (o X)
e-canonl, o X
(VoE)oXLeMZVoX

3 Ve X)em &£, vo X
(Ve X)om £8M00,5 yo (X o @)

e-canon 2 Vo X

(4) (=X, Xp)e(verm) £, X1 0@
e-canon 5 Xl

e-canon 5 Xl
(5) (V:i=Xg,Xp) 0 (V o @m) L3N, ) X5 0 (V o @)
e-canon 5 )(2 I} V/
(Vi= Xg, X2) o (V' o @) L&€8n0nl,, (y:= X1, X) o V

e-canon 6 X2 ® V/

(6) C(Xl,...,Xn) e[ mz C(Xl,...,Xn)
c(X1, ..., Xn) o m &€ o(X; 0 m, ..., X, 0 @)
Lecanonl,,, Xy, ..., Xn) O

A.3 Correspondence of ECanon with Expansion Algebra
Lemma A.7. X; €200, X, implies X = X». O

Proof. By case analysis of; €190, X,: most cases are instances of axioms=pfvhile a few cases
require using multiple axioms af in succession.

Lemma A.8. X, [&€anonl, . implies % = Xo. O
Proof. By induction onX; {&€aonl, X, usinglemmaAl7 for the base case. 0
Lemma A.9. X, [e<anonl, . implies % = Xo. O
Proof. By induction on the length ok, {&a1onl, X, usinglemmaAl8 when length is 1. O
Lemma A.10. X; «&<€anonl, . implies % = Xo. O
Proof. If X; «&<amol, X, then by confluence there existss.t. X, &0k, X andXx, le-canonl,
UsingllemmaAP we hav; = X andX; = X, thereforeX; = Xo. O
LemmaA.11. L I

X1 0 (Xp 0 Xg) «&@m0nl, (% o X5) o X3 O
Proof. By induction onXy, with a nested induction in the case whe¢e= S;, with a further nestec
induction onXz in the subcase wheb& = So. O
Lemma A.12. X1 = X, implies X «&<aonl, x, O

13



Proof. By induction on the derivation of; = X,. In case (4), usinglemma4.7 and thenTemmalA.
All other cases (including the other ground rules, comgiatipreflexivity, symmetry, and transitivity)
are trivial. ]

Proof of [heorem 4.8 Byllemma A TD anflemmaAll?2. O

B Proofs Formalized in Coq

This appendix presents proof details that have been mesaignand formally checked with the Co
proof assistant. Human-checked versions of all these graad also present; the Coq proofs adt
gigantic increase in the level of confidence.

Only the definitions and proven statements are included. prbefs themselves are essentia
unreadable without using an interactive development enmiient because they are written as appli
tions of tactics that look likeTeft; subst; reflexivity.” and “pose eqg-nat-dec. decide
equality.”. The proofs can be supplied if specifically requested.

As is usual (and virtually unavoidable) when formalizinggiis in any proof assistant, details
definitions and proofs needed to change in order to fit thd tigie system imposed by Coq; fortunate
(and somewhat unusually) in the particular case of thesafptbe overall proof structure was able
remain fairly similar. Also, the foundation of mathematicsed in these proofs is of course the calcu
of constructions used by Coq, while in the human-checkedfprae use set theory; as is usual in tt
circumstance the reader will need to use their judgemennttenstand how the proofs are provir
essentially the same facts, despite the conflict in foundati

B.1 Module MyArith

Lemmaplus-n-Sm:Vab,a+Sb=S(a+bh).

Lemmaplus-Sn-m:Vab,Sa+b=S(a+bh).

Lemma S_plus_le_lt.compat: Vnmp,l1<m—-on<p—->Sn<m+p.
Lemmanz:¥m,0<m—-{n:natfm=Sn}.
Lemmage-l-is.-S:¥Ym,1<m-—-{n:natfm=Sn}.
Lemmale-minus.O:Ynm,n<m-m-n=0—->n=m.

Lemma plus-gel-gel-notllel:¥nln2,1<nl—-1<n2—--nl+n2<1.

Lemma plus_permute_3.in_6 : ¥ al bl c1 a2 b2 c2,
al+bl+cl+(a2+b2+c2)=(al+a2)+ (bl +b2)+ (cl+c2).

Lemma plus_permute_lr.r: Y nmp, (m+n) +p=(m+p) +n.
Lemmale_plus_trans_l: Y mnp,m<n—-m<p+n.
Lemmanot_lttm_plus-n:¥Ymn,-m+n<m.

Lemma plus-lt-le.0_.compat: Y mnp,m<n—-0<p—-m<n+p.

Lemmamultem.Sn:Vmn,mXSn=m+mxn.

Lemma pull-mult_through_plus_le: Y nn'mmPQR,0<n—->0<m—->n<n->m<m ->P+Q
SRanXxP+mxQ<nxm xR.

14



Lemmale-mult-trans: Y mnp,1<p-m<n-m<nxp.
Lemmalt-mult-trans: Y mnp,1<p—-m<n—-m<nxp.
Lemmamult_lt.compat_.l: Ynmp:nat,n<m—-0<p—-pxn<pxm.

Lemmamult-lt.compat: YV mim2,1<ml->1<m2-ml<m2->VYm3m4,1<m3-1l<m4
—->m3<m4 —->mlxm3<m2xm4.

Lemmamult_le_lt_compat: Y m3m4,1<m3—->1<m4-m3<md—->V¥Ymlm2,1<m2->mlcx<
m2 - ml X m3 <m2 X m4.

Lemmamult_lt-leccompat: Y mim2,1<ml—->1<m2-ml<m2—->Ym3m4,1<m4 ->m3<
m4 — ml X m3 < m2 X m4.

Lemmamultreg-l: Ymnk,m+mxk=n+nxk—-m=n.
Lemmamult-le-reg-l: Vk,1<k—>Vab,kxa<kxb—-oax<h.
Lemma m_plus.n-multtm: Vmn,m+nxm=mx (n+ 1).
Fixpoint exp (m n:nat) {struct n}: nat ;=

match n with

|O=1

[Sn=mxexpmn
end.

Notation "x " y" : = (exp X y).

Lemmaexp-0:¥n,1<n—->0"n=0.

Lemmaexp-1:VYn,1 n=1.

Lemmam_multtm_exp-n:¥mn,mxm~ ™ n=m"(n+ 1).

Lemmaexp-mult_distr: Ynpqg,(pxq) " n=p " nxqg~n.

Lemmaexp-plusdistr: Y png,n"(p+g)=n"pxn_aq.
Lemmaexp-ge-l1:¥Ynm,1<m—-1<m~n.
Lemmaexp-plus:¥n,2<n—-VYab,1<a—-l1l<b—-a"n+b " n+l<(a+b) " n.
Lemmamult.ge-1:V¥nln2,1<nl—-1<n2-1<nlxn2.
Lemmaexp-leplus:¥n,1<n—->VYmlm2,1<ml—->1<m2-ml-n<(m2+ml) n.
Lemmaleexp-trans:Ynmlm2,1<n—-1<m2-ml<m2-ml<m2’n.

Lemmaexp-le.compat-r: Vn,1<n—-V¥Ymim2,1<ml-1<m2-ml<m2-ml"n<m2”
n.

Lemmaexp-le_.compat_l: ¥nln2,nl<n2—->VYm,1<m-m~"nl<m’n2.

Lemmaexp-leccompat: ¥n3n4,1<n3—-n3<nd—-V¥nln2,1<nl—->1<n2-nl<n2-nl
"n3 <n2” n4.

Lemmaltexp-trans: Y nmim2,1<n—-1<m2-ml<m2->ml<m2’n.
Lemmaexp-lt.compat: Vn,1<n—->Vmim2,1<ml—-1<m2-ml<m2-ml n<m2’n.

Lemmaexp-lt-lt_.compat: ¥ nin2,1<nl—-1<n2—-nl<n2->¥Ymim2,1<ml->1<m2-
ml<m2—-ml~nl<m2”n2.

Lemmaone-le.exp:¥nk,1<k—>1<k™n.

15



Lemma mult-exp_le_lt_.compat : Y kplp2glg2, 1<k —->pl<p2 —>9l<g2 - expkplxgl<
exp k p2 x g2.

Lemmamax.0-r: ¥ n,maxn0O=n.
Lemma max-assoc : ¥ nl n2 n3, max (max n1 n2) n3 = max n1 (max n2 n3).

Lemma max_permute : ¥ nl n2 n3, max nl1 (max n2 n3) = max n2 (max nl n3).

B.2 Module MyList

Lemmalength-map : V (A B:Set) (f:A—B) (xs:list A), length (map f xs) = length xs.
Lemmallength-app : ¥ (A:Set) (xs ys:list A), length (xs ++ ys) = length xs + length ys.
Lemma map-id : ¥ (X:Set) (xs:list X), map (fun x = X) xs = xs.

Fixpoint sum (ns : list nat) {struct ns} : nat :=
match ns with

| nil= O

| cons n ns’ = n + sum ns’

end.

Lemmale_sum_trans : ¥ (A:Set) (fA—nat) (Xs:list A) (X1 X2:A), In X2 Xs - f X1 <fX2 - fX1 <
sum (map f Xs).

Lemma length-plus_sum : V (A:Set) (f.A—nat) (Xs:list A), length Xs + sum (map f Xs) = sum (map
(fun X = f X + 1) Xs).

Lemma mult_sum_distr_| : V¥ (A:Set) k (fA—nat) Xs, k x sum (map f Xs) = sum (map (fun X = k x
f X) Xs).

Lemma mult_sum-distr_r : V (A:Set) k (f:A—nat) Xs, sum (map f Xs) x k = sum (map (fun X = f X
x k) Xs).

Lemma sum_map-mult_k_f : ¥ (A:Set) (fA—nat) (xs:list A) (k:nat), sum (map (fun x = k x f x) xs)
=k x sum (map f xs).

Fixpoint all (A:Set) (P:A—Prop) (xs:list A) {struct xs} : Prop :=
match xs with

| nil = True

[ X::xs=PxAall_-Pxs

end.

Lemmaall_proj : V¥ (A:Set) (P:A—Prop) (X:A) (Xs:list A), In X Xs - all AP Xs —» P X.
Lemmaall_ext : ¥ (A:Set) (P:A—Prop) (Xs:list A) (H:¥ X, In X Xs — P X), all AP Xs.
Lemmaall-map : ¥ (A B:Set) (P:B—Prop) (f:A—B) Xs, (VY X, P (f X)) — all B P (map f Xs).
Lemma exp-sum-0 :

Y ps,

all_(funm=1<m)ps —

Yn2<n-—

YVala2,l<al—-l1l<a2—

sum(map funm=m"n+1)(@l: a2: ps)) <

1+sum(al: a2:ps) n.
Lemma exp-sum :

Y ps,

16



2 <length ps —

all-(funm=1<m)ps—

¥Yn2<n-

sum (map funm=m"n+ 1) ps) <1+ (sumps)” n.

Inductive all2 (A B:Set) (R:A—B—Prop) : list A — list B — Prop :=
| all2-nil : all2 A B R nil nil
| all2_cons : ¥ X1 X2 Xs1 Xs2, R X1 X2 —» all2 ABR Xs1 Xs2 — all2 ABR (X1:: Xs1) (X2:: Xs2).

Lemma sum_map-ext : ¥ (A:Set) (f1 f2:A—nat) Xs, (¥ X, In X Xs — f1 X = f2 X) — sum (map f1
Xs) = sum (map 2 Xs).

Lemma sum-map-le_.compat : ¥ (A:Set) (f1 f2:A—nat) Xs, (¥ X, In X Xs — f1 X < f2 X) — sum
(map f1 Xs) < sum (map f2 Xs).

Lemma sum-map_lt.compat : V (A:Set) (f1 f2:A—nat) Xs, 1 < length Xs — (¥ X, In X Xs —» f1 X <
f2 X) — sum (map f1 Xs) < sum (map f2 Xs).

B.3 Module Utils
Lemmaeqg-l: ¥ (A:Set) (mn:A) (B : Set) (p:B) (R: A— B — Prop),n=m—>Rmp—-Rnp.
Lemmaeqg-r: ¥ (B:Set) (m p:B) (A: Set) (n:A)(R:A— B — Prop), m=p—>Rnm—-Rnp.

B.4 Module Expansion

Inductive Entity : Set :=

| App : Entity — Entity — Entity

| Id : Entity

| Var : nat — Entity

| Sub : nat — Entity — Entity — Entity
| Con : nat — list Entity — Entity.

Inductive subterm : Entity — Entity — Prop :=

| subterm-refl : ¥ X, subterm X X

| subterm_App-1: ¥ X X1 X2, subterm X X1 — subterm X (App X1 X2)

| subterm_App-2 : ¥ X X1 X2, subterm X X2 — subterm X (App X1 X2)

| subterm_Sub.1 : ¥ X v X1 X2, subterm X X1 — subterm X (Sub v X1 X2)

| subterm_Sub.2 : ¥ X v X1 X2, subterm X X2 — subterm X (Sub v X1 X2)

| subterm-Con : V ¢ X1 X2 Xs, subterm X1 X2 — In X2 Xs — subterm X1 (Con c Xs).

Inductive proper-subterm : Entity — Entity — Prop :=

| proper-subterm-App-1: V X X1 X2, subterm X X1 — proper-subterm X (App X1 X2)

| proper-subterm-App-2 : ¥ X X1 X2, subterm X X2 — proper-subterm X (App X1 X2)

| proper-subterm-Sub-1: ¥ X v X1 X2, subterm X X1 — proper-subterm X (Sub v X1 X2)

| proper-subterm-Sub_2 : ¥V X v X1 X2, subterm X X2 — proper-subterm X (Sub v X1 X2)

| proper-subterm-Con : V ¢ X1 X2 Xs, subterm X1 X2 — In X2 Xs — proper-subterm X1 (Con ¢
Xs).

Definition appL (X1:Entity) (Xs:list Entity) : list Entity := map (fun X2 = App X1 X2) Xs.
Definition appR (Xs:list Entity) (X2:Entity) : list Entity := map (fun X1 = App X1 X2) Xs.
Inductive RO : Entity — Entity — Prop :=

17



| RO-1: ¥ X, RO (App Id X) X

|RO.2: ¥ X, RO (App X Id) X

| RO-3v : ¥V v X1 X2, RO (App (App (Var v) X1) X2) (App (Var v) (App X1 X2))

| RO_34 : V v X1 X2 X, RO (App (Sub v X1 X2) (App (Var v) X)) (App X1 X)

| RO-35: V¥ vl X1 X2 v2 X, vl #v2 — RO (App (Sub v1 X1 X2) (App (Var v2) X)) (App X2 (App (Var
v2) X))

| RO-4 : ¥ v X1 X2, RO (App (Sub v X1 X2) (Var v)) X1

|RO5: Vvl X1 X2v2,vl #v2 — RO (App (Sub vl X1 X2) (Var v2)) (App X2 (Var v2))

| RO-6: V vl X1 X2 v2 X3 X4, RO (App (Sub v1 X1 X2) (Sub v2 X3 X4)) (Sub v2 (App (Sub v1 X1
X2) X3) (App (Sub v1 X1 X2) X4))

| RO_7 : VY v X1 X2c Xs, RO (App (Sub v X1 X2) (Con ¢ Xs)) (Con c (appL (Sub v X1 X2) Xs))

| RO-8: ¥ ¢ Xs X, RO (App (Con ¢ Xs) X) (Con c (appR Xs X)).

Inductive R1 : Entity — Entity — Prop :=

| R1_App-1: V¥ X1 X2 X, R1 X1 X2 — R1 (App X1 X) (App X2 X)

| R1.App-2: ¥ X1 X2 X, R1 X1 X2 — R1 (App X X1) (App X X2)
|R1-Sub-1: Vv X1X2X,R1X1LX2— R1(SubvX1X)(SubvX2X)
|R1.Sub_2: ¥V v X1 X2 X, R1 X1 X2 — R1 (Sub v X X1) (Sub v X X2)
| R1-Con : ¥ c Xs1 Xs2, R1s Xs1 Xs2 — R1 (Con ¢ Xs1) (Con ¢ Xs2)
| R1-RO: V¥V X1 X2, R0 X1 X2 —» R1 X1 X2

with R1s : list Entity — list Entity — Prop :=

|R1s.1:V X Xsl1 Xs2, R1ls Xs1 Xs2 — R1s (X :: Xsl) (X :: Xs2)
|R1s.2: ¥ Xs X1 X2, R1 X1 X2 — R1s (X1 i Xs) (X2 :: Xs).

SchemeR1-R1s := Induction for R1 Sort Prop
with R1s_R1 := Induction for R1s Sort Prop.

Inductive R2 : Entity — Entity — Prop :=
|R2-R1:V X1 X2,R1 X1 X2 - R2 X1 X2
| R2_trans : V X1 X2 X3, R1 X1 X2 —» R2 X2 X3 —» R2 X1 X3.

Inductive R2s : list Entity — list Entity — Prop :=
| R2s_R1s : V¥ Xsl1 Xs2, R1s Xsl1 Xs2 — R2s Xsl1 Xs2
| R2s_trans : ¥V Xs1 Xs2 Xs3, R1s Xsl1 Xs2 — R2s Xs2 Xs3 — R2s Xs1 Xs3.

Inductive R3 : Entity — Entity — Prop :=

|R3_-R1:V X1X2,R1 X1 X2 — R3X1X2

| R3.refl : V X, R3 X X

| R3.symm : ¥ X1 X2, R3 X1 X2 —» R3 X2 X1

| R3_trans : V¥ X1 X2 X3, R3 X1 X2 —» R3 X2 X3 —» R3 X1 X3.

Inductive R : Entity — Entity — Prop :=

|R.1:V X, R (App Id X) X

|R-2: ¥ X, R (App X Id) X

|R.3: ¥ X1 X2 X3, R (App (App X1 X2) X3) (App X1 (App X2 X3))
|R-4:VvX1X2,R(App (Subv X1 X2) (Var v)) X1

|R-5: Vvl X1X2v2,vl#v2— R (App (Subvl X1 X2) (Var v2)) (App X2 (Var v2))

| R-6: ¥ vl X1 X2v2 X3 X4, R (App (Sub vl X1 X2) (Sub v2 X3 X4)) (Sub v2 (App (Sub v1 X1 X2)
X3) (App (Sub v1 X1 X2) X4))

| R-7 : ¥V vX1X2cXs,R (App (Sub v X1 X2) (Con c Xs)) (Con c (appL (Sub v X1 X2) Xs))
|R-8:V cXs X, R (App (Con ¢ Xs) X) (Con c (appR Xs X))

| R-APpP-1: ¥ X1 X2 X, R X1 X2 > R (App X1 X) (App X2 X)

18



| R.ApPp-2 1 ¥ X1 X2 X, R X1 X2 — R (App X X1) (App X X2)
|R-Sub-1: ¥ v X1X2X,RX1X2— R (Subv X1 X) (Subv X2 X)

| R-Sub-2: ¥ v X1 X2 X, R X1 X2 — R (Sub v X X1) (Sub v X X2)

| R-Con : ¥ ¢ Xs1 Xs2, all2 - - R Xs1 Xs2 — R (Con ¢ Xs1) (Con c Xs2)
| Rrefl - ¥V X, R X X

| R.symm ¥V X1 X2, R X1 X2 - R X2 X1

| Rtrans @ ¥V X1 X2 X3, R X1 X2 - R X2 X3 —» R X1 X3.

Lemma Entity-eq-dec : V (X1 X2 : Entity), { X1 = X2}+{ X1 # X2}.

Fixpoint size (X:Entity) : nat :=

match X with

| App X1 X2 = (size X1 x size X2 + 1) ~ (size X1)
[ld=1

|[Var. =1

| Subv X1 X2 = 1 + size X1 + size X2

| Con - Xs = 1 + length Xs + sum (map size Xs)
end.

Lemmasize_ge-1: V X, 1< size X.

Lemma size-App-ge-2 : ¥ X1 X2, 2 < size (App X1 X2).

Lemmasize-Sub_ge_3: ¥V v X1 X2, 3 < size (Sub v X1 X2).

Lemma size-subterm : V¥ X1 X2, subterm X1 X2 — size X1 < size X2.

Lemma size_proper_subterm : ¥ X1 X2, proper-subterm X1 X2 — size X1 < size X2.
Lemma size-App-1: ¥V X X1 X2, size X1 < size X2 — size (App X1 X) < size (App X2 X).
Lemma size-App-2 : ¥ X X1 X2, size X1 < size X2 — size (App X X1) < size (App X X2).

Lemma size_proper_subterms_App : ¥ X1 X2 X3 X4,
proper-subterm X1 X2 —
proper-subterm X3 X4 —
size (App X1 X3) < size (App X2 X4).

Lemma RO.decreases.size : ¥ X1 X2, RO X1 X2 — size X2 < size X1.
Lemma R1s_length : ¥ Xs1 Xs2, R1s Xs1 Xs2 — length Xs1 = length Xs2.
Lemma R1.decreases.size : ¥ X1 X2, R1 X1 X2 — size X2 < size X1.
Lemma R2_decreases_size : ¥ X1 X2, R2 X1 X2 — size X2 < size X1.

Definition R2.ind’ ;
Y P : Entity — Prop,
(V X1, (Y X2,R2X1 X2 —>PX2) > PX1) > VY X,PX.

Definition R2.rec :
Y P : Entity — Set,
(V X1, (Y X2, R2 X1 X2 > P X2) » P X1) -» ¥ X, P X.

Inductive C : Entity — Prop :=

| C_.App: Vv X, X#I1d— CX— C (App (Var v) X)
|C.d: Cld

|C_Var: Vv, C (Varv)

| C_Sub: Vv X1X2,CX1l— CX2— C(SubvX1X2)
|C_.Con:V¥cXs, (Y X, InXXs— CX)— C(Conc Xs).

19



Lemma C_not-RO : ¥ X1 X2, RO X1 X2 — C X1 — False.

LemmaR1-Con-elem : V ¢ Xs2 Xs1, R1s Xs1 Xs2 — R1 (Con ¢ Xs1) (Con c Xs2).
Lemmanot-C_and-R1: V X1, C X1 — V X2, R1 X1 X2 — False.

LemmaR1-or-C : V X1, (3 X2 : Entity, R1 X1 X2) v C X1.

LemmaR2-Trans : ¥ X1 X2 X3, R2 X1 X2 - R2 X2 X3 —» R2 X1 X3.

Lemma R2-App-1 : ¥ X1 X2 X, R2 X1 X2 — R2 (App X1 X) (App X2 X).

Lemma R2-App-2 : ¥ X1 X2 X, R2 X1 X2 — R2 (App X X1) (App X X2).

Lemma R2-Sub.1 : ¥ v X1 X2 X, R2 X1 X2 — R2 (Sub v X1 X) (Sub v X2 X).
LemmaR2.Sub-2 : ¥ v X1 X2 X, R2 X1 X2 — R2 (Sub v X X1) (Sub v X X2).
Lemma R2s_length : ¥ Xs1 Xs2, R2s Xs1 Xs2 — length Xs1 = length Xs2.
LemmaR2s_Trans : ¥ Xs1 Xs2 Xs3, R2s Xs1 Xs2 — R2s Xs2 Xs3 — R2s Xs1 Xs3.
LemmaR2.Con : ¥ c Xs1 Xs2, R2s Xs1 Xs2 — R2 (Con c Xs1) (Con ¢ Xs2).
LemmaR2.or-C : V¥ X1, (3 X2 : Entity, R2 X1 X2) v C X1.

LemmaC_R2:V X, (3 X" : Entity, CX' A (R2X X"V X = X)).

Lemma R2.implies-R3 : V¥ X1 X2, R2 X1 X2 — R3 X1 X2.

Lemma R3.App-1: ¥ X1 X2 X, R3 X1 X2 — R3 (App X1 X) (App X2 X).

Lemma R3.App-2 : ¥ X1 X2 X, R3 X1 X2 — R3 (App X X1) (App X X2).

Lemma R3.Sub-1 : ¥ v X1 X2 X, R3 X1 X2 — R3 (Sub v X1 X) (Sub v X2 X).
LemmaR3.Sub-2 : ¥ v X1 X2 X, R3 X1 X2 — R3 (Sub v X X1) (Sub v X X2).

Inductive R3s : list Entity — list Entity — Prop :=

| R3s_.R1s: V Xsl1 Xs2, R1s Xs1 Xs2 — R3s Xs1 Xs2

| R3s-refl : ¥ Xs, R3s Xs Xs

| R3s_.symm : V Xs1 Xs2, R3s Xs1 Xs2 — R3s Xs2 Xsl1

| R3s_trans : ¥ Xs1 Xs2 Xs3, R3s Xs1 Xs2 — R3s Xs2 Xs3 — R3s Xs1 Xs3.

LemmaR3s.1: V¥ X Xs1 Xs2, R3s Xs1 Xs2 — R3s (X :: Xs1) (X :: Xs2).
LemmaR3s.2: ¥ Xs X1 X2, R3 X1 X2 — R3s (X1 :: Xs) (X2 :: Xs).

Lemma R3s_ext : ¥V (Xs : list Entity) f1 f2, (¥ X, In X Xs — R3 (f1 X) (f2 X)) —» R3s (map f1 Xs)
(map f2 Xs).

LemmaR3_Con : V ¢ Xs1 Xs2, R3s Xs1 Xs2 — R3 (Con ¢ Xs1) (Con ¢ Xs2).
Lemmaall2-R.refl : V Xs, all2 . - R Xs Xs.
Lemma RO-implies-R : ¥ X1 X2, RO X1 X2 — R X1 X2.

Lemma Entity-ind’ : V (X : Entity) (P : Entity — Prop)
(HApp : ¥ X1 X2, P X1 — P X2 — P (App X1 X2))
(Hid : P Id)

(HVar : V a, P (Var a))
(HSub : V v X1 X2, P X1 — P X2 — P (Sub v X1 X2))
(HCon : ¥ ¢ Xs,all - P Xs — P (Con ¢ Xs)), P X.

LemmaR1-implies_R : ¥ X1 X2, R1 X1 X2 — R X1 X2.
Lemma R2_implies_R : ¥ X1 X2, R2 X1 X2 — R X1 X2.

20



Lemma R3.implies-R : V¥ X1 X2, R3 X1 X2 — R X1 X2.

Lemma R3.App-assoc : ¥ X1, C X1 —» ¥ X2, C X2 — ¥ X3, C X3 — R3 (App X1 (App X2 X3))
(App (App X1 X2) X3).

Lemma R-implies-R3 : ¥ X1 X2, R X1 X2 — R3 X1 X2.
TheoremR_equiv_R3 : V X1 X2, R X1 X2 < R3 X1 X2.

21



	Discussion
	Mathematical Preliminaries
	Expansion as an Algebra
	Canonical Forms
	Sorted Expansion Algebra
	Application to Intersection Types: System E
	Instantiating Sorted Expansion Algebra
	Conventions and Quotienting
	The Type System

	Human-Checked Proofs
	Termination of [e-canon]
	Local Confluence of [e-canon]
	Correspondence of ECanon with Expansion Algebra

	Proofs Formalized in Coq
	Module MyArith
	Module MyList
	Module Utils
	Module Expansion


