
The Algebra of Expansion∗

Sébastien Carlier and J. B. Wells

2008-03-25T04:51

Abstract

Expansion is an operation on typings (pairs of type environments and result types) in type systems for thel-calculus. Expansion was originally introduced for calculating possible typings of a term in systems with in-
tersection types. Unfortunately, definitions of expansion(even the most modern ones) have been difficult for
outsiders to absorb. This paper aims to clarify expansion and make it more accessible to non-specialists by iso-
lating the pure notion of expansion on its own, independent of type systems and types. We show how expansion
can be seen as a simple algebra on terms with variables, substitutions, composition, and miscellaneous construc-
tors such that the algebra satisfies 8 simple axioms and axiomschemas: the 3 standard axioms of a monoid, 4
standard axioms or axiom schemas of substitutions (including one that corresponds to the usual “substitution
lemma”), and 1 axiom schema for expansion itself. This presentation should help make more accessible to a
wider community theory and techniques involving intersection types and type inference with flexible precision.

1 Discussion

Expansionwas introduced nearly 3 decades ago by Coppo and Dezani [6] asan operation ontypings
(pairs of type environments and result types) in order to obtain principal typingsin type systems for
the l-calculus withintersection types. Expansion transforms a typing in a way that corresponds to
the effects of introducing uses of typing rules (such as intersection-introduction) at positions inside a
corresponding proof of the typing, but without needing any access to the proof.

Early definitions of expansion [6, 11, 10, 13, 14, 12] were quite difficult for outsiders to follow.
Kfoury and Wells attempted to make things easier withexpansion variables(E-variables) in Sys-
tem I [7, 9], which combined substitutions with expansions and allowed in some cases composing
expansions, but System I’s definition of expansion suffered from a confusing scheme of renaming type
variables. Later, Carlier et al. made further improvementswith System E [2], which made expansions
fully composable, extended expansion to introducing othertyping rules than intersection-introduction
(such as the rules for introducing thew and ! type constructors), and made expansion a uniform opera-
tion on types and typing proof terms1.

Carlier and Wells give a survey of the history of expansion [5]. In that survey, the following simple
example is given of a use of expansion. (See the survey for more details on why expansion is needed for
this example.) In a typical system with intersection types,thel-termM = (lx.x(ly.yz)) can be assigned
the typingΘ1 = 〈(z : a) ⊢ (((a→b)→b)→c)→c〉, which happens to be its principal typing.2 The term
M can also be assigned the typingΘ2 = 〈(z : a1 .∩a2) ⊢ (((a1→b1)→b1) .∩ ((a2→b2)→b2)→c)→ c〉,
and an expansion operation can obtainΘ2 fromΘ1 (using the early definitions of expansion). Because
the early definitions of expansion were complicated, E-variables were introduced in order to make the
calculations easier to mechanize and reason about. For example, in System E (using this paper’s newer
notation), the typingΘ1 from above is replaced byΘ3 = 〈(z : e .◦ a) ⊢ (e .◦ ((a→ b)→ b)→ c)〉, which
differs fromΘ1 by the insertion of the E-variablee at two places, andΘ2 can be obtained fromΘ3 by
substituting fore theexpansion term(often just called anexpansion) E1 = (a≔ a1, b≔ b1,⊡) .∩ (a≔
a2, b≔ b2,⊡), which is done by applying the expansionE2 = (e≔ E1,⊡) to the typingΘ3.

Unfortunately, even System E is sufficiently complex that it is difficult for outsiders to absorb. This
paper clarifies things by isolating the pure notion of expansion on its own, independent of type systems

∗This is a draft which corresponds roughly to the contents of atalk given at the ITRS 2008 workshop.
1System E also uses expansion on subtyping proof terms and subtyping constraint sets, but this paper will not discuss this.
2We write typing judgments in the formM ◮ 〈A ⊢ T〉 and call〈A ⊢ T〉 a typing.

1

and types, and thereby makes the following contributions:

i) We show how expansion can be seen as a simple algebra on termswith variables, substitutions,
composition, and miscellaneous constructors such that thealgebra satisfies 8 simple axioms or axiom
schemas: the 3 standard axioms of a monoid, 4 standard axiomsor axiom schemas of substitutions
(including one that corresponds to the usual “substitutionlemma”), and 1 axiom schema for expansion
itself.

ii) We show how the expressions written using the operators of the algebra can be put into canonical
forms via a confluent and terminating rewriting system whoseequational theory corresponds to the
axioms required by the algebra.

iii) In addition to human-oriented proofs, the key properties of the canonical forms, the term rewrit-
ing system (TRS), and the TRS’s correspondence to the algebra are also formalized in the Coq proof
assistant with details provided in appendix B.

iv) We extend the expansion algebra with a notion ofsorts allowing the algebra to be tailored to
particular uses and modify the definition so that sorts are preserved.

v) We then explain how System E can be redefined with its types and typing proof terms (skeletons)
as instances of the entities of the expansion algebra.

As a result of these contributions, this paper should make iteasier for others to learn how to use
expansion with E-variables to implement and reason about type systems with intersection types and
other advanced type features.

2 Mathematical Preliminaries

This section presents mathematical definitions which are not particular to our work.
Let h, i, j, m, n, p, andq range overN = {0, 1, 2, . . .}, the set of natural numbers.
We rely on an operator (· , ·) for building ordered pairsand correspondingprojectionoperatorsfst

andsnd, such that ifZ = (X,Y), thenfst(Z) = X andsnd(Z) = Y. Let arelation be a set of pairs and let
R range over relations. We let the statement (X,Y) ∈ R be written with the alternate notationX −R−→ Y.
LetR∗ be the reflexive and transitive closure ofR and letR= be the reflexive, symmetric, and transitive
closure ofR; in both cases we use the convention that the reader must infer the setS w.r.t. which to
take the reflexive closure. LetX −R−։ Y meanX −R

∗

−→ Y, and letX ևR−։ Y meanX −R
=

−−→ Y. We say that a
relationR is terminatingiff there is no infinite sequenceX1 −

R−→ X2 −
R−→ · · ·. If X −R−։ Y, and there exists

noZ such thatY −R−→ Z, then we callY aR-normal form of X. A functionis a relationf such that for all
X, Y, andZ, if {(X,Y), (X,Z)} ⊆ f thenY = Z. If (X,Y) ∈ f for someY, then f (X) denotesY, otherwise
f (X) is undefined. Given a functionf , let f [X 7→ Y] = (f \ {Z ∈ f fst(Z) = X }) ∪ {(X,Y)}.

If R is a relation on syntactic entities from setS (the reader must infer whichS), then we write [R]
for thecompatible closure ofR w.r.t.S, defined as follows: ifX is a context overS (i.e., a term from
S with one subterm replaced by a hole), andX1 −

R−→ X2, then X [X1] −[R]−−→ X [X2] where X [Y] denotes
the term inS resulting from filling the hole inX by a termY. Given two syntactic entitiesX andY, let
Y ⊑ X mean thatY occurs in Xand letY ⊏ X mean thatY occurs inX andY , X.

We use the standard purel-calculus defined as follows

x, y, z ∈ Term-VariableF xi

M,N ∈ TermF x | lx.M | M @ N

A term of the formlx.M is anabstractionand a term of the formM @ N is anapplication. Using
an infix constructor @ for application instead of simply adjoining the operands is slightly unusual, but
helps when reasoning explicitly about the application syntax constructor independently of its subterms.

2

Let≡ be the smallest compatible equivalence relation onEntity satisfying all instances of these axioms:

(E1) ⊡ .◦ X ≡ X (E4) (v≔ X1,X2) .◦ v ≡ X1

(E2) X .◦ ⊡ ≡ X (E5) (v≔ X,X2) .◦ v′ ≡ X2 .◦ v′ if v , v′

(E3) (X1 .◦ X2) .◦ X3 ≡ X1 .◦ (X2 .◦ X3) (E6) S .◦ (v≔ X1,X2) ≡ (v≔ S .◦ X1,S .◦ X2)
(E8) c(X1, . . . ,Xn) .◦ X ≡ c(X1 .◦ X, . . . ,Xn .◦ X) (E7) S .◦ c(X1, . . . ,Xn) ≡ c(S .◦ X1, . . . ,S .◦ Xn)

Figure 1: Axioms of Expansion Algebra

3 Expansion as an Algebra

This section presentsthe algebra of expansionwhich is a more abstract and general presentation of
expansion than all earlier versions. Although expansion was originally defined in the context of in-
tersection types, the algebra given here abstracts away from all details of type systems. Expansion is
presented here as a fundamental operation on syntax objectsrelated tosubstitution, and substitution is
presented as a special case of expansion.

The expansion algebra is parameterized over (1) a setVariable of (object-level)variables ranged
over byv, and (2) a setConstructor of constructorsranged over byc. The expressions of the expansion
algebra are calledentitiesand are generated by the following pseudo-grammar:

X ∈ EntityF X1 .◦ X2 | ⊡ | v | v≔ X1,X2 | c(X1, . . . ,Xn)

Whenever we use the algebra, we will use each constructorc with a fixed arity, but there is nothing in
the definition that requires this.

The expressionX1 .◦ X2 is the operation ofexpansion applicationwhich applies the entityX1 to the
entity X2. We call an entityX anexpansion term(sometimes called just anexpansion) if it is intended
to be used as the left argument of.◦; this distinction is informal here but is made formal via thesortEx
in the sorted expansion algebra presented in section 5. In the expressionX1 .◦ X2, if X2 is an expansion
term then the operation may be calledexpansion composition(that this name is reasonable is justified
by axiom E3, as discussed below). The nullary operator⊡ is thenull expansion. Entities of the form
v≔ X1,X2 aresubstitutionsranged over byS; these are a special case of expansion terms. WhenX is
not an expansion term, the expressionS .◦ X acts like ordinary substitution which replaces variables in
X as determined byS. The expressionS1 .◦ S2 composes the two substitutionsS1 andS2.

In addition to their use in formingexpansion variables(E-variables) and expansion terms, the mean-
ing of variablesv and constructed expressionsc(X1, . . . ,Xn) can depend on the particular use of expan-
sion algebra. In the case of using expansion algebra to underlie the definition of System E (given in
section 6), the variables will includetype variablesand the constructed expressions will include both
typesand typing proof terms.

Figure 1 defines the equivalence relation≡ on Entity which defines the meaning of expansion. The
axioms E1, E2, and E3 characterize amonoid(ensuring that composition works smoothly). The axioms
E4, E5, E6, and E7 axiomatize simultaneous substitutions (in particular, axiom E6 composes simul-
taneous substitutions by stating as an axiom what is often called the “substitution lemma”). Finally,
axiom E8 handles expansion.

Theexpansion algebrais the algebra that uses as its carrier the setEntity≡ which results from quoti-
entingEntity by ≡ and that has the binary operator^ .◦ ^, the nullary operator⊡, the binary operators
of the formv≔^,^ (one for eachv), and thek-ary operatorsc(^, . . . ,^) (one for eachc and arityk).
The subalgebra (Entity≡,^ .◦ ^,⊡) is a monoid due to axioms E1, E2, and E3.

Observe that the complexity of the definition of expansion iscontained in the one-line definition of
Entity and the axioms in figure 1. In comparison, the complexity in previous definitions was somewhat
awkwardly distributed:

3

Let e-canon be the smallest relation onEntity satisfying the following rewriting rules:

⊡ .◦ X −e-canon−−−−−−→(1) X
X .◦ ⊡ −e-canon−−−−−−→(2) X

(v .◦ X1) .◦ X2 −e-canon−−−−−−→(3·v) v .◦ (X1 .◦ X2)
(v≔ X1,X2) .◦ (v .◦ X) −e-canon−−−−−−→(3·4) X1 .◦ X

(v≔ X1,X2) .◦ (v′ .◦ X) −e-canon−−−−−−→(3·5) X2 .◦ (v′ .◦ X) if v , v′

(v≔ X1,X2) .◦ v −e-canon−−−−−−→(4) X1

(v≔ X1,X2) .◦ v′ −e-canon−−−−−−→(5) X2 .◦ v′ if v , v′

S .◦ (v≔ X1,X2) −e-canon−−−−−−→(6) v≔ S .◦ X1,S .◦ X2

S .◦ c(X1, . . . ,Xn) −e-canon−−−−−−→(7) c(S .◦ X1, . . . ,S .◦ Xn)
c(X1, . . . ,Xn) .◦ X −e-canon−−−−−−→(8) c(X1 .◦ X, . . . ,Xn .◦ X)

Figure 2: Rewriting Relation for Canonicalization

i) Early definitions of expansion (before E-variables) [6, 11, 10, 13, 14, 12] as well as System I (the
first system with E-variables) [7, 9] were missing the equivalent of axioms E1, E2, and E3, because
these systems did not possess expansions that represented the composition of arbitrary pairs of expan-
sions. Some of the pre-E-variable systems had a notion of chains of expansions which represented the
composition of expansions but were not themselves expansions, so the overall complexity was at least
as high but less well integrated. System I could compose someexpansions to form new expansions, but
could not correctly compose arbitrary pairs of expansions.System E [2] had E3 only as a lemma rather
than an axiom (the equivalent of lemma A.11).

ii) All pre-E-variable definitions of expansion were missing the equivalent of axioms E4, E5, E6,
and E7, because these systems treated substitution separately from expansion, and so the complexity
of these axioms was represented in the definitions of substitution. When present, axiom E6 has often
been proven as a lemma instead. System I also treated substitution separately, and in effect duplicated
axioms E4, E5, and E7; only some cases of E6 were handled.

iii) The pre-E-variable definitions of expansion and also System I had complicated notions of automatic
renaming of type variables integrated into the equivalent of axiom E8, while in the definition presented
here (and therefore in System E) this can be handled via the integrated substitution machinery.

iv) All definitions of expansion prior to System E only defined expansion as an operation on types and
typings. System E was the first to define expansion on skeletons (proof terms which represent typing
derivations) and other kinds of entities like subtyping constraint sets; in previous systems the notion of
expansion on typing derivations was buried inside proofs, where details were sometimes left implicit
and not even written. In contrast, the definition here encompasses all these kinds of expansion.

v) As already mentioned, the definition here abstracts away from all details of type systems, while all
earlier definitions had type-system-specific details mixedin with their definitions of expansion.

4 Canonical Forms

This section defines a rewriting relation−[e-canon]−−−−−−→ operating on terms inEntity that can be used to put
any entityX into a canonical formX̄ such thatX ≡ X̄. The contributions of this section have some
important consequences. First, in a sense,−[e-canon]−−−−−−→ implementsexpansion: while the relation≡ is
sufficient to define expansion,−[e-canon]−−−−−−→ gives an effective procedure for deciding which terms inEntity
are equivalent by≡. Second, the characterization of the canonical forms whichwe give allows seeing
that≡ is sensible in that it does not relate too many entities, i.e., expansion algebra isconsistent.

4

The definition of the rewriting relation−[e-canon]−−−−−−→ is given in figure 2. Let thecanonicalentities
(which will be proven to be the normal forms of−[e-canon]−−−−−−→) be the subsetEntity ⊂ Entity defined as
follows:

X̄ ∈ Entity ::= ⊡ | X̄1

X̄1 ∈ Entity
1

::= v .◦ X̄1 | v | v≔ X̄1, X̄2 | c(X̄1, . . . , X̄n)

Inspecting the definition allows easily seeing that canonical entities have the following properties. First,
no occurrence of⊡ can be removed by−[e-canon]−−−−−−։. Second, all applicationsX1 .◦ X2 are such thatX1 = v
for somev.

We prove a number of properties of the rewriting relation−[e-canon]−−−−−−→ and the canonical entitiesEntity.
First, we prove that−[e-canon]−−−−−−→ is terminating and confluent, implying that any rewriting strategy can be
safely used to find normal forms. Second, we prove that our syntactic definition ofEntity precisely char-
acterizes the normal forms of−[e-canon]−−−−−−→. Third, we prove (using the previous results) that the equational
theory derived from−[e-canon]−−−−−−→ coincides with≡, i.e.,≡ andև[e-canon]−−−−−−։ are the same relation. This shows
that the declarative definition of expansion given by the axioms for≡ in figure 1 is equivalent in a sense
to the more procedural definition of expansion given by−[e-canon]−−−−−−→. It follows from this that reasoning
modulo≡ on any entityX can be performed by working on its canonical form̄X (obtained by reducing
X into [e-canon]-normal form), andX̄ is a useful canonical representative of the≡-equivalence class
containingX. Consequently, if occurrences of expressions of the formX1 .◦X2 whereX1 < Variable are
treated as calls to a function that calculates the [e-canon]-normal form, the axioms of figure 1 will in
effect become equalities.

All of the interesting results in this section except confluence are proven with a formally checked
proof in Coq in addition to a human-checked proof.

Now we begin the proofs. For proving that−[e-canon]−−−−−−→ is terminating, we define the metric function
‖·‖ to be the function mapping all members ofEntity toN such that all of the following hold:

‖v‖ = ‖⊡‖ = 1 ‖v≔ X1,X2‖ = ‖X1‖+ ‖X2‖+ 1
‖c(X1, . . . ,Xn)‖ = 1+ n+

∑n
i=1 ‖Xi‖ ‖X1 .◦ X2‖ = (‖X1‖ ‖X2‖+ 1)‖X1‖

Lemma 4.1([e-canon] strictly decreases the metric‖·‖). If X −[e-canon]−−−−−−→ X′ then‖X‖ > ‖X′‖.

Lemma 4.1 is proven in appendix A.1 and is also lemmaR2 decreases size in the Coq proofs.

Theorem 4.2([e-canon] is terminating).
Every rewriting sequence X1 −

[e-canon]−−−−−−→ X2 −
[e-canon]−−−−−−→ · · · has a finite number of steps.

Proof. Easy by lemma 4.1.

Lemma 4.3(Local confluence of [e-canon]). If X −[e-canon]−−−−−−→ X1 and X−[e-canon]−−−−−−→ X2 then there exists X′

such that X1 −
[e-canon]−−−−−−։ X′ and X2 −

[e-canon]−−−−−−։ X′.

Lemma 4.3 is proven in appendix A.2.

Lemma 4.4(Confluence of [e-canon]). If X −[e-canon]−−−−−−։ X1 and X−[e-canon]−−−−−−։ X2 then there exists X′ such
that X1 −

[e-canon]−−−−−−։ X′ and X2 −
[e-canon]−−−−−−։ X′.

Proof. The result follows by Newman’s Lemma from theorem 4.2 and lemma 4.3.

Lemma 4.5(Canonical entities are [e-canon]-normal forms). ¬(X̄ −[e-canon]−−−−−−→ X′) for any X′.

Proof. By induction onX̄.

Lemma 4.6(Progress of [e-canon]-reduction).
For all X, either X is canonical or there exists some X′ such that X−[e-canon]−−−−−−→ X′.

Proof. By induction onX.

5

Lemma 4.7. The canonical entitiesEntity are exactly the[e-canon]-normal forms.

Proof. Follows directly from lemmas 4.5 and 4.6. This is also LemmaC R2 in the Coq proofs.

Theorem 4.8.և[e-canon]−−−−−−։ = ≡.

Theorem 4.8 is proven in appendix A.3 and is also theoremR equiv R3 in the Coq proofs.
Note that the Coq proof follows a slightly different strategy which does not depend on the way the

proof of lemma A.10 uses confluence. This explains why it was possible to omit proving confluence in
Coq. We omitted proving confluence formally because there was no reason to doubt this portion of the
proofs and it would have been too much work (and proving anything formally in Coq is very expensive
in terms of human time) to find or develop a formulation of Newman’s Lemma that could be combined
with our results to obtain confluence. (We found a previouslydeveloped version of Newman’s Lemma,
but at the wrong type.)

5 Sorted Expansion Algebra

In any actual use of the expansion algebra, one is not interested in using all the syntactically possible
terms in the setEntity. To allow restricting attention to some subset ofEntity, this section develops
sorted expansion algebrawhich parameterizes the expansion algebra with sorts and rules for determin-
ing the sorts of entities.

Let Sort be the set ofsorts ranged over bySort. The setSort must contain at least the constant
Ex, the sort ofexpansion terms. Additional parameters are a functionv-sort that mapsVariable to
Sort and a functionc-sort such that for any constructorc and sortss1, . . ., sn (for anyn), it holds that
c-sort(c, s1, . . . , sn) ∈ Sort. Furthermore, ifc-sort(c, s1, . . . , sn) = Ex, thens1 = · · · = sn = Ex. Given
v-sort andc-sort, the entity sorting function⊲ (used in infix notation) is the smallest function satisfying
the following statements:

v ⊲ v-sort(v) ⊡ ⊲ Ex
X1 ⊲ Ex ∧ X2 ⊲ s

X1 .◦ X2 ⊲ s

X1 ⊲ v-sort(v) ∧ X2 ⊲ Ex
v≔ X1,X2 ⊲ Ex

X1 ⊲ s1 ∧ · · · ∧ Xn ⊲ sn

c(X1, . . . ,Xn) ⊲ c-sort(c, s1, . . . , sn)

With the constraints imposed on the parametersSort, v-sort, and c-sort, note that axiom E8 of
figure 1 is the only axiom that can require relating entities of distinct sorts; this can only happen in
the case of a nullary use of a constructor which can have sortEx. Because our intended application to
System E needs a concept of thew type which will have sortTy and a corresponding concept of thew
expansion which will have sortEx, this is a problem. For example, using the constructors and sorting
rules for System E defined in section 6, it would hold using (the old not-yet-fixed version of) axiom
E8 thatwEx .◦ (T1 → T2) ⊲ Ty, thatwEx .◦ (T1 → T2) ≡ wEx, and thatwEx ⊲ Ex. Because we want
expansion to preserve sorts in general, we need to change axiom E8 and the corresponding rewriting
rule appropriately.

To make sorted expansion sort-preserving, we take as a further parameter a functionresort that maps
some members ofConstructor × Sort to Constructor such that ifc-sort(c) = Ex, then for eachs there
exists somec′ such thatresort(c, s) = c′ andc-sort(c′) = s. (Note this can only apply for a nullary
usage ofc.) We restrict the old axiom E8 to requiren ≥ 1 and handle the nullary case with axiom E8′

as follows:
(E8′) c() .◦ X ≡ c′() if X ⊲ sandresort(c, s) = c′

We correspondingly restrict rule−e-canon−−−−−→(8) to the cases wheren ≥ 1 and augment it by a rule−e-canon−−−−−→(8′)

with a similar change. Only the constructor in the right-hand side of axiom E8′ differs from axiom E8,
and it is easy to check that these changes do not invalidate any of the properties proved in the previous
section. With these changes, the following lemma holds:

6

Lemma 5.1(Expansion preserves sorts). If X1 ⊲ s and X1 ≡ X2, then X2 ⊲ s.

6 Application to Intersection Types: System E

System E is a type system for the purel-calculus featuring intersection types and E-variables. In
contrast with the earlier definition [2], we redefine System Ehere with its key entities as instances
of sorted expansion algebra. We present a simplified and stripped-down version of System E that
has no subtyping, is fully linear (omitting support for non-linear types via the ! type constructor and
subtyping), and omits other secondary features (e.g., the explicit substitution operator that aids the
subject reduction proof, the presence of accumulated subtyping constraints in typing judgements used
to aid reasoning about type inference, etc.). Properties ofSystem E other than how expansion works
are discussed and proved elsewhere.

6.1 Instantiating Sorted Expansion Algebra

This section introduces the syntactic entities of System E as an instance of sorted expansion algebra
(defined in section section 3 and refined in section 5), from which System E inherits some of its essential
properties.

Recall that expansion algebra is parameterized by (1) a setVariable and (2) a setConstructor, and
that sorted expansion algebra further requires (3) a setSort, (4) a functionv-sort assigning sorts to
variables, (5) a functionc-sort assigning sorts to constructed terms, and (6) a functionresort supporting
sort-preservation for constructors with nullary uses at sort Ex.

Define parameters (1), (2), and (3) as follows:

e ∈ Ex-VariableF ei

a, b, c ∈ Ty-VariableF ai

v ∈ VariableF e | a
s∈ SortF Ex | Ty | Sk(M)
c ∈ ConstructorF ^ .∩^ | ws | ^→ ^ | x:^ | lx.^ | ^@^

Note that there is a sortSk(M) for each purel-term M and that there is a constructorws for each
sort s. (The l-term M in Sk(M) allows the skeletonws to fully determine the typing judgement in
which it can appear; see below.) Define parameter (4) so thatv-sort(e) = Ex andv-sort(a) = Ty. Define
parameter (5) as follows:

c-sort(^ .∩^, s, s) = s c-sort(x:^,Ty) = Sk(x)
c-sort(ws) = s c-sort(lx.^,Sk(M)) = Sk(lx.M)

c-sort(^→ ^,Ty,Ty) = Ty c-sort(^@^,Sk(M),Sk(N)) = Sk(M @ N)

Note that the constructor̂ .∩^ is “sort-polymorphic” and can be used inside entities of multiple sorts.
(In the full System E, the constructor ! is also sort-polymorphic.) Finally, define parameter (6) as
resort(wEx, s) = ws.

Given parameters (1) to (6), recall that sorted expansion algebra provides (i) a setEntity of entities,
(ii) an equivalence relation≡ on entities, (iii) a setEntity of canonical entities, (iv) a confluent, termi-
nating, sort-preserving rewriting relation−[e-canon]−−−−−−→ that can rewrite any entity into an equivalent (w.r.t.
≡) canonical entity, and (v) an entity sorting function⊲.

6.2 Conventions and Quotienting

This section introduces convenient names for various subconcepts of what has been defined above.
This section also declares conventions for how to read expressions, for which entities to allow, and for
which entities to treat as equal.

7

Let E range over the setExpansion ⊂ Entity of entities that are of sortEx; we name these entities
expansion termsor expansions. Let T range over the subsetType ⊂ Entity of entities that are of sort
Ty; we name these entitiestypes. Let Q range over the subsetSkeleton ⊂ Entity of entities that are
of sort Sk(M) for someM; we name these entitiesskeletons. A skeleton of sortSk(M) is shorthand
notation for atyping derivation(a tree of typing judgements) proving thatM can be assigned some
typing 〈A ⊢ T〉. (The typing rules given below are carefully designed so that Q uniquely determinesM,
A, andT, and indeed the complete contents of every typing judgementin the derivation.)

Define that an entityX is well sortediff there exists some sortssuch thatX ⊲ s. Recall that an entity
has at most one sort. Recall that canonical entities are those with the smallest number of uses of⊡ and
where every use of.◦ is of the formv .◦ X for somev andX.

Convention 6.1.Henceforth, only well sorted entities are considered, and the expressionX1 .◦X2 stands
for the unique (canonical)̄X (possiblyX1 .◦ X2 itself) such thatX1 .◦ X2 −

[e-canon]−−−−−−։ X̄.

Note that convention 6.1 allows us to safely work on entitiesmodulo the equivalence relation≡.
To disambiguate when not enough parentheses are supplied, we define precedence for operators

(including ordinary function application (f (a)) and modification (f [a 7→ b])) so that precedence from
highest to lowest is in this order:f (a), f [a 7→ b], E .◦ X, X1 .∩ X2, T1→ T2, X1 @ X2, (v≔ X,E), lx.X.
For example,e .◦a1 .∩a2→a3 = ((e .◦a1)) .∩a2)→a3, andlx. x:a1 @y:a2 = lx. (x:a1 @y:a2). Application
is left-associative so thatM1 @M2 @M3 = (M1 @M2) @M3 (similarly for skeletons) and the function
type constructor is right-associative so thatT1→ T2→ T3 = T1→ (T2→ T3). Terms and skeletons are
quotiented bya-conversion as usual, wherelx.M bindsx in M (and similarly for skeletons).

The set of System E types is modified by imposing equalities for the .∩ andwTy constructors, and to
preserve consistency also for expansion application. These equalities apply only to types, and not to
entities of other sorts. We take.∩ on types to be (1) associative, (2) commutative, and (3) havewTy as its
unit. (The constantwTy can be viewed as a nullary version of.∩.) We also take E-variable application
to (4) distribute over.∩ and (5) be absorbed bywTy (this simply implements the nullary version of
distribution). Formally, these equalities hold:

(1) T1 .∩ (T2 .∩ T3) = (T1 .∩ T2) .∩ T3
(2) T1 .∩ T2 = T2 .∩ T1

(3) wTy .∩ T = T
(4) e .◦ (T1 .∩ T2) = e .◦ T1 .∩ e .◦ T2

(5) e .◦ wTy
= wTy

Given equalities (4) and (5), the following further equalities are a consequence:

E .◦ (T1 .∩ T2) = E .◦ T1 .∩ E .◦ T2 E .◦ wTy
= wTy

We have made heavy use of these equalities throughout our earlier publications on System E [2, 3].
Without these equalities, we would have had to define a lot of auxiliary machinery to replace them, and
the papers would have been much longer and more of a burden forthe reader.

6.3 The Type System

This section gives the typing rules of System E. Like for mosttype systems for calculi with free vari-
ables such as thel-calculus, typing judgements depend on a notion of type environments, which we
also define here.

Type environments, ranged over byA, are functions that map all members ofTerm-Variable into
Type, and which furthermore map only a finite number of term variables to types other thanwTy. LetwEnv denote the type environment mapping every term variable towTy, i.e.,wEnv(x) = wTy for all x.
Let (x1 : T1, . . . , xn : Tn) abbreviatewEnv[x1 7→ T1] · · · [xn 7→ Tn]. We define the following additional
operations on type environments:

E .◦ A = { (x,E .◦ A(x)) x ∈ Term-Variable }
A1 .∩ A2 = { (x,A1(x) .∩ A2(x)) x ∈ Term-Variable }

8

Q ◮ M : 〈A ⊢ T〉
e .◦ Q ◮ M : 〈e .◦ A ⊢ e .◦ T〉

e-app
(E-variable application)

Q1 ◮ M : 〈A1 ⊢ T1〉 Q2 ◮ M : 〈A2 ⊢ T2〉

Q1 .∩ Q2 ◮ M : 〈A1 .∩ A2 ⊢ T1 .∩ T2〉
.∩

(.∩ introduction)wSk(M)
◮ M : 〈wEnv ⊢ wTy〉

w
(wTy introduction)

x:T
◮ x : 〈(x : T) ⊢ T〉

var
(variable)

Q ◮ M : 〈A ⊢ T〉lx.Q ◮ lx.M : 〈A[x 7→ wTy] ⊢ A(x)→ T〉
abs

(abstraction)

Q1 ◮ M1 : 〈A1 ⊢ T1→ T2〉 Q2 ◮ M2 : 〈A2 ⊢ T1〉

Q1 @ Q2 ◮ M1 @ M2 : 〈A1 .∩ A2 ⊢ T2〉
app

(application)

Figure 3: Typing rules of System E.

Note that the way.◦ is extended to handle type environments means that axioms E1, E3, and E8 of
expansion algebra given in figure 1 are also satisfied whenever the rightmostX in the axiom is replaced
by anA. In effect, for the purposes of expansion, a type environment (x1 : T1, . . . , xn : Tn) acts roughly
like a constructed termc(T1, . . . ,Tn), and if viewed this way one sees that axiom E7 also holds.

Note also that all of the following equalities hold:

A1 .∩ (A2 .∩ A3) = (A1 .∩ A2) .∩ A3 A1 .∩ A2 = A2 .∩ A1 wEnv .∩ A = A
e .◦ (A1 .∩ A2) = (e .◦ A1) .∩ (e .◦ A2) e .◦ wEnv

= wEnv

The typing rules of System E are given in Figure 3. These rulesderive typing judgementsof the
form Q ◮ M : 〈A ⊢ T〉, which can be read as stating that “Q denotes a proof thatM can be assigned
the typing〈A ⊢ T〉”. Although the sort ofQ uniquely determinesM, we still includeM in typing
judgements because it makes the typing rules easier to read,and becauseM is the real “subject” of the
typing judgement, unlikeQ which is just a piece of syntax denoting a typing derivation.

In System E, every operationE .◦Q applying an expansionE to a skeletonQ corresponds tosplicing
in a number of uses of typing rules as determined byE. We can now finally present the key property
that the expansion machinery was designed to achieve, namely that an expansionE can be applied to
the typing derived by the skeletonQ to obtain the typing that would be derived byE .◦ Q, without
needing to inspectQ:

Lemma 6.2(Expansion preserves derivability of typings).
If Q ◮ M : 〈A ⊢ T〉, then E .◦ Q ◮ M : 〈E .◦ A ⊢ E .◦ T〉.

Proof. By induction onE andQ.

We now give in figure 4 an extended example illustrating how expansion works on skeletons and
types inside skeletons.

References
[1] F. Baader, T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1998. One citation in sectionA.2.
[2] S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. System E: Expansion variables for flexible typing with linear and non-linear types and intersection types.
In Programming Languages& Systems, 13th European Symp. Programming, vol. 2986 ofLNCS. Springer-Verlag, 2004. 4 citations in section(s) 1, 3, 6, and 6.2.
[3] S. Carlier, J. B. Wells. Type inference with expansion variables and intersection types in System E and an exact correspondence withβ-reduction. InProc.
6th Int’l Conf. Principles& Practice Declarative Programming, 2004. Completely supersedes [4]. 2 citations in section(s) 6.2 and 6.3.
[4] S. Carlier, J. B. Wells. Type inference with expansion variables and intersection types in System E and an exact correspondence withβ-reduction. Technical
Report HW-MACS-TR-0012, Heriot-Watt Univ., School of Math. & Comput. Sci., 2004. Completely superseded by [3]. One citation in section 6.3.

9

http://www4.informatik.tu-muenchen.de/~nipkow/TRaAT/
http://www.macs.hw.ac.uk/~sebc/
http://www.cs.cmu.edu/~jpolakow/
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Polakow+Wells+Kfoury:System-E:ESOP-2004.pdf
http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Wells:Type-Inference-with-Expansion-Variables-and-Intersection-Types-in-System-E-and-an-Exact-Correspondence-with-Beta-Reduction:PPDP-2004.pdf
http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/

Assume the following definitions:

E = ⊡ .∩ ⊡ S = (a≔ b,⊡)
E1 = S .◦ E S1 = (e≔ E1,⊡)
E2 = S .∩ S S2 = (e≔ E2,⊡)

Q = @

y:e.◦(a→a)→a e .◦lx.

x:a

These equalities hold:

S1 .◦ Q = @

y:E1 .◦(a→a)→a E1 .◦lx.

x:a

= @

y:S.◦E.◦(a→a)→a S .◦

E .◦lx.

x:a

= @

y:S.◦((a→a) .∩(a→a))→a S .◦

.∩lx.

x:b

lx.

x:b

‖

S2 .◦ Q = @

y:E2 .◦(a→a)→a E2 .◦lx.

x:a

= @

y:^

→

.∩

S .◦

a→ a

S .◦

a→ a

a

.∩

S .◦lx.

x:a

S .◦lx.

x:a

= @

y:(b→b) .∩(b→b)→a .∩lx.

x:b

lx.

x:b

This examples composes inE1 the substitutionS with the expansionE. The expansionE2 is the result of this
composition, and bothE1 and E2 have the same effect when applied toQ. In fact, it is easy to check that
E1 = E2.

Figure 4: Example of expansion composition.

[5] S. Carlier, J. B. Wells. Expansion: the crucial mechanism for type inference with intersection types: A survey and explanation. InProc. 3rd Int’l Workshop
Intersection Types& Related Systems (ITRS 2004), 2005. The ITRS ’04 proceedings appears as vol. 136 (2005-07-19) ofElec. Notes in Theoret. Comp. Sci.One
citation in section 1.
[6] M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes andλ-calculus semantics. In J. R. Hindley, J. P. Seldin, eds.,To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980. 3 citations in section(s) 1, 1, and 3.
[7] A. J. Kfoury, J. B. Wells. Principality and decidable type inference for finite-rank intersection types. InConf. Rec. POPL ’99: 26th ACM Symp. Princ. of
Prog. Langs., 1999. Superseded by [9]. 4 citations in section(s) 1, 3, 6.3, and 6.3.
[8] A. J. Kfoury, J. B. Wells. Principality and type inference for intersection types using expansion variables. Supersedes [7], 2003. One citation in section
6.3.
[9] A. J. Kfoury, J. B. Wells. Principality and type inference for intersection types using expansion variables.Theoret. Comput. Sci., 311(1–3), 2004.
Supersedes [7]. For omitted proofs, see the longer report [8]. 3 citations in section(s) 1, 3, and 6.3.
[10] S. Ronchi Della Rocca. Principal type schemes and unification for intersection type discipline.Theoret. Comput. Sci., 59(1–2), 1988. 2 citations in
section(s) 1 and 3.
[11] S. Ronchi Della Rocca, B. Venneri. Principal type schemes for an extended type theory.Theoret. Comput. Sci., 28(1–2), 1984. 2 citations in section(s) 1
and 3.
[12] S. van Bakel, F. Barbanera, M. Fernández. Polymorphicintersection type assignment for rewrite systems with abstractions andeta-rule. InTYPES, 1999.
2 citations in section(s) 1 and 3.
[13] S. J. van Bakel. Principal type schemes for the strict type assignment system.J. Logic Comput., 3(6), 1993. 2 citations in section(s) 1 and 3.
[14] S. J. van Bakel. Intersection type assignment systems.Theoret. Comput. Sci., 151(2), 1995. 2 citations in section(s) 1 and 3.

10

http://www.macs.hw.ac.uk/~sebc/
http://www.macs.hw.ac.uk/~jbw/
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Wells:Expansion:ITRS-2004.pdf
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~dezani/
http://www.dsi.unifi.it/php/prof.php3
http://www-maths.swan.ac.uk/staff/jrh/
http://www.cs.uleth.ca/~seldin/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/Kfo+Wel:POPL-1999.html
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/electronic/Kfo+Wel:PTI-2003.pdf.gz
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.church-project.org/reports/Kfo+Wel:TCSB-2004-v311n1-3.html
http://www.di.unito.it/~ronchi/
http://www.di.unito.it/~ronchi/
http://www.dsi.unifi.it/php/prof.php3
http://theory.doc.ic.ac.uk/~svb/
http://www.dipmat.unict.it/~barba/
http://www.dcs.kcl.ac.uk/staff/maribel/
http://theory.doc.ic.ac.uk/~svb/
http://theory.doc.ic.ac.uk/~svb/

A Human-Checked Proofs

This appendix presents additional proof details that are not appropriate for the main body of the paper
because they are either too technical, or they are not important enough and also use too much space.

A.1 Termination of [e-canon]

Lemma A.1. For any X, X′, and S , we have‖X‖ ≥ 1, ‖X .◦ X′‖ ≥ 2, and‖S‖ ≥ 3.

Lemma A.2. Let a, b, n ∈ N such that a, b ≥ 1 and n≥ 2. Then(a+ b)n > an
+ bn
+ 1.

Proof. By induction onn.

Lemma A.3. Let m, n, a1, . . . , am ∈ N such that m, n ≥ 2 and a1, . . . , am ≥ 1. We have:

1+ (
∑m

i=1 ai)n > m+
∑m

i=1 an
i =
∑m

i=1(an
i + 1)

Proof. By induction onm, making use of lemma A.2.

Lemma A.4. If X1 ⊏ X2 then‖X1‖ < ‖X2‖.

Proof. By induction onX2.

Lemma A.5. If X1 ⊏ X2 and X3 ⊏ X4 then‖X1 .◦ X3‖ < ‖X2 .◦ X4‖.

Lemma A.6. If ‖X1‖ < ‖X2‖ then‖X1 .◦ X‖ < ‖X2 .◦ X‖.

Proof of Lemma 4.1. By induction on the derivation ofX −[e-canon]−−−−−−→ X′.
• Rules 1, 2, and 5 are by lemma A.4.

• Rule 4a is by lemma A.5.

• Rules 4b and 6 are by lemmas A.6 and A.4.

• Rule 3.
‖(v .◦ X1) .◦ X2‖

= ((‖X1‖ + 1)‖X2‖ + 1)‖X1‖+1

= (‖X1‖‖X2‖ + ‖X2‖ + 1)‖X1‖+1

> (‖X1‖‖X2‖ + 1+ 1)‖X1‖

≥ (‖X1‖‖X2‖ + 1)‖X1‖ + 1
= ‖v .◦ (X1 .◦ X2)‖

• Rule 7.
‖S .◦ (v≔ X1,X2)‖
= (‖S‖(‖X1‖ + ‖X2‖ + 1)+ 1)‖S‖

= (‖S‖‖X1‖ + ‖S‖‖X2‖ + ‖S‖ + 1)‖S‖

> ((‖S‖‖X1‖ + 1)+ (‖S‖‖X2‖ + 1))‖S‖

(lemma A.2) > (‖S‖‖X1‖ + 1)‖S‖ + (‖S‖‖X2‖ + 1)‖S‖ + 1
= ‖v≔ S .◦ X1,S .◦ X2‖

• Rule 8.

– Casen = 0 is by lemma A.4.

– Casen = 1 is similar to the case for rule 7. This case needs to be considered separately because the next case requires
n ≥ 2 when using lemma A.3.

11

– If n ≥ 2 then
‖S .◦ c(X1, . . . , Xn)‖
= (‖S‖ (1+ n+

∑n
i=1 ‖Xi‖) + 1)‖S‖

= (‖S‖ (1+
∑n

i=1(‖Xi‖ + 1))+ 1)‖S‖

= (1+ ‖S‖ (1+
∑n

i=1(‖Xi‖ + 1)))‖S‖

= (1+ ‖S‖ +
∑n

i=1(‖S‖ ‖Xi‖ + ‖S‖))‖S‖

> (1+
∑n

i=1(‖S‖ ‖Xi‖ + 1))‖S‖

(lemma A.2) > 1‖S‖ + (
∑n

i=1(‖S‖ ‖Xi‖ + 1))‖S‖ + 1
= 1+ (

∑n
i=1(‖S‖ ‖Xi‖ + 1))‖S‖ + 1

(lemma A.3) > 1+
∑n

i=1((‖S‖ ‖Xi‖ + 1)‖S‖ + 1)
= 1+ n+

∑n
i=1(‖S‖ ‖Xi‖ + 1)‖S‖

= ‖c(S .◦ X1, . . . ,S .◦ Xn)‖

• Rule 9.
Let p = ‖c(X1, . . . ,Xn)‖ = 1+ n+

∑n
i=1 ‖Xi‖. Then‖c(X1, . . . ,Xn) .◦ X‖ = (p‖X‖ + 1)p.

– Casen = 0:
‖c() .◦ X‖ = ‖X‖ + 1 > 1 = ‖c()‖

– Casen = 1:
‖c(X1) .◦ X2‖

= (‖X2‖ + (‖X2‖ + ‖X1‖ ‖X2‖) + 1)2+‖X1‖

> 2+ (‖X1‖ ‖X2‖ + 1)‖X1‖

= ‖c(X1 .◦ X2)‖

– If n ≥ 2, thenp ≥ 2 and:
‖c(X1, . . . ,Xn) .◦ X‖
= (p‖X‖ + 1)p

= ((1+ n+
∑n

i=1 ‖Xi‖)‖X‖ + 1)p

≥ (1+
∑n

i=1(‖Xi‖‖X‖ + 1))p

(lemma A.2) > 1p
+ (
∑n

i=1(‖Xi‖ ‖X‖ + 1))p
+ 1

= 1+ (
∑n

i=1(‖Xi‖ ‖X‖ + 1))p
+ 1

≥ 1+ (
∑n

i=1(‖Xi‖ ‖X‖))‖Xi ‖ + 1
(lemma A.3) > 1+

∑n
i=1

(

(‖Xi‖‖X‖ + 1)‖Xi ‖
)

= 1+ n+
∑n

i=1

(

(‖Xi‖‖X‖ + 1)‖Xi ‖
)

= ‖c(X1 .◦ X, . . . ,Xn .◦ X)‖

• Assume the property holds forX1 −
[e-canon]−−−−−−−−→ X2 (i.e.,‖X1‖ > ‖X2‖).

All cases of compatibility, listed below, simply use lemma A.4 and IH.

– X1 .◦ X −[e-canon]−−−−−−−−→ X2 .◦ X

– X .◦ X1 −
[e-canon]−−−−−−−−→ X .◦ X2

– v≔ X1,X −
[e-canon]−−−−−−−−→ v≔ X2,X

– v≔ X,X1 −
[e-canon]−−−−−−−−→ v≔ X,X1

– c(X′1, . . . ,X
′
n,X1,X′n+1, . . . ,X

′
n+m) −[e-canon]−−−−−−−−→ c(X′1, . . . ,X

′
n, X2,X′n+1, . . . ,X

′
n+m)

12

A.2 Local Confluence of[e-canon]

Proof of Lemma 4.3. Joinability of all critical pairs implies local confluence [1, 6.2.4]. There are 6
critical pairs, all of which are joinable using−[e-canon]−−−−−−։:

(1) ⊡ .◦ ⊡ −e-canon−−−−−→1 ⊡

⊡ .◦ ⊡ −e-canon−−−−−→2 ⊡

(2) (v .◦ ⊡) .◦ X −e-canon−−−−−→3 v .◦ (⊡ .◦ X)
−[e-canon]−−−−−−→1 v .◦ X

(v .◦ ⊡) .◦ X −[e-canon]−−−−−−→2 v .◦ X

(3) (v .◦ X) .◦ ⊡ −e-canon−−−−−→2 v .◦ X
(v .◦ X) .◦ ⊡ −e-canon−−−−−→3 v .◦ (X .◦ ⊡)

−[e-canon]−−−−−−→2 v .◦ X

(4) (v≔ X1,X2) .◦ (v .◦ ⊡) −e-canon−−−−−→4a X1 .◦ ⊡

−e-canon−−−−−→2 X1

(v≔ X1,X2) .◦ (v .◦ ⊡) −[e-canon]−−−−−−→2 (v≔ X1,X2) .◦ v
−e-canon−−−−−→5 X1

(5) (v≔ X1,X2) .◦ (v′ .◦ ⊡) −e-canon−−−−−→4b X2 .◦ (v′ .◦ ⊡)
−[e-canon]−−−−−−→2 X2 .◦ v′

(v≔ X1,X2) .◦ (v′ .◦ ⊡) −[e-canon]−−−−−−→2 (v≔ X1,X2) .◦ v′

−e-canon−−−−−→6 X2 .◦ v′

(6) c(X1, . . . ,Xn) .◦ ⊡ −e-canon−−−−−→2 c(X1, . . . ,Xn)
c(X1, . . . ,Xn) .◦ ⊡ −[e-canon]−−−−−−→9 c(X1 .◦ ⊡, . . . ,Xn .◦ ⊡)

−[e-canon]−−−−−−։2 c(X1, . . . ,Xn)

A.3 Correspondence of ECanon with Expansion Algebra

Lemma A.7. X1 −
e-canon−−−−−→ X2 implies X1 ≡ X2.

Proof. By case analysis ofX1 −
e-canon−−−−−→ X2; most cases are instances of axioms of≡, while a few cases

require using multiple axioms of≡ in succession.

Lemma A.8. X1 −
[e-canon]−−−−−−→ X2 implies X1 ≡ X2.

Proof. By induction onX1 −
[e-canon]−−−−−−→ X2, using lemma A.7 for the base case.

Lemma A.9. X1 −
[e-canon]−−−−−−։ X2 implies X1 ≡ X2.

Proof. By induction on the length ofX1 −
[e-canon]−−−−−−։ X2, using lemma A.8 when length is 1.

Lemma A.10. X1և
[e-canon]−−−−−−։ X2 implies X1 ≡ X2.

Proof. If X1 և
[e-canon]−−−−−−։ X2, then by confluence there existsX s.t. X1 −

[e-canon]−−−−−−։ X andX2 −
[e-canon]−−−−−−։ X.

Using lemma A.9 we haveX1 ≡ X andX2 ≡ X, thereforeX1 ≡ X2.

Lemma A.11.
X̄1 .◦ (X̄2 .◦ X̄3)և[e-canon]−−−−−−։ (X̄1 .◦ X̄2) .◦ X̄3

Proof. By induction onX̄1, with a nested induction in the case whereX̄1 = S1, with a further nested
induction onX̄3 in the subcase wherēX2 = S2.

Lemma A.12. X1 ≡ X2 implies X1և
[e-canon]−−−−−−։ X2.

13

Proof. By induction on the derivation ofX1 ≡ X2. In case (4), using lemma 4.7 and then lemma A.11.
All other cases (including the other ground rules, compatibility, reflexivity, symmetry, and transitivity)
are trivial.

Proof of Theorem 4.8. By lemma A.10 and lemma A.12.

B Proofs Formalized in Coq

This appendix presents proof details that have been mechanically and formally checked with the Coq
proof assistant. Human-checked versions of all these proofs are also present; the Coq proofs add a
gigantic increase in the level of confidence.

Only the definitions and proven statements are included. Theproofs themselves are essentially
unreadable without using an interactive development environment because they are written as applica-
tions of tactics that look like “left; subst; reflexivity.” and “pose eq nat dec. decide

equality.”. The proofs can be supplied if specifically requested.
As is usual (and virtually unavoidable) when formalizing proofs in any proof assistant, details of

definitions and proofs needed to change in order to fit the rigid type system imposed by Coq; fortunately
(and somewhat unusually) in the particular case of these proofs the overall proof structure was able to
remain fairly similar. Also, the foundation of mathematicsused in these proofs is of course the calculus
of constructions used by Coq, while in the human-checked proofs we use set theory; as is usual in this
circumstance the reader will need to use their judgement to understand how the proofs are proving
essentially the same facts, despite the conflict in foundations.

B.1 Module MyArith

Lemma plus n Sm : ∀ a b, a + S b = S (a + b).

Lemma plus Sn m : ∀ a b, S a + b = S (a + b).

Lemma S plus le lt compat : ∀ n m p, 1≤ m→ n < p→ S n < m + p.

Lemma nz : ∀ m, 0< m→ { n : nat | m = S n }.

Lemma ge 1 is S : ∀ m, 1≤ m→ { n : nat | m = S n }.

Lemma le minus O : ∀ n m, n ≤ m→ m - n = 0→ n = m.

Lemma plus ge1 ge1 not le1 : ∀ n1 n2, 1≤ n1→ 1 ≤ n2→ ¬ n1 + n2 ≤ 1.

Lemma plus permute 3 in 6 : ∀ a1 b1 c1 a2 b2 c2,
a1 + b1 + c1 + (a2 + b2 + c2) = (a1 + a2) + (b1 + b2) + (c1 + c2).

Lemma plus permute lr r : ∀ n m p, (m + n) + p = (m + p) + n.

Lemma le plus trans l : ∀ m n p, m ≤ n→ m ≤ p + n.

Lemma not lt m plus n : ∀ m n, ¬ m + n < m.

Lemma plus lt le 0 compat : ∀ m n p, m ≤ n→ 0 < p→ m < n + p.

Lemma mult m Sn : ∀ m n, m × S n = m + m × n.

Lemma pull mult through plus le : ∀ n n’ m m’ P Q R, 0< n→ 0 < m→ n ≤ n’→ m ≤ m’→ P + Q
≤ R→ n × P + m × Q ≤ n’ × m’ × R.

14

Lemma le mult trans : ∀ m n p, 1≤ p→ m ≤ n→ m ≤ n × p.

Lemma lt mult trans : ∀ m n p, 1≤ p→ m < n→ m < n × p.

Lemma mult lt compat l : ∀ n m p : nat, n < m→ 0 < p→ p × n < p × m.

Lemma mult lt compat : ∀ m1 m2, 1≤ m1→ 1 ≤ m2→ m1 < m2→ ∀ m3 m4, 1≤ m3→ 1 ≤ m4
→ m3 < m4→ m1 × m3 < m2 × m4.

Lemma mult le lt compat : ∀ m3 m4, 1≤ m3→ 1 ≤ m4→ m3 < m4→ ∀ m1 m2, 1≤ m2→ m1 ≤
m2→ m1 × m3 < m2 × m4.

Lemma mult lt le compat : ∀ m1 m2, 1≤ m1→ 1 ≤ m2→ m1 < m2→ ∀ m3 m4, 1≤ m4→ m3 ≤
m4→ m1 × m3 < m2 × m4.

Lemma mult reg l : ∀ m n k, m + m × k = n + n × k→ m = n.

Lemma mult le reg l : ∀ k, 1≤ k→ ∀ a b, k × a ≤ k × b→ a ≤ b.

Lemma m plus n mult m : ∀ m n, m + n × m = m × (n + 1).

Fixpoint exp (m n:nat) {struct n}: nat :=
match n with
| O⇒ 1
| S n⇒ m × exp m n
end.

Notation ”x ˆ y” := (exp x y).

Lemma exp 0 : ∀ n, 1≤ n→ 0 ˆ n = 0.

Lemma exp 1 : ∀ n, 1 ˆ n = 1.

Lemma m mult m exp n : ∀ m n, m × m ˆ n = m ˆ (n + 1).

Lemma exp mult distr : ∀ n p q, (p × q) ˆ n = p ˆ n × q ˆ n.

Lemma exp plus distr : ∀ p n q, n ˆ (p + q) = n ˆ p × n ˆ q.

Lemma exp ge 1 : ∀ n m, 1≤ m→ 1 ≤ m ˆ n.

Lemma exp plus : ∀ n, 2≤ n→ ∀ a b, 1≤ a→ 1 ≤ b→ a ˆ n + b ˆ n + 1 < (a + b) ˆ n.

Lemma mult ge 1 : ∀ n1 n2, 1≤ n1→ 1 ≤ n2→ 1 ≤ n1 × n2.

Lemma exp le plus : ∀ n, 1≤ n→ ∀ m1 m2, 1≤ m1→ 1 ≤ m2→ m1 ˆ n < (m2 + m1) ˆ n.

Lemma le exp trans : ∀ n m1 m2, 1≤ n→ 1 ≤ m2→ m1 ≤ m2→ m1 ≤ m2 ˆ n.

Lemma exp le compat r : ∀ n, 1≤ n→ ∀ m1 m2, 1≤ m1→ 1 ≤ m2→ m1 ≤ m2→ m1 ˆ n ≤ m2 ˆ
n.

Lemma exp le compat l : ∀ n1 n2, n1 ≤ n2→ ∀ m, 1≤ m→ m ˆ n1 ≤ m ˆ n2.

Lemma exp le compat : ∀ n3 n4, 1≤ n3→ n3 ≤ n4→ ∀ n1 n2, 1≤ n1→ 1 ≤ n2→ n1 ≤ n2→ n1
ˆ n3 ≤ n2 ˆ n4.

Lemma lt exp trans : ∀ n m1 m2, 1≤ n→ 1 ≤ m2→ m1 < m2→ m1 < m2 ˆ n.

Lemma exp lt compat : ∀ n, 1≤ n→ ∀ m1 m2, 1≤ m1→ 1 ≤ m2→ m1 < m2→ m1 ˆ n < m2 ˆ n.

Lemma exp lt lt compat : ∀ n1 n2, 1≤ n1→ 1 ≤ n2→ n1 < n2→ ∀ m1 m2, 1≤ m1→ 1 ≤ m2→
m1 < m2→ m1 ˆ n1 < m2 ˆ n2.

Lemma one le exp : ∀ n k, 1≤ k→ 1 ≤ k ˆ n.

15

Lemma mult exp le lt compat : ∀ k p1 p2 q1 q2, 1 ≤ k→ p1 ≤ p2→ q1 < q2→ exp k p1 × q1 <
exp k p2 × q2.

Lemma max 0 r : ∀ n, max n 0 = n.

Lemma max assoc : ∀ n1 n2 n3, max (max n1 n2) n3 = max n1 (max n2 n3).

Lemma max permute : ∀ n1 n2 n3, max n1 (max n2 n3) = max n2 (max n1 n3).

B.2 Module MyList

Lemma length map : ∀ (A B:Set) (f:A→B) (xs:list A), length (map f xs) = length xs.

Lemma length app : ∀ (A:Set) (xs ys:list A), length (xs ++ ys) = length xs + length ys.

Lemma map id : ∀ (X:Set) (xs:list X), map (fun x⇒ x) xs = xs.

Fixpoint sum (ns : list nat) {struct ns} : nat :=
match ns with
| nil⇒ O
| cons n ns’⇒ n + sum ns’
end.

Lemma le sum trans : ∀ (A:Set) (f:A→nat) (Xs:list A) (X1 X2:A), In X2 Xs→ f X1 ≤ f X2→ f X1 ≤
sum (map f Xs).

Lemma length plus sum : ∀ (A:Set) (f:A→nat) (Xs:list A), length Xs + sum (map f Xs) = sum (map
(fun X⇒ f X + 1) Xs).

Lemma mult sum distr l : ∀ (A:Set) k (f:A→nat) Xs, k × sum (map f Xs) = sum (map (fun X⇒ k ×
f X) Xs).

Lemma mult sum distr r : ∀ (A:Set) k (f:A→nat) Xs, sum (map f Xs) × k = sum (map (fun X⇒ f X
× k) Xs).

Lemma sum map mult k f : ∀ (A:Set) (f:A→nat) (xs:list A) (k:nat), sum (map (fun x⇒ k × f x) xs)
= k × sum (map f xs).

Fixpoint all (A:Set) (P:A→Prop) (xs:list A) {struct xs} : Prop :=
match xs with
| nil⇒ True
| x :: xs⇒ P x ∧ all P xs
end.

Lemma all proj : ∀ (A:Set) (P:A→Prop) (X:A) (Xs:list A), In X Xs→ all A P Xs→ P X.

Lemma all ext : ∀ (A:Set) (P:A→Prop) (Xs:list A) (H:∀ X, In X Xs→ P X), all A P Xs.

Lemma all map : ∀ (A B:Set) (P:B→Prop) (f:A→B) Xs, (∀ X, P (f X))→ all B P (map f Xs).

Lemma exp sum 0 :
∀ ps,
all (fun m⇒ 1 ≤ m) ps→
∀ n, 2≤ n→
∀ a1 a2, 1≤ a1→ 1 ≤ a2→
sum (map (fun m⇒ m ˆ n + 1) (a1 :: a2 :: ps)) <
1 + sum (a1 :: a2 :: ps) ˆ n.

Lemma exp sum :
∀ ps,

16

2 ≤ length ps→
all (fun m⇒ 1 ≤ m) ps→
∀ n, 2≤ n→
sum (map (fun m⇒ m ˆ n + 1) ps) < 1 + (sum ps) ˆ n.

Inductive all2 (A B:Set) (R:A→B→Prop) : list A→ list B→ Prop :=
| all2 nil : all2 A B R nil nil
| all2 cons : ∀ X1 X2 Xs1 Xs2, R X1 X2→ all2 A B R Xs1 Xs2→ all2 A B R (X1 :: Xs1) (X2 :: Xs2).

Lemma sum map ext : ∀ (A:Set) (f1 f2:A→nat) Xs, (∀ X, In X Xs→ f1 X = f2 X) → sum (map f1
Xs) = sum (map f2 Xs).

Lemma sum map le compat : ∀ (A:Set) (f1 f2:A→nat) Xs, (∀ X, In X Xs → f1 X ≤ f2 X) → sum
(map f1 Xs) ≤ sum (map f2 Xs).

Lemma sum map lt compat : ∀ (A:Set) (f1 f2:A→nat) Xs, 1≤ length Xs→ (∀ X, In X Xs→ f1 X <
f2 X)→ sum (map f1 Xs) < sum (map f2 Xs).

B.3 Module Utils

Lemma eq l : ∀ (A:Set) (m n:A) (B : Set) (p:B) (R : A→ B→ Prop), n = m→ R m p→ R n p.

Lemma eq r : ∀ (B:Set) (m p:B) (A : Set) (n:A) (R : A→ B→ Prop), m = p→ R n m→ R n p.

B.4 Module Expansion

Inductive Entity : Set :=
| App : Entity→ Entity→ Entity
| Id : Entity
| Var : nat→ Entity
| Sub : nat→ Entity→ Entity→ Entity
| Con : nat→ list Entity→ Entity.

Inductive subterm : Entity→ Entity→ Prop :=
| subterm refl : ∀ X, subterm X X
| subterm App 1 : ∀ X X1 X2, subterm X X1→ subterm X (App X1 X2)
| subterm App 2 : ∀ X X1 X2, subterm X X2→ subterm X (App X1 X2)
| subterm Sub 1 : ∀ X v X1 X2, subterm X X1→ subterm X (Sub v X1 X2)
| subterm Sub 2 : ∀ X v X1 X2, subterm X X2→ subterm X (Sub v X1 X2)
| subterm Con : ∀ c X1 X2 Xs, subterm X1 X2→ In X2 Xs→ subterm X1 (Con c Xs).

Inductive proper subterm : Entity→ Entity→ Prop :=
| proper subterm App 1 : ∀ X X1 X2, subterm X X1→ proper subterm X (App X1 X2)
| proper subterm App 2 : ∀ X X1 X2, subterm X X2→ proper subterm X (App X1 X2)
| proper subterm Sub 1 : ∀ X v X1 X2, subterm X X1→ proper subterm X (Sub v X1 X2)
| proper subterm Sub 2 : ∀ X v X1 X2, subterm X X2→ proper subterm X (Sub v X1 X2)
| proper subterm Con : ∀ c X1 X2 Xs, subterm X1 X2 → In X2 Xs → proper subterm X1 (Con c
Xs).

Definition appL (X1:Entity) (Xs:list Entity) : list Entity := map (fun X2⇒ App X1 X2) Xs.

Definition appR (Xs:list Entity) (X2:Entity) : list Entity := map (fun X1⇒ App X1 X2) Xs.

Inductive R0 : Entity→ Entity→ Prop :=

17

| R0 1 : ∀ X, R0 (App Id X) X
| R0 2 : ∀ X, R0 (App X Id) X
| R0 3v : ∀ v X1 X2, R0 (App (App (Var v) X1) X2) (App (Var v) (App X1 X2))
| R0 34 : ∀ v X1 X2 X, R0 (App (Sub v X1 X2) (App (Var v) X)) (App X1 X)
| R0 35 : ∀ v1 X1 X2 v2 X, v1 , v2→ R0 (App (Sub v1 X1 X2) (App (Var v2) X)) (App X2 (App (Var
v2) X))
| R0 4 : ∀ v X1 X2, R0 (App (Sub v X1 X2) (Var v)) X1
| R0 5 : ∀ v1 X1 X2 v2, v1 , v2→ R0 (App (Sub v1 X1 X2) (Var v2)) (App X2 (Var v2))
| R0 6 : ∀ v1 X1 X2 v2 X3 X4, R0 (App (Sub v1 X1 X2) (Sub v2 X3 X4)) (Sub v2 (App (Sub v1 X1
X2) X3) (App (Sub v1 X1 X2) X4))
| R0 7 : ∀ v X1 X2 c Xs, R0 (App (Sub v X1 X2) (Con c Xs)) (Con c (appL (Sub v X1 X2) Xs))
| R0 8 : ∀ c Xs X, R0 (App (Con c Xs) X) (Con c (appR Xs X)).

Inductive R1 : Entity→ Entity→ Prop :=
| R1 App 1 : ∀ X1 X2 X, R1 X1 X2→ R1 (App X1 X) (App X2 X)
| R1 App 2 : ∀ X1 X2 X, R1 X1 X2→ R1 (App X X1) (App X X2)
| R1 Sub 1 : ∀ v X1 X2 X, R1 X1 X2→ R1 (Sub v X1 X) (Sub v X2 X)
| R1 Sub 2 : ∀ v X1 X2 X, R1 X1 X2→ R1 (Sub v X X1) (Sub v X X2)
| R1 Con : ∀ c Xs1 Xs2, R1s Xs1 Xs2→ R1 (Con c Xs1) (Con c Xs2)
| R1 R0 : ∀ X1 X2, R0 X1 X2→ R1 X1 X2
with R1s : list Entity→ list Entity→ Prop :=
| R1s 1 : ∀ X Xs1 Xs2, R1s Xs1 Xs2→ R1s (X :: Xs1) (X :: Xs2)
| R1s 2 : ∀ Xs X1 X2, R1 X1 X2→ R1s (X1 :: Xs) (X2 :: Xs).

SchemeR1 R1s := Induction for R1 Sort Prop
with R1s R1 := Induction for R1s Sort Prop.

Inductive R2 : Entity→ Entity→ Prop :=
| R2 R1 : ∀ X1 X2, R1 X1 X2→ R2 X1 X2
| R2 trans : ∀ X1 X2 X3, R1 X1 X2→ R2 X2 X3→ R2 X1 X3.

Inductive R2s : list Entity→ list Entity→ Prop :=
| R2s R1s : ∀ Xs1 Xs2, R1s Xs1 Xs2→ R2s Xs1 Xs2
| R2s trans : ∀ Xs1 Xs2 Xs3, R1s Xs1 Xs2→ R2s Xs2 Xs3→ R2s Xs1 Xs3.

Inductive R3 : Entity→ Entity→ Prop :=
| R3 R1 : ∀ X1 X2, R1 X1 X2→ R3 X1 X2
| R3 refl : ∀ X, R3 X X
| R3 symm : ∀ X1 X2, R3 X1 X2→ R3 X2 X1
| R3 trans : ∀ X1 X2 X3, R3 X1 X2→ R3 X2 X3→ R3 X1 X3.

Inductive R : Entity→ Entity→ Prop :=
| R 1 : ∀ X, R (App Id X) X
| R 2 : ∀ X, R (App X Id) X
| R 3 : ∀ X1 X2 X3, R (App (App X1 X2) X3) (App X1 (App X2 X3))
| R 4 : ∀ v X1 X2, R (App (Sub v X1 X2) (Var v)) X1
| R 5 : ∀ v1 X1 X2 v2, v1 , v2→ R (App (Sub v1 X1 X2) (Var v2)) (App X2 (Var v2))
| R 6 : ∀ v1 X1 X2 v2 X3 X4, R (App (Sub v1 X1 X2) (Sub v2 X3 X4)) (Sub v2 (App (Sub v1 X1 X2)
X3) (App (Sub v1 X1 X2) X4))
| R 7 : ∀ v X1 X2 c Xs, R (App (Sub v X1 X2) (Con c Xs)) (Con c (appL (Sub v X1 X2) Xs))
| R 8 : ∀ c Xs X, R (App (Con c Xs) X) (Con c (appR Xs X))
| R App 1 : ∀ X1 X2 X, R X1 X2→ R (App X1 X) (App X2 X)

18

| R App 2 : ∀ X1 X2 X, R X1 X2→ R (App X X1) (App X X2)
| R Sub 1 : ∀ v X1 X2 X, R X1 X2→ R (Sub v X1 X) (Sub v X2 X)
| R Sub 2 : ∀ v X1 X2 X, R X1 X2→ R (Sub v X X1) (Sub v X X2)
| R Con : ∀ c Xs1 Xs2, all2 R Xs1 Xs2→ R (Con c Xs1) (Con c Xs2)
| R refl : ∀ X, R X X
| R symm : ∀ X1 X2, R X1 X2→ R X2 X1
| R trans : ∀ X1 X2 X3, R X1 X2→ R X2 X3→ R X1 X3.

Lemma Entity eq dec : ∀ (X1 X2 : Entity), { X1 = X2}+{ X1 , X2}.

Fixpoint size (X:Entity) : nat :=
match X with
| App X1 X2⇒ (size X1 × size X2 + 1) ˆ (size X1)
| Id⇒ 1
| Var ⇒ 1
| Sub v X1 X2⇒ 1 + size X1 + size X2
| Con Xs⇒ 1 + length Xs + sum (map size Xs)
end.

Lemma size ge 1 : ∀ X, 1≤ size X.

Lemma size App ge 2 : ∀ X1 X2, 2≤ size (App X1 X2).

Lemma size Sub ge 3 : ∀ v X1 X2, 3≤ size (Sub v X1 X2).

Lemma size subterm : ∀ X1 X2, subterm X1 X2→ size X1 ≤ size X2.

Lemma size proper subterm : ∀ X1 X2, proper subterm X1 X2→ size X1 < size X2.

Lemma size App 1 : ∀ X X1 X2, size X1 < size X2→ size (App X1 X) < size (App X2 X).

Lemma size App 2 : ∀ X X1 X2, size X1 < size X2→ size (App X X1) < size (App X X2).

Lemma size proper subterms App : ∀ X1 X2 X3 X4,
proper subterm X1 X2→
proper subterm X3 X4→
size (App X1 X3) < size (App X2 X4).

Lemma R0 decreases size : ∀ X1 X2, R0 X1 X2→ size X2 < size X1.

Lemma R1s length : ∀ Xs1 Xs2, R1s Xs1 Xs2→ length Xs1 = length Xs2.

Lemma R1 decreases size : ∀ X1 X2, R1 X1 X2→ size X2 < size X1.

Lemma R2 decreases size : ∀ X1 X2, R2 X1 X2→ size X2 < size X1.

Definition R2 ind’ :
∀ P : Entity→ Prop,

(∀ X1, (∀ X2, R2 X1 X2→ P X2)→ P X1)→ ∀ X, P X.

Definition R2 rec :
∀ P : Entity→ Set,

(∀ X1, (∀ X2, R2 X1 X2→ P X2)→ P X1)→ ∀ X, P X.

Inductive C : Entity→ Prop :=
| C App : ∀ v X, X , Id→ C X→ C (App (Var v) X)
| C Id : C Id
| C Var : ∀ v, C (Var v)
| C Sub : ∀ v X1 X2, C X1→ C X2→ C (Sub v X1 X2)
| C Con : ∀ c Xs, (∀ X, In X Xs→ C X)→ C (Con c Xs).

19

Lemma C not R0 : ∀ X1 X2, R0 X1 X2→ C X1→ False.

Lemma R1 Con elem : ∀ c Xs2 Xs1, R1s Xs1 Xs2→ R1 (Con c Xs1) (Con c Xs2).

Lemma not C and R1 : ∀ X1, C X1→ ∀ X2, R1 X1 X2→ False.

Lemma R1 or C : ∀ X1, (∃ X2 : Entity, R1 X1 X2) ∨ C X1.

Lemma R2 Trans : ∀ X1 X2 X3, R2 X1 X2→ R2 X2 X3→ R2 X1 X3.

Lemma R2 App 1 : ∀ X1 X2 X, R2 X1 X2→ R2 (App X1 X) (App X2 X).

Lemma R2 App 2 : ∀ X1 X2 X, R2 X1 X2→ R2 (App X X1) (App X X2).

Lemma R2 Sub 1 : ∀ v X1 X2 X, R2 X1 X2→ R2 (Sub v X1 X) (Sub v X2 X).

Lemma R2 Sub 2 : ∀ v X1 X2 X, R2 X1 X2→ R2 (Sub v X X1) (Sub v X X2).

Lemma R2s length : ∀ Xs1 Xs2, R2s Xs1 Xs2→ length Xs1 = length Xs2.

Lemma R2s Trans : ∀ Xs1 Xs2 Xs3, R2s Xs1 Xs2→ R2s Xs2 Xs3→ R2s Xs1 Xs3.

Lemma R2 Con : ∀ c Xs1 Xs2, R2s Xs1 Xs2→ R2 (Con c Xs1) (Con c Xs2).

Lemma R2 or C : ∀ X1, (∃ X2 : Entity, R2 X1 X2) ∨ C X1.

Lemma C R2 : ∀ X, (∃ X’ : Entity, C X’ ∧ (R2 X X’ ∨ X = X’)).

Lemma R2 implies R3 : ∀ X1 X2, R2 X1 X2→ R3 X1 X2.

Lemma R3 App 1 : ∀ X1 X2 X, R3 X1 X2→ R3 (App X1 X) (App X2 X).

Lemma R3 App 2 : ∀ X1 X2 X, R3 X1 X2→ R3 (App X X1) (App X X2).

Lemma R3 Sub 1 : ∀ v X1 X2 X, R3 X1 X2→ R3 (Sub v X1 X) (Sub v X2 X).

Lemma R3 Sub 2 : ∀ v X1 X2 X, R3 X1 X2→ R3 (Sub v X X1) (Sub v X X2).

Inductive R3s : list Entity→ list Entity→ Prop :=
| R3s R1s : ∀ Xs1 Xs2, R1s Xs1 Xs2→ R3s Xs1 Xs2
| R3s refl : ∀ Xs, R3s Xs Xs
| R3s symm : ∀ Xs1 Xs2, R3s Xs1 Xs2→ R3s Xs2 Xs1
| R3s trans : ∀ Xs1 Xs2 Xs3, R3s Xs1 Xs2→ R3s Xs2 Xs3→ R3s Xs1 Xs3.

Lemma R3s 1 : ∀ X Xs1 Xs2, R3s Xs1 Xs2→ R3s (X :: Xs1) (X :: Xs2).

Lemma R3s 2 : ∀ Xs X1 X2, R3 X1 X2→ R3s (X1 :: Xs) (X2 :: Xs).

Lemma R3s ext : ∀ (Xs : list Entity) f1 f2, (∀ X, In X Xs → R3 (f1 X) (f2 X)) → R3s (map f1 Xs)
(map f2 Xs).

Lemma R3 Con : ∀ c Xs1 Xs2, R3s Xs1 Xs2→ R3 (Con c Xs1) (Con c Xs2).

Lemma all2 R refl : ∀ Xs, all2 R Xs Xs.

Lemma R0 implies R : ∀ X1 X2, R0 X1 X2→ R X1 X2.

Lemma Entity ind’ : ∀ (X : Entity) (P : Entity→ Prop)
(HApp : ∀ X1 X2, P X1→ P X2→ P (App X1 X2))
(HId : P Id)
(HVar : ∀ a, P (Var a))
(HSub : ∀ v X1 X2, P X1→ P X2→ P (Sub v X1 X2))
(HCon : ∀ c Xs, all P Xs→ P (Con c Xs)), P X.

Lemma R1 implies R : ∀ X1 X2, R1 X1 X2→ R X1 X2.

Lemma R2 implies R : ∀ X1 X2, R2 X1 X2→ R X1 X2.

20

Lemma R3 implies R : ∀ X1 X2, R3 X1 X2→ R X1 X2.

Lemma R3 App assoc : ∀ X1, C X1 → ∀ X2, C X2 → ∀ X3, C X3 → R3 (App X1 (App X2 X3))
(App (App X1 X2) X3).

Lemma R implies R3 : ∀ X1 X2, R X1 X2→ R3 X1 X2.

Theorem R equiv R3 : ∀ X1 X2, R X1 X2↔ R3 X1 X2.

21

	Discussion
	Mathematical Preliminaries
	Expansion as an Algebra
	Canonical Forms
	Sorted Expansion Algebra
	Application to Intersection Types: System E
	Instantiating Sorted Expansion Algebra
	Conventions and Quotienting
	The Type System

	Human-Checked Proofs
	Termination of [e-canon]
	Local Confluence of [e-canon]
	Correspondence of ECanon with Expansion Algebra

	Proofs Formalized in Coq
	Module MyArith
	Module MyList
	Module Utils
	Module Expansion

