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Abstract

The operation of expansion on typings was introduced at the end of the 1970s by
Coppo, Dezani, and Venneri for reasoning about the possible typings of a term when
using intersection types. Until recently, it has remained somewhat mysterious and
unfamiliar, even though it is essential for carrying out compositional type inference.
The fundamental idea of expansion is to be able to calculate the effect on the final
judgement of a typing derivation of inserting a use of the intersection-introduction
typing rule at some (possibly deeply nested) position, without actually needing
to build the new derivation. Recently, we have improved on this by introducing
expansion variables (E-variables), which make the calculation straightforward and
understandable. E-variables make it easy to postpone choices of which typing rules
to use until later constraint solving gives enough information to allow making a
good choice. Expansion can also be done for type constructors other than inter-
section, such as the ! of Linear Logic, and E-variables make this easy. There are
no significant new technical results in this paper; instead this paper surveys and
explains the technical results of a quarter of a century of work on expansion.
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This paper uses colors. Although the colors are not essential and it is readable
in black and white, the colors make distinctions that add to the readability of
the examples and the paper will read better if printed on a color printer.

1 Background and Motivation

In the context of computer software, types are used to express and formally
check properties of programs. This can help programming tools like compilers
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in such tasks as detecting programming mistakes, enforcing security proper-
ties, and generating smaller, faster, or more predictable code.

For many practical uses of types, it is important to have type inference
and also polymorphism. Type inference allows benefiting from the use of types
without imposing the burden that programmers must tediously enter them by
hand. Polymorphism, which means reusing the same program fragment at
different types, is required for any type system that allows generic code reuse
(including abstract data types). Section 1.1 discusses ∀-quantifiers, the most
widely used way of obtaining polymorphism, and some of their limitations,
while section 1.2 introduces intersection types, a less widely used technique
for polymorphism. For both types of polymorphism issues of type inference
are discussed.

1.1 ∀-quantification, and its limitations

Most statically typed functional languages use extensions of the well known
Hindley-Milner (HM) type system [35], which obtains polymorphism using ∀-
quantification. Consider the following Standard ML (SML) program fragment,
where type annotations (in superscript) have been added to some program
points:

let id∀a.(a→a) = fn x ⇒ x

in (idint→int 1int, idreal→real 2.0real)

The type scheme ∀a.(a→ a) is assigned to id after typing its definition, and
this type scheme is instantiated to more specific types when id is used, here
at types int → int and real → real.

Type inference using ∀-quantification is very popular, but it has some
disadvantages. Quantifiers hide information which could be used to enable
compiler optimizations, such as code and data representation specialization,
which yield faster and smaller executable programs. In the example given
above, if a value of type int can be stored as a 32-bits word, and a value
of type real as a 64-bits word, then specialized sequences of machine code
could be used for different uses of id. However, because the type given to
id uses ∀-quantification, it yields no information about the different uses of
id. As a result of using ∀-quantification, most compiler implementations
using HM assume a uniform machine representation for all values (e.g., heap
pointers). Some code specialization techniques for HM exploit the fact that ∀-
quantification is introduced syntactically by let to remove some of the burden
of uniform representations, but some opportunities for specialization are lost,
especially when using higher-order functions.

Systems with only ∀-quantification also generally do not have principal
typings [45], strongest typings which imply all the others for the same term.
Wells [45] proved the absence of principal typings both for HM and for Sys-
tem F [19,37]. In the above example, the program fragment (id 1, id 2.0)
cannot be properly analyzed on its own in HM without first being given a type
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for id. Because analysis results depend on the context in which they were ob-
tained, they are invalidated when this context changes. This makes it harder
to achieve compositional analysis, where each program fragment is analyzed
using only the analysis results of its immediate subcomponents. Principal
typings have other practical applications such as smartest recompilation [24],
and accurate type error messages [24,21].

1.2 Intersection types: some advantages, some issues

In contrast, intersection types provide type polymorphism by listing usage
types [11]. Here is the same example SML program fragment as above, except
annotated with intersection types:

let id(int→int) .∩(real→real) = fn x ⇒ x

in (idint→int 1, idreal→real 2.0)

The original motivation for the name intersection types was suggested by
their semantics [11]: if types are interpreted by sets of λ-terms, then the inter-
section type constructor could be interpreted by set intersection. Unlike the
product type constructor × which joins types for possibly different terms 2 ,
the intersection type constructor only joins types assigned to the same term.
In the example above, the definition of id is a single term that can indepen-
dently be given two different types, int → int and real → real, so we may also
give id the intersection type (int → int) .∩ (real → real). In logical terms, inter-
section is said to be a proof-functional connective [34] (i.e., the meaning of .∩
depends on the proofs of the propositions .∩ connects) while the usual logical
conjunction (to which × corresponds) is truth-functional.

Intersection types make many more terms typable than other approaches.
Consider the following program fragment in SML syntax:

fun self apply2 z ⇒ (z z) z;
fun apply f x ⇒ f x;
fun reverse apply y g ⇒ g y;
fun id w ⇒ w;
(self apply2 apply not true,

self apply2 reverse apply id false not);

This program fragment is rejected by the type system of SML, but according
to the dynamic semantics of SML it safely computes the result (false, true).
Urzyczyn [42] proved that a λ-term from which this example is derived is not
typable in Fω, considered the most powerful type system with ∀-quantifiers [18].
In contrast, the same λ-term is typable in the rank-3 restriction of intersection
types.

2 In SML, for example, (fn x ⇒ x + 1, fn y ⇒ y ∗ 0.5) has type (int → int)×(real → real).
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The notion of rank was introduced by Leivant as a measure on types that
can be used to impose restrictions on type systems. The rank of T is the
smallest integer k such that the path between the root of T and any occurrence
of .∩ or ∀ in T goes to the left of a → less than k times. Other measures are
possible (e.g., the depth of types), but the rank is more useful because it is
related to the complexity of evaluation and of type inference [29].

The use of types is not necessarily just to prevent programs from causing
run time errors, but can support many kinds of program analysis usable for
justifying compiler optimizations in order to produce better machine code.
When types are used to carry properties of programs, type polymorphism en-
ables polyvariant analysis. Intersection type systems are particularly suitable
for polyvariant type-based analysis. Some of the properties they help analyze
are flow [2], strictness [23], dead code [15,16], and totality [8]. Thus, in ad-
dition to rejecting fewer safe programs, intersection types seem to have the
potential to be a general, flexible framework for many useful program analy-
ses. Intersection types also usually have principal typings, thereby enabling
compositional analysis.

Although intersection types seem possibly better suited than ∀-quantifiers
for compiler optimizations and compositional analysis of computer programs,
they have not been widely adopted. Furthermore, when intersection types
have been used, their full power has not been exploited; it is mainly the
rank-2 restrictions of intersection types that have been used in type inference
algorithms for practical languages [24,13,14].

We believe a large part of the reason for not using intersection types (and
working only with rank-2 intersection types when they are used) has been the
difficulty of understanding the notion of expansion, which is crucial for type
inference for intersection types beyond the rank-2 restriction. To overcome
this problem, this paper aims to be a gentle introduction to intersection types
and the notion of expansion and related mechanisms.

Expansion is presented in this paper in the form needed for computing
principal typings for the full (i.e., not rank-restricted) system of intersection
types. However, computing these principal typings is as expensive as evalua-
tion, for the simple reason that principal typings for a term in the full system
express all of the information in the term’s β-normal form [11,41]. This is
obviously impractical, and readers might then legitimately wonder why they
should care about the explanations that this paper provides.

In fact, there is no reason why one must use the full power of intersection
types; for example, one can choose to use principal typings of the rank-k
restriction. In the long run, if one wants to use intersection types, it seems
best to view them as a flexible framework for typing with a choice of a wide
variety of different levels of precision. However, before attempting to do this,
it is extremely helpful to understand type inference for the full system, because
it is simpler. Hence, it can be beneficial to understand the explanations given
in this paper.

4



Carlier and Wells

2 Intersection types

We now define an intersection type system that contains sufficient features to
support discussing expansion. Types (ranged over by T ) are defined as follows:

T ::= a | T1 → T2 | T1
.∩ T2 | ω

Here, a ranges over an infinite set of type variables (T-variables). We use low-
ercase Roman letters as metavariables over T-variables, generally those from
the beginning of the alphabet like a, b, and c. We adopt the convention that
distinct metavariables stand for distinct variables within any single example.
To resolve ambiguities in the absence of parentheses, we define .∩ to have
higher precedence than →, so that for example T1

.∩ T2→T3 = (T1
.∩ T2)→T3.

We quotient types by taking .∩ to be associative (T1
.∩(T2

.∩ T3) = (T1
.∩ T2) .∩

T3), commutative (T1
.∩T2 = T2

.∩T1) and to have ω as a neutral (ω .∩T = T ).

Type environments, ranged over by A, are written in the form (x1 : T1, . . . ,

xn : Tn) with all xi distinct. As a special case, () denotes the empty environ-
ment. If A = (x1 : T1, . . . , xn : Tn), we let A(xi) = Ti for all i ∈ {1, . . . , n}, and
A(y) = ω for every y not mentioned by A. The notation A, x : T stands for
the new type environment A′ such that A′(x) = T and A′(y) = A(y) if y 6= x.
The notation A1

.∩A2 stands for pointwise application of the intersection type
constructor, i.e., (A1

.∩ A2)(x) = A1(x) .∩ A2(x) for every x.

We use an almost standard syntax for λ-terms:

M ::= x | λx. M | M1 @ M2

Here, x ranges over an infinite set of λ-term variables. We use lowercase
Roman letters as metavariables over term variables, generally those from the
end of the alphabet like x, y, and z. As usual, we identify α-equivalent λ-
terms. We write the “@” in M1 @ M2 instead of just writing M1M2 so that
there will be a better correspondence with the tree diagrams we will write.

In addition to the usual use of pure (type-free) λ-terms as proof terms in
typing judgements when using intersection types, we add an additional kind
of proof terms which we call skeletons, ranged over by Q 3 . The syntax of
skeletons is this:

Q ::= x:T | λx.Q | Q1 @ Q2 | Q1
.∩ Q2

Typing judgements are of the following shape:

Q . M : 〈A ` T 〉

Such a judgement should be read as stating that “the skeleton Q is a proof
that the term M can be assigned the typing 〈A ` T 〉”. Our skeletons are

3 We use the metavariable Q because we already use S for substitutions and because Q is
the second letter in “squelette”, the French word for skeleton.
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designed so that they have just enough information in them to completely
reproduce the details of the proof of an assignment of a typing to a term.

The typing rules of the system are as follows. We begin with the rules
common to almost all λ-calculus type systems:

x:T . x : 〈(x : T ) ` T 〉
var (variable)

Q . M : 〈A, x : T1 ` T2〉

λx. Q . λx. M : 〈A ` T1 → T2〉
abs (abstraction)

Q1 . M1 : 〈A1 ` T1 → T2〉 Q2 . M2 : 〈A2 ` T1〉

Q1 @ Q2 . M1 @ M2 : 〈A1
.∩ A2 ` T2〉

app (application)

The abs rule is conventional. Note that the var rule has a type environment
that must assume type ω for every term variable except x. Note that the
rule app joins the type environments of the two premises to form the type
environment A1

.∩ A2 in the conclusion. These points will be discussed at
various places later.

Here is the significant additional rule, intersection introduction:

Q1 . M : 〈A1 ` T1〉 Q2 . M : 〈A2 ` T2〉

Q1
.∩ Q2 . M : 〈A1

.∩ A2 ` T1
.∩ T2〉

.∩ ( .∩ introduction)

Note that this rule has two premises which assign typings to the same term
M ; the skeletons Q1 and Q2 can differ, so the two subderivations can have
different structures and assign quite different typings.

Although some type systems have a rule for eliminating intersection types,
our example system does not need one because this task is handled implicitly
by the way type environments in premises are joined in conclusions in the
multiple-premise typing rules ( .∩ and app). For example, assuming we allow
types int and real, if a skeleton Q contains two free occurrences of id at types
int → int and real → real, and Q has no other free variable occurrences, then the
type environment in the typing derived by Q is (id : (int → int) .∩ (real → real)).

Note that type environments contain all and only necessary assumptions.
Systems with this property are called relevant in the literature, due to the
correspondence with relevant logic [17]. In fact, this system has the further
property that types are linear ; this is further discussed in section 5.2.

The system presented in this section is essentially a streamlined version of
the original system of intersection types by Coppo, Dezani and Venneri [11],
which we call the CDV system. In [11] and also here, .∩ is associative and
commutative (AC) but not idempotent (i.e., T .∩ T 6= T unless T = ω) 4 , and
type environments contain only assumptions for variables that are actually
used (the systems are relevant). The main difference (unimportant for the

4 This is after translating to modern notation the types of [11], where intersection types
are written in the form [T1, . . . , Tn].
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examples in this section, but useful for later sections) is that, for simplicity,
we allow .∩ and ω to the right of →.

3 Expansion

This section first demonstrates in subsection 3.1 the importance of expansion
in the context of an intersection type system, then explains in subsection 3.2
how expansion works as it was designed historically, and then presents in sub-
section 3.3 the modern way of doing expansion through expansion variables.

3.1 Why we need expansion

3.1.1 A problematic type inference example

Consider typing this example λ-term:

M = (λx. x @ (λy. y @ z))
︸ ︷︷ ︸

M1

@ (λf. λx. f @ (f @ x))
︸ ︷︷ ︸

M2

In the intersection type system considered, term M is typable because it has
a normal form [11], so we should be able to build a typing derivation for it.

Subterms M1 and M2 are in normal form and we can easily obtain their
principal typings using the algorithm of Coppo, Dezani and Venneri [11]:

Q1 = λx. x:((a→b)→b)→c @ (λy. y:a→b @ z:a)

Q1 . M1 : 〈(z : a) ` T1 → c〉 with T1 = ((a → b) → b) → c

Q2 = λf. λx. f :e→f @ (f :d→e @ x:d)

Q2 . M2 : 〈() ` T2〉 with T2 = ((e → f) .∩ (d → e)) → (d → f)

Note that we cannot use the application typing rule directly to join Q1 and
Q2 because T1 (the domain of the result type of Q1) is not equal to T2 (the
result type of Q2). So we must somehow “unify” T1 and T2.

Can we do this merely by substitution, replacing type variables by types?
Lining up matching bits and drawing the two types as trees makes things
easier to follow:

T1 = ((a→b) → b ) → c

T2 = ((e→f) .∩ (d→e)) → (d → f)

T1 = →

→

→

a b

b

c

T2 = →

.∩

→

e f

→

d e

→

d f
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The first problem we encounter is that there is a clash between type con-
structors → and .∩, indicated by the dotted line.

To solve the example, we could try to make the intersection go away by
placing ourselves in a system with intersection idempotence (T .∩ T = T ),
allowing us to unify the two branches of the intersection, e → f and d → e,
which could then be unified with (a → b) → b. This would require unifying
these three subtrees:

→

→

a b

b

→

e f

→

d e

Dotted arrows depict some of the required variable substitutions, while dotted
lines show connections between occurrences of the same variable. Note that
there is a cycle; the equation b = e = d = a → b cannot be solved without
recursive types. Although recursive types would solve this example, they
are not such a good solution, because they would not provide a principal
typing. Historically there have also been other objections to recursive types,
such as the extra difficulty of automatically explaining type errors discovered
during type inference when recursive types are allowed. Thus, simply making
intersection idempotent would not solve the problem in a fully satisfactory
way.

We designed the example in this section to be untypable when using only
simple types, to demonstrate that substitution is not enough to obtain ad-
equate typings for M1 and M2 from their principal typings. The solution
requires using intersection types, which are introduced by another operation.

3.1.2 Expansion to the rescue!

Historically, in intersection type systems the solution has been to do expan-
sion [11] on the typing of M1:

M1 : 〈 (z : a) `( ((a → b) → b)
︸ ︷︷ ︸

→ c ) → c〉

⇓

M1 : 〈(z : a1
.∩ a2) `(

︷ ︸︸ ︷

((a1 → b1) → b1) .∩
︷ ︸︸ ︷

((a2 → b2) → b2) → c ) → c〉

M2 : 〈 () ` ( e → f) .∩ ( d → e) → (d → f)〉

Solid arrows denote the transformation performed by expansion in this
case. The rules for expansion will be discussed later in section 3.2. After
doing expansion, we can unify types as required by applying this substitution,
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denoted above by dotted arrows:

S = (e := a1 → b1, f := b1, d := a2 → a1 → b1,

b2 := a1 → b1, c := (a2 → a1 → b1) → b1 )

Here are the new typings for M1 and M2:

M1 : 〈(z : a1
.∩ a2) ` (T3 → T4) → T4〉 M2 : 〈() ` T3 → T4〉

where T3 = ((a1 → b1) → b1) .∩ ((a2 → a1 → b1) → a1 → b1)

and T4 = (a2 → a1 → b1) → b1

Finally, the example can be completed by using the application typing rule to
type M1 @ M2. Thus, expansion solves the problem. But what is expansion?

3.2 What historical expansion is

Coppo, Dezani, and Venneri [11] showed that intersection types support prin-
cipal typings. Their motivation for studying intersection types was to be
able to type more terms than with Curry’s system of simple types, and to get
preservation of types under β-conversion. As our example in section 3.1 points
out, they noticed that, unlike what is the case with simple types, substitution
(replacing type variables with types) and weakening (adding type assumptions
to a type environment) are not enough to obtain all typings of a term from a
principal typings for the same term, and therefore introduced the expansion
operation

Instead of using the intersection type constructor ( .∩), they used sequences
of types (identified modulo reordering of the componentssequences actually be-
have like multi-sets) written between square brackets and only allowed to occur
to the left of arrows. For example, they write the type ((e → f) .∩ (d → e))→
(d → f) in the form [e → f, d → e]→(d → f). We will use the modern notation
instead.

Their definition of expansion relies on the notion of nucleus of a typing.
Informally, a nucleus is delimited by underlining some of the types (result
type or types assumed for free term variables) in a typing or components of
sequences in those types, such that no type variable occurs both in and out
of the nucleus.

The original definition of nucleus relied on an implicit formalism for iden-
tifying occurrences in types, although it is not obvious how to achieve this
when using an associative and commutative intersection type constructor (or,
as was the case, sequences of types identified modulo reordering of compo-
nents). Although the original definition of nucleus was somewhat informal for
this reason and sometimes difficult to understand, we will now introduce a
new formal yet accessible way of notating a nucleus. We now define marked
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types, ranged over by U :

U ::= a | a | U → U | T → T | U .∩ U | ω

Marked types are like normal types except that some occurrences of type
variables and → are marked by underlining. Marks are not allowed to nest
by the grammar; if an occurrence of → is marked, then all types underneath
it must be mark-free. We allow underlining a whole expression as shorthand
for underlining its top-level constructor (we do not use it, but for this purpose
T1

.∩ T2 would be regarded as T1
.∩T2, and underlining ω would be disregarded).

We let B range over environments of marked types. We define a function |·|
on marked types that erases underlining, i.e., |a| = a and |T1 → T2| = T1→T2.

A nucleus is formally delimited by underlining: a nucleus of 〈A ` T 〉 is
of the form 〈B ` U〉, differing from 〈A ` T 〉 only by the addition of marks
in certain positions, with the condition that if a type variable a is marked
or occurs underneath a marked →, then all other occurrences of a must also
be. There are other rules for valid nuclei which we will not discuss, partly
because the reasons for the other rules are obscure and partly because we
feel the modern approach presented below in section 3.3 is clearer and more
important for the reader to understand.

We can now explain what expansion does. Let a renaming function be a
total injective function from T-variables to T-variables. A renaming function r

is applied to types like a substitution, so that r(T ) is the new type that results
from T by replacing every T-variable a by r(a). An expansion operation takes
as input a nucleus 〈B ` U〉 and renaming functions r1, . . ., rk where k ≥ 1,
the ranges of ri and rj are disjoint when 1 ≤ i < j ≤ k, and the range of ri

is disjoint from the T-variables occurring in 〈B ` U〉 when 1 ≤ i ≤ k. The
operation expand(〈B ` U〉, r1, . . . , rk) replaces each underlined U ′ in 〈B ` U〉
by r1(|U

′|) .∩ . . . .∩ rk(|U
′|), producing a new typing.

Starting with the principal typing of a term, expansion allows obtain-
ing typings that can not be obtained just by applying a substitution. This
is because expansion simulates on a typing the effect of inserting uses of the
intersection-introduction typing rule into a derivation of that typing, but with-
out needing to actually construct a new derivation in the process of calculating
the typing in the new final judgement. Note that when looking at the effect of
substitution application on a typing derivation, only types (which are at the
leaves of a typing derivation) are altered, whereas the effect of expansion is to
add uses of intersection introduction at internal nodes in a typing derivation.
The next example illustrates expansion.

Example 3.1 The following valid nucleus (denoted by underlining) is used
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to perform the expansion in the example at the beginning of section 3.1.2:

〈 (z : a) ` ( ((a → b) → b) → c) → c〉

⇓

〈(z : a1
.∩ a2) ` (

︷ ︸︸ ︷

((a1 → b1) → b1) .∩
︷ ︸︸ ︷

((a2 → b2) → b2) → c) → c〉

Here is the corresponding transformation on a simple derivation (skeleton)
of the original typing, where .∩ marks a use of the intersection-introduction
typing rule:

λx.

@

x:((a→b)→b)→c λy.

@

y:a→b z:a

−→

λx.

@

x:((a1→b1)→b1) .∩((a2→b2)→b2)→c .∩

λy.

@

y:a1→b1 z:a1

λy.

@

y:a2→b2 z:a2

In its original definition [11], expansion was only applied to (expansions
of) principal typings, and was used to prove that all and only the derivable
typings for a term can be obtained from its principal typing by applying first a
sequence of expansions, and then a sequence of substitutions. Later work [39]
showed that expansion can safely be applied to typings that are not necessarily
principal, i.e., that expansion applications, substitution applications, and uses
of subtyping can be interleaved.

This concludes the presentation of the original notion of expansion de-
vised by Coppo, Dezani and Venneri. Similar operations developed later are
discussed in section 6.1.

3.3 Modern expansion with expansion variables

Expansion variables (E-variables) were first used as type constructors by Kfoury
and Wells in System I [31,33] to simplify reasoning about and implementing
the operation of expansion. The most modern system with E-variables is Sys-
tem E [5], and we will use it as the context for explaining E-variables, with
some simplifications to ease presentation.

System E can be viewed as an extension of the system presented at the
beginning of section 3. One of the changes is to extend types with a case
for E-variable application, written simply e T , where e is an E-variable. We
extend the precedence convention to have E-variable application bind tighter
than .∩, so that for example e T1

.∩ T2 → T3 = ((e T1) .∩ T2) → T3. E-variable
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application is extended to type environments (eA), where it just applies the
E-variable to each type in the environment.

In a typing, the multiple occurrences of some E-variable simply delimit a
(generalized notion of) nucleus, a set of positions that can be affected by a
single expansion operation.

Marked types, introduced in section 3.1, correspond to a very weak form of
E-variables, where only a single E-variable is allowed; if e denotes this unique
E-variable, then T → T corresponds to e (T → T ), and a corresponds to e a.
The next example illustrates this.

Example 3.2 Here is a typing of M1 from the example shown in section 3.1,
with an expansion variable:

M1 : 〈(z : e a) ` (e ((a → b) → b) → c) → c〉

As can be expected, e is applied to all (and only) the underlined types of the
nucleus shown in example 3.1. The expansion shown in section 3.1.2 would
be obtained by substituting for e an expansion term E = (a := a1, b := b1) .∩
(a := a2, b := b2). The meaning of the pieces of E are explained throughout
the rest of this section and the result of substituting E for e will be shown in
example 3.6.

3.3.1 E-variable application typing rule

In addition to types and type environments, E-variable application is also
defined for skeletons (e Q), with the following corresponding typing rule:

Q . M : 〈A ` T 〉

eQ . M : 〈eA ` e T 〉

Example 3.3 Here is a skeleton deriving the typing in example 3.2:

Q = λx. x:T @ e (λy. y:a→b @ z:a) = λx.

@

x:T e

λy.

@

y:a→b z:a

where T = e ((a → b) → b) → c

E-variable application in a skeleton acts as a placeholder for unknown uses
of other typing rules, such as intersection introduction. Filling this placeholder
is done via substitution, by replacing the E-variable with an expansion term.
We call expansion terms just expansions.
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Expansions, ranged over by E, are pieces of syntax standing for some
number of uses of typing rules that act uniformly on every type in a judgement
and do not change the judgement’s term. Because E-variable application itself
satisfies these criteria, it is included as a case of expansion (in addition to
already being a case of types and skeletons):

E ::= eE | · · ·

Sections 3.3.2 through 5 introduce other cases of expansion in an incre-
mental fashion, and also incrementally define substitution application and ex-
pansion application.

3.3.2 Substitution basics

Substitutions, ranged over by S, replace T-variables with types, and E-variables
with expansions. Details are given incrementally throughout this section.

We write [S] X for the application of substitution S to an entity X (such
as a T-variable, E-variable, type, skeleton, or an expansion). Substitutions
apply to type environments pointwise, i.e., [S] A is the environment such that
([S] A)(x) = [S] A(x). We reuse the notation and write [E] X for the applica-
tion of an expansion E to an entity X. Expansion also applies to environments
pointwise. The definitions of [S] X and [E] X consist only of very simple cases,
but to detail each case we will give the definitions in an incremental fashion.
Note also that these definitions can be directly translated into programming
languages like SML and Haskell.

The key case of substitution application is for E-variable application:

[S] (eX) = [[S] e] X

In words, when a substitution S is applied to eX, we first apply S to e to
obtain an expansion E, which is then applied to X. Hence, replacing an E-
variable e with an expansion E makes e go away unless it is re-introduced by
E. The following rule of expansion application allows this:

[eE] X = e [E] X

Thus, replacing e with e E has the same effect as applying E underneath e.

Substitutions are given syntactically, as comma-separated lists of assign-
ments, terminated by the symbol � (which we sometimes omit for brevity):

φ ∈ Assignment ::= a := T | e := E

S ∈ Substitution ::= � | φ, S

We write � for the identity substitution, which is also the null expansion:

E ::= · · · | � | · · ·

13
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We initially only consider the identity substitution � as a case of expansion,
but as we will see later, it turns out that � can be generalized to arbitrary
substitutions. The effect of � on T- and E-variables is simply:

[�] a = a [�] e = e�

Note that [�] e X = [[�] e] X = [e�] X = e [�] X, so � indeed leaves variables
unchanged, as can be expected of the identity substitution.

Let v range over T-Variable ∪ E-Variable and let Φ range over Type ∪
Expansion. The application of substitutions to T- and E-variables is completed
thus:

[v := Φ, S] v = Φ

[v := Φ, S] v′ = [S] v′ if v 6= v′

The syntax of assignments guarantees that [S] a = T for some T and [S] e = E

for some E.

To allow substitutions to be applied to types and skeletons, we use these
trivial recursive descent rules:

[S] (T1 → T2) = [S] T1 → [S] T2 [S] x:T = x:[S] T

[S] (X1
.∩ X2) = [S] X1

.∩ [S] X2 [S] λx. Q = λx. [S] Q

[S] ω = ω [S] (Q1 @ Q2) = [S] Q1 @ [S] Q2

It is easy to show that [�] T = T and [�] Q = Q for all T and Q.

Example 3.4 The following equalities hold:

[e := �] (x:e a→b @ e y:a) = x:a→b @ y:a

[e1 := �] (e1 e2 a) = [[e1 := �] e1] (e2 a) = [�] (e2 a) = e2 a

[e2 := �] (e1 e2 a) = [[e2 := �] e1] (e2 a) = [�] (e1 e2 a) = e1 e2 a

[a := T ] (e a) = [[a := T ] e] a = [[�] e] a = [e�] a = e a

The last two examples might be surprising, as one might have expected results
to be respectively e1 a (instead of e1 e2 a) and e T (instead of e a). In fact, each
E-variable establishes a namespace and a inside e is not connected to a outside
e.

3.3.3 The intersection expansion

In addition to the E-variable application and the null expansions, System E
also has an intersection expansion:

E ::= · · · | E1
.∩ E2 | · · ·

The intersection expansion corresponds to using the intersection typing rule.

14
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Expansion application of an intersection expansion is simply:

[E1
.∩ E2] X = [E1] X .∩ [E2] X

Note that unlike definitions of expansion not using E-variables, the two copies
of X are not renamed by this case of expansion. As we show in section 3.3.4,
this can instead be achieved by E1 and E2. Removing the built-in renaming
of expansion makes reasoning much easier.

Using just the simple cases of substitution and expansion application we
have given so far, we can now present a complete example.

Example 3.5 Here is the effect of applying S = (e := (� .∩ �)) to the skele-
ton Q from example 3.3:

λx.

@

x:T e

λy.

@

y:a→b z:a

−[S] ·−−−→

λx.

@

x:[S] T .∩

λy.

@

y:a→b z:a

λy.

@

y:a→b z:a

Here T = e ((a → b) → b) → c and [S] T = ((a → b) → b) .∩ ((a → b) → b) → c.
We can also apply the same operation directly to the typing of Q:

〈(z : e a) ` (e ((a → b) → b) → c) → c〉

−[S] ·−−−→ 〈(z : a .∩ a) ` (((a → b) → b) .∩ ((a → b) → b) → c) → c〉

Note that the result obtained in example 3.5 is not very useful, because
adding intersections just made identical copies. How do we make these copies
different?

3.3.4 The substitution expansion

This “rule” is admissible:

Q . M : 〈A ` T 〉

[S] Q . M : 〈[S] A ` [S] T 〉

In words, given a substitution S and a skeleton Q deriving 〈A`T 〉 for M , the
skeleton Q′ = [S] Q derives the typing 〈[S] A ` [S] T 〉 for M . This is the key
idea of expansion: it is an operation defined on typings that corresponds to
manipulating typing derivations.

Because substitution application has a corresponding (admissible 5 ) typing
rule which acts uniformly on every judgement component and does not change

5 In fact, in the original System E paper [5], there is an explicit rule for substitution
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the term, it is natural to include substitution as a case of expansion:

E ::= · · · | S | · · ·

This is a generalization of earlier �, the identity substitution.

We can now finally show how the example used in section 3.1.2 to demon-
strate the need for expansion is solved with E-variables.

Example 3.6 Let S1 = (a := a1, b := b1) and S2 = (a := a2, b := b2). The
substitution S = (e := (S1

.∩ S2)) thus has distinct substitutions for each of
the two copies introduced by the intersection expansion given for e. Here is
the effect S when it is applied to the skeleton Q from example 3.3:

λx.

@

x:T e

λy.

@

y:a→b z:a

−[S] ·−−−→

λx.

@

x:[S] T .∩

λy.

@

y:a1→b1 z:a1

λy.

@

y:a2→b2 z:a2

Here T is as in example 3.5 and [S] T = ((a1 → b1) → b1) .∩ ((a2 → b2) → b2)→
c. On the typing (given originally in example 3.2) obtained from the skeleton
Q, the substitution S has exactly the effect required to solve our original
motivating example from section 3.1:

〈(z : e a) ` (e ((a → b) → b) → c) → c〉

−[S] ·−−−→ 〈(z : a1
.∩ a2) ` (((a1 → b1) → b1) .∩ ((a2 → b2) → b2) → c) → c〉

We have shown how the effects of historical expansion can be obtained
with expansion variables in a way that is more robust, easier to understand,
and straightforward to implement. Sections 4 and 5 discuss extensions of the
theory of expansion variables beyond what was done with historical expansion.

4 The omega expansion

Some intersection type systems have a type written ω, which was originally
added by Sallé [40] to type systems developed by Coppo and Dezani [9,10].
The type ω is given a case in skeletons and a corresponding typing rule:

Q ::= · · · | ω
M

ω
M . M : 〈() ` ω〉

ω

application, but it is there for a completely different purpose and is not needed otherwise.
The discussion of this section assumes there is no such rule.
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The skeleton ω
M needs to mention M to uniquely determine the typing deriva-

tion it corresponds to. The typing 〈() ` ω〉, since it can be assigned to any
term by the ω typing rule, can be regarded as the most uninformative typing.

If intersection introduction were generalized to have a variable number
of premises, then the ω typing rule would be an instance with 0 premises;
similarly, if the intersection type constructor were generalized to be of variable
arity, then ω would be its 0-ary version. So, the ω type may intuitively be
thought of as the neutral of the intersection type constructor (ω .∩ T = T ),
though this is not technically true in all intersection type systems.

With E-variables, ω is straightforward to add as a case of expansion, as
first done by Carlier [4]:

E ::= · · · | ω | · · ·

Substitution application is trivial. Expansion application just needs some care
on skeletons because we have to keep track of the term:

on skeletons: [S] ωM = ω
M [ω] Q = ω

term(Q)

on other sorts: [S] ω = ω [ω] X = ω

We define M = term(Q) iff Q . M : 〈A ` T 〉 is derivable.

Example 4.1 Consider typing this example λ-term:

M = (λx. x @ (λy. y))
︸ ︷︷ ︸

M1

@ (λw. z)
︸ ︷︷ ︸

M2

Suppose we have build independently the following two typing derivations
for M1 and M2, and we want to join them using the application typing rule
to build a typing derivation for M . This requires applying the substitution
S = (e := ω):

@

λx.

@

x:e (a→a)→b e

λy.

y:a

λw.

z:c

−[S] ·−−−→ @

λx.

@

x:ω→b
ω

λy. y

λw.

z:c

−@−→ @

λx.

@

x:ω→b
ω

λy. y

λw.

z:c

We indicate here by −@−→ that we can then legally use the application typing
rule to combine the two skeletons.
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5 Other significant issues

This section discusses issues related to expansion and expansion variables. Sec-
tion 5.1 discusses the composition of substitution and expansion. Section 5.2
discusses a generalization of expansion to the ! type constructor, which dis-
tinguishes between linear and non-linear types.

5.1 Composition of substitutions and expansions

Although expansion was introduced as an operation complementing substi-
tution in the context of intersection types, and substitution usually supports
composition, a good theory of their composition took time to develop. In the
intersection type literature using expansion but not expansion variables (e.g.,
[11,39,38,44]), the problem of composition is not addressed; instead, chains
of individual operations are constructed, and whenever a chain is applied all
its operations have to be performed in sequence. This is somewhat unsatis-
factory because (1) substitutions alone usually compose, and it is frustrating
that adding expansion breaks this property, and (2) every operation in a chain
is applied to the result of the previous operation; since most expansions and
substitutions increase the size of types, composing the operations might save
work if a chain is to be applied to many types.

In the first system with expansion variables, System I [31,33], composition
of substitutions (replacing T-variables by types and E-variables by expansions,
which unlike in System E do not include substitutions) could only be done in
a weak way. In System I, the composition of two arbitrary substitutions can
not always be expressed as a substitution; when it can, a notion of safe compo-
sition is needed to compute it, and this operation is both context-dependent
(it requires more information than just substitutions), and very difficult to
understand and implement correctly.

In contrast, to compose substitutions in System E, we just need to add
these cases to the definition of substitution application:

[S] � = S

[S] (a := T , S ′) = (a := [S] T , [S] S ′)

[S] (e := E, S ′) = (e := [S] E, [S] S ′)

Note that these cases simultaneously complete the definitions of (1) substi-
tution application to substitutions ([S] S ′ for any S, S ′), (2) substitution ap-
plication to expansions ([S] E for any S,E; all cases except [S] S ′ were given
earlier), and (3) expansion application to expansions ([E] E ′ for any E,E ′; all
cases except [S] E ′ were given earlier).

It is proved in [5] that this equality holds:

[E2] [E1] X = [[E2] E1] X
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Thus, composition of expansions is merely [E2] E1, which we sometimes write
as E1; E2, and composition of substitutions is the special case where E1 = S1

and E2 = S2.

This simplicity comes from the principled way in which expansion is done
in System E, namely that each case of expansion terms corresponds exactly to
a typing rule that can be spliced in at any point. In System I, composition of
substitutions is a complex operation because substitution application, though
an admissible typing rule, is not a case of expansion, and instead a complicated
notion of renaming is built into the machinery for replacing E-variables by
expansion terms.

5.2 Linearity and non-linearity

The semantics of intersection types depend on whether they are linear. Whether
this holds depends on such things as whether the intersection type constructor
is idempotent (T .∩ T = T ), whether weakening is allowed, and whether con-
traction is allowed. Weakening can be allowed in a general way via subtyping
(T ≤ ω), or in a weaker way by allowing adding type assumptions. Similarly,
contraction can be allowed in a general way via subtyping (T ≤ T .∩T ) or in a
weaker way by changing all multiple-premise typing rules to use the same type
environment in all judgments (premises and conclusion) and also adding some
form of intersection elimination (e.g., as a typing rule). If intersection is not
idempotent and neither weakening nor contraction are allowed, then the types
are linear. The combination of idempotence and weakening or of weakening
and contraction allows full non-linearity. Other different feature combinations
may yield different results; for example, in System I the types are affine which
means each singular component of an intersection type stands for at most one
use instead of exactly one use.

Every typing 〈A ` T 〉 can be interpreted by the set of λ-terms to which
it can be assigned. A typing interpreted by a smaller set of terms is more
discriminating (more precise) than one interpreted by a larger set of terms.
A typing has different interpretations in different intersection type systems,
depending on whether the types are linear or non-linear (among other things).
For example, consider this typing:

〈() ` (a → a) → a → a〉

In an intersection type system allowing full non-linearity like the BCD sys-
tem [3], this typing may be interpreted by the set {I, 0, 1, 2, . . .} where I =
λx. x and 0, 1, 2, . . . are the Church numerals 0 = λf. λx. x, 1 = λf. λx. f @ x,
2 = λf. λx. f @ (f @ x), and so on. (We are considering here only the β-
normal forms in the typing’s interpretation, because they are the most inter-
esting members.) In contrast, if intersection types are solely linear as they are
in the CDV system or our example type system, then this typing is interpreted
by the smaller set of terms {I, 1}. For example, the typing given above is not
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a proper typing of 0 in our example type system, whereas 〈()`ω → a → a〉 is.
In our example type system the typing 〈() ` (a → a) .∩ (a → a) → a → a〉 can
be assigned to the Church numeral 2, but not to any other Church numeral.

Linear types are more precise than fully non-linear types, but too much
precision is sometimes undesirable. In a non-rank-restricted system of linear
intersection types such as the example type system of this paper, in order for
a type inference algorithm to be complete, it must produce principal typings.
However under these conditions the principal typings of a term are known to
be isomorphic to its β-normal form [11,41], so type inference has the same
cost as evaluation. This is illustrated by a type inference algorithm of Carlier
and Wells [6] which is proven to be step-by-step equivalent to β-normalization.
Thus, for type inference to be practical, types must be limited to some finite
rank k. Unfortunately, for every value of k, with linear intersection types,
there are simply typable terms that are not typable with only linear types
below rank k. For example, the Church numeral 2 has no linear typings below
rank 2, though it is simply typable. Clearly, this is unsatisfactory.

System E [5] adds to intersection types a ! operator that serves to relax
linearity in a controlled way. In System E, whenever T 6= ! T ′ for some T ′,
then T 6≤ T .∩T , but it always holds that !T ≤ ! T .∩ ! T ≤ T .∩T . This feature
makes it possible to obtain the precision of linear types when it is useful,
while preventing linearity from getting in the way when it is not needed, or
too expensive to have. For example, in System E, we can assign the typing 〈()`
! (a → a) → a → a〉 to the entire set of Church numerals, thereby avoiding the
difficulties mentioned above. Both flexibility and expressiveness are provided
via both intersection types and the ! type constructor: intersection types give
a polymorphic/polyvariant analysis and ! distinguishes linear vs. non-linear
types. When non-linear types are allowed, type inference restricted to rank-
k has complexity that is complete for DTIME[K(k − 1, n)], where K(0, n) =
n and K(t + 1, n) = 2K(t, n), which is significantly better than the cost of
normalization for the terms typable at rank k [29].

The integration of ! with E-variables is extremely simple; ! is added as a
case of types (and also type environments so that (!A)(x) = ! A(x)), expan-
sions, and skeletons, and has this typing rule:

Q . M : 〈A ` T 〉

! Q . M : 〈! A ` ! T 〉

These rules are added to expansion and substitution application:

[! E] X = ! [E] X [S] ! X = ! [S] X

Finally, these subtyping rules give ! its meaning:

! T ≤ ω
weakening

! T ≤ T
dereliction

! T ≤ ! T .∩ ! T
contraction
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6 Related Work

6.1 Other variants of historical expansion

Barendregt, Coppo, and Dezani [3] proposed a system of intersection types
which has become commonly known as the BCD system and features a very
flexible subtyping relation. Ronchi della Rocca and Venneri [39] generalized
the original definition of expansion to define principal typings for the BCD
system. Ronchi della Rocca [38] gave the first principal typing inference al-
gorithm for the BCD system. Van Bakel [44] advocated the use of a leaner
system of intersection types called strict intersection types, which uses a sim-
pler definition of expansion based on the technique used by Ronchi della Rocca
and Venneri [39]. Coppo and Giannini [12] presented a system of “simple” in-
tersection types 6 that uses a restricted form of expansion.

The various historical presentations of expansion have had difficulties which
we believe kept expansion from being well understood. At the most basic level,
there were notational difficulties with the earliest notions of identifying a nu-
cleus via underlining. (We believe our definition of marked types in section 3.2
avoids these difficulties.) Attempting to sidestep the early notational difficul-
ties Ronchi and Venneri [39] defined a more robust replacement of the notion
of nucleus, but as a result their approach is very complicated and hard to
understand. But more important than difficulties with merely defining ex-
pansion, a more fundamental issue is that historical expansion is a complex,
non-local operation, in contrast with the modern use of E-variables where each
case of the definition of expansion is given by a purely local algebraic rule.
The non-local nature of historical expansion has made it difficult for readers
to understand, makes proofs using expansion complicated, and makes it more
difficult to generalize expansion to constructors other than intersection (an
example generalization using modern expansion is discussed in section 5.2).
The combination of the non-local nature of historical expansion and the inabil-
ity to nest historical nuclei has meant that “composition” of interleaved uses
of substitution and expansion has been only by building chains of individual
operations; the use of such a chain merely applies the operations in sequence.

6.2 Expansion and rank-2 intersection types

The older definitions of expansion have been a bit hard to understand and
implement, leading (in our opinion) people to focus on the easier rank-2 inter-
section types [43,24,13,14] rather than try to use the full power of intersection
types. The key advantage of rank-2 intersection types over higher ranks is that
when doing compositional type inference where constraints are always solved
as soon as they are discovered, expansion never corresponds to inserting uses
of intersection-introduction at deeply nested positions in typing derivations.

6 This use of “simple” has nothing to do with the usual use of “simple” in the phrase
“simple types”.
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Related to this, expansion never needs to insert uses of the intersection type
constructor in typings underneath arrow types. Most of the complications of
expansion can be avoided when using only rank-2 intersection types. However,
because of the recent development of E-variables, expansion is no longer as
difficult to understand and implement, and hence we believe there is no longer
a strong reason to restrict intersection types to only rank 2.

6.3 Expansion and the omega type

Expansion takes each part of a nucleus and makes renamed copies of it joined
by .∩. From the modern point of view it is clear that one can generalize this
to leave zero copies, having the effect of replacing every part of a nucleus by
ω, as we show in section 4. Nonetheless, historically this effect was achieved
via more complicated (and also more delicate) mechanisms. For example,
Coppo et al. [11] define an operation of normalization which, in addition to
removing occurrences of ω from sequences, replaces by ω all types of the
form T1 → · · · → Tn → ω. This requires ω to be a type constant (distinct
from the empty sequence), which in turn requires forcing term variables to be
given normalized types, to avoid compromising principal typings. Van Bakel’s
system of strict intersection types [44] also does not have a 0-ary expansion
and defines substitution application to perform the same transformation as
the normalization of [11]. Ronchi and Venneri [39] proved their results within
the flexible BCD system, which does not need normalization because of the
quotienting done on types, but still used substitution to introduce ω. In
Ronchi’s type inference algorithm for a variant of the BCD system [38], only
part of a nucleus is turned into ω using a substitution during unification, and
the rest needs to be cleaned up as an extra step following unification. Here
again, using the same mechanism as for expansion would have made things
much simpler.

6.4 The history of expansion variables

The origin of expansion variables can by traced back to the work of Kfoury
on linearization of the λ-calculus [26,28], which contains neither E-variables
nor types, but a germ of the later idea. Expansion variables first appeared in
“Beta-reduction as unification” [27], but were still restricted to “type schemes”
used during unification and did not yet appear officially in the type system,
or even in “expansions”. 7

Kfoury and Wells later proposed System I [31,33], a type system where
E-variables officially appear in types and expansions, and gave a principal
typing algorithm for it. System I was later updated by Carlier [4] to add ω

7 At this point, the connection between expansion variables and the earlier concept of
“expansion” was not yet understood, as illustrated by this (mistaken) quote [27, footnote
3]: “ ‘Expansions’ in this paper are unrelated to ‘expansions’ as defined in various articles
by researchers at the University of Turin . . .”
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as a type and an expansion. Kfoury, Washburn and Wells [30] discussed im-
plementation of type inference and compositional analysis. Various attempts
to solve difficulties with System I were made but remained unpublished.

In work using E-variables through System I, solving unification problems
generated during typing inference for λ-terms is referred to as “β-unification”.
We now avoid this name because of the confusion it can cause. In unification
theory in general, given an equational theory E, the name E-unification refers
to unification of terms modulo the theory E. So the reader might logically
deduce that the name “β-unification” should refer to unification of λ-terms
modulo the β equation, i.e., the name seems to refer to a variant of ordinary
higher-order unification. There does not seem to be a nice short replacement
for this name, so we usually now simply refer to “unification with E-variables”.

It is worth noting that a mechanism similar to the expansion variables
of System I was developed independently by Laurent Regnier in his Ph.D.
thesis [36], which unfortunately is only available in French. In Regnier’s work,
labels (“etiquettes” in French) appear as superscripts in types and are used
to explicitly delimit nuclei and guide expansion (for example, e (a → a) → b

would appear as (a → a)l → b, where l is a label that plays the same role as
the E-variable e). These labels are similar to the E-variables of System I and
share the same problems.

System E [5] is the most recent system with E-variables and solves many of
the problems that were present in System I. We briefly summarize the changes
that were made.

The built-in renaming mechanism of expansion application that is present
in System I (and all older notions of expansions) does not exist in System E,
but instead substitutions are allowed as leaves of expansions, as discussed
in section 3.3.4. As a consequence of this change, expansion corresponds in
System E to splicing in typing rules (or admissible typing rules), and E-variable
application establishes namespaces. A major benefit of this more principled
way of doing expansion is that arbitrary substitutions compose easily. In
contrast, composition is extremely painful in System I.

E-variable application appears in all entities in System E: types, expan-
sions, skeletons, and also constraints. In contrast, this is not the case in
System I and it causes unnecessary complications there. The ω type is also
better integrated in System E.

System E also removes restrictions about where intersections, ω, and E-
variables can occur, and adds flexible subtyping, non-linearity, and subject
reduction, which were all missing from System I. Non-linear types are needed
for efficient analysis, and together with flexible subtyping they allow gaining
the power of the BCD system [3], which appears to be needed for call-by-need
and call-by-value analysis. Not only does System E have the ! type constructor
for relaxing linearity, but it was very easy to add.
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7 Conclusion

Expansion is an operation needed to obtain principal typings for intersection
types and also completeness of type inference. Expansion is an operation
on typings that simulates the effect of splicing in typing rules uses at nested
positions in some derivation of that typing. Expansion was originally used
to introduce intersections but its use has been extended, first by Carlier [4]
with ω, the nullary case of intersection, and later by Carlier, Polakow, Wells
and Kfoury [5] with substitution application and non-linearity. Expansion
variables can be used to implement expansion in a simple, clean and flexible
way.

7.1 Near future of expansion variables

Ongoing work with expansion variables using System E includes developing
type inference techniques making use of ! to allow efficient analysis and to
cope with common programming language features such as tagged variants
and mutually recursive definitions. Doing this smoothly seems to require
several classes of E-variables ranging over different subsets of expansions.

So far, all uses of expansion correspond to introducing uses of typing rules
that operate uniformly on every component of a typing. In the future, expan-
sion may be generalized to introduce non-uniform typing rules (for example,
this appears to be needed to handle union types). We expect that E-variables
will make this considerably easier than previous ways of doing expansion.

System E was shown to enjoy subject reduction [5], but more theoretical
issues remain to be investigated. In particular, principality has not yet been
proven. Although typings can be inferred for all normalizing λ-terms via a
unification procedure that exactly follows β-reduction [6], and the typings pro-
duced would be principal in the BCD system, System E’s ability to distinguish
between linear and non-linear types may complicate things.

7.2 Some interesting open challenges

Unification with E-variables has been well studied with constraints generated
from pure λ-terms, but a general theory going beyond these cases still has to
be developed. A first start is [1].

E-variable application may be considered as a restricted form of function
application, where the function is determined by the expansion that ultimately
replaces the E-variable. In this sense, unification with E-variables and expan-
sion may be related to 2nd-order unification (2U), semi-unification (SU), or
some restriction of 2U or SU. It would be interesting to define a direct reduc-
tion between any two of these problems.

A denotational semantics should be built for System E. It is not clear
how to build a set-based model (such as a filter model) for System E, even
if E-variables and ! are omitted, because the intersection type constructor is
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not idempotent. In particular, it seems clear that the semantics of the type
T1

.∩ T2 can not be obtained in the usual way simply via set intersection from
the semantics of T1 and T2. The existing systems for which such models have
been built all have idempotent .∩.

Finally, we expect E-variables to add an additional challenging level of
complication to any denotational semantics.
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