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Assume a problem Π,
If you give me an algorithm to solve Π, I can check whether this
algorithm really solves Π.
But, if you ask me to find an algorithm to solve Π, I may go on forever
trying but without success.

But, this result was already known to Aristotle:

Assume a proposition Φ.
If you give me a proof of Φ, I can check whether this proof really
proves Φ.
But, if you ask me to find a proof of Φ, I may go on forever trying but
without success.

In fact, programs are proofs:
program = algorithm = computable function = λ-term.
By the PAT principle: Proofs are λ-terms.
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If we could find characters or signs appropriate for expressing all our
thoughts as definitely and as exactly as arithmetic expresses numbers
or geometric analysis expresses lines, we could in all subjects in so
far as they are amenable to reasoning accomplish what is done in
Arithmetic and Geometry. Leibniz

Leibniz (1646–1717) conceived of automated deduction, i.e., to find

a language L in which arbitrary concepts could be formulated, and

a method to determine the correctness of statements in L.

Leibniz wanted a language and a method that could carry out proof
checking and proof finding. However, according to later results by Gödel
and Church and Turing, such a method can not work for every statement.
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A short history of numbers

natural numbers (N+,=,+, ·, 1) like 1, 2, which were used to count
(using pebbles/stones, strokes, etc.).
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Integers like 0, 1, -1, 2, -2, etc.

In fourteenth century Italy, negative numbers were not known. A
double entry bookkeeping system compensated for their absence.

Accounts in which debits may be greater than credits were compared
without using negative integers.

If c and d are in N+, then account c 	 d has credit c and debit d .

Define (accounts,∼=,+c , ·c):
have the same value m 	 n ∼= p 	 q iff m + q = n + p.
(m 	 n) +c (p 	 q) = (m + p)	 (n + q) and
(m 	 n) ·c (p 	 q) = (mp + nq)	 (mq + np).
Equivalence classes: [m 	 n] = {p 	 q : p 	 q ∼= m 	 n} .

The set of Integers: Z = {[m 	 n]|m, n ∈ N+}.
[(m 	 n)] +i [(p 	 q)] = [(m 	 n) +c (p 	 q)] and
[(m 	 n)] ·i [(p 	 q)] = [(m 	 n) ·c (p 	 q)].

Identity for +i : For any m, n in N+, [m 	m] = [n 	 n]. Call it 0.
Identity for ·i : Similarly, let 1i = [(p + 1)	 p] for any p in N+.
Inverse for +i : If α = [m 	 n], then −α = [n 	m].

(Z,+i , ·i , 0, 1i ,−α).
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Rational numbers which are the values of fractions of integers like
2/3.

(fractions,�,+f , ·f ): Let m, n, p, q ∈ N+.
m
n �

p
q if and only if mq = np,

m
n +f

p
q = mq + np

nq and m
n ·f

p
q = mp

nq .

Equivalence class:
[m
n
]

=
{
p
q : pq�

m
n

}
.

Set of positive rational numbers: Q+ = {
[m
n
]
|m, n ∈ N+}.[m

n
]

+r

[
p
q

]
=
[
m
n +f

p
q

]
.[m

n
]
·r
[
p
q

]
=
[
m
n ·f

p
q

]
.

(Q+,+r , ·r , 1r , a−1) where 1r =
[

1
1

]
and

[m
n
]−1

=
[ n
m
]
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N+ Q+ Z
Equivalence relations � ∼=
Definitions of sets equiv. classes equiv. classes

of fractions of accounts

Operations +, · +r , ·r +i , ·i ,
Closure of operations

√ √ √

Commutativity of operations
√ √ √

Associativity of operations
√ √ √

Distributivity of
multiplication over addition

√ √ √

N+ ⊆ set
√ √

Cancellation of operations
√ √ √

Identity for addition × ×
√

0

Identity for multiplication
√

1
√

1r
√

1i
Inverse for addition × ×

√

Inverse for multiplication ×
√

×
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Adding Identity Elements and Inverses

Comparing the theory of fractions and the theory of accounts
suggests that we can define a unified theory for adding inverses and, if
none is present, identity elements.
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(S , ◦) a Commutative Cancellation Semigroup (i.e., ◦ satisfies
closure, commutativity, associativity and cancellation Law on S).

1 Define congruence ≈ on S × S based on (S , ◦) by:
(x , y) ≈ (u, v) iff x ◦ v = y ◦ u.

2 The operation ∗ on S × S inherited from ◦ is defined by
(x , y) ∗ (u, v) = (x ◦ u, y ◦ v).

3 Define [(x , y)] = {(u, v) : (u, v) ≈ (x , y)} and
Sd = {[(x , y)] : x , y ∈ S}.
If a = [(x , y)] and b = [(u, v)], define
a ◦d b = [(x , y) ∗ (u, v)] = [(x ◦ u, y ◦ v)].
(Sd , ◦d) is a commutative cancellation semigroup.
S is a subset of Sd : If x ∈ S , then xd = [(y ◦ x , y)] ∈ Sd .
Identity for Dyads. Define ed to be [(x , x)] for some x in
S . For all dyads a, we have ed ◦d a = a ◦d ed = a.
Inverses for Dyads. If a = [(x , y)], define a−1 to be
[(y , x)]. We have a ◦d a−1 = ed = a−1 ◦d a.
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commutative cancellation semigroup (N+,+) (N+, ·)
inverses × ×
Identity element ×

√

commutative cancellation semigroup (Z,+i ) (Q+, ·r )
with identity and inverses

√ √

You can also build Q this way. But you cannot build R this way.

The real numbers need to be constructed (using approximations and
limits like Dedekind cuts, Cauchy sequences, etc.)

This brings us to what is the foundations of mathematics?

The foundation of mathematics is reasoning about whether the
infinitesimal is sound.
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Greek mathematics

Euclid’s Elements developed mathematics in geometric terms and
anything not expressible in such terms was excluded.
Geometry could accommodate the whole numbers and their ratios as
well as irrational magnitudes.
As an example, take the spiral of Theodorus of Cyrene which
established that the square roots of non square integers from 3 to 17
are irrationals.
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Knorr suggests that the original proofs were proofs as diagrams using
pebble diagrams.

It is known that the ancient Greeks did arithmetic by counting with
pebbles, and pebble diagrams give these calculations by representing
the pebbles by using small circles.

The square of every odd number is one more than a multiple of 4.
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The square of every even number is a multiple of 4.
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If as many odd numbers as we please be added together, and their
multitude be even, then the sum is even.

A B C D E
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A kind of proof of the Pythagorean Theorem

The Pythagorean Theorem: c2 = a2 + b2.

b c

a

c
a

b

b

a

c

b

c
a

b

a

a

a

b

a

b

b

(a + b)2 = 2ab + c2 (a + b)2 = 2ab + a2 + b2.

Hence, 2ab + c2 = 2ab + a2 + b2 and c2 = a2 + b2.
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Theory of Odd and Even Numbers

Pythagorean triples are triples of positive whole numbers representing
the lengths of two legs and the hypotenuse of a right triangle.
I.e., a Pythagorean triple is a triple of positive integers (a, b, c) if and
only if a2 + b2 = c2.
E.g. (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17)..
The key results needed for the proof of the incommensurability of the
side and diagonal of a square can be proved from diagrams.

There is no unit which measures exactly the side and diagonal
of a square.

According to Knorr:

The change from proofs using diagrams/pebbles to proofs as
sequences of statements occurred with the discovery of the
incommensurability of the side and diagonal of a square.
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Diagrams/Pebbles proofs up to incommensurability

Here are the results you need to prove incommensurability. All can be
shown using diagrams/pebbles.

1. In a Pythagorean triple (a, b, c), if c is even, then both a and b are
even.

2. In a Pythagorean triple (a, b, c), if c is even, then ( a2 , 2b , 2c ) is
also a Pythagorean triple.

3. In a Pythagorean triple (a, b, c), if c is a multiple of four, so are a
and b.

4. In a Pythagorean triple (a, b, c), if c is odd, then one of a and b is
odd and the other is even.

5. In a Pythagorean triple (a, b, c), if any two of the numbers is even,
the third is also even.

6. In a Pythagorean triple (a, b, c), if one of the numbers is odd, then
two of them are odd and one is even.
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Incommensurability needs a proof by contradiction

There is no unit which measures exactly the side and diagonal
of a square.

Proof. Suppose there is such a unit in terms of which, the side of the
square is a and the diagonal is c.

Then, we have a right triangle

c
a

a and so (a, a, c) is a Pythagorean
triple. Now c must either be even or odd.

Suppose c even. Then, by 1., a is even. So by 2., we can double the
unit and halve all the dimensions. Clearly, we cannot do this
indefinitely, since otherwise the unit will grow larger than a.

So we must have a Pythagorean triple of the form (a, a, c) in which c
is odd. But then, by 4., a is both even and odd, a contradiction.
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The first proof by contradiction in history?

The proof of the incommensurability theorem is believed to be the
first proof by contradiction in the history of mathematiocal proofs.

The proof cannot be “seen” by looking at a diagram: it is necessary
to follow a sequence of sentences with reasons.

Incommensurability implies that
√

2 is not a rational number.
Proof:

Assume
√

2 = p
q , then 2q2 = p2.

Hence (q, q, p) forms a Pythagorean triple.

p
q

q

Hence there is a unit which measures exactly the side and diagonal of a
square.
This contradicts the incommensurability theorem.

The notion of “number” (whole or rational) was no longer enough.

Discrete collection of units (e.g., naturals or rationals) are not enough.

We need numbers that are continuous.

The Greeks did not know how to handle these quantities.
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The main problem was that the Greeks treated mathematical objects
as given and did not conceive of constructing them as we did for
example when we constructed the positive rationals Q+ using
equivalence classes.

The ancient Greeks juggled with two notions:

Their notion of “numbers” (as a multitude of units, Definition 2 of
Book VII).
The so-called magnitudes (which in addition to “numbers” include
things like lines and areas and volumes, etc.).
They developed arithmetic for their numbers, but treated their
magnitudes geometrically.

Starting in the 16th century, in order to construct magnitudes (e.g.,
the real numbers), approximations were used.

Even though the Greeks have not thought of constructing new
mathematical objects, they did introduce a procedure for
approximating ratios.
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Euclid used anthyphairesis to find the greatest common
divisor of two numbers and to check whether two numbers
are prime to one another

r1

r1 r1 r1 r1

... :

r1 r2

r0

Anthyphairesis is composed of two Greek terms: υφαιρεω (meaning
subtract) and αντι (meaning alternating/reciprocal) and hence
ανθυφαιρεσις may stand for alternated/reciprocal subtraction.

Euclid proves that anthyphairesis applied to two relatively prime
numbers leads to the unit, and applied to two non relatively prime
numbers gives the greatest common divisor of these two numbers.
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17 and 3 are prime to one another

Proposition 1. of Book VII of the Elements
Two unequal numbers being set out, and the less being con-
tinuously subtracted in turn from the greater, if the number
which is left never measures the one before it until a unit is
left, the original numbers will be prime to one another.

Take 17 and 3. Then:
17-3 = 14, 14-3 =11, 11-3 = 8, 8-3 = 5, 5-3 =2, 3-2 =1.
14 never measures 17, 11 never measures 14, 8 never measures 11, 5
never measures 8, 2 never measures 5 and we are left with 1.

17 = 5× 3 + 2 where 2 < 3
3 = 1× 2 + 1 where 1 < 2
2 = 2× 1 + 0 where 0 < 1.
The ratio is [5, 1, 2] and the continued fraction: 17

3 = 5 + 1

1 +
1

2

.
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Greatest Common Divisor of 136 and 6

Proposition 2. of Book VII of the Elements
Given two numbers not prime to one another, to find their
greatest common measure.

136 = 22 × 6 + 4.

6 = 1 × 4 + 2.

4 = 2 × 2 + 0.

So, 136 and 6 are not prime to one another and that their greatest
common divider is 2.

The ratio is [22, 1, 2] and the continued fraction is:
136

6 = 22 + 1

1 +
1

2

.
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Ratio of 12 to 5, [2,2,2]

5

5 5 1 1

1

2

2

212

Figure 1: Ratio of 12 to 5

12
5 = 2 + 1

2 +
1

2

.
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Ratio of 22 to 6, [3, 1, 2]

6

6 6 6 2 2

2

4

422

Figure 2: Ratio of 22 to 6

22
6 = 3 + 1

1 +
1

2

.
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What about Magitudes?

Proposition 2 of Book X of the Elements.
If, when the less of two unequal magnitudes is continuously sub-
tracted in turn from the greater, that which is left never measures
the one before it, the magnitudes will be incommensurable.

C

B

A
1

1

√
2

C

B

A

D

F

√
2− 1

√
2− 1

1

2−
√

2
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C

B

A

D

G

F

E

3− 2
√

2

√
2− 1

√
2− 1

C

B

A

D

G

H

F

E
I

We repeat this process for the isosceles rectangular triangle BEG and for
the new isosceles rectangular triangle BIH and so on. This process can be
repeated infinitely.

In this repetition, you see that the less of two unequal magnitudes is
continuously subtracted in turn from the greater, yet what is left never
measures the one before it.
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Ratio of
√

2 to 1, [1,2,2,..]

..

1

1

3− 2
√

2

√
2− 1

√
2− 1

√
2− 1

√
2

√
2 = 1 +

1

2 +
1

2 +
.. .

.

Kamareddine The paradoxes and the infinite dazzled ancient mathematics and continue to do so todayCMSDA 2023, 23 December 29 / 64



√
2 = 1 + 1

2 +
1

2 +
.. .

.

√
2 is called a quadratic irrational because it is the solution to the

quadratic equation x2 − 2 = 0. Note that these continued fractions
provide an approximation to

√
2 as follows:

√
2 ≈ 1,√
2 ≈ 1 + 1

2 = 1.5,
√

2 ≈ 1 + 1

2 +
1

2

= 1.4,

√
2 ≈ 1 + 1

2 +
1

2 +
1

2

= 1.417,

√
2 ≈ 1 + 1

2 +
1

2 +
1

2 +
1

2

= 1.4139 etc.
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Two magnitudes are commensurable if and only if anthyphairesis
terminates.

If the anthyphairesis procedure of finding the ratio or GCD of two
numbers is applied to incommensurable magnitudes, it will never
terminate. We never reach a remainder equal 0.

Problems with anthyphairesis: some obvious theorems cannot be
proved with it:

If the ratio of A to C is the same as the ratio of B to C , then
A = B.

Comes Eudoxus, who found a way to define proportion (having the
same ratio) for magnitudes instead of ratios of magnitudes.

He invented the method of exhaustion which was used by Archimedes
and Euclid to prove theorems that dealt with limits.

Theodorus of Cyrene used Eudoxus approximation to prove
irrationality of numbers in his spiral.
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The Greeks’ problems with infinitesimals/limits

The length of the stepped line is clearly 2s no matter how many steps
there are. But as the number of steps increases, the stepped line seems to
approach the diagonal, and the length of the diagonal is

√
2s 6= 2s.

s
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The Dichotomy Paradox.

Anything in motion, must get halfway first to its destination. For example,
to leave the room, you first have to get halfway to the door, then you have
to get halfway from that point to the door, etc. No matter how close you
are to the door, you have to go half the remaining distance before
proceeding. Hence, there is no finite motion because the above process of
always going half way while in motion is infinite.

There is no motion, because what moves must arrive at the
middle of its course before it reaches the end.
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Suppose length is 1 meter and object moves at 1 meter per second.

It must reach halfway ( 1
2 meter from starting point) in a1 = 1

2 second.
Let t1 = a1.

From this halfway point, the object moves halfway to the end, which
is a2 = 1

4 meters. The total time so far is t2 = a1 + a2 = 1
2 + 1

4 .

We clearly have the following infinite sequences:

a1, a2, a3, . . . =
1

2
,

1

4
,

1

8
, . . .

t1, t2, . . . =
1

2
,

3

4
,

7

8
, . . . where each tn = a1 + a2 + · · ·+ an

Zeno concluded that the total time which is the sum of an infinite
sequence must be infinite and we can never reach our destination.

We know that this is not the case, we can reach our destination in a
finite time. So, where did Zeno get it wrong?
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First, note that

tn =
2n − 1

2n
= 1− 1

2n
.

It follows that each tn is less than 1, so the sequence of times never
exceeds 1 second. This is why Zeno’s conclusion is false.

Moreover, 1
2n gets smaller as n gets bigger. By taking a large enough

value of n, we can make 1
2n smaller than any small value we choose.

Therefore:
lim
n⇒∞

tn = 1.

Adding infinitely many numbers need not return an infinite. E.g.:

an =
1

2n
and Σ∞n=1an = Σ∞n=1

1

2n

Hence,

2Σ∞n=1an = 2a1+2Σ∞n=2

1

2n
= 1+Σ∞n=2

1

2n−1
= 1+Σ∞n=1

1

2n
= 1+Σ∞n=1an.

Therefore, Σ∞n=1an = 1 and limn→∞tn = Σ∞n=1an = 1.
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How did ancient Greeks deal with limits?

Archimedes theorem giving the area of a circle

A theorem of Euclid which says that the areas of circles are to each
other as the squares of their radii.

Both theorems were proved by a method that relied on Eudoxus
theory of proportions which was a geometric theory designed to
overcome the difficulties obtained from the discovery of the irrationals.

For both Archimedes’ theorem and Euclid’s theorem, we need a
general formula for the area of a regular polygon (i.e., a polygon
where all angles are equal and all sides are equal).
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The area of a square of side s

Instead of taking area simply as s2, take the bottom of the 4 triangles

obtained by the diagonals. Altitude h = 1
2s.

s

h

Area A of square = 4× area of triangle = 4× 1
2hs = 1

2h(4s) = 1
2hp.

where p is the perimeter of the square.
Note also that A = 1

2hp = 1
2
s
2 (4s) = s2.

Kamareddine The paradoxes and the infinite dazzled ancient mathematics and continue to do so todayCMSDA 2023, 23 December 37 / 64



The area of a regular octagon/circle

Now let us consider a regular octagon. If we divide it into triangles the
same way, we get eight triangles, each of whose areas is 1

2hs. If we take all
eight triangles and note that here p = 8s, we get for the area
A = 1

2h(8s) = 1
2hp.

The area of any regular polygon is one-half the altitude to a
side times the perimeter, or 1

2hp.
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What about the circle?

The above polygon was inscribed in the circle with circumference C .

If we keep increasing the number of sides, the perimeter will approach
the circumference C and the altitude will approach the radius r . This
suggests that the formula for the area of a circle should be

A =
1

2
rC .

And since π is defined to be the ratio of the circumference of a circle
to twice its radius, we have

π =
C

2r
,

Hence

A =
1

2
r(2πr) = πr2
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This must have seemed obvious to the ancient Greeks from an early
period in the history of their geometry.

But how could they prove it?

At one time some of them argued that a circle is a regular polygon
with infinitely many sides, but they eventually decided that this kind
of reasoning is not immune to attacks by sophists.

For just because regular polygons with an increasing number of sides
seems to be approaching a circle, we are not automatically justified in
deducing this formula for the area of a circle.

They found evidence like this can be misleading.

Recall the stepped line which wrongly gave the impression that√
2s = 2s.

s
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Euclid on Areas of Circles and Squares

It took a long time for the proof that A = 1
2 rC be given. Although

this was obvious to the Greeks, a proof was hard to find.

Before that proof was given, Euclid proved that the areas of circles
have the same proportion (recall Eudoxus) as the squares on their
diameters (Proposition 2 of Book XII of Elements).

Its proof uses Proposition 1 of Book XII which states that Similar
polygons inscribed in circles are to one another as the squares on the
diameters of the circles.

Proposition 1 of Book XII of the Elements.
Similar polygons inscribed in circles are to one another as the
squares on the diameters of the circles.

Similar figures are those which have the same shape. In similar
polygons the corresponding angles are equal and the corresponding
sides all have the same proportion.
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The areas of similar polygons are proportional to:
The squares of their altitudes.

The squares of their perimeters.

The squares of any of their linear parts.
p1
p2

= h1
h2

and A1
A2

= h1p1
h2p2

= h1
h2

p1
p2

= h1
h2

h1
h2

=
h2

1

h2
2

=
p2

1

p2
2
.

Proof of Proposition 1 of Book XII: Use above and the fact that AGB is

similar to A′G ′B ′ below and hence ( AB
A′B ′

)2 = ( AG
A′G ′

)2 = A1
A2

:

O
BA

D

C E

F
G

O ′
B ′A′

D ′

C ′ E ′

F ′
G ′
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Proposition 2 of Book XII of the Elements.
Circles are to one another as the squares on the diameters.

Let the circles have areas a and b respectively, and let the ratio of the
squares of their diameters be k .
Let the areas of the polygons inscribed in the circle with area a (resp.
b) have areas a1, a2, . . . (resp. b1, b2, . . .).
We have 0 < a1 < a2 < . . . < an < . . . < a and
0 < b1 < b2 < . . . < bn < . . . < b.
For each n, we have

k =
an
bn
, so that

an
k

= bn.

and

(a− an+1) <
1

2
(a− an), (b − bn+1) <

1

2
(b − bn).

We want to prove

k =
a

b
.
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Euclid’s method is based on Eudoxus exhaustion
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If k 6= a
b , then k = a

S , where S < b or S > b.

Suppose S < b. Choose N so that

b − bN < b − S .

The number N represents the number of times the number of sides of
the inscribed polygon was doubled. Then

S < bN .

But
S =

a

k
>

aN
k

= bN ,

a contradiction.
Suppose S > b. This is similar to the above case with a and b reversed.

It follows that
k =

a

b
.
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Archimedes’ Measurement of a Circle

Proposition 1 of Archimedes’s Book “Measurement of
a Circle”.

The area of any circle is equal to a right-angled triangle in which
one of the sides about the right triangle is equal to the radius, and
the other to the circumference of the circle.
Let ABCD be the given circle, K the triangle described.

Then, if the circle is not equal to K , it must be either greater or
less.

I. If possible, let the circle be greater than K .
Inscribe a square ABCD, bisect the arcs AB, BC , CD, DA, and

then bisect (if necessary) the halves, and so on, until the sides of
the inscribed polygon whose angular points are the points of

division subtend segments whose sum is less than the excess of the
circle over K .
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Archimedes’ method is based on Eudoxus exhaustion

Prove A = 1
2 rC where r , A and C are radius, area and circumference.

Let K = 1
2 rC (the area of the triangle). If A 6= K , then:

I. Suppose A > K .

Inscribe a square with side s1, altitude to the side h1, and perimeter p1.
The area of the square is a1 = 1

2
h1p1.

Now, double the number of sides of the inscribed polygon, and keep
doubling it. For polygon n with side sn, altitude to the side hn, and
perimeter pn, the area is an = 1

2
hnpn.

From the geometry of the situation, we have that

h1 < h2 < . . . < hn < . . . r ,

p1 < p2 < . . . < pn < . . . < C ,

and
a1 < a2 < . . . < an < . . . < A.

Now choose N so that A− aN < A− 1
2
rC .

It follows that 1
2
rC < aN .

But since hN < r , pN < C , and aN = 1
2
hNpN , we have aN < 1

2
rC ,

a contradiction.

Kamareddine The paradoxes and the infinite dazzled ancient mathematics and continue to do so todayCMSDA 2023, 23 December 47 / 64



II. Suppose, on the contrary, that A < K .

Circumscribe a square with perimeter P1; then the area is A1 = 1
2 rP1.

Now double the number of sides of the circumscribed figure, and keep
doing it. If, for the nth polygon, the perimeter is Pn, then the area is
An = 1

2 rPn.
From the geometry, we have

C < . . . < Pn < . . . < P2 < P1

and
A < . . .An < . . . < A2 < A1.

Choose N so that AN − A < 1
2 rC − A.

Then AN < 1
2 rC .

But C < PN and AN = 1
2 rPN , so 1

2 rC < AN ,
another contradiction.

It follows that A = K = 1
2 rC .
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The ideas of Eudoxus can be used to develop a definition of the limit
of a sequence and a function (without specifying that we are dealing
with real numbers).

Historically, the development of calculus and analysis in European
mathematics developed before a definition of the real numbers.

In fact, at the time of Descartes, Leibniz and Newton, it had not even
been settled whether or not there were infinitely small quantities; This
continued into the 19th century. For example, Cauchy thought that
there were infinitely small quantities.

Infinitesimals were introduced in 450 BC, banned by Eucledian
mathematicians because of the problems they faced when reasoning
about them, banned again in the 1630s by religious clerics in Rome.

They still flourished in 17th century:
a curved line is made of infinitely small straight line segments, and
quantities that differ by an infinitely small quantity are equal.

crucial for the development of calculus by Newton and Leibniz.

abandoned again in 19th century due to their unclear logical status.

revived again in 20th century.
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A curved line is made of infinitely small straight line
segments
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y
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The historic position of clerics against infinitesimals

To find the derivative f ′(2) at x = 2 of y = f (x) = x2, assume x 6= 2.

Then
∆y

∆x
=

f (x)− f (2)

x − 2
=

x2 − 22

x − 2
=

(x + 2)(x − 2)

x − 2
= x + 2

Since we are only able to conclude that the quotient is equal to x + 2
on the assumption that x 6= 2, we appear to have taken an illegal step.

We justify this by saying that we are taking its limit as x → 2:

dy

dx
= lim

x→2

∆y

∆x
,
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Newton calls
dy

dx
= lim

x→2

∆y

∆x
,

ultimate value or value at instant of disappearance.
Bishop Berkeley called it the ghost of a departed quantity.

Foto from MAA.org.
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Kepler’s use of infinite versus Archimedes’s use of
exhaustion

Johannes Kepler used infinitesimals to calculate the area of an ellipse and
viewed the circumference of a circle as an infinite sided regular polygon:
for a circle of radius a and an ellipse of radiuses a and b:

The ratio of each vertical line within the circle to the vertical line
within the ellipse is a/b.
The area of each of the circle/ellipse is the infinite sum of vertical
lines contained in the circle/ellipse.

Figure 3: A circle of radius a and an ellipse of radiuses a and b. The area of each
of the 2 shapes is the infinite sum of the dashed lines contained in it.
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Infinitesimals and the birth of analysis

Calculus formalizes the study of continuous change, while analysis
provides it with a rigorous foundation in logic.

The historic approach was to define limits, and develop the calculus
without formally defining the real numbers.

In the early nineteenth century, mathematicians began to question
whether the deductive structure of the Elements was sufficient.

And, they worried about the lack of rigorous foundations of the
calculus (recall that the foundations of mathematics is a sound
reasoning about the infinitesimal).

Cauchy’s ideas (19th cent.) of function and limit led to rigorous
formulation of the calculus, limit/continuity/real numbers.

Many controversies in analysis were solved by Cauchy. In particular
with his precise definition of convergence in his Cours d’Analyse.

1872: Due to the more exact definition of real numbers given by
Dedekind, the rules for reasoning with real numbers became even
more precise.
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At school, after studying elementary algebra, you are introduced to
geometry (the study of shapes) and trigonometry (the study of side
lengths and angles of triangles) and then to more algebra.

From arithmetic → elementary algebra → geometry& trigonometry,
you move to a pre-calculus course which combines advanced algebra
and geometry with trigonometry.

After all this, you are introduced to calculus.

Calculus (originally called infinitesimal calculus) is the mathematical
study of continuous change.

If Descartes had expressed rather than supressed infinitesimals and
infinites in his method, he would have invented the calculus before
Newton and Leibniz.
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Descartes’ innovative ruler-and-compass construction for
multiplying lengths

The ancient Greeks separated numbers, which are discrete, from
continuous magnitudes. They did not use fractions to approximate
continuous magnitudes, and they had different kinds of magnitudes
for lengths, areas, volumes, angles, etc. They never multiplied two
lengths to get another length.

Descartes published a ruler-and-compass construction for multiplying
two lengths to get a length.

Descartes’ ruler-and-compass construction for multiplying two lengths
to get a length was innovative and it allowed Algebra to be a science
concerned with numbers rather than geometric magnitudes.
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A
B

C

D

Figure 4: Descartes’ Construction

The length of AB is a. On a line AC through A and at an angle to AB, let
the length of AC be a unit, and construct E on the same line so that the
length of AE is b. Join C and B with line segment BC , and construct a
line through E parallel to BC ; let this line intersect the extension of AB at
D. Then triangles ABC and ADE are similar. Hence, AE is to AC as AD
is to AB. I.e., AD = ab.
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Understanding analysis requires more mathematical sophistication
than is required for understanding the calculus itself.

arithmetic→ elementary algebra→ geometry and trigonometry
→ pre-calculus → calculus → analysis

Textbooks give a number of rules for evaluating limits. There are
different theories of limits and attempts continue at looking for new
theories.

Students find ε− δ/ ε− N proofs of limits in analysis challenging.

From our experience, an evolutionary and somewhat historic approach
is helpful.
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Along the way, they learn the need for rigor in mathematics

Possible to Prove in Eucledian Geometry that Every Triangle is
Isocele?

A C

B

G

D

F
E

A Problem in the Proof of Proposition 1 of Book I of Euclid’s
Elements.

Proposition 1. of Book I of the Elements

To construct an equilateral triangle on a given finite straight
line.

Let AB be the given finite straight line.

A BD E

C

It turns out that there is a problem in the proof of Proposition 1 of
Book I, which is given in Figure ??. At first glance, there does not
appear to be any doubt that the construction given there constructs
the desired equilateral triangle and that the proof proves that it is an
equilateral triangle. However, there is a gap in the proof. There is, in
fact, no proof that the point C exists.
To see this, we can construct a model of geometry in which all of the
postulates and axioms are satisfied but Proposition 1 is not.
Euclid’s Postulate 5 (the parallel postulates) is Less Obvious Than
the Other Postulates.
Further Logical inaccuracies’: a number of statements that Euclid
used as facts in his Elements even though they had neither been
proved nor been intro- duced as postulates.

A straight line that intersects one side of a triangle but does
not pass through any vertex of the triangle must intersect one
and only one of the other sides.

Based on this statement, Pasch proved that Euclid’s formulation was
not complete in the sense that there are statements that should hold
but which cannot be proven from Euclid’s formulation.
There are other statements that should hold but which cannot be
proven from Euclid’s formulation.

1 A straight line passing through the center of a circle must intersect the
circle.

2 Given 3 different points on the same line, one of them is between the
other two.

Such logical inaccuracies in Euclid’s Elements have been addressed in
the work of Hilbert who wrote 20 postulates [21] adequate to prove
all the theorems in the Elements.
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What are the real numbers?

A field is a set of objects (S ,+, ·) called quantities such that S is
closed under + and · and satisfies distributivity a(b + c) = ab + ac,
and + and · are commutative, associative, have identity elements
(resp. 0 and 1) and inverses for each element (except for 0 under ·).

A field is an ordered field if for all a, b, and c :

exactly one of a < b, a = b, and b < a holds.
if a < b and b < c , then a < c .
if 0 < a and 0 < b, then 0 < a + b and 0 < ab.
a < b if and only if 0 < b + (−a).

[AC.] Axiom of Completeness. Every nonempty set of
quantities that has an upper bound has a least upper bound.

Real Numbers R Our quantities form an ordered field that satisfies
the Axiom of Completeness AC, and we will refer to them as real
numbers and denote their collection by R.
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AL. Archimedes Law. For any two quantities a and b where
b > a > 0, there is a positive integer n such that b < an.

An ordered field which also satisfies AL is called an Archimedean
ordered field.

None of N or Z is a field.

Q is a field, is an orderd field and is an Archimedean ordered field.

Completeness implies the Archimedean Property Assume a and b
are real numbers such that a > 0. There is a positive integer n such
that an > b.

We can approximate real numbers by rational numbers.
Density of rationals If a and b are any two real numbers with a < b,
then there is a rational number r such that a < r < b.
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Researchers in the 19th century continued to go deeper
into numbers

The formalisation of the real number and of mathematical analysis
sparked further research into number systems and logic.

1895-1897: Cantor began formalizing set theory and made
contributions to number theory.

Cantor’s diagnolisation argument and the size of the natural numbers
versus the size of the real numbers will impact the size of what can
be computable versus what cannot.

Cantor proved that algebraic numbers are countable. and the
transcendental numbers are uncountable.

Later on (in the 1930s) Turing showed that the size of the computable
functions is the size of the algebraic numbers, the smallest infinite.

The size of the non-computable functions is the size of the
transcendental numbers.

This means that there are a lot more functions that are impossible to
compute than there are computable functions.
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The Language, Machine and Model of the Computable

The work of Frege and Russell/Whitehead and Hilbert and Weyl and
Ramsey led the way.

In the late 1920s and early 1930, came Church (λ-calculus) and Curry
(combinatory logic) and Turing (Turing machine) and gave us
equivalent models of computation.

λ-calculus and Turing machines were presented as a negative answer
to Hilbert’s Entscheidungsproblem.

What motivated Curry was the problem he saw in Russell’s
substitution in Principia Mathematica.

Curry noticed that the rule of substitution of well-formed formulas for
propositional variables (not even bound variables) was considerably
more tricky than the rule of detachment (which is equivalent to
modus ponens).

The complication Curry noticed in the rule of substitution of Principia
is now considered to be the complication of its implementation by a
computer program.
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