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Item Notation/Lambda Calculus à la de Bruijn

• I(λx.B) = [x]I(B) and I(AB) = (I(B))I(A)

• I((λx.(λy.xy))z) ≡ (z)[x][y](y)x. The items are (z), [x], [y] and (y).

• applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.

• A term is a wagon followed by a term.

• (β) (λx.A)B →β A[x := B] becomes

• (β) (B)[x]A →β A[x := B] or (B)[x]A →β [x := B]A

• Sometimes, de Bruijn wrote: (β) (B)[x]A →β (B)[x][x := B]A
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Redexes in Item Notation

Classical Notation Item Notation

((λx.(λy.λz.zd)c)b)a →β (a)(b)[x](c)[y][z](d)z →β

((λy.λz.zd)c)a →β (a)(c)[y][z](d)z →β

(λz.zd)a →β ad (a)[z](d)z →β (d)a

(a)(b) [x] (c) [y] [z] (d) z

Figure 1: Redexes in item notation
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Well-balanced segments

• The “bracketing structure” of t = ((λx.(λy.λz.−−)c)b)a), is compatible with
‘{1 {2 {3 }2 }1 }3’, where ‘{i’ and ‘}i’ match.

• (a)(b)[x](c)[y][z](d) has the bracketing structure {{ }{ }}.

• Define a well-balanced segment s to be a segment of partnered () and [] pairs
that match like ‘{’ and ‘}’.

• Let s ≡ (a)(b)[x](c)[y][z](d). Then: (a), (b), [x], (c), [y], and [z], are
the partnered main items of s. (d) is a bachelor item. (a)(b)[x](c)[y][z] is
well-balanced.
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Generalised reduction

• (general β) (b)s[v]a;βs{a[v := b]} if s is well-balanced

• Many step general β-reduction ;;β is the reflexive transitive closure of ;β.

•
t ≡ (a)(b)[x](c)[y][z](d)z ;β

(b)[x](c)[y]{((d)z)[z := a]} ≡
(b)[x](c)[y](d)a

Lemma 1. If a →β b then a ;β b. And, If a ;β b then a =β b.

Corollary 1. If a ;;β b then a =β b. 2

Theorem 1. The general β-reduction is Church-Rosser. I.e. If a ;;β b and
a ;;β c, then there exists d such that b ;;β d and c ;;β d.
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Term reshuffling

• (a)(b)[x](c)[y][z](d)z can be easily rewritten as (b)[x](c)[y](a)[z](d)z by
moving the item (a) to the right.

• I.e., we can keep the old β-axiom and we can contract redexes in any order.

• difficult to describe how ((λx.(λy.λz.zd)c)b)a, is rewritten as
(λx.(λy.(λz.zd)a)c)b.

(b) [x] (c) [y] (a) [z] (d) z

Figure 2: Term reshuffling in item notation
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Uses of Generalised reduction and term reshuffling?

• Regnier’s premier redex in [Reg 92] is a generalised redex. [Reg 94] shows that
the perpetual reduction strategy finds the longest reduction path when the
term is SN. Vidal in [Vid 89] and Sabry in [SF 92] used extended redexes.

• [KTU 94] uses some generalised reduction to show that typability in ML is
equivalent to acyclic semi-unification.

• [Nederpelt 73] and [dG 93] and [KW 95a] use generalised reduction and/or
term reshuffling to reduce strong normalisation for β-reduction to weak
normalisation for related reductions.

• [KW 94] uses amongst other things, generalised reduction and term reshuffling
to reduce typability in the rank-2 restriction of system F to the problem of
acyclic semi-unification.

• [AFM 95] uses a form of term-reshuffling (which they call “let-C”) as a part
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of an analysis of how to implement sharing in a real language interpreter in a
way that directly corresponds to a formal calculus.

• The above description can be found in [KN 95]. Also, [KN 95] showed that
generalised reduction makes more redexes visible and hence allows for more
flexibility in reducing a term.

• [BKN 96] showed that with generalised reduction one may indeed avoid size
explosion without the cost of a longer reduction path and that λ-calculus can
be elegantly extended with definitions which result in shorter type derivation.

• [Kam 00] shows that generalised reduction is the first relation for which both
conservation and postponement of k-redexes hold. [Kam 00] shows that
generalised reduction has PSN.
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Partnered and Bachelor Items

“partnered” and “bachelors” items help categorize the main items of a term:

Lemma 2. Let s be the body of a term a. Then the following holds:

1. Each bachelor main abstraction item in s precedes each bachelor main
application item in s.

2. s minus all bachelor main items equals a well-balanced segment.

3. The removal from s of all main reducible couples, leaves behind
[v1] . . . [vn](a1) . . . (am), the segment consisting of all bachelor main
abstraction and application items.

4. If s ≡ s1(b)s2[v]s3 where [v] and (b) match, then s2 is well-balanced.

Corollary 2. For each non-empty segment s, there is a unique partitioning in
segments s0, s1, · · · , sn, such that s ≡ s0 s1 · · · sn and:
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1. ∀0 ≤ i ≤ n, si is well-balanced in s for even i and si is bachelor in s for odd i.

2. If si and sj for 0 ≤ i, j ≤ n are bachelor abstraction resp. application segments,
then si precedes sj in s.

3. If i ≥ 1 then s2i 6≡ ∅. 2

This is actually a very nice corollary. It tells us a lot about the structure of our
terms.

ISR 2009, Brasiliá 9
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Example

s ≡ [x][y](a)[z][x′](b)(c)(d)[y′][z′](e), has the following partitioning:

• well-balanced segment s0 ≡ ∅

• bachelor segment s1 ≡ [x][y],

• well-balanced segment s2 ≡ (a)[z],

• bachelor segment s3 ≡ [x′](b),

• well-balanced segment s4 ≡ (c)(d)[y′][z′],

• bachelor segment s5 ≡ (e).
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Using () everywhere

• We will replace (a) by (aδ).

• We will replace [x] by (λx) or (ελx); and [x : A] by (Aλx).

• New items: substitution items (Aσx) and typing items (Γτ).

• For example:

(β) (Bδ)(λx)A →β (Bδ)(λx)(Bσx)A
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Type Theory in Item Notation

• T = ∗ | 2 | V | T T | πV :T .T

• (β) (λx:B.A)C →β A[x := C]

• I which translates terms from classical notation to item notation such that:

I(A) = A if A ∈ {∗, 2} ∪ V

I(πx:A.B) = (I(A)πx)I(B)
I(AB) = (I(B)δ)I(A)

• (β) (λx:B.A)C →β A[x := C]

• (β) (Cδ)(Bλx)A →β (Cσx)A
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Trees
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Figure 3: binary tree of (λx:z.xy)u
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Figure 4: layered tree of (λx:z.xy)u

I((λx:z.xy)u) ≡ (uδ)(zλx)(yδ)x
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Compatibility

• In Classical notation:

– A1→A2
A1B→A2B

B1→B2
AB1→AB2

–
– A1→A2

πx:A1
.B→πx:A2

.B
B1→B2

πx:A.B1→πx:A.B2

• In Item notation:

– A1→A2
(A1ω)B→(A2ω)B

B1→B2
(Aω)B1→(Aω)B2
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Restrictions of terms

The restriction t |̀̀x◦ of a term t to a variable occurrence x◦ in t is a term consisting
of precisely those “parts” of t that may be relevant for this x◦, especially as
regards binding, typing and substitution.

• the type of x◦ in t is the type of x◦ in t |̀̀x◦,

• the λ’s relevant to x◦ in t appear also in t |̀̀x◦ and have the same binding
relation to x◦,

• If in t, any substitution for x◦ is possible, then it is also possible in t |̀̀x◦.
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Example of term restriction

• t ≡ (∗λx)(xλv)(xδ)(∗λy)((xλz)y
◦δ)(yλu)u.

• Only (∗λx), (xλv), (xδ), (∗λy) and (xλz) are of importance for y◦.

– y◦ is in the scope of (∗λx), (xλv), (∗λy) and (xλz).
– The x is a candidate for substitution for y◦, due to the presence of the δλ-

segment (xδ)(∗λy) meaning that the x will substitute y in ((xλz)y
◦δ)(yλu)u.

– Nothing else in t is relevant to y◦.

• t |̀̀ y◦ is (∗λx)(xλv)(xδ)(∗λy)(xλz). Remove everything to the right of y◦:
(∗λx)(xλv)(xδ)(∗λy)((xλz). Remove all extra parentheses.

• If t is written λx:∗.λv:x.(λy:∗.(λu:y.u)λz:x.y◦)x then t |̀̀ y◦ is less obvious.
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restriction trees
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t ≡ (∗λx)((xλu)((uδ)(xλt)x
◦λy)(uλz)yλv)u
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s s s s∗ x u x

xλx λu δ λt

t |̀̀x◦ ≡ (∗λx)(xλu)(uδ)(xλt)x
◦

Figure 5: A term and its restriction to a variable
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Definition of term restriction

Definition 1. x◦ |̀̀x◦ ≡ x and (t1ω)t2 |̀̀x
◦ ≡

{

t1 |̀̀x
◦ if x◦ occurs in t1

(t1ω)(t2 |̀̀x
◦) if x◦ occurs in t2

Let t be (∗λx)((xλu)((uδ)(xλt)x
◦λy)(uλz)yλv)u.

Then t |̀̀x◦ ≡ ((∗λx)((xλu)((uδ)(xλt)x
◦λy)(uλz)yλv)u) |̀̀x◦

≡ (∗λx)(((xλu)((uδ)(xλt)x
◦λy)(uλz)yλv)u |̀̀x◦)

≡ (∗λx)((xλu)((uδ)(xλt)x
◦λy)(uλz)y |̀̀x

◦)
≡ (∗λx)(xλu)(((uδ)(xλt)x

◦λy)(uλz)y |̀̀x
◦)

≡ (∗λx)(xλu)((uδ)(xλt)x
◦ |̀̀x◦)

≡ (∗λx)(xλu)(uδ)((xλt)x
◦ |̀̀x◦)

≡ (∗λx)(xλu)(uδ)(xλt)(x
◦ |̀̀x◦)

≡ (∗λx)(xλu)(uδ)(xλt)x
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Describing normal forms in a substitution calculus

[KR 95] provided λs, a calculus of substitution à la de Bruijn, which remains as
close as possible to the classical λ-calculus. The set of terms, noted Λs , of the
λs-calculus is given as follows:

Λs ::= IN | ΛsΛs | λΛs | Λs σiΛs | ϕi
kΛs where i ≥ 1 , k ≥ 0 .

The set of open terms, noted Λsop is given as follows:

Λsop ::= V | IN |ΛsopΛsop |λΛsop |ΛsopσΛsop |ϕ
i
kΛsop where i ≥ 1 , k ≥ 0
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The λs-calculus

σ-generation (λa) b −→ a σ1 b

σ-λ-transition (λa) σib −→ λ(a σi+1 b)
σ-app-transition (a1 a2)σib −→ (a1 σib) (a2 σib)

σ-destruction n σib −→







n− 1 if n > i

ϕi
0 b if n = i

n if n < i

ϕ-λ-transition ϕi
k(λa) −→ λ(ϕi

k+1 a)
ϕ-app-transition ϕi

k(a1 a2) −→ (ϕi
k a1) (ϕi

k a2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k

n if n ≤ k

We use λs to denote this set of rules.
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The λse-calculus

The λse-calculus is obtained by adding the following rules to those of the
λs-calculus.

σ-σ-transition (aσb) σj c −→ (aσj+1 c)σ (b σj−i+1 c) if i ≤ j

σ-ϕ-transition 1 (ϕi
k a) σj b −→ ϕi−1

k a if k < j < k + i

σ-ϕ-transition 2 (ϕi
k a) σj b −→ ϕi

k(a σj−i+1 b) if k + i ≤ j

ϕ-σ-transition ϕi
k(aσj b) −→ (ϕi

k+1 a) σj (ϕi
k+1−j b) if j ≤ k + 1

ϕ-ϕ-transition 1 ϕi
k (ϕj

l a) −→ ϕ
j
l (ϕi

k+1−j a) if l + j ≤ k

ϕ-ϕ-transition 2 ϕi
k (ϕj

l a) −→ ϕ
j+i−1
l a if l ≤ k < l + j

We use λse to denote this set of rules.
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se-normal forms in classical notation

It is cumbersome to describe se-normal forms of open terms. But this description
is needed to show the weak normalisation of the se-calculus. In classical notation,
an open term is an se-normal form iff one of the following holds:

• a ∈ V ∪ IN, i.e. a is a variable or a de Bruijn number.

• a = b c, where b and c are se-normal forms.

• a = λb, where b is an se-normal form.

• a = b σjc, where c is an se-nf and b is an se-nf of the form X , or d σie with
j < i, or ϕi

kd with j ≤ k.

• a = ϕi
kb, where b is an se-nf of the form X , or c σjd with j > k + 1, or ϕ

j
l c

with k < l.
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se-normal forms in item notation

The se-nf’s can be described in item notation by the following syntax:

NF ::= V | IN | (NF δ)NF | (λ)NF | sV

where s is a normal σϕ-segment whose bodies belong to NF . a σib = (b σi)a
and ϕi

ka = (ϕi
k)a. (b σi) and (ϕi

k) are called σ- and ϕ-items respectively. b and
a are the bodies of these respective items.

A normal σϕ-segment s is a sequence of σ- and ϕ-items such that every pair of
adjacent items in s are of the form:

(ϕi
k)(ϕ

j
l ) and k < l (ϕi

k)(b σj) and k < j − 1
(b σi)(c σj) and i < j (b σj)(ϕi

k) and j ≤ k.
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Types

• At the end of the nineteenth century, types did not play a role in mathematics
or logic, unless at the meta-level, in order to distinguish between different
‘classes’ of objects.

• Frege’s formalization of logical reasoning, as explained in the Begriffsschrift
([Frege 1879]), was untyped.

• Only after the discovery of Russell’s paradox, undermining Frege’s work, one
may observe various formulations of typed theories.

• The first theory which aimed at avoiding the paradoxes using types was that
of Russell and Whitehead, as exposed in their famous Principia Mathematica
([Whitehead and Russell 1910]).
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• Church developed a theory of functionals which is nowadays called λ-calculus
([Church 1932]).

• This calculus was used for defining a notion of computability that turned out
to be of the same power as Turing-computability or general recursiveness.

• However, the original, untyped version did not work as a foundation for
mathematics.

• In order to come round the inconsistencies in his proposal for logic, Church
developed the ‘simple theory of types’ λ→ ([Church 1940]).

• From then till the present day, research on the area has grown and one can
find various reformulations of type theories.

• A taxonomy of type systems has been given by Barendregt ([Bar 92]).

• Church’s λ→ is the lowest system on the Cube.
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• λ→ has, apart from type variables, so-called arrow-types of the form A → B.

• In higher type theories, arrow-types are replaced by dependent products
Πx:A.B, where B may contain x as a free variable, and thus may depend
on x. Example: ΠA:∗.λx:A.x

• This means that abstraction can be over types, similarly to the abstraction
over terms: λx:A.b.
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Barendregt Cube

(axiom) <> ⊢β ∗ : 2

(start rule)
Γ ⊢β A : S

Γ.λx:A ⊢β x : A
x 6∈ Γ

(weakening rule)
Γ ⊢β A : S Γ ⊢β D : E

Γ.λx:A ⊢β D : E
x 6∈ Γ

(application rule)
Γ ⊢β F : Πx:A.B Γ ⊢β a : A

Γ ⊢β Fa : B[x := a]

(abstraction rule)
Γ.λx:A ⊢β b : B Γ ⊢β Πx:A.B : S

Γ ⊢β λx:A.b : Πx:A.B

(conversion rule)
Γ ⊢β A : B Γ ⊢β B′ : S B =β B′

Γ ⊢β A : B′

(formation rule)
Γ ⊢β A : S1 Γ.λx:A ⊢β B : S2

Γ ⊢β Πx:A.B : S2
if (S1, S2) is a rule
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System Allowed (S1, S2) rules
λ→ (∗, ∗)
λ2 (∗, ∗) (2, ∗)
λP (∗, ∗) (∗,2)
λP2 (∗, ∗) (2, ∗) (∗,2)
λω (∗, ∗) (2,2)
λω (∗, ∗) (2, ∗) (2,2)
λPω (∗, ∗) (∗,2) (2,2)
λPω = λC (∗, ∗) (2, ∗) (∗,2) (2,2)
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Example derivation

Take Γ ≡ λβ:∗.λy:β. In λ2, using the rules (∗, ∗) and (2, ∗) we have:

Γ ⊢λ2 y : β : ∗ : 2

Γ.λα:∗ ⊢λ2 α : ∗ (start)
Γ.λα:∗.λx:α ⊢λ2 x : α : ∗ (start resp weakening)
Γ.λα:∗ ⊢λ2 Πx:α.α : ∗ (formation rule (∗, ∗) )
Γ.λα:∗ ⊢λ2 λx:α.x : Πx:α.α (abstraction)
Γ ⊢λ2 Πα:∗.Πx:α.α : ∗ (formation rule (2, ∗) )
Γ ⊢λ2 λα:∗.λx:α.x : Πα:∗Πx:α.α (abstraction)
Γ ⊢λ2 (λα:∗.λx:α)β : Πx:β.β (application, we already knew Γ ⊢λ2 β : ∗ )
Γ ⊢λ2 (λα:∗.λx:α.x)βy : β (application, we already knew Γ ⊢λ2 y : β )

It is not possible to derive this judgement in λ→ as (2, ∗) is needed.
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The system λ→

(axiom) <> ⊢β ∗ : 2

(start rule)
Γ ⊢β A : S

Γ.λx:A ⊢β x : A
x 6∈ Γ

(weakening rule)
Γ ⊢β A : S Γ ⊢β D : E

Γ.λx:A ⊢β D : E
x 6∈ Γ

(application rule)
Γ ⊢β F : A → B Γ ⊢β a : A

Γ ⊢β Fa : B

(abstraction rule)
Γ.λx:A ⊢β b : B Γ ⊢β A → B : S

Γ ⊢β λx:A.b : A → B

(conversion rule)
Γ ⊢β A : B Γ ⊢β B′ : S B =β B′

Γ ⊢β A : B′

(formation rule)
Γ ⊢β A : ∗ Γ.λx:A ⊢β B : ∗

Γ ⊢β Πx:A.B : ∗
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The system λ→ revised

(start rule)
Γ ⊢β A : S

Γ.λx:A ⊢β x : A
x 6∈ Γ

(weakening rule)
Γ ⊢β A : S Γ ⊢β D : E

Γ.λx:A ⊢β D : E
x 6∈ Γ

(application rule)
Γ ⊢β F : A → B Γ ⊢β a : A

Γ ⊢β Fa : B

(abstraction rule)
Γ.λx:A ⊢β b : B

Γ ⊢β λx:A.b : A → B
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Desirable Properties: See [Bar 92]

If Γ ⊢ A : B then A and B are legal expressions and Γ is a legal context.

Theorem 2. (The Church Rosser Theorem CR, for →→β) If A →→β B and
A →→β C then there exists D such that B →→β D and C →→β D

Lemma 3. Correctness of types for ⊢β)
If Γ ⊢β A : B then (B ≡ 2 or Γ ⊢β B : S for some sort S).

Theorem 3. (Subject Reduction SR, for ⊢β and →→β)
If Γ ⊢β A : B and A →→β A′ then Γ ⊢β A′ : B

Theorem 4. (Strong Normalisation with respect to ⊢β and →→β)
For all ⊢β-legal terms M , we have SN→→β

(M). I.e. M is strongly normalising
with respect to →→β.
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Π-reduction: See [KN 96a]

• Once we allow abstraction over types, it would be nice to discuss the reduction
rules which govern these types.

• We want: (λx:A.b)C →β b[x := C], as well as (Πx:A.B)C →β B[x := C].

• This strategy of permitting Π-application (Πx:A.B)C in term construction is
not commonly used, yet is desirable for the following reasons:

• (2) below is more elegant and uniform than (1).

If f : Πx:A.B and a : A, then fa : B[x := a] (1)
If f : Πx:A.B and a : A, then fa : (Πx:A.B)a. (2)

• With Π-reduction, one introduces a compatibility property for the typing of
applications:

M : N ⇒ MP : NP.
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This is in line with the compatibility property for the typing of abstractions,
which does hold in general:

M : N ⇒ λy:PM : Πy:PN.

•

A : ∗, b : A, a : A ⊢ a : A (start)
A : ∗, b : A ⊢ (λa:A.a) : (Πa:A.A) (abstraction)
A : ∗, b : A ⊢ (λa:A.a)b : (Πa:A.A)b (application)
A : ∗, b : A ⊢ (λa:A.a)b : A (conversion)

• The ability to divide two important questions of typing. Γ ⊢ A : B becomes:

1. Is A typable in Γ? Γ ⊢ A.
2. Is B the type of A in Γ? How does τ(Γ, A) and B compare.

• In a compiler, Π-reduction allows to separate the type finder from the evaluator
since ⊢ no longer mentions substitution. One first extracts the type and only
then evaluates it.
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• This is related to some work of Peyton-Jones in his language Henk.
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Extending the Cube with Π-reduction: See [KN 96a]

βΠ-reduction →βΠ, is the least compatible relation generated out of the following
axiom:

(βΠ) (πx:B.A)C →βΠ A[x := C]

→→βΠ is the reflexive transitive closure of →βΠ. =βΠ is the least equivalence
relation generated by →→βΠ.

(new application rule)
Γ ⊢βΠ F : Πx:A.B Γ ⊢βΠ a : A

Γ ⊢βΠ Fa : (Πx:A.B)a

(new conversion rule)
Γ ⊢βΠ A : B Γ ⊢βΠ B′ : S B =βΠ B′

Γ ⊢βΠ A : B′
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Barendregt Cube with Π-reduction

(axiom) <> ⊢βΠ ∗ : 2

(start rule)
Γ ⊢βΠ A : S

Γ.λx:A ⊢βΠ x : A
x 6∈ Γ

(weakening rule)
Γ ⊢βΠ A : S Γ ⊢βΠ D : E

Γ.λx:A ⊢βΠ D : E
x 6∈ Γ

(new application rule)
Γ ⊢βΠ F : Πx:A.B Γ ⊢βΠ a : A

Γ ⊢βΠ Fa : (Πx:A.B)a

(abstraction rule)
Γ.λx:A ⊢βΠ b : B Γ ⊢βΠ Πx:A.B : S

Γ ⊢βΠ λx:A.b : Πx:A.B

(new conversion rule)
Γ ⊢βΠ A : B Γ ⊢βΠ B′ : S B =βΠ B′

Γ ⊢βΠ A : B′

(formation rule)
Γ ⊢βΠ A : S1 Γ.λx:A ⊢βΠ B : S2

Γ ⊢βΠ Πx:A.B : S2
if (S1, S2) is a rule
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F. D. Kamareddine June 2009

Generation Lemma

Lemma 4. (Generation Lemma for ⊢β)

• If Γ ⊢β Πx:A.B : C then Γ ⊢β A : S1 and Γ.λx:A ⊢β B : S2 and
(S1, S2) is a rule, C =β S2 and.....

• If Γ ⊢β Fa : C then Γ ⊢β F : Πx:A.B and Γ ⊢β a : A and C =β B[x := a]
and .....

• ..................

In Generation lemma for ⊢βΠ for application case, we replace B[x := a] by
(Πx:A.B)a and change β to to βΠ everywhere.
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Correctness of types fails for Π-reduction even in λ→

Lemma 5. For any A,B,C, S we have Γ 6⊢βΠ (Πx:A.B)C : S.

Proof: If Γ ⊢βΠ (Πx:A.B)C : S then by generation, Γ ⊢βΠ Πx:A.B : Πx:A′.B′

and again by generation, Γ.λx:A ⊢βΠ B : S′ ∧ S′ =βΠ Πx:A′.B′. Absurd. 2

The new legal terms of the form (Πx:B.C)A imply the failure of Correctness of
types Lemma 3 for ⊢βΠ even in λ→.

• Γ ⊢βΠ A : B may not imply B ≡ 2 or Γ ⊢βΠ B : S for some sort S.

• E.g., if Γ ≡ λz:∗.λx:z then Γ ⊢βΠ (λy:z.y)x : (Πy:z.z)x, but Γ 6⊢βΠ (Πy:z.z)x :
S from Lemma 5.

We have a weak correctness of types:
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Lemma 6. If Γ ⊢βΠ A : B and B is not a Π-redex then (B ≡ 2 or Γ ⊢βΠ B :
S for some sort S).

Proof: By a trivial induction on the derivation of Γ ⊢βΠ A : B noting that the
application rule does not apply as (Πx:A.B)a is not a Π-redex. 2

Failure of correctness of types implies failure of Subject Reduction even in λ→:

• In λ→, we have: λz:∗.λx:z 6⊢βΠ x : (Πy:z.z)x.

• Otherwise,by generation: λz:∗.λx:z ⊢βΠ (Πy:z.z)x : S, which is absurd by
Lemma 5.

• Yet in λ→, we have: λz:∗.λx:z ⊢βΠ (λy:z.y)x : (Πy:z.z)x.
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Relating ⊢βΠ and ⊢β and Weak SR

For A ⊢βΠ-legal, let Â be C[x := D] if A ≡ (Πx:B.C)D and A otherwise.

Lemma 7.

1. If Γ ⊢βΠ A : B then Γ ⊢β A : B̂.

2. If Γ ⊢β A : B then Γ ⊢βΠ A : B.

Lemma 8. (Weak Subject Reduction for ⊢βΠ and →→βΠ)

1. If Γ ⊢βΠ A : B and A →→βΠ A′ then Γ ⊢βΠ A′ : B̂

2. If Γ ⊢βΠ A : B and A →→βΠ A′ and B is ⊢β-legal then Γ ⊢βΠ A′ : B
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Canonical typing

There are reasons why separating the questions “what is the type of a term” (via
τ) and “is the term typable” (via ⊢), is advantageous. Here are some:

• The canonical type of A is easy to calculate.

• τ(A) plays the role of a preference type for A. The preference type of
A ≡ λx:∗.(λy:∗.y)x is τ(<>, A) ≡ Πx:∗.(Πy:∗.∗)x which →→βΠ to Πy:∗.∗, the
type traditionally given to A.

• The conversion rule is no longer needed as a separate rule in the definition of
⊢. It is accommodated in our application rule:

Γ ⊢ A Γ ⊢ B

Γ ⊢ AB
if τ(Γ, A) =βΠ Πx:C.D and τ(Γ, B) =βΠ C
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It will be the case that τ(Γ, AB) ≡ τ(Γ, A)B =βΠ (Πx:C.D)B →βΠ D[x :=
B] and so indeed τ(Γ, AB) =βΠ D[x := C].

• Higher degrees:If we use λ1 for Π and λ2 for λ then we can aim for a possible
generalization. In fact, we can extend our system by incorporating more
different λ’s. For example, with an infinity of λ’s, viz. λ0, λ1, λ2, λ3 . . ., we
replace τ(Γ, λx:A.B) ≡ Πx:A.τ(Γ.λx:A, B) and τ(Γ,Πx:A.B) ≡ τ(Γ.λx:A, B)
by the following:

τ(Γ, λi+1
x:A.B) ≡ λi

x:A.τ(Γ.λx:A, B), for i = 0, 1, 2, . . . where λ0
x:A.B ≡ B

There may be circumstances in which one desires to have more “layers” of λ’s.
As an example we refer to [de Bruijn 74].

• This notion enables one to separate the judgement Γ ⊢ A : B in two:
Γ ⊢ A and τ(Γ, A) = B.
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τ(Γ, ∗) ≡ 2

τ(Γ, x) ≡ A if (Aλx) ∈ Γ
τ(Γ, (aδ)F ) ≡ (aδ)τ(Γ, F )
τ(Γ, (Aλx)B) ≡ (AΠx)τ(Γ(Aλx), B) if x 6∈ dom(Γ)
τ(Γ, (AΠx)B) ≡ τ(Γ(Aλx), B) if x 6∈ dom(Γ)
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• In usual type theory:

– the type of (∗λx)(xλy)y is (∗Πx)(xΠy)x and
– the type of (∗Πx)(xΠy)x is ∗.

• With our τ , we get the same result:

– τ(<>, (∗λx)(xλy)y) ≡ (∗Πx)τ((∗λx), (xλy)y) ≡ (∗Πx)(xΠy)τ((∗λx)(xλy), y)
(∗Πx)(xΠy)x and

– τ(<>, (∗Πx)(xΠy)x) ≡ τ((∗λx), (xΠy)x) ≡ τ((∗λx)(xλy), x) ≡ ∗

Let Γ0 ≡<>, Γ1 ≡ (∗λz), Γ2 ≡ (∗λz)(∗λy), Γ3 ≡ Γ2(∗λx). We want to find the

ISR 2009, Brasiliá 46
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canonical type of (∗Πz)(Bδ)(∗λy)(yδ)(∗λx)x in Γ0.

(Γ0τ) (∗Πz) (Bδ) (∗λy) (yδ) (∗λx)

(Γ1τ) (Bδ) (∗λy) (yδ) (∗λx)

(Bδ) (Γ1τ) (∗λy) (yδ) (∗λx)

(Bδ) (∗Πy) (Γ2τ) (yδ) (∗λx)

(Bδ) (∗Πy) (yδ) (Γ2τ) (∗λx)

(Bδ) (∗Πy) (yδ) (∗Πx) (Γ3τ)

(Bδ) (∗Πy) (yδ) (∗Πx)
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New Typability

(⊢-axiom) <> ⊢ ∗

(⊢-start rule) Γ ⊢ A
Γ(Aλx) ⊢ x

if vc

(⊢-weakening rule) Γ ⊢ A Γ ⊢ D
Γ(Aλx) ⊢ D

if vc

(⊢-application rule) Γ ⊢ F Γ ⊢ a
Γ ⊢ (aδ)F

if ap

(⊢-abstraction rule)
Γ(Aλx) ⊢ b Γ ⊢ (AΠx)B

Γ ⊢ (Aλx)b
if ab

(⊢-formation)
Γ ⊢ A Γ(Aλx) ⊢ B

Γ ⊢ (AΠx)B
if fc

• vc (variable condition): x 6∈ Γ and τ(Γ, A) →→βΠ S for some S
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• ap (application condition): τ(Γ, F ) =βΠ (AΠx)B and τ(Γ, a) =βΠ A for some
A,B.

• ab (abstraction condition): τ(Γ(Aλx), b) =βΠ B and τ(Γ, (AΠx)B) →→βΠ S

for some S.

• fc (formation condition): τ(Γ, A) →→βΠ S1 and τ(Γ(Aλx), B) →→βΠ S2 for
some rule (S1, S2).

ISR 2009, Brasiliá 49
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Properties of ⊢

Define A to be the βΠ-normal form of A.

Lemma 9. If Γ ⊢ A then ↓ τ(Γ, A) and Γ ⊢β A : τ(Γ, A)

Lemma 10. (Subject Reduction for ⊢ and τ)
Γ ⊢ A ∧ A →→βΠ A′ ⇒ [Γ ⊢ A′ ∧ τ(Γ, A) =βΠ τ(Γ, A′)]

Theorem 5. (Strong Normalisation for ⊢)
If A is Γ⊢-legal, then SN→→β

(A).

Lemma 11. Γ ⊢β A : B ⇐⇒ Γ ⊢ A and τ(Γ, A) =βΠ B and
B is ⊢β-legal type.
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Properties of the Cube with generalised reduction

C;;β
(CR, SN) Cdef(CR, SN, SR)

C(CR, SN, SR)
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@
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Figure 7: Properties of the Cube with generalised reduction
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F. D. Kamareddine June 2009

References

[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P.,
A call by need lambda calculus, Conf. Rec. 22nd Ann. ACM Symp. Princ.
Program. Lang. ACM, 1995.

[Bar 84] Barendregt, H., Lambda Calculus: its Syntax and Semantics, North-
Holland, 1984.

[Bar 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in
Computer Science, volume II, ed. Abramsky S., Gabbay D.M., Maibaum
T.S.E., Oxford University Press, 1992.

[de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4
family, Dept. of Mathematics, Eindhoven University of Technology, 1974.

ISR 2009, Brasiliá 52
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