Explicit Extensions in (Typed) A-calculi

Fairouz Kamareddine

June 2009

ISR 2009, Brasilid



F. D. Kamareddine June 2009

Item Notation/Lambda Calculus a la de Bruijn
o Z(\e.B) = [z]Z(B)  and  I(AB) = (Z(B))Z(A)
o I((Az.(Ay.zy))z) = (2)[z][yl(y)z. The items are (z), [z], [y] and (y).
o applicator wagon () and abstractor wagon [z] occur NEXT to each other.
e A term is a wagon followed by a term.
o (3) ()i.A)53 —4 Alz := B] becomes
. (9) A —p Alz = B] or A —g[z:=BJA

e Sometimes, de Bruijn wrote: () A —p lx := BJA
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Redexes in Item Notation

Classical Notation Item Notation
((Ao-(AyAzzd)e)b)a —p () (0)[yllz](d)=
((Ay-Az-zd)c)a —3 (a)(0)|yl[z](d)z
(M\..zd)a —3 ad (a)|z](d)z

ISR 2009, Brasilia

Figure 1: Redexes in item notation
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Well-balanced segments

e The “bracketing structure” of t = ((\..(A\,.\.. — —)c)b)a), is compatible with
{o{35 }2 }1 }3', where '{;" and ‘};" match.

e (a) (¢)|y][z](d) has the bracketing structure {{ }{ }}.

e Define a well-balanced segment S to be a segment of partnered () and [| pairs
that match like ‘{" and ‘}".

o Let 5 = (a) (o)lyllz](d). Then: (a), (b), [z], (¢), [y], and [z], are
the partnered main items of 5. (d) is a bachelor item. (a) (o)|yllz] is
well-balanced.
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Generalised reduction
e (general B)  (b)s|v]a~gs{alv:=0b]}  if 5 is well-balanced
e Many step general B-reduction ~»3 is the reflexive transitive closure of ~ 3.

a)(b)|x
()l ]{(
[(e)lyl(d)a

Lemma 1. /fa —3bthena~sp3b. And, If a ~3 b then a =3 b.

t=(
o (b)|x
(b)|z
Corollary 1. [fa~»3b then a =3b. O

Theorem 1. The general 3-reduction is Church-Rosser. le. If a ~»3 b and
a ~»g c, then there exists d such that b ~»g d and c ~»g d.
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Term reshuffling

e (a)(b)z](c)|y]lz](d)z can be easily rewritten as (b)[x|(c)yl(a)|z](d)z by
moving the item (a) to the right.

e |.e., we can keep the old (3-axiom and we can contract redexes in any order.

o difficult to describe how ((A;.(A,.A..zd)c)b)a, is  rewritten  as
(Az.(Ay.(Az.zd)a)c)b.

Figure 2: Term reshuffling in item notation
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Uses of Generalised reduction and term reshuffling?

e Regnier's premier redex in [Reg 92| is a generalised redex. [Reg 94| shows that

the perpetual reduction strategy finds the longest reduction path when the
term is SN. Vidal in [Vid 89] and Sabry in [SF 92] used extended redexes.

e [KTU 94| uses some generalised reduction to show that typability in ML is
equivalent to acyclic semi-unification.

e [Nederpelt 73] and [dG 93] and [KW 95a] use generalised reduction and/or
term reshuffling to reduce strong normalisation for (-reduction to weak
normalisation for related reductions.

e [KW 94] uses amongst other things, generalised reduction and term reshuffling
to reduce typability in the rank-2 restriction of system F to the problem of
acyclic semi-unification.

e [AFM 95] uses a form of term-reshuffling (which they call “let-C") as a part
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of an analysis of how to implement sharing in a real language interpreter in a
way that directly corresponds to a formal calculus.

e The above description can be found in [KN 95]. Also, [KN 95| showed that
generalised reduction makes more redexes visible and hence allows for more
flexibility in reducing a term.

e [BKN 96| showed that with generalised reduction one may indeed avoid size
explosion without the cost of a longer reduction path and that A-calculus can
be elegantly extended with definitions which result in shorter type derivation.

e [Kam 00] shows that generalised reduction is the first relation for which both
conservation and postponement of k-redexes hold. [Kam 00] shows that
generalised reduction has PSN.
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Partnered and Bachelor Items

“partnered” and “bachelors” items help categorize the main items of a term:

Lemma 2. Lets be the body of a term a. Then the following holds:

1. Each bachelor main abstraction item in s precedes each bachelor main
application item in's.

2. s minus all bachelor main items equals a well-balanced segment.

3. The removal from s of all main reducible couples, leaves behind
[v1] ... [vp](a1) ... (am), the segment consisting of all bachelor main
abstraction and application items.

4. If s = 51(b)s32|v]s3 where [v] and (b) match, then 53 is well-balanced.

Corollary 2. For each non-empty segment s, there is a unique partitioning in
segments sy, 51, -, 8y, such that' s =s5s1---S, and:
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1. YO0 <1 <mn,s; is well-balanced ins for even © and s; is bachelor in's for odd i.

2. Ifs; ands; for0 < 4,j < n are bachelor abstraction resp. application segments,
then s; precedess; in's.

3. Ifi > 1 then s5; # (). O

This is actually a very nice corollary. It tells us a lot about the structure of our
terms.
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Example

s = [z]|y](a)|z]|2'](b) (e), has the following partitioning:
e well-balanced segment 55 = ()

e bachelor segment 57 = |x]|y],

e well-balanced segment 53 = (a)|z],

e bachelor segment 53 = [2/](D),

e well-balanced segment 54 = ,

e bachelor segment 55 = (e).

ISR 2009, Brasilia
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Using () everywhere

e We will replace (a) by (ad).
e We will replace [z] by (A;) or (eA;); and [z : A] by (AX;).
e New items: substitution items (Ac,.) and typing items (I'7).

e For example:

(8)  (Bo)(A)A —p (BO)(A:)(Box)A
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Type Theory in ltem Notation
e T =x|0|\VI|TT |ny.7.T
e () (A A)C —p Az :=C]

e 7 which translates terms from classical notation to item notation such that:

(A = A if Ae {x,0}UV
T(7p.n.B) (Z(A)m,)I(B)
I(AB) = (I(B)0)I(A)

e () (N A)C —pgAlx:=C]

o (B) (CO)(BA;)A —p (Cos)A
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Trees

Figure 4: layered tree of (\....zy)u

I((Ag:z-wy)u) = (ud)(2Ae)(yo)x
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Compatibility
e In Classical notation:
_ A1—Ag B1— B>
A1B—A9B AB1{—ABy
A1— Ay B1— B>y

Ty Aq 'B_>7T$ZA2 .B

e In Iltem notation:

A1—>A2
(Ajw)B—(Agw)B

ISR 2009, Brasilia

7T:IZ:A-B1_>7T:I::A-B2

B1_>B2
(Aw)B1— (Aw)Bs
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Restrictions of terms

The restriction ¢ [ x° of a term ¢ to a variable occurrence z° in t is a term consisting
of precisely those “parts” of ¢ that may be relevant for this z°, especially as
regards binding, typing and substitution.

e the type of x° in t is the type of x° in ¢ [z°,

O

e the \'s relevant to z° in t appear also in ¢t[x° and have the same binding

relation to x°,

e If in ¢, any substitution for z° is possible, then it is also possible in t [ x°.
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Example of term restriction

o 1= (¥A2)(2Ao)(0)(+Ay) (2A2)y°0) (Y Au)u.

e Only (x)\z), (zAy), (zd), (xA,) and (zA,) are of importance for y°.

— y° is in the scope of (x\;), (zA,), (¥Ay,) and (xA.).

— The x is a candidate for substitution for y°, due to the presence of the o \-
segment (zd)(*A,) meaning that the x will substitute y in ((zA,)y°d) (yA,)u.

— Nothing else in t is relevant to y°.

o [y is (xA;)(xAy)(xd)(xA,)(xA,). Remove everything to the right of y°:
($Az) (2 Ay)(20)(xAy)((z).). Remove all extra parentheses.

o If tis written Apiv. Apiz.(Ayin. (Mg ) Azip.y®)x then £ [y° is less obvious.
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restriction trees

uox

y u &
* zqu 4XU] _k =y
L}l@uu

t = (X)) ((xAn) ((wd) ()2 Ay) (UA2) YAy )u

X X U X

t1x® = (xAg)(xAy) (ud) (zAs) x°

Figure 5: A term and its restriction to a variable
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Definition of term restriction

if £° occurs in t;
if x° occurs in to

(t1w)(t2 [ x°)

tl FZCO
Let ¢ be (xAz)((zA)((wd)(x )z Ay) (UA2) YAy ).

:Eand(hyﬁtgﬂrozz{

x° [ x°

Definition 1.
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Describing normal forms in a substitution calculus

[KR 95] provided s, a calculus of substitution a la de Bruijn, which remains as
close as possible to the classical A-calculus. The set of terms, noted As, of the
As-calculus is given as follows:

As:=IN | AsAs | Ms | Asco'As | ¢t As  where i>1, k>0.
The set of open terms, noted As,, is given as follows:

Asop ::= V[ IN| AsopAsop | AAsop | ASopoAsop | 0iAse, — where 1>1, k>0
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o-generation
o-A-transition
o-app-transition

o-destruction

- A-transition
p-app-transition

p-destruction

ISR 2009, Brasilia

The M\s-calculus

(Aa) b — aolb

(Aa)o'b — Xao'T1b)

(CLl &2) O'ib — (CLl O'Zb) (CLQ O'Zb)
n—1 if n>1

no'b —— oib  if m=1
| n if n <1

pr(Aa) — Mg a)

pplaraz)  — (¢} a1) () az)

n+i—1 if n>k
n if n<k

We use \s to denote this set of rules.

June 2009
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The \s.-calculus

June 2009

The As.-calculus is obtained by adding the following rules to those of the

As-calculus.

o-o-transition  (acb)o’c —
o-p-transition 1 (% a)
o-p-transition 2 (¢l a)o’b —
p-o-transition oy (ao
p-p-transition 1 ¢!
p-p-transition 2 ).

We use A\s. to denote this set of rules.

ISR 2009, Brasilia

(SO,}L;:H. a) o’ (902+1—j b)
o (802+1—j a)

i1
1

a

if
if
if
if
if
if

1 < J
E<j<k+1
k+i<j
J<k+1
[+ <k
[<k<l+4+j
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s.-normal forms in classical notation

It is cumbersome to describe s.-normal forms of open terms. But this description
Is needed to show the weak normalisation of the s.-calculus. In classical notation,
an open term is an s.-normal form iff one of the following holds:

e a € VUIN, i.e. ais a variable or a de Bruijn number.
e a = bc, where b and ¢ are s.-normal forms.
e a = \b, where b is an s.-normal form.

e a = bo’c, where ¢ is an s.-nf and b is an s.-nf of the form X, or do’e with
j <1, or ptd with j < k.

o 0 = gp’l‘;b, where b is an s.-nf of the form X, or co/d with j > k + 1, or gpgc
with k£ < [.
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s.-normal forms in item notation

The s.-nf's can be described in item notation by the following syntax:
NF :=V | IN | (NF§)NF | (\)NF | sV

where 5 is a normal op-segment whose bodies belong to NF. ao'b = (bo')a
and pta = (p%)a. (bo') and (p%) are called o- and ¢-items respectively. b and
a are the bodies of these respective items.

A normal op-segment s is a sequence of o- and -items such that every pair of
adjacent items in s are of the form:

(£1)(i) and k<1 (},)(bo?) and k < j—1
(bo")(co?) and i < j (ba?)(¢;) and j < k.
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Types

e At the end of the nineteenth century, types did not play a role in mathematics
or logic, unless at the meta-level, in order to distinguish between different
‘classes’ of objects.

e Frege's formalization of logical reasoning, as explained in the Begriffsschrift
([Frege 1879]), was untyped.

e Only after the discovery of Russell's paradox, undermining Frege's work, one
may observe various formulations of typed theories.

e The first theory which aimed at avoiding the paradoxes using types was that
of Russell and Whitehead, as exposed in their famous Principia Mathematica

([Whitehead and Russell 1910]).
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Church developed a theory of functionals which is nowadays called A-calculus
([Church 1932]).

This calculus was used for defining a notion of computability that turned out
to be of the same power as Turing-computability or general recursiveness.

However, the original, untyped version did not work as a foundation for
mathematics.

In order to come round the inconsistencies in his proposal for logic, Church
developed the ‘simple theory of types’ A_, ([Church 1940]).

From then till the present day, research on the area has grown and one can
find various reformulations of type theories.

A taxonomy of type systems has been given by Barendregt ([Bar 92]).

Church’s \_, is the lowest system on the Cube.
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e )\_. has, apart from type variables, so-called arrow-types of the form A — B.

e In higher type theories, arrow-types are replaced by dependent products
II,..4.B, where B may contain x as a free variable, and thus may depend

on x. Example: 11 4... )\, . 4.7

e This means that abstraction can be over types, similarly to the abstraction
over terms: A;.4.b.
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(axiom)

(start rule)

(weakening rule)

(application rule)

(abstraction rule)

(conversion rule)

(formation rule)

ISR 2009, Brasilia

Barendregt Cube

<>|_5>I<:|:|
I'FgA: S
F.)\x;AFQQZ:ACBgF
FI‘@A:S FI‘@D:E
TwaF, D E  *¢71
Fl—gF:H:B;A.B Fl—ga:A

I' 5 Fa: Bz := al

I'’Xpabgb: B I' g lpn.B: S

T F5 Aon b 1B

'ty A:B T +gB:S B=43B
T'F; A: B
Fl‘ﬁAZSl F->\a::A FBBZSQ

T F; 0,48 : 5,

if (S1,S2) is a rule
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System Allowed (S1,.52) rules

A (, %)

A2 (x,%) | (O,x%)

AP (, *) (x,0)

AP? (o) | (@0 | (D)

A (, %) (0,0)
Aw (x,%) | (O, %) (O, 0)
APw (4 (0) | (2.0)
APw =MXC | (x,%) | (O,%) | (x,0) | (O,0)
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AW AC

A2 AP2

AW APw

ISR 2009, Brasili3 Figure 6: The Cube 29
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Example derivation

Take I' = Ag.x.\y:3. In A2, using the rules (x,*) and (O, *) we have:

['Fyoy:B:x:0
| D P O (

| D DD S N Ao T (start resp weakening)

| I N SN [ DS (formation rule (x,x*) )

L' gis Foo Mgt I 0 (abstraction)

['yo g Il 0 o % (formation rule (O, %) )

I'Fao Aais- Azt g Il.q.ac - (abstraction)

I'Fa2 (AqisAzia) B 1.8 (application, we already knew I' o 3 : % )
I'Fxo (Aack-Azia-2)By 1 0 (application, we already knew I' o 4 : 3 )

It is not possible to derive this judgement in A_, as (O, *) is needed.

ISR 2009, Brasilia 30



F. D. Kamareddine

ISR 2009, Brasilia

(axiom)

(start rule)

(weakening rule)

(application rule)

(abstraction rule)

(conversion rule)

(formation rule)

June 2009

The system )\ _,

<>|—5>l<:|:|

I'FgA: S

1".)\QCZAI—5:18:AwgF

I'FgA: S I'-g D: E

., D E *¢7T

I's FF: A— B I'Fga: A

T F; Fa: B

I'Xpoabgb: B I'Fg A—B:S

I'Fg Agiab: A— B

Fl_gA:B Fl—gB,:S BZ@B,

FI—BA:B’

I'Fg A x I'Xpia g B @ %

T F; 1,48~
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The system )\_, revised

I'FgA: S
(start rule) Tooal, 2z A

x &1

(weakening rule) e f4A$SA =5 lszED £

x &I

licati | 'k F: A— B I'Fga: A
(application rule) TF; Fa: B

_ I'Xpoabgb: B
(abstraction rule) F5 Apab: A — B

June 2009
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Desirable Properties: See [Bar 92]

If I' = A: B then A and B are legal expressions and I' is a legal context.

Theorem 2. (The Church Rosser Theorem CR, for —-3) If A —3 B and
A —~3 C then there exists D such that B —g D and C' —-3 D

Lemma 3. Correctness of types for-3)
IfI'-3 A: B then (B=0Oorl't3 B: S for some sort S).

Theorem 3. (Subject Reduction SR, for -5 and —-3)
IfI'-3 A:Band A—3 A" thenT' -3 A': B

Theorem 4. (Strong Normalisation with respect to g and —-3)
For all \-g-legal terms M, we have SN_, (M). le. M is strongly normalising
with respect to —- 3.
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[I-reduction: See [KN 96a]

e Once we allow abstraction over types, it would be nice to discuss the reduction
rules which govern these types.

e We want: (A;.4.0)C — 3 blz := C], as well as (I1,.4.B)C —3 Blz := C]].

e This strategy of permitting II-application (I1,.4.B)C' in term construction is
not commonly used, yet is desirable for the following reasons:

e (2) below is more elegant and uniform than (1).
If f:11;.4.B and a: A, then fa: Blz := a] (1)
If f:11,.4.B and a: A, then fa: (Il,.4.B)a. (2)

e With Il-reduction, one introduces a compatibility property for the typing of

applications:
M:N=MP:NP.
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This is in line with the compatibility property for the typing of abstractions,
which does hold in general:

M:N:>)\y:pMIHy:pN.

A:xb:Aa: A F a:A (start)

. A:xb: A o (Ag.a-a) : (ITg.4.A) (abstraction)
A:xb: A = (Ag.a.a)b: (Il 4.A)b  (application)
A:xb: A F (Aga.a)b: A (conversion)

e The ability to divide two important questions of typing. I' = A : B becomes:

1. Is A typable in I'? T" - A.
2. Is B the type of A in I'? How does 7(I', A) and B compare.

e In a compiler, II-reduction allows to separate the type finder from the evaluator
since - no longer mentions substitution. One first extracts the type and only
then evaluates it.
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e This is related to some work of Peyton-Jones in his language Henk.
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Extending the Cube with II-reduction: See [KN 96a]

Bll-reduction — gy, is the least compatible relation generated out of the following
axiom:

(BI)  (mp.3-A)C —pn Alz :=C]

—- g1 IS the reflexive transitive closure of —gm. =gr is the least equivalence
relation generated by —-gry.

Fl—BHFIHgC:A.B Fl‘ﬁna:A
I'Fsn Fa: (11;.4.B)a

(new application rule)

Fl—BHAIB Fl—BHB/IS BZQHB/
FI_BHAZB/

(new conversion rule)
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Barendregt Cube with II-reduction

(axiom)

(start rule)

(weakening rule)

(new application rule)

(abstraction rule)

(new conversion rule)

(formation rule)

ISR 2009, Brasilia

<>|—5H>I<:|:|

Fl—BHA:S

I''X.,.4 I—gna::Ang

Fl—BHA:S Fl—ﬁnD:E

TXouFm D:E z gl

I' g F' i 11;.4.B I'Fgna:A

) l_BH Fa : (Hx;A.B)CL

F.)\QC;A I_QH b: B I' |_5H Hx;A.B : S

T Fan Aoia b 1,48

FFQHA:B FI‘@HB,:S BZ@HB,
FI—QHA:B,
r |_BH A . Sl F-)\:p:A I—QH B : SQ

| |_BH Hx;A.B . SQ

June 2009

if (S1,52) is a rule

38



F. D. Kamareddine June 2009

Generation Lemma

Lemma 4. (Generation Lemma for t-3)

o /[f I |_5 I[I,.4.B : C then T |_5 A 51 and T''A,.4 I_B B 55 and
(51,92) is a rule, C =5 S5 and.....

o [fI'Fg Fa:C thenl' g F :1l,.4.B and'Fga: A and C =5 Blx := a]
and .....

In Generation lemma for kg for application case, we replace Blx := a] by
(IT;.4.B)a and change 3 to to SII everywhere.
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Correctness of types fails for II-reduction even in \_,

Lemma b. Forany A, B,C,S we have I" /g1 (I1;.4.B)C : S.

Proof: /fI' ks (I1,.4.B)C : S then by generation, I' g 1y.a.B @ 11, 4. B’
and again by generation, I''Ay.a Fpn B : S"ANS" =11 1. 40.B". Absurd. O

The new legal terms of the form (II,.5.C)A imply the failure of Correctness of
types Lemma 3 for g1 even in A_,.

o I'gp A: B may not imply B=0OorI' gy B : S for some sort S.

o Eg.,if =X\ then I' b (Ayz.y)x : (I,..2)x, but T' g (I1,...2)x
S from Lemma 5.

We have a weak correctness of types:
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Lemma 6. /fI'Fgg A: B and B is not a II-redex then (B =0 orI' g B :
S for some sort S).

Proof: By a trivial induction on the derivation of I' g1 A : B noting that the
application rule does not apply as (I1,.4.B)a is not a Il-redex. O

Failure of correctness of types implies failure of Subject Reduction even in A_,:

e In A_,, we have: \... \,.. Vg o (IL,...2)z.

e Otherwise,by generation: A....A\z.» Fan (I1y...2)x S, which is absurd by
Lemma 5.

e Yetin A_, we have: \.... )\, Fpn (Nyzy)x o (1L, 2) 2.
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Relating 37 and -3 and Weak SR

For A Fgp-legal, let A be C[z := D] if A = (IL,.5.C)D and A otherwise.

Lemma 7.

1. If T kg A: B thenT' 3 A: B.

2. IfFl—gA:BthenFl—gnA:B.

Lemma 8. (Weak Subject Reduction for g and — 1)

1. IfTFgn A: B and A —aq A’ thenT' 3 A’ : B

2. IfTkgn A: B and A —pn A" and B is -3-legal then I' g A" : B
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Canonical typing

There are reasons why separating the questions “what is the type of a term” (via
7) and “is the term typable” (via I-), is advantageous. Here are some:

e The canonical type of A is easy to calculate.

e 7(A) plays the role of a preference type for A. The preference type of
A=Ay y)xis 7(<>, A) = . (IL,.0. %)z which —» 17 to 11,...%, the
type traditionally given to A.

e The conversion rule is no longer needed as a separate rule in the definition of
. It is accommodated in our application rule:

'-rA TI'HB
I'-AB

If T(F, A) —BI1 Ha;:C-D and T(F, B) —pBII C
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It will be the case that 7(I', AB) = 7(I', A)B =311 (Il,.c.D)B —pn D|x :=
B] and so indeed 7(I', AB) =g D[z := C].

o Higher degrees:If we use ! for IT and \? for \ then we can aim for a possible
generalization. In fact, we can extend our system by incorporating more
different \'s. For example, with an infinity of X's, viz. A% A1, A2, A3 ... we
replace 7(I', \p.a.B) = Hpa.7(TApoa, B) and 7(I', 1. 4.B) = 7(I". X\z.4, B)
by the following:

(T, A0 B) = A 4. 7(D A ga, B),for i = 0,1,2,... where \’_,.B=B

There may be circumstances in which one desires to have more “layers” of \'s.
As an example we refer to [de Bruijn 74].

e This notion enables one to separate the judgement I' - A : B in two:
I'-Aand 7(I', A) = B.
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e In usual type theory:

— the type of (x\;)(zA,)y is (xII,)(«IL,)x and
— the type of (xIl,)(«IL,)x is .

e With our 7, we get the same result:

= 7(<>, (:Aa) (@Ay)y) = (o) 7((+A2), (2Ay)y) = (#112) (@I T((*Az) (TAy), y
(+1I,)(z1l, )2 and
— 7(<>, (1L, («Ily))x) = 7((xAg), (x1ly)z) = 7((xAz) (2 Ay), ) = *

Let g =<>, '] = (xA2), 2 = (xA,)(x\), . We want to find the
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canonical type of (*I1,)(Bd)(xA,)(yd)(xAz)z in L.

(Tor)  (+IL) (B5)
(7)) (BS)

(B5)

(B)

(BY)

(B9)
(B9)
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(I'17)

(xAy)
(xAy)
(xAy)

(*1Iy)

(*1Iy)

(*1Iy)
(*11y)

(D7)

(y9)
(y9)
(y9)
(y9)
(y9)

(yd)
(yd)

(D7)

June 2009

(%Az)
(%Az)
(+Az)
(*Az)
(*Az)

(xI1,)
(xI1,)
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New Typability

(F--axiom) <>
r-A .
(F-start rule) T(AN) F 2 if vc

- i ['-A D .

( -Weakenlng rule) (A)\x) 5 i Ve
. . I\l F F CL ]

(I—_appllcatlon rule) ( 5) - if ap

(F-abstraction rule) LA )l_ b (A l)_b(AH +)B if ab

A  T(A\,)F B

~TAIL,) B if fc

(F-formation)

e vc (variable condition): x € I" and 7(I', A) —» 11 S for some S
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e ap (application condition): 7(I', F') =g (All;)B and 7(I', a) =11 A for some
A, B.

e ab (abstraction condition): 7(I'(A\;),b) =pn B and 7(I', (All,)B) —=gn S
for some S.

e fc (formation condition): 7(I'; A) — s S1 and 7(I'(AX;), B) —»pn Sy for
some rule (51, 53).
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Properties of -

Define A to be the BII-normal form of A.

Lemma 9. /fI'+ A then | 7(I'yA) and'Fg A : 7(I', A)

Lemma 10. (Subject Reduction for - and 7)
'FANA —pn A= THFA AT, A) =g (T, A)]

Theorem 5. (Strong Normalisation for )
If A is T'"-legal, then SN, ;(A).

lLemmall. I' 4 A : B < I' - A and 7(I'’A) =pn B and
B is Fg-legal type.
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Properties of the Cube with generalised reduction

C(CR, SN, SR)

/N

C.,(CR, SN) Cuet(CR, SN, SR)

N

Cpaes (CR, SN, SR)

Figure 7: Properties of the Cube with generalised reduction
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