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A Refinement of Barendregt’s Cube with Non-First-Class

Functions (see book [Kamareddine et al.])

• General definition of function is key to Frege’s formalisation of logic (1879).

• Self-application of functions was at the heart of Russell’s paradox (1902).

• To avoid paradoxes, Russell controlled function application via type theory.

• Russell (1908) gives the first type theory: the Ramified Type Theory (rtt).

• rtt is used in Russell and Whitehead’s Principia Mathematica (1910–1912).

• Simple theory of types (stt): Ramsey (1926), Hilbert and Ackermann (1928).

• Frege’s functions 6= Principia’s functions 6= λ-calculus functions (1932).
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• Church’s simply typed λ-calculus λ→ = λ-calculus + stt (1940).

• Both rtt and stt are unsatisfactory. Hence, birth of different type systems,
each with different functional power. All based on Church’s λ-calculus.

• Eight influential typed λ-calculi 1940–1988 unified in Barendregt’s cube.

• Not all functions need to be fully abstracted as in the λ-calculus. For some
functions, their values are enough.

• Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

• We extend the cube of the eight influential type systems with non-first-class
functions showing that this allows placing the type systems of ML, LF and
Automath more accurately in the hierarchy of types.
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Prehistory of Types (Paradox Threats)

• Types have always existed in mathematics, but not explicited until 1879. Euclid
avoided impossible situations (e.g., two parallel points) via classes/types.

• In formal systems, intuition can’t use implicit types to avoid impossibilities.

• In 19th century, controversies in analysis led to mathematical precision.
(Cauchy, Dedekind, Cantor, Peano, Frege).

• Frege’s general definition of function was key to his formalisation of logic.

Abstraction Principle 1.

“If in an expression, [. . . ] a simple or a compound sign has one or more occurrences and

if we regard that sign as replaceable in all or some of these occurrences by something else

(but everywhere by the same thing), then we call the part that remains invariant in the

expression a function, and the replaceable part the argument of the function.”
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Prehistory of Types (Begriffsschrift/Grundgesetze)

• An argument could be a number (as in analysis), a proposition, or a function.

• Distinguishing 1st- and 2nd-level objects avoids paradox in Begriffsschrift:

“As functions are fundamentally different from objects, so also functions whose arguments

are and must be functions are fundamentally different from functions whose arguments are

objects and cannot be anything else. I call the latter first-level, the former second-level.”

• In Grundgesetze Frege described arithmetic in an extension of Begriffsschrift.

• To avoid paradox, he applied a function to its course-of-values, not itself

• Frege treated courses-of-values as ordinary objects. Hence, a function that
takes objects as arguments could have its own course-of-values as an argument.
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Russell’s Paradox, vicious circle principle
• In 1902, Russell wrote Frege saying he discovered a paradox in Begriffsschrift

using f(x) = ¬x(x), (Begriffsschrift does not suffer from a paradox).

• Frege replied: Russell’s derivation was incorrect, f(f) is not possible in
Begriffsschrift: f(x) needs objects as arguments; functions are not objects.

• Using courses-of-values, Russell’s argument gives a paradox in Grundgesetze

Russell avoided all possible self-references by the “vicious circle principle VCP”:

“Whatever involves all of a collection must not be one of the collection.”
• VCP implemented by a double hierarchy of types: (simple) types and orders.

• The ideas behind simple types was already explained by Frege.

• Due to problems with rtt, the (Axiom of Reducibility AR) was introduced
“For each formula f , there is a formula g with a predicative type such that f and g are

(logically) equivalent.”

• rtt without AR was considered too restrictive and AR itself was questionned.
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• Ramsey distinguishes the logical/syntactical and semantical paradoxes.

• rtt without orders eliminates logical paradoxes. Separating language and
meta language eliminates semantical paradoxes. No need for orders.

• Simple Theory of Types (stt) is rtt without orders.

• stt is not Church’s λ→. stt existed (1926) before λ-calculus (1932).
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The evolution of functions with Frege and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.
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• In Principia Mathematica [Whitehead and Russell, 19101, 19272]: If, for some
a, there is a proposition φa, then there is a function φx̂, and vice versa.
• The function φ is not a separate entity but always has an argument.

• Frege denoted the course-of-values (graph) of a function Φ(x) by ὲΦ(ε).

• ὲΦ(ε) may have given Russell’s x̂Φ(x) for the class of objects with property Φ.

• According to Rosser, the notation x̂Φ(x) is the basis of the notation λx.Φ.

• Church wrote ∧xΦ(x) for x 7→ Φ(x) to distinguish it from the class x̂Φ(x).
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λ-calculus does not fully represent functionalisation
1. Abstraction from a subexpression 2 + 3 7→ x + 3

2. Function construction x + 3 7→ λx.x + 3

3. Application construction (λx.x + 3)2

4. Concretisation to a subexpression (λx.(x + 3))2→ 2 + 3

• cannot abstract only half way: x + 3 is not a function, λx.x + 3 is.

• cannot apply x + 3 to an argument: (x + 3)2 does not evaluate to 2+3.
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Common features of modern types and functions

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type A→ A
– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A→ A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λy:A.y)[A := N] has type (A→ A)[A := N] or N→ N.
– (λA:∗.λy:A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or N→ N.

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

• Write A→ A as Πy:A.A when y not free in A.
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The Barendregt Cube

• Syntax: A ::= x | ∗ |2 |AB | λx:A.B |Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Ba
λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds,
λP (∗, ∗) (∗,2) aut-QE, LF [Bruijn, 1968; Harp
λω (∗, ∗) (2,2) POLYREC [Renardel de Lavalette,
λP2 (∗, ∗) (2, ∗) (∗,2) [Longo and Moggi,
λω (∗, ∗) (2, ∗) (2,2) Fω [Girard, 1972]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [Coquand and Huet,
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The Barendregt Cube
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Typing Polymorphic identity needs (2, ∗)

•
y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗

y : ∗ ⊢ Πx:y.y : ∗
by (Π) (∗, ∗)

•
y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗

y : ∗ ⊢ λx : y.x : Πx:y.y
by (λ)

•
⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗

⊢ Πy : ∗.Πx:y.y : ∗
by (Π) (2, ∗)

•
y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗

⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y
by (λ)
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ML
• ML treats let val id = (fn x⇒ x) in (id id) end as this Cube term

(λid:(Πα:∗. α→ α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy:(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(id α)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).

• ML has limited access to the rule (2, ∗) enabling some things from λ2 but not
all.

• ML’s type system is none of those of the eight systems of the Cube.
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• We place the type system of ML on our refined Cube (between λ2 and λω).
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LF
• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.

• Use of Π-formation rule (∗,2) is very restricted in the practical use of LF
[Geuvers, 1993].

• The only need for a type Πx:A.B : 2 is when the Propositions-As-Types
principle pat is applied during the construction of the type Πα:prop.∗ of the
operator Prf where for a proposition Σ, Prf(Σ) is the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2

prop:∗ ⊢ Πα:prop.∗ : 2
.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.

• But, Prf is only used when applied Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.
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• We will find a more precise position of LF on the Cube (between λ→ and λP ).
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Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.
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Automath

• The first tool for mechanical representation and verification of mathematical
proofs, Automath, has a parameter mechanism.

• Mathematical text in Automath written as a finite list of lines of the form:

x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T.

Here g is a new name, an abbreviation for the expression t of type T and
x1, . . . , xn are the parameters of g, with respective types A1, . . . , An.

• Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in Automath [Benthem Jutting,
1977] revealed that this combined definition and parameter mechanism is vital
for keeping proofs manageable and sufficiently readable for humans.
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Extending the Cube with parametric constants

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.
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The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1
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Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A→→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .
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Example

• R = {(∗, ∗), (∗, 2)}

P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗, 2)} P 4 = {(∗, ∗), (∗, 2)}

All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗, 2)}.

λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.
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The refined Barendregt Cube
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LF, ML, Aut-68, and Aut-QE in the refined Cube
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Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)

• Mathematician uses ind only with P : N→∗, Q : P0 and R :
(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)
• The logician’s type Ind is not needed by the mathematician and the types

that occur in 2 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.
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Logicians versus mathematicians and induction over numbers

• Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N→ ∗). · · · ).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

Tsukuba, April 2008 27



Conclusions

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

• Parameters describe the difference between developers and users of systems.

Tsukuba, April 2008 28



Item Notation/Lambda Calculus à la de Bruijn

• I translates to item notation:

I(x) = x, I(λx.B) = [x]I(B), I(AB) = (I(B))I(A)

• (λx.λy.xy)z translates to (z)[x][y](y)x.

• The items are (z), [x], [y] and (y). The last x is the heart of the term.

• The applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.

• The β rule (λx.A)B →β A[x := B] becomes in item notation:

(B)[x]A→β [x := B]A
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Redexes in Item Notation

Classical Notation Item Notation

((λx.(λy.λz.zd)c)b)a (a)(b)[x](c)[y][z](d)z

↓β ↓β
((λy.λz.zd)c)a (a)(c)[y][z](d)z

↓β ↓β
(λz.zd)a (a)[z](d)z

↓β ↓β
ad (d)a

(a)(b) [x] (c) [y] [z] (d) z
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Segments, Partners, Bachelors

• The “bracketing structure” of ((λx.(λy.λz.−−)c)b)a), is ‘{1 {2 {3 }2 }1 }3’,
where ‘{i’ and ‘}i’ match.

• The bracketing structure of (a)(b)[x](c)[y][z](d) is simpler: {{ }{ }}.

• (a) and [z] are partners. (b) and [x] are partners. (c) and [y] are partners.

• (d) is bachelor.

• A segment s is well balanced when it contains only partnered main items.
(a)(b)[x](c)[y][z] is well balanced.

• A segment is bachelor when it contains only bachelor main items.
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More on Segments, Partners, and Bachelors

• The main items are those at top level.
In ([y](y)y)[x]x the main items are: ([y](y)y) and [x].
[y] and (y) are not main items.

• Each main bachelor [] precedes each main bachelor ().
For example, look at: [u](a)(b)[x](c)[y][z](d)u.

• Removing all main bachelor items yields a well balanced segment.
For example from [u](a)(b)[x](c)[y][z](d) we get: (a)(b)[x](c)[y][z].

• Removing all main partnered items yields a bachelor segment
[v1] . . . [vn](a1) . . . (am).
For example from [u](a)(b)[x](c)[y][z](d) we get: [u](d).

• If [v] and (b) are partnered in s1(b)s2[v]s3, then s2 must be well balanced.
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Even More on Segments, Partners, and Bachelors

Each non-empty segment s has a unique partitioning into sub-segments
s = s0s1 · · · sn such that n ≥ 0,

• si is not empty for i ≥ 1,

• si is well balanced if i is even and is bachelor if i is odd.

• if si = [x1] · · · [xm] and sj = (a1) · · · (ap) then si precedes sj

• Example: s ≡ [x][y](a)[z][x′](b)(c)(d)[y′][z′](e) is partitioned as:

• s ≡

s0
︷︸︸︷

∅ [x][y]
︸ ︷︷ ︸

s1

s2
︷ ︸︸ ︷

(a)[z] [x′](b)
︸ ︷︷ ︸

s3

s4
︷ ︸︸ ︷

(c)(d)[y′][z′] (e)
︸︷︷︸

s5
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More on Item Notation

• Above discussion and further details of item notation can be found
in [Kamareddine and Nederpelt, 1995, 1996].

• Item notation helped greatly in the study of a one-sorted style of
explicit substitutions, the λs-style which is related to λσ, but has certain
simplifications [Kamareddine and Ŕıos, 1995, 1997; Kamareddine and Ŕıos,
2000].

• For explicit substitution in item notation see [Kamareddine and Nederpelt,
1993]
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Canonical Forms

• Nice canonical forms look like:

bachelor [ ]s ()[ ]-pairs, Ai in CF bachelor ()s, Bi in CF end var
[x1] . . . [xn] (A1)[y1]. . .(Am)[ym] (B1) . . . (Bp) x

• classical:

λx1 · · ·λxn.(λy1.(λy2. · · · (λym.xBp · · ·B1)Am · · · )A2)A1

• For example, a canonical form of:

[x][y](a)[z][x′](b)(c)(d)[y′][z′](e)x

is
[x][y][x′](a)[z](d)[y′](c)[z′](b)(e)x
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Some Helpful Rules for reaching canonical forms

Name In Classical Notation In Item Notation
((λx.N)P )Q (Q)(P )[x]N

(θ) ↓ ↓
(λx.NQ)P (P )[x](Q)N
(λx.λy.N)P (P )[x][y]N

(γ) ↓ ↓
λy.(λx.N)P [y](P )[x]N

((λx.λy.N)P )Q (Q)(P )[x][y]N
(γC) ↓ ↓

(λy.(λx.N)P )Q (Q)[y](P )[x]N
((λx.λy.N)P )Q (Q)(P )[x][y]N

(g) ↓ ↓
(λx.N [y := Q])P (P )[x][y := Q]N
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A Few Uses of Generalised Reduction and Term Reshuffling

• Regnier [1992] uses term reshuffling and generalized reduction in analyzing
perpetual reduction strategies.

• Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

• [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

• [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

• [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

• [Kamareddine, 2000] shows various strong properties of generalised reduction.
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Obtaining Canonical Forms

θ-nf: ()[ ]-pairs mixed with bach. [ ]s bach. ()s end var
(A1)[x][y][z](A2)[p] · · · (B1)(B2) · · · x

γ-nf: bach. [ ]s ()[ ]-pairs mixed with bach. ()s end var
[x1][x2] · · · (B1)(A1)[x](B2) · · · x

θ-γ-nf: bach. [ ]s ()[ ]-pairs bach. ()s end var
[x1][x2] · · · (A1)[y1](A2)[y2] . . . (Am)[ym] (B1)(B2) . . . x

γ-θ-nf: bach. [ ]s ()[ ]-pairs bach. ()s end var
[x1][x2] · · · (A1)[y1](A2)[y2] . . . (Am)[ym] (B1)(B2) . . . x
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Example

For M ≡ [x][y](a)[z][x′](b)(c)(d)[y′][z′](e)x:

θ(M): bach. [ ]s ()[ ]-pairs mixed with bach. [ ]s bach. ()s end var
[x][y] (a)[z][x′](d)[y′](c)[z′] (b)(e) x

γ(M): bach. [ ]s ()[ ]-pairs mixed with bach. ()s bach. ()s end var
[x][y][x′] (a)[z](b)(c)[z′](d)[y′] (e) x

θ(γ(M)): bach. [ ]s ()[ ]-pairs bach. ()s end var
[x][y][x′] (a)[z](c)[z′](d)[y′] (b)(e) x

γ(θ(M)): bach. [ ]s ()[ ]-pairs bach. ()s end var
[x][y][x′] (a)[z](d)[y′](c)[z′] (b)(e) x
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Classes of terms modulo reductional behaviour
• →θ and →γ are SN and CR. Hence θ-nf and γ-nf are unique.

• Both θ(γ(A)) and γ(θ(A)) are in canonical form.

• θ(γ(A)) =p γ(θ(A)) where →p is the rule

(A1)[y1](A2)[y2]B →p (A2)[y2](A1)[y1]B if y1 /∈ FV(A2)

• We define: [A] to be {B | θ(γ(A)) =p θ(γ(B))}.

• When B ∈ [A], we write that B ≈equi A.

• →θ,→γ,=γ,=θ,=p⊂≈equi⊂=β (strict inclusions).

• Define CCF(A) as {A′ in canonical form |A′ =p θ(γ(A))}.

Tsukuba, April 2008 40



Reduction based on classes

• One-step class-reduction ;β is the least compatible relation such that:

A;βB iff ∃A′ ∈ [A].∃B′ ∈ [B]. A′ →β B′

• ;β really acts as reduction on classes:

• If A ;β B then forall A′ ≈equi A, forall B′ ≈equi B, we have A′
;β B′.
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Properties of reduction modulo classes

• ;β generalises →g and →β: →β ⊂→g⊂;β ⊂=β.

• ≈β and =β are equivalent: A ≈β B iff A =β B.

• ;;β is Church Rosser:
If A ;;β B and A ;;β C, then for some D: B ;;β D and C ;;β D.

• Classes preserve SN→β
: If A ∈ SN→β

and A′ ∈ [A] then A′ ∈ SN→β
.

• Classes preserve SN;β
: If A ∈ SN;β

and A′ ∈ [A] then A′ ∈ SN;β
.

• SN→β
and SN;β

are equivalent: A ∈ SN;β
iff A ∈ SN→β

.
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Using Item Notation in Type Systems

• Now, all items are written inside () instead of using () and [].

• (λx.x)y is written as: (yδ)(λx)x instead of (y)[x]x.

• Πz:∗.(λx:z.x)y is written as: (∗Πz)(yδ)(zλx)x.
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The Barendregt Cube in item notation and class reduction

• The formulation is the same except that terms are written in item notation:

• T = ∗ |2 | V | (T δ)T | (T λV )T | (T ΠV )T .

• The typing rules don’t change although we do class reduction ;β instead of
normal β-reduction →β .

• The typing rules don’t change because =β is the same as ≈β.
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Subject Reduction fails

• Most properties including SN hold for all systems of the cube extended with
class reduction. However, SR only holds in λ→ (∗, ∗) and λω (2,2).

• SR fails in λP (∗,2) (and hence in λP2, λPω and λC). Example in paper.

• SR also fails in λ2 (2, ∗) (and hence in λP2, λω and λC):
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Why does Subject Reduction fails

• (y′δ)(βδ)(∗λα)(αλy)(yδ)(αλx)x ;β(βδ)(∗λα)(y′δ)(αλx)x.

• (λα:∗.λy:α.(λx:α.x)y)βy′
;β(λα:∗.(λx:α.x)y′)β

• β : ∗, y′ : β ⊢λ2(λα:∗.λy:α.(λx:α.x)y)βy′: β

• Yet, β : ∗, y′ : β 6⊢λ2(λα:∗.(λx:α.x)y′)β : τ for any τ .

• the information that y′ : β has replaced y : α is lost in (λα:∗.(λx:α.x)y′)β.

• But we need y′ : α to be able to type the subterm (λx:α.x)y′ of
(λα:∗.(λx:α.x)y′)β and hence to type β : ∗, y′ : β ⊢ (λα:∗.(λx:α.x)y′)β : β.
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Solution to Subject Reduction: Use “let

expressions/definitions”

• Definitions/let expressions are of the form: let x : A = B and are added to
contexts exactly like the declarations y : C.

• (def rule) Γ, let x : A = B ⊢c C : D
Γ ⊢c (λx:A.C)B : D[x := A]

• we define Γ ⊢c · =def · to be the equivalence relation generated by:

– if A =β B then Γ ⊢c A =def B
– if let x : M = N is in Γ and if B arises from A by substituting one

particular occurrence of x in A by N , then Γ ⊢c A =def B.
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The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs) and (form) are unchanged.

(start)
Γ ⊢c A : s

Γ, x:A ⊢c x : A

Γ ⊢c A : s Γ ⊢c B : A

Γ, let x : A = B ⊢c x : A
x fresh

(weak)
Γ ⊢c D : E Γ ⊢c A : s

Γ, x:A ⊢c D : E

Γ ⊢c A : s Γ ⊢c B : A Γ ⊢c D : E

Γ, let x : A = B ⊢c D : E
x fresh

(conv) Γ ⊢c A : B Γ ⊢c B′ : S Γ ⊢c B =def B′

Γ ⊢c A : B′

(def) Γ, let x : A = B ⊢c C : D
Γ ⊢c (λx:A.C)B : D[x := A]
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Definitions solve subject reduction

1. β : ∗, y′ : β, let α : ∗ = β ⊢c y′ : β

2. β : ∗, y′ : β, let α : ∗= β ⊢c α =def β

3. β : ∗, y′ : β, let α : ∗ = β ⊢c y′ : α (from 1 and 2)

4. β : ∗, y′ : β, let α : ∗ = β, let x : α = y′ ⊢c x : α

5. β : ∗, y′ : β, let α : ∗ = β ⊢c (λx:α.x)y′ : α[x := y′] = α

β : ∗, y′ : β ⊢c (λα:∗.(λx:α.x)y′)β : α[α := β] = β
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Properties of the Cube with definitions and class Reduction

• ⊢c is a generalisation of ⊢: If Γ ⊢ A : B then Γ ⊢c A : B.

• Equivalent terms have same types:
If Γ ⊢c A : B and A′ ∈ [A], B′ ∈ [B] then Γ ⊢c A′ : B′.

• Subject Reduction for ⊢c and ;;β:
If Γ ⊢c A : B and A ;;β A′ then Γ ⊢c A′ : B.

• Unicity of Types for ⊢c:

– If Γ ⊢c A : B and Γ ⊢c A : B′ then Γ ⊢c B =def B′

– If Γ ⊢c A : B and Γ ⊢c A′ : B′ and Γ ⊢c A =β A′ then Γ ⊢c B =def B′.

• Strong Normalisation of ;;β:
In the Cube, every legal term is strongly normalising with respect to ;;β.
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typed λ-calculus with single binder

• Let f : N→ N et gf : N→ N such that gf(x) = f(f(x)).

Let FN : (N→ N)→ (N→ N) such that FN(f)(x) = gf(x) = f(f(x)).

• In Church’s simply typed lambda calculus we write the function FN as follows:

λf :N→N.λx:N.f(f(x))

• If we want the same function on the booleans B, we write:

the function FB is λf :B→B.λx:B.f(f(x))
the type of the function FB is (B → B)→ (B → B)
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Polymorphism: the typed λ-calculus after Church

• Instead of repeating the work, we take: α : ∗ (α is an arbitrary type) and we
define a polymorphic function F as follows:

λα:∗.λf :α→α.λx:α.f(f(x))

We give F the type:
Πα:∗.(α→ α)→ (α→ α)

• This way, F (α) = λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α)

• We can instantiate α according to our need:

– F (N) = λf :N→N.λx:N.f(f(x)) : (N→ N)→ (N→ N)
– F (B) = λf :B→B.λx:B.f(f(x)) : (B → B)→ (B → B)
– F (B → B) = λf :(B→B)→(B→B).λx:(B→B).f(f(x)) :

((B → B)→ (B → B))→ ((B → B)→ (B → B))
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• This way, types are like functions:

– We can form them by abstraction
– We can instantiate them

• But in the passage from simple to polymorphic types, we have forgotten to
adapt the rule:

(β) (λx:A.b)C → b[x := C]

to a rule which resembles Π:

(Π) (Πx:A.B)C → B[x := C]

• Usually, if b : B, we take (λx:A.b)C : B[x := C] instead of (λx:A.b)C :
(Πx:A.B)C

• In the literature there are many studies (like de Bruijn’s Automath) which
shows that the rule Π is useful.
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• It seems that the development of type theory is taking us more and more
towards adopting a similar roles for the binders λ et Π. Did we really need to
separate them? I believe that the separation is artificial.

• What are the properties of type theories with a single binder which represents
both λ et Π?

• Is the passage from a type system with two binders to a type system with one
single binder as necessary as the passage from simple to polymorphic types?

• I think that from the start, we should not have been limited to simple types
and we should not have distinguished terms and types.
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Notation of Modern type systems
• Let V = V∗ ∪ V2 where V∗ ∩ V2 = ∅. Let s ∈ {∗, 2}.

T ::= s | V | λV:T .T |ΠV:T .T | T T

T♭ ::= s | V | ♭V:T♭
.T♭ | T♭T♭

Note that even though modern type systems have not identified the binders λ
et Π, they have adapted (in T ) a common syntax in some sense.

• If A ∈ T , we define A ∈ T♭ by: s ≡ s, x ≡ x, AB ≡ A B,
λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• If A ∈ T♭, we define Aλ ∈ T by: sλ ≡ s, xλ ≡ x, (AB)λ ≡ AλBλ,
(♭x:A.B)λ ≡ λx:Aλ.Bλ. We define [A] by {A′ in T |A′ ≡ A}.

• A context Γ is of the form: : x1 : A1, . . . , xn : An. dom (Γ) = {x1, . . . xn}.

• In T we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• In T♭ we define [Γ] ≡ {Γ′ | Γ′ ≡ Γ}.
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• We have three systems: (T ,→β), (T ,→βΠ) and (T♭,→♭) with the axioms:

– (λx:A.B)C →β B[x := C]
– (♭x:A.B)C →♭ B[x := C]
– (Πx:A.B)C →Π B[x := C]
– where →βΠ=→β ∪ →Π

• Church-Rosser: Let r ∈ {β, βΠ, ♭}.
If B1 r←← A→→r B2 then ∃C such that B1→→r C r←← B2.
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The β-cube: Rβ = type rules with 2 binders, →β and (appl)
(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s xs 6∈ dom (Γ)

Γ, xs:A ⊢ xs : A

(weak)
Γ ⊢ A : B Γ ⊢ C : s xs 6∈ dom (Γ)

Γ, xs:C ⊢ A : B

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx:A.B : s2

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

(convβ)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

(appl)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]
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Our example in the system F of Girard

• If x 6∈ FV (B) we write A→ B instead of Πx:A.B.

• α : ∗, f : α→ α ⊢ λx:α.f(f(x)) : α→ α : ∗
(we need the rule (∗, ∗)).

• α : ∗ ⊢ λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α) : ∗
(we need the rule (∗, ∗)).

• ⊢ λα:∗.λf :α→α.λx:α.f(f(x)) : Πα:∗.(α→ α)→ (α→ α) : ∗
(we need the rule (2, ∗)).
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The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ) =

Typing rules with two binders, →βΠ and (appl)

(axiom) (start) (weak) (Π) (λ) (appl)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′
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The πi-cube: Rπi
= Rπ\ (appl) ∪ (newappl) =

typing rules with two binders, →βΠ and (newappl)

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

(newappl)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a
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The ♭-cube: R♭ = Typing rules with one single binder →♭ and

(appl♭)

(axiom) (start) (weak)

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ ♭x:A.B : s2

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ ♭x:A.B : s

Γ ⊢ ♭x:A.b : ♭x:A.B

(conv♭)
Γ ⊢ A : B Γ ⊢ B′ : s B =♭ B′

Γ ⊢ A : B′

(appl♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]
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♭i-cube: R♭i
= R♭\ (appl♭) ∪ (newappl♭) =

Typing rules with one single binder, →♭ et (newappl♭)

(axiom) (start) (weak) (♭1) (♭2) (conv♭)

(newappl♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x : A.B)a
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6 desirable properties of a type system with reduction r

• Types are correct (TC)
If Γ ⊢ A : B then B ≡ 2 or Γ ⊢ B : s fors ∈ {∗, 2}.

• Subject reduction (SR) If Γ ⊢ A : B and A→→r A′ then Γ ⊢ A′ : B.

• Preservation of types (PT) If Γ ⊢ A : B and B →→r B′ then Γ ⊢ A : B′.

• Strong Normalisation (SN) If Γ ⊢ A : B then SN→r(A) and SN→r(B).

• Subterms are typable (STT) If A is ⊢-legal and if C is a sub-term of A then
C is ⊢-legal.

• Unicity of types

– (UT1) If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and Γ ⊢ A1 =r A2, then
Γ ⊢ B1 =r B2.

– (UT2) If Γ ⊢ B1 : s, B1 =r B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s.
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The correspondence between the β-, π- et πi-cubes

• Lemma:

– Γ ⊢β A : B iff Γ ⊢π A : B
– If Γ ⊢β A : B then Γ ⊢πi

A : B.
– If Γ ⊢πi

A : B then Γ ⊢β A : [B]Π
where [B]Π is the Π-normal form of B.

• Lemma: The β-cube and the π-cube satisfy the six properties that are desirable
for type systems.
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The πi-cube

• The πi-cube loses three of its six properties
Let Γ = z : ∗, x : z. We have that Γ ⊢πi

(λy:z.y)x : (Πy:z.z)x.

– We do not have TC (Πy:z.z)x 6≡ 2 and Γ 6⊢πi
(Πy:z.z)x : s.

– We do not have SR (λy:z.y)x→βΠ x but Γ 6⊢πi
x : (Πy:z.z)x.

– We do not have UT2 ⊢πi
∗ : 2, ∗ =βΠ (Πz:∗.∗)α, α : ∗ ⊢πi

(λz:∗.∗)α :
(Πz:∗.∗)α and 6⊢πi

(Πz:∗.∗)α : 2

• But we have:

– We have UT1
– We have STT
– We have PT
– We have SN
– We have a weak form of TC If Γ ⊢πi

A : B and B does not have a Π-redexe
then either B ≡ 2 or Γ ⊢πi

B : s.
– We have a weak form of SR If Γ ⊢πi

A : B, B is not a Π-redex and
A→→βΠ A′ then Γ ⊢πi

A′ : B.
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If we eliminate the distinction between λ and Π, it would still

be possible to deduce the role of each binder

An algorithm which transformsa ♭-typing into a β-typing
Let Γ ⊢♭ A : B. We define (Γ ⊢♭ A : B)−1 ∈ [Γ] × [A] × [B] by:
(〈〉 ⊢♭ ∗ : 2)−1 = (〈〉, ∗,2)
(Γ, xs : A ⊢♭ ∗ : 2)−1 = (Γ′, xs : A′, ∗, 2) where (Γ ⊢♭ A : s)−1 = (Γ′, A′, s)
(Γ ⊢♭ xs : C)−1 = (Γ′, xs, C′) where (Γ ⊢♭ C : s)−1 = (Γ′, C′, s)

(Γ ⊢♭ ♭x:A.B : C)−1 =

{
(Γ′,Πx:A′.B′, C′) if C =♭ s2 and i.
(Γ′, λx:A′.B′, C′) if C =♭ ♭x:A.D and ii.

(Γ ⊢♭ Fa : C)−1 = (Γ′, F ′a′, C′) where iii.
Where i, ii, and iii, are evident. We simply write the condition i. For the others
see the article.

i – (Γ ⊢♭ A : s1)
−1 = (Γ′, A′, s1) for an s1 such that (s1, s2) ∈ R,

– (Γ, x : A ⊢♭ B : s2)
−1 = (Γ′′, x : A′′, B′, s2)

– if C ≡ s2 then C ′ ≡ s2 otherwise
if C 6≡ s2 then (Γ ⊢♭ C : s)−1 = (Γ′′′, C′, s) for some s.
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The isomorphism

• Theorem:

1. if Γ ⊢β A : B then Γ ⊢♭ A : B.
2. if Γ ⊢♭ A : B then

– there is a unique Γ′ ∈ [Γ] such that Γ′ is ⊢β-legal, and
– there is a unique A′ ∈ [A], a unique B′ ∈ [B] such that Γ′ ⊢β A′ : B′.
Moreoever, Γ′, A′ and B′ are constructed by −1 where (Γ ⊢♭ A : B)−1 =
(Γ′, A′, B′).

3. The verification of types in the β-cube is equivalent to the verification of
types in the ♭-cube
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The ♭-cube

• The ♭-cube has five and a half properties:

– TC
– SR
– STT
– PT
– SN
– UT2
– Of course we do not have UT1 (and we don’t even want it)

Using (2,2): ⊢β λx:∗.x : Πx:∗.∗ and ⊢♭ ♭x:∗.x : ♭x:∗.∗.

Using (2, ∗): ⊢β Πx:∗.x : ∗ and ⊢♭ ♭x:∗.x : ∗.
Note that ♭x:∗.∗ 6=♭ ∗.
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We have an organised multiplicity of types in the ♭-cube

• Let SN→♭
(B1) and SN→♭

(B2). We say that B1
⋄
=♭ B2 iff nf♭(B1) ≡ ♭i:1..n1

xi:Fi
.B

and nf♭(B2) ≡ ♭i:1..n2
xi:Fi

.B, where n1, n2 ≥ 0.

• Lemma (MOT) If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then

B1
⋄
=♭ B2.

• Hence, the ♭-cube is elegant, and has all the desirable properties (we do not
want UT1, MOT is enough).
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Example

• Let A ≡ ♭x1:∗.♭x2:♭y:C.∗.♭x3:C.♭x4:x2x3.x2x3

Let B ∈ {♭x1:∗.♭x2:♭y:C.∗.♭x3:C.♭x4:x2x3.∗,
♭x1:∗.♭x2:♭y:C.∗.♭x3:C.∗,
♭x1:∗.♭x2:♭y:C.∗.∗,
♭x1:∗.∗,
∗}.
We have that ⊢♭ A : B

• In the β-cube we have:

⊢β λx1:∗.λx2:Πy:C.∗.λx3:C.λx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3. ∗

⊢β λx1:∗.λx2:Πy:C.∗.λx3:C.Πx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗.Πx3:C. ∗

⊢β λx1:∗.λx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗. ∗

⊢β λx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : Πx1:∗. ∗

⊢β Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : ∗

Note that only Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 can be a type. The other
terms cannot.
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Conclusion

• If the type system can do all that we want (as we have seen in the ♭-cube),
why separate the levels of types and terms?

• Terms and types are not different. The only difference is the relation that
exists between them. In A : B, the A on the left represents a term, the B on
the right represents a type.

• Even if you do not want to use this system, its existence is already of
significance.

• Its presence shows that the division between terms and types is artificial. There
was never a need for that division.

• We must also explore the idea that proofs and propositions are also the same
thing and it is worth it to study the implications on logic and programming in
general.
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