Realisability Semantics for Intersection Types and
Expansion Variables

Fairouz Kamareddine, Karim Nour, Vincent Rahli and J. B. Wells

25 March 2008



Expansion Mechanism - Example

Expansion: invented for calculating principal typings for A-terms in
type systems with intersection types.

Expansion variables (E-variables): invented to simplify and help
mechanise expansion.

> Let M = Ax.x(\y.yz)
» M can be assigned the typings:

» & =((z:a)F (((a = b) = b) — ¢) — c) Principal
» O =((z:a1Max)F (((a1— b1) — b1) M ((a2 — b2) = b)) — ¢) — ¢)

An expansion operation can obtain ¥, from ;.

In System E, the typing ®; from above is replaced by:
&3 =((z:ea)F (e((a— b) — b) —c)—c),

®3 differs from ®; by the insertion of the E-variable e at two places.

®, can be obtained from ®3 by substituting for e the expansion

term:
E= (a = ai, b= bl) [l (a = ap, b= bz)



Our goal

> Intersection types were introduced to be able to type more terms
than in the Simply Typed Lambda Calculus.

> Intersection types are interpreted by set-theoretical intersection of
meanings.

» Expansion variables have been introduced to give a simple

formalisation of the expansion mechanism, i.e., as a syntactic object.

» We are interested in the meaning of such a syntactic object.
» What does an expansion variable applied to a type stand for?

> In the presence of expansions, how can the relation between terms
and types w.r.t. a type system be described?



The challenge: the difficulties of giving a semantics for
expansion variables

» Building a semantics for E-variables turns out to be challenging.

» In many kinds of semantics, the meaning of a type T is calculated
by an expression [T], where v is a valuation.

» To extend this idea to types with E-variables, we would need to
devise some space of possible meanings for E-variables.

> Given that a type eT can be turned by expansion into a new type
S1(T) M Sy(T), where S; and S, are arbitrary substitutions (or
expansions), the situation is complicated.



Context

Because it is unclear how to devise a space of meanings for expansions
and E-variables:

» We consider only E-variables without the operation of expansion.
» We develop a space of meanings for types that is hierarchical in the
sense of having many degrees.

» We develop a realisability semantics where each use of an E-variable
in a type corresponds to an independent degree at which evaluation
occurs in the A-term that is assigned the type.

> In the A-term being evaluated, the only interaction possible between
portions at different degrees is that higher degree portions can be
passed around but never applied to lower degree portions.

» Due to problems supporting the w- type, we restrict attention to the
Al-calculus.



Our contributions/Outline of the talk

>

Outlining the difficulties in giving a semantics for expansions and
expansion variables.

A hierarchical A/l-calculus where each variable is marked by a natural
number degree.

A realisability semantics for expansion variables which is applied to
two intersection type systems.

The soundness of the semantics for both systems and numerous
examples of how our semantics works.

Outlining why Completeness fails for the first unrestricted type
system.

Outlining why completeness fails for the second restricted type
system if more than one expansion variable is used.

Establishing the completeness for the second type system in the
presence of one single expansion variable. This E-variable may be
used in many places and may also occur deeply nested.

The first denotational semantics (using realisability or any other
approach) of intersection type systems with E-variables.
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The MY-Calculus

» Define M (terms), M (good terms), free variables, degrees,
joinability M ¢ N, B-reduction and T as follows:

» If x eV, neN, then x” € MNM, FV(x") = {x"}, and
deg(x") = n.
» If M, N € M such that M o N (see below), then
> (MN) € M, FV((MN)) = FV(M)U FV(N) and
deg((M N)) = min(deg(M), deg(N)) (where min is the minimum)
> If M eM, N €M and deg(M) < deg(N) then (M N) € M.
» If M € M and x" € FV(M), then
> (AX".M) e M, FV((Ax".M)) = FV(M) \ {x"}, and
deg((Ax".My)) = deg(My).
> If M € M then Ax".M € M.
» M and N are joinable (Mo N) iff Vx € V, if x™ € FV(M) and
x" € FV(N), then m = n.
» >g on M is defined as the least compatible relation closed under:
(AX".M)N >3 M[x" := N] if deg(N) = n.
> o (X)) =x"T o (My Mp)t = M M e (Ax".M)T = Ax"TL M
» Examples (note that M C M and that in M, the degree of a
function is bigger than the degree of an argument):
» Aty g M Axtxix® ¢ M
» xlxty}e MM Axtxty? € M\ M



The Types

» Atomic types a, b, c € A, expansion variables e € £.
» In7 2:=A|7T —-T|TNT|ET, no restrictions on the arrow.
» Ux=UnNU|EU|T where T:= A|U — T. Here U does not
allow arrows to occur to the left of intersections or expansions.
» TCUCT. Let T,U,V,W range over 7. Let T range over T.
Let U, V, W range over U.
» We quotient types by taking M to be commutative, associative,
idempotent, and to satisfy e(Uy M U,) = el Mels.
> We define the degrees of types function deg : 7 — N by:
e deg(a) =0 o deg(el) = deg(U) + 1
e deg(U — T) = min(deg(U), deg(T))
e deg(U M V) = min(deg(U), deg(V)).
» We define the good types on 7 by:
eac A— agood e Ugood, ec & — el good
e U, T good, deg(U) > deg(T) = U — T good
e U,V good, deg(U) = deg(V) = UMV good
> Let U € U. If deg(U) > 0, we define U~ as follows:
(Linl)- =U; Uy (eU)y-=U



The realisability semantics: saturation and interpretation
are key; furthermore, good types contain only good terms

Let X, Y C M. P(X) denotes the powerset of X

>

>

>
>
| 4

X»Y={MeM|VNeX, if MoN then M N € V}.

X is saturated iff whenever M >7 Nand N € X, then M € X.

Let V =V UV, where V1 NV, = & and V1, Vs are denum. oo.

Let x € V4 and n € N. We define N7 = {x" N;...Nx € M | k > 0}.
An interpretation Z : A — P(M?0) is a function such that Va € A:
e 7(a) is saturated and e Vx € V1, N? C 7I(a) C MC.
Let an interpretation Z : A — P(M°). We extend Z to T as follows:
eZ(el)=Z(U)t ={M* | M eI(U)}

e Z(UNV)=Z(U)NZI(V) e ZI(U—T)=Z(U)~I(T)
Let U € 7. We define the meaning [U] of U by:

[Ul={M e M| Mis closed and M € [, interpretation Z(U)}.
Lemma: Type interpretations are saturated and
interpretations/meanings of good types contain only good terms.
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The typing rules T good deg(T) =

7 T AT " (ax0)

T good
XXX T) 2 T) ()

M: (T, (x": U) i T)
MX"M (T U—T)

(=1

My : (T U—T) M:(lobi U) Tiolo (

—E)
MMy : (TiMT2 = T)

M: (T Un) M: (T2 bk Uz) @)
M: (M Ui Ua)

M : (T ;i U)

Wb el P

M : (T U/i// <<FF2 L)/> (It U") ©)



The subtyping rules (ref)

PC P

O TPy O C P3 (tr)
¢; C &3

U, good deg(U1) = deg(U-)
UuntC U (M)

uccvi LE VW, ()
Uunb,Cvinv,

LCU T1CT
(=)
U—-T1iCUh—T

U C U,
- = Z Eex
el C elh (7 p)

Ui C U,
r7(yn:U1)Era(yn:U2)

—c

ULCU TCT;
(M1 F2 Ur) T (M2 Us)

(o)
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Properties of the type systems and the semantics

» Lemma [F1 / b2 accept only good terms/types; degree of M is the
same as the degree of its type; if M is typable then its (3-redexes can
be activated]: Let i € {1,2}. If M : ((x" : Ui)n i U), then

1. V1< i<n, Uis good and deg(U;) = n; > deg(M).
2. U and M are good and deg(M) = deg(U).
3. If (Ax".M1) M is a subterm of M, then deg(M.) = n and hence
()\X".Ml)M2 > Ml[X" = Mz].
» Lemma [Soundness of -1 /F-5]: Let i € {1,2}.
> If M:{((x": U)nti U), T an interpretation, V1 < i < n N; € Z(U;),
and M[(x" := N;)n] € M then M[(x;" := N;)n] € Z(V).
> 1f M2 {() i U), then M € [U].
» Lemma [Subject Reduction fails for 1 ]: Let distinct a, b, c € A:
Lo (A0 (y°2%) 5 (y°2°)(v°2°)
2. (AP XX (y°2%) : (y°: b — ((a— c)Ma),2° : b1 c).
3. It is not possible that
(2% (b — ((a—c)Ma),z°: bty c).
» Lemma [Subject Reduction and expansion hold for I-»]:
If M: (T2 U) and M>% N, then N : (I U).
If N: (T2 U) and M >75 N then M : (I =5 U)



Examples (let a # b)

ok N

10.

11

Let Naty = (a — a) — (a — a), Nat; = e((a — a) — (a — a)),
Nat] = e(a — a) — (ea — ea) and Nat} = (ea — a) — (ea — a).
[a—a={MeM° /M > Ay0.y0%.

[e(a — a)] = [ea — ea] = {M e M / M5 Ayt.y'}.

[(ar(a— b)) = b={MecM° /M >7 Ay0.y0y01.

[Nat)] = {M eM° / M > AFO.£O or M >% AFONy0.(F0)"y0 where
n>1}.

[Nat;] = [Natj] = {M € M' / M >3 AfL.f1or

M 7% AMEAXE(F1)"y! where n > 1}. (Note that Nat] ¢ U.)
[Natj] = {M € MO /M 1% AF°.f% or M 1>% AF° ALy},
[(arb) — a] = {MeM° /M5 Ay0y°%}

It is not possible that A\y®.y? : (() 1 (al1b) — a).

A0y () ko (am1 b) — a).

8 and 9 mean that we cannot have a completeness result for .
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The failure of completeness

v

The semantics for -1 is not complete:
LNyl ef(anb) —al={MeM® /Mj5 Ay}
2. it is not possible that Ay°.y% : () F1 (am1 b) — a).
The semantics for 5 is not complete if we use more than one
expansion variable: Let Naty = (eja — a) — (e2a — a). We have:
1. A0 € [Natf].
2. If e # e, then it is not possible that Af°.f% : (() > Nat{').
A crucial property for completenessis: U™ =V~ = U= V.

This fails if we have more than one expansion variable:

(e1U)™ = U = (e2U)~ does not necessarily imply that e; U = e, U.
In the rest of this talk, we assume that the set £ contains only one
expansion variable e..
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The proof of completeness for -, with a unique expansion
variable

» We define V's such that:
> If deg(U) = n, then Vy C {y" | y € V»} and Vy is infinite.
» If U#£V then VyNVy = 2.
> If y" € Vy, then y"! € V. u.
> If y"t' € Vy, then y" € V.
> We define infinite sets G" = {(y" : U) / U € U, deg(U) = n and
y"eVy}tand H" =UJ,,~,G™.
H" will contain I's that are crucial for the interpretation I below.
> We write M : (H" I, U) iff there is I C H" where M : (I' 5 U).
» We define V" = {M € M" | x' € FV(M) where x € V; and i > n}.
» We let I be the interpretation defined by:
for all type variables a, I(a) = VU {M € M° | M : (H® I, a)}.
» Lemma [l is an interpretation]: Ya € A, 1(a) is saturated and
Vx € Vi, NP C1I(a) C MO.
» Lemma: If U € U is good and deg(U) = n, then
[(U)=v"U{MeM" | M: (H"tF, U)}.
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Completeness

> Let U € U be good such that deg(U) = n.
L [U={MeM" | M:{()F U)}.
2. [U] is stable by reduction:
if M € [U] and M >3 N, then N € [U].
3. [U] is stable by expansion:
if N € [U] and M >3 N, then M € [U].
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Conclusions

>

Expansion may be viewed to work like a multi-layered simultaneous
substitution.

Because the early definitions of expansion were complicated,
expansion variables (E-variables) were invented to simplify and
mechanize expansion.

Our aim is to give a denotational semantics for intersection type
systems with exapansion variables.

Denotational semantics helps in reasoning about the properties of an
entire type system and of specific typed terms.

However, E-variables pose serious problems for semantics.

In this paper we gave a realisability semantics based on a
hierarchical lambda calculus.

These hierarchical levels can be said to accurately capture the
intuition behind E-variables: parts of the A-term that are typed
inside the uses of the E-variable-introduction typing rule for a
particular E-variable e can interact with each other, and parts
outside e can only pass the parts inside e around.
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Future work

» Due to the difficulties of treating the w-type which is free to move
on any level of the hierarchy, we considered only the A/-calculus
(hence without an w-type).

» Due to the loss of completeness in the presence of more than one
expansion variable, we restricted the number of expansion variables
to one only.

» Future works include giving a semantics for the whole A-calculus
with an w-type and an infinite number of expansion variables.

» Furthermore, in addition to the semantics of E-variables, it is
important to give a semantics for the expansion operation.



