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Expansion Mechanism - Example

I Expansion: invented for calculating principal typings for λ-terms in
type systems with intersection types.

I Expansion variables (E-variables): invented to simplify and help
mechanise expansion.

I Let M = λx .x(λy .yz)

I M can be assigned the typings:
I Φ1 = 〈(z : a) ` (((a→ b)→ b)→ c)→ c〉 Principal
I Φ2 = 〈(z : a1 u a2) ` (((a1 → b1)→ b1)u ((a2 → b2)→ b2)→ c)→ c〉

I An expansion operation can obtain Φ2 from Φ1.

I In System E, the typing Φ1 from above is replaced by:
Φ3 = 〈(z : ea) ` (e((a→ b)→ b)→ c)→ c〉,

I Φ3 differs from Φ1 by the insertion of the E-variable e at two places.

I Φ2 can be obtained from Φ3 by substituting for e the expansion
term:
E = (a := a1, b := b1) u (a := a2, b := b2).
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Our goal

I Intersection types were introduced to be able to type more terms
than in the Simply Typed Lambda Calculus.

I Intersection types are interpreted by set-theoretical intersection of
meanings.

I Expansion variables have been introduced to give a simple
formalisation of the expansion mechanism, i.e., as a syntactic object.

I We are interested in the meaning of such a syntactic object.

I What does an expansion variable applied to a type stand for?

I In the presence of expansions, how can the relation between terms
and types w.r.t. a type system be described?
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The challenge: the difficulties of giving a semantics for
expansion variables

I Building a semantics for E-variables turns out to be challenging.

I In many kinds of semantics, the meaning of a type T is calculated
by an expression [T ]ν where ν is a valuation.

I To extend this idea to types with E-variables, we would need to
devise some space of possible meanings for E-variables.

I Given that a type eT can be turned by expansion into a new type
S1(T ) u S2(T ), where S1 and S2 are arbitrary substitutions (or
expansions), the situation is complicated.
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Context

Because it is unclear how to devise a space of meanings for expansions
and E-variables:

I We consider only E-variables without the operation of expansion.

I We develop a space of meanings for types that is hierarchical in the
sense of having many degrees.

I We develop a realisability semantics where each use of an E-variable
in a type corresponds to an independent degree at which evaluation
occurs in the λ-term that is assigned the type.

I In the λ-term being evaluated, the only interaction possible between
portions at different degrees is that higher degree portions can be
passed around but never applied to lower degree portions.

I Due to problems supporting the ω- type, we restrict attention to the
λI -calculus.
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Our contributions/Outline of the talk

I Outlining the difficulties in giving a semantics for expansions and
expansion variables.

I A hierarchical λI -calculus where each variable is marked by a natural
number degree.

I A realisability semantics for expansion variables which is applied to
two intersection type systems.

I The soundness of the semantics for both systems and numerous
examples of how our semantics works.

I Outlining why Completeness fails for the first unrestricted type
system.

I Outlining why completeness fails for the second restricted type
system if more than one expansion variable is used.

I Establishing the completeness for the second type system in the
presence of one single expansion variable. This E-variable may be
used in many places and may also occur deeply nested.

I The first denotational semantics (using realisability or any other
approach) of intersection type systems with E-variables.
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The λI N-Calculus
I Define M (terms), M (good terms), free variables, degrees,

joinability M � N, β-reduction and + as follows:
I If x ∈ V, n ∈ N, then xn ∈M∩M, FV (xn) = {xn}, and

deg(xn) = n.
I If M, N ∈M such that M � N (see below), then

I (M N) ∈M, FV ((M N)) = FV (M) ∪ FV (N) and
deg((M N)) = min(deg(M), deg(N)) (where min is the minimum)

I If M ∈ M, N ∈ M and deg(M) ≤ deg(N) then (M N) ∈ M.
I If M ∈M and xn ∈ FV (M), then

I (λxn.M) ∈M, FV ((λxn.M)) = FV (M) \ {xn}, and
deg((λxn.M1)) = deg(M1).

I If M ∈ M then λxn.M ∈ M.

I M and N are joinable (M � N) iff ∀x ∈ V, if xm ∈ FV (M) and
xn ∈ FV (N), then m = n.

I Bβ on M is defined as the least compatible relation closed under:
(λxn.M)N Bβ M[xn := N] if deg(N) = n.

I • (xn)+ = xn+1 • (M1 M2)
+ = M+

1 M+
2 • (λxn.M)+ = λxn+1.M+

I Examples (note that M ⊂M and that in M, the degree of a
function is bigger than the degree of an argument):

I λx1.y 0 6∈ M λx1.x1x0 6∈ M
I λx1.x1y 3 ∈M∩M λx1.x1y 0 ∈M \M
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The Types

I Atomic types a, b, c ∈ A, expansion variables e ∈ E .
I In T ::= A | T → T | T u T | ET , no restrictions on the arrow.
I U ::= U u U | EU | T where T ::= A | U → T. Here U does not

allow arrows to occur to the left of intersections or expansions.
I T ⊆ U ⊆ T . Let T ,U,V ,W range over T . Let T range over T.

Let U,V ,W range over U.
I We quotient types by taking u to be commutative, associative,

idempotent, and to satisfy e(U1 u U2) = eU1 u eU2.
I We define the degrees of types function deg : T → N by:
• deg(a) = 0 • deg(eU) = deg(U) + 1
• deg(U → T ) = min(deg(U), deg(T ))
• deg(U u V ) = min(deg(U), deg(V )).

I We define the good types on T by:
• a ∈ A =⇒ a good • U good, e ∈ E =⇒ eU good
• U,T good, deg(U) ≥ deg(T ) =⇒ U → T good
• U,V good, deg(U) = deg(V ) =⇒ U u V good

I Let U ∈ U. If deg(U) > 0, we define U− as follows:
(U1 u U2)

− = U−
1 u U−

2 (eU)− = U
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The realisability semantics: saturation and interpretation
are key; furthermore, good types contain only good terms

Let X ,Y ⊆M. P(X ) denotes the powerset of X .

I X  Y = {M ∈M | ∀N ∈ X , if M � N then M N ∈ Y}.
I X is saturated iff whenever M B∗β N and N ∈ X , then M ∈ X .

I Let V = V1 ∪ V2 where V1 ∩ V2 = ∅ and V1,V2 are denum. ∞.

I Let x ∈ V1 and n ∈ N. We define N n
x = {xn N1...Nk ∈ M | k ≥ 0}.

I An interpretation I : A → P(M0) is a function such that ∀a ∈ A:
• I(a) is saturated and • ∀x ∈ V1, N 0

x ⊆ I(a) ⊆ M0.

I Let an interpretation I : A → P(M0). We extend I to T as follows:
• I(eU) = I(U)+ = {M+ | M ∈ I(U)}
• I(U u V ) = I(U) ∩ I(V ) • I(U → T ) = I(U) I(T )

I Let U ∈ T . We define the meaning [U] of U by:
[U] = {M ∈M | M is closed and M ∈

⋂
I interpretation I(U)}.

I Lemma: Type interpretations are saturated and
interpretations/meanings of good types contain only good terms.
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The typing rules T good deg(T ) = n

xn : 〈(xn : T ) `1 T 〉
(ax)

T good

x0 : 〈(x0 : T ) `2 T 〉
(ax)

M : 〈Γ, (xn : U) `i T 〉
λxn.M : 〈Γ `i U → T 〉

(→I )

M1 : 〈Γ1 `i U → T 〉 M2 : 〈Γ2 `i U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 `i T 〉
(→E )

M : 〈Γ1 `i U1〉 M : 〈Γ2 `i U2〉
M : 〈Γ1 u Γ2 `i U1 u U2〉

(u)

M : 〈Γ `i U〉
M+ : 〈eΓ `i eU〉

(exp)

M : 〈Γ `2 U〉 〈Γ `2 U〉 v 〈Γ′ `2 U ′〉
M : 〈Γ′ `2 U ′〉

(v)
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The subtyping rules
Φ v Φ

(ref )

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
(tr)

U2 good deg(U1) = deg(U2)

U1 u U2 v U1
(ue)

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1 → T1 v U2 → T2
(→)

U1 v U2

eU1 v eU2
(vexp)

U1 v U2

Γ, (yn : U1) v Γ, (yn : U2)
(vc)

U1 v U2 Γ2 v Γ1

〈Γ1 `2 U1〉 v 〈Γ2 `2 U2〉
(v〈〉)
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Properties of the type systems and the semantics

I Lemma [`1 / `2 accept only good terms/types; degree of M is the
same as the degree of its type; if M is typable then its β-redexes can
be activated]: Let i ∈ {1, 2}. If M : 〈(xni

i : Ui )n `i U〉, then

1. ∀ 1 ≤ i ≤ n, Ui is good and deg(Ui ) = ni ≥ deg(M).
2. U and M are good and deg(M) = deg(U).
3. If (λxn.M1)M2 is a subterm of M, then deg(M2) = n and hence

(λxn.M1)M2 Bβ M1[x
n := M2].

I Lemma [Soundness of `1/`2]: Let i ∈ {1, 2}.
I If M : 〈(xni

i : Ui )n `i U〉, I an interpretation, ∀1 ≤ i ≤ n Ni ∈ I(Ui ),
and M[(xni

i := Ni )n] ∈M then M[(xni
i := Ni )n] ∈ I(U).

I If M : 〈() `i U〉, then M ∈ [U].

I Lemma [Subject Reduction fails for `1]: Let distinct a, b, c ∈ A:

1. (λx0.x0x0)(y 0z0) Bβ (y 0z0)(y 0z0)
2. (λx0.x0x0)(y 0z0) : 〈y 0 : b → ((a → c) u a), z0 : b `1 c〉.
3. It is not possible that

(y 0z0)(y 0z0) : 〈y 0 : b → ((a → c) u a), z0 : b `1 c〉.
I Lemma [Subject Reduction and expansion hold for `2]:

If M : 〈Γ `2 U〉 and M B∗β N, then N : 〈Γ `2 U〉.
If N : 〈Γ `2 U〉 and M B∗β N then M : 〈Γ `2 U〉
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Examples (let a 6= b)

1. Let Nat0 = (a → a) → (a → a), Nat1 = e((a → a) → (a → a)),
Nat ′1 = e(a → a) → (ea → ea) and Nat ′0 = (ea → a) → (ea → a).

2. [a → a] = {M ∈ M0 / M B∗β λy0.y0}.
3. [e(a → a)] = [ea → ea] = {M ∈ M1 / M B∗β λy1.y1}.
4. [(a u (a → b)) → b] = {M ∈ M0 / M B∗β λy0.y0y0}.
5. [Nat0] = {M ∈ M0 / M B∗β λf 0.f 0 or M B∗β λf 0.λy0.(f 0)ny0 where

n ≥ 1}.
6. [Nat1] = [Nat ′1] = {M ∈ M1 / M B∗β λf 1.f 1 or

M B∗β λf 1.λx1.(f 1)ny1 where n ≥ 1}. (Note that Nat ′1 6∈ U.)

7. [Nat ′0] = {M ∈ M0 /M B∗β λf 0.f 0 or M B∗β λf 0.λy1.f 0y1}.
8. [(a u b) → a] = {M ∈ M0 /M B∗β λy0.y0}.
9. It is not possible that λy0.y0 : 〈() `1 (a u b) → a〉.

10. λy0.y0 : 〈() `2 (a u b) → a〉.
11. 8 and 9 mean that we cannot have a completeness result for `1.
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The failure of completeness

I The semantics for `1 is not complete:

1. λy 0.y 0 ∈ [(a u b) → a] = {M ∈ M0 /M B∗
β λy 0.y 0}

2. it is not possible that λy 0.y 0 : 〈() `1 (a u b) → a〉.
I The semantics for `2 is not complete if we use more than one

expansion variable: Let Nat ′′0 = (e1a → a) → (e2a → a). We have:

1. λf 0.f 0 ∈ [Nat′′0 ].
2. If e1 6= e2, then it is not possible that λf 0.f 0 : 〈() `2 Nat′′0 〉.

I A crucial property for completeness is: U− = V− =⇒ U = V .

I This fails if we have more than one expansion variable:
(e1U)− = U = (e2U)− does not necessarily imply that e1U = e2U.

I In the rest of this talk, we assume that the set E contains only one
expansion variable ec .
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The proof of completeness for `2 with a unique expansion
variable

I We define VU ’s such that:
I If deg(U) = n, then VU ⊆ {yn | y ∈ V2} and VU is infinite.
I If U 6= V then VU ∩ VV = ∅.
I If yn ∈ VU , then yn+1 ∈ VecU .
I If yn+1 ∈ VU , then yn ∈ VU− .

I We define infinite sets Gn = {(yn : U) / U ∈ U, deg(U) = n and
yn ∈ VU} and Hn =

⋃
m≥n Gm.

Hn will contain Γ’s that are crucial for the interpretation I below.

I We write M : 〈Hn `2 U〉 iff there is Γ ⊂ Hn where M : 〈Γ `2 U〉.
I We define Vn = {M ∈ Mn | x i ∈ FV (M) where x ∈ V1 and i ≥ n}.
I We let I be the interpretation defined by:

for all type variables a, I(a) = V0 ∪ {M ∈M0 | M : 〈H0 `2 a〉}.
I Lemma [I is an interpretation]: ∀a ∈ A, I(a) is saturated and
∀x ∈ V1, N 0

x ⊆ I(a) ⊆ M0.

I Lemma: If U ∈ U is good and deg(U) = n, then
I(U) = Vn ∪ {M ∈ Mn | M : 〈Hn `2 U〉}.

15 / 18



Completeness

I Let U ∈ U be good such that deg(U) = n.

1. [U] = {M ∈ Mn | M : 〈() `2 U〉}.
2. [U] is stable by reduction:

if M ∈ [U] and M B∗
β N, then N ∈ [U].

3. [U] is stable by expansion:
if N ∈ [U] and M B∗

β N, then M ∈ [U].
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Conclusions

I Expansion may be viewed to work like a multi-layered simultaneous
substitution.

I Because the early definitions of expansion were complicated,
expansion variables (E-variables) were invented to simplify and
mechanize expansion.

I Our aim is to give a denotational semantics for intersection type
systems with exapansion variables.

I Denotational semantics helps in reasoning about the properties of an
entire type system and of specific typed terms.

I However, E-variables pose serious problems for semantics.

I In this paper we gave a realisability semantics based on a
hierarchical lambda calculus.

I These hierarchical levels can be said to accurately capture the
intuition behind E-variables: parts of the λ-term that are typed
inside the uses of the E-variable-introduction typing rule for a
particular E-variable e can interact with each other, and parts
outside e can only pass the parts inside e around.

17 / 18



Future work

I Due to the difficulties of treating the ω-type which is free to move
on any level of the hierarchy, we considered only the λI -calculus
(hence without an ω-type).

I Due to the loss of completeness in the presence of more than one
expansion variable, we restricted the number of expansion variables
to one only.

I Future works include giving a semantics for the whole λ-calculus
with an ω-type and an infinite number of expansion variables.

I Furthermore, in addition to the semantics of E -variables, it is
important to give a semantics for the expansion operation.
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