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Interest

» By using reducibility, new, simple and general methods can be
developed to prove properties of the A-calculus.
> |In our paper:
» We review and find the flaws in one reducibility method of proofs of
Church-Rosser, standardisation and weak head normalisation.

> We review, adapt and non trivially extend another reducibility
method of proofs of Church-Rosser.

o



The Two Reducibility Methods

1. Ghilezan and Likavec's method:
» According to this method, a certain property of the A-calculus is
proved to hold, if that property satisfies a certain set of predicates.
» Unfortunately, this method does not work. We give
counterexamples.

2. Koletsos and Stavrinos's method:
» This method aims to prove the Church-Rosser property of the
untyped A-calculus by showing first that a typed A-calculus is
confluent and using this to show the confluence of developments.
» We adapt this method to (/-reduction.
» We extend (this is non trivial) this method to 7n-reduction.
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Ghilezan and Likavec's Method [GL02]

Ghilezan and Likavec designed a general proof method schema.

The basic step of the method: if a set of A\-terms P satisfies a defined set
of predicates pred then it contains a certain set of typable A\-terms T.
» pred(P)= T CP

Extension of the basic step: if a set of A-terms P satisfies a defined set of
predicates pred then it contains the whole set of A-terms.
» pred(P) = AN="7P



Ghilezan and Likavec's method [GLO2]

the basic step in a simple framework

Below, P is a set of terms. Using:
> a set of types oeType' i=a |01 — 02| 01 Noo,
> a type interpretation function [[—]],1,J which depends on P and

> a set of predicates pred which depends on type interpretations and
consists of:

» Variable predicate: each variable belongs to each type interpretation.

» Saturation predicate (1): the contractum of a [3-redex is in a type
interpretation = the (-redex is in the type interpretation.

> Closure predicate (1): a term applied to a variable is in a type
interpretation = the term is in the set of terms given as parameter.

Ghilezan and Likavec claim that pred(P) = SN C P.
(where SN = {M | each reduction from M is finite} = set of A-terms typable in D).



Ghilezan and Likavec's Method [GL02]

full method - basic step

Recall that P is a set of terms. Using:
> a set of types TEType2:::a|7'1—>7'2|Tlﬂ72|§2,
> a type interpretation depending on P,

> a set of predicates pred which depends on type interpretations and
consists of:

» Variable predicate: same as before.

» Saturation predicate (2): similar to before.

» Closure predicate (2): a term is in a type interpretation = the
abstraction of the term is in P.

> an intersection type system (with omega and subtyping rule),

Ghilezan and Likavec prove that pred(P)= T CP
where T is a set of typable terms under some restriction on types.
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Ghilezan and Likavec's method [GLO2]

full method- basic step continued

> It is not easy to prove pred(P). Hence, [GL02] introduces:
» stronger induction hypotheses. These are new predicates
collected in a set newpred.
» These new predicates do not deal with type interpretation
» newpred(CR) where
CR={M|M =% MiAM —F5 My = 3IM'. My =5 M'AM, —7 M’}
» newpred(W) where
W={M|3neN. Ix e V. IM,My,..., M, e \. (M —}
MMV M —7% xMy ... M,)} and
» newpred(S) where
S={M|M—-5M =3IN.M—; NAN = M} (-} for
head-reduction and —7 for internal-reduction



Ghilezan and Likavec's method [GLO2]

full method- final step

» The final step of the method is to prove
newpred(P) Alnv(P) = A="P
where A is the set of all the A\-terms and

Invariance predicate Inv:
If M € Athen \Ax.MeP <— MecP.

> The authors give a set T of A-terms that are typable in their type
system with a type satisfying the necessary restrictions.
» This final step is done in two parts:
> Let M € A. Then:
» Mx.MeT
» newpred(P) = Ax.M € P
> newpred(P) Alnv(P) = M e P

» Inv(CR) and Inv(S).



Ghilezan and Likavec's method fails

Counterexample

» Our paper lists in detail the problems with a number of lemas and
proofs in [GL02].

» Here, we show one counterexample:

Claim [GLO02]

Counter-example: INV(WN), VAR(WN) and SAT(WN) are true,
but WN #£ A.
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Ghilezan and Likavec's method [GLO2]

summary

First step:
» predl(P)= T CP.
(where T is a set of typable terms in a given type system)

Full method (false):
» pred2(P) = A="P.

We tried to salvage the full method of Ghilezan and Likavec, but we
failed. We did not go further than the basic step with T = SN, which is
a result Ghilezan and Likavec already proved.

Some similar proof methods have already been, as far as we know,
successfully developed (for example by Gallier [Gal03]). However, they do
not go further than the basic step and do not deal with Church-Rosser.
Such methods can help in characterising typable terms w.r.t. a type
system.



Koletsos and Stavrinos's method [KS08|

the outlines of their method

11/21



An Extension of Koletsos and Stavrinos's method [KS08]

the central part

» Koletsos and Stavrinos's method [KS08] proves Church Rosser of
(-reduction.

» We extend Koletsos and Stavrinos's method to prove Church Rosser
of Bn-reduction.
> %//R:I?\E/\Z {_}/\/*l | %l}—%n My AM =5, Mo = M. My —%n
Bn
» Using:
> a set of types,
> a type system,

> a type interpretation based on CRBE and
> a language typable in the type system,

we prove that each term in the defined language is in CRBE.
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An Extension of Koletsos and Stavrinos's method [KS08]

a bit of technicality

What is this new language? the parametrised language An. C A is
defined as follows:

1. If x is a variable distinct from ¢ then

> x € Ane.
> If M € Anc then Ax.(M[x := c(cx)]) € Ane.
> If Nx € Ane, x & fv(N) and N # ¢ then Ax.Nx € Ar..

2. If M;N € An. then cMN € An..
3. If M, N € Anc and M is a A-abstraction then MN € Ar..
4. 1f M € A then cM € An.
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An Extension of Koletsos and Stavrinos's method [KS08|

a bit a technicality

pe€Path:=0]|1.p]2.p.

We define M|, as follows:
> Mlop=M
- (M)lp = Ml
> (MN)]yp = M,
> (MN)l2.p = Nlp.

Example: (Ax.zx)|1.2.0 = (2x)]2.0 = x|o = x.

14 /21



An Extension of Koletsos and Stavrinos's method [KS08]

a bit a technicality

Let us define the three following common relations:
> (= ((Ax-M)N, M[x := N])
> 7= (Ax.Mx, M), where x & FV(M)
> Bn=p4Un

Let r € {,7, O}

R ={L|{(L,R)er}and R}, = {p| M|, ¢ R"}

Example: R?;X_yx)y = {0,1.0}.

We define the ternary relation —, as follows:
> M, MM MY Er e M2 M ifM B, M
> MN X2, M'Nif M 2, M » NM 22, NMY if M2, MY

M —, M’ if there exists p such that M 5, M’.

Example: (Ax.x)y E)ﬂ y = Ay.(Ax.x)y 1—'9[3 Ay.y.
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An Extension of Koletsos and Stavrinos's method [KS08]

a bit a technicality - An erasure function

Erasure on terms:

» |X|C:X
> | Ax.N|€ = Ax.|N|¢, if x # ¢
> |ePl* = [Pl

> |[NP|¢ = |N|€|P|¢, if N # ¢
Example: [(c(Ax.yx))y|¢ = (Ax.yx)y.

Erasure on paths:

(M, 0)[< =

|(Ax.M, 1.p)| = 1.|(M, p)|¢, if x # ¢
[{MN. 1.p)|* = 1.(M, p)|*

(M, 2.p)[< = |(M, p)°

[(NM, 2.p)[€ = 2./(M, p)|<, if N #
Example: [{(c(Ax.yx))y,1.2.0)|¢ = 1.0.

v

v

v

v

v
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An Extension of Koletsos and Stavrinos's method [KS08]
a bit a technicality - a function from A x 2Path o 2Anc
Let ¢ ¢ fv(M) and F C Ry
1. £ MeV\{c} then F = & and
VM, F)={c"(M) | n> 0}
V5(M, F) = {M}
2. 1f M= x.Nand x#cand F' = {p|1pec F} C Ry then:

VE(M, F) =
{c"(\x.Plx:=c(cx)]) | n>0APEV(N,F)} if0gF
{ {c"(Ox.N') | n>0AN € V§(N, F')} otherwise
V5(M, F) =
{Ox N [x = c(ex)] | N € WE(N,F')} if0gF
{ {M.N"| N € W§(N, F')} otherwise
3M=NP, Fu={p|lpeF}CRYy and F> = {p|2.p€ F} CRY
then:
VE(M, F) =

{c"(cN'PY| n>0AN € V(N, FA)AP eV (P, )} ifogF
{ {"(N'P) | n>0AN € V§(N, FA) AP € W(P,F2)}  otherwise
{cN'P'| N € WE(N, F) AP’ € W§(P, F)} if0¢gF
{ {N'P"| N" € W§(N, F1) A P' € W§(P, F2) otherwise
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An Extension of Koletsos and Stavrinos's method [KS08]

illustration of this technicality

Example:

WE((x. Ay M)x)N, {1, 1.0, 1.1.0})
{e" (A0 -Ply = e(/)])x)Q) | n > 0
where x & fv(Ay.M).

79 e VE(M, @) A Q € WE(N,2)} C Ane,
Let p = 1.0 then (\x.(Ay.M)x)N L5, (Ay.M)N.
—N
Let n>0, P e W(M, @), @ € W(N, ) and p’ =2.....2.1.0. Then:
> Po = c"(Ax.(Ay-Ply = c(ey)])¥)Q) %5y c"((Ay-Ply = c(ey)])Q)

> [(Po,p)|¢ = [(P0,2".1.0)|° = p
> c"((y-Ply = c(e)])Q) € V((hy-M)N, {0})
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An Extension of Koletsos and Stavrinos's method [KS08|

Bn-developments

Let ¢ & fv(M) and F C Ry

> Let pe Fand M 25, M. We call the unique F' C Rf,ﬂ, such that
for all N € W¢(M, F) there exist N' € W<(M', F') and p’ € Rﬁn
such that N ngn N" and |(N, p')|¢ = p, the set of (n-residuals of
F in M’ relative to p.

> A one-step (n-development of (M, F), denoted
(M, F) 5,0 (M',F'), is a Bn-reduction M 25, M" where p € F
and F’ is the set of fBn-residuals of F in M’ relative to p. A
(n-development is the transitive closure of a one-step

Bn-development. We write M —1 M’ for the 3n-development
(M, F) —lnd (M, F").

Lemma
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An Extension of Koletsos and Stavrinos's method [KS08|

Churh-Rosser property

The transitive reflexive closure of — g, is equal to the transitive reflexive
closure of —1. We are now able to prove the (non-strict) inclusion of A
in CRBE and the equality between these sets:

20/21



@ J. Gallier.
Typing untyped A-terms, or reducibility strikes again!.

@ S. Ghilezan and S. Likavec.
Reducibility: A ubiquitous method in lambda calculus with
intersection types.

@ G. Koletsos and G. Stavrinos.
Church-Rosser property and intersection types.



	Ghilezan and Likavec's method Gil+Lik:2002
	Koletsos and Stavrinos's method Kol+Str:2007

