
Computerising Mathematical Texts with
MathLang

FAIROUZ KAMAREDDINE
MathLang:Project started in 2000 by
Fairouz Kamareddine and J.B. Wells.

A number of positions are available, contact
{fairouz,jbw}@macs.hw.ac.uk

Ph.D. students in the MathLang team:
M. Maarek (10/2002-6/2007)

K. Retel (11/2004-)
R. Lamar (10/2006-)

Numerous undergraduate and MSc students since 2000

ULTRA Group – Heriot-Watt University, Edinburgh, UK
http://www.macs.hw.ac.uk/ultra/

SYNASC 2007, Timisoara, Romania
Tuesday 26 September 2007

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

http://www.macs.hw.ac.uk/ultra/

Some background

There are two influencing questions:

1 What is the relationship between logic and mathematics
2 What is the relationship between computer science and

mathematics.

Question 1 has been slowly brewing for over 2500 years.

Question 2, is more recent but is unavoidable since
automation and computation can provide tremendous services
to mathematics.

There are also extensive opportunities from combining
progress in logic and automation/computerisation not only in
mathematics but also in other areas: bio-Informatics,
chemistry, music, etc.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Did logic fail for mathematics?

As far back as the Greeks, we know that logic was influential
in the study and development of mathematics.

Aristotle already knew that for a proposition Φ.

If you give me a proof of Φ, I can check whether this proof
really proves Φ.
But, if you ask me to find a proof of Φ, I may go on forever
trying but without success.

Aristotle used logic to reason about everything (mathematics,
law, farming, medicine,...)

Euclid’s geometry’s main feature is the logical deductive style
developed for reasoning about mathematics.

In the 17th century, Leibniz wanted to use logic to prove the
existence of God.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Logic and mathematics

In the 19th century, the need for a more precise style in
mathematics arose, because controversial results had appeared in
analysis.

1821: Many of these controversies were solved by the work of
Cauchy. E.g., he introduced a precise definition of
convergence in his Cours d’Analyse (A.-L. Cauchy 1897).

1872: Due to the more exact definition of real numbers given
by Dedekind (R. Dedekind 1872), the rules for reasoning with
real numbers became even more precise.

1895-1897: Cantor began formalizing set theory (G. Cantor
1895 and 1897) and made contributions to number theory.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Formal systems in the 19th century

1889: Peano formalized arithmetic (G. Peano 1989), but did
not treat logic or quantification.

1879: Frege was not satisfied with the use of natural language
in mathematics:

“. . . I found the inadequacy of language to be an
obstacle; no matter how unwieldy the expressions I
was ready to accept, I was less and less able, as the
relations became more and more complex, to attain
the precision that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift (G. Frege 1892), the
first formalisation of logic giving logical concepts via symbols
rather than natural language.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Formal systems in the 19th century

“[Begriffsschrift’s] first purpose is to provide us with the
most reliable test of the validity of a chain of inferences
and to point out every presupposition that tries to sneak
in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

1892-1903 Frege’s Grundgesetze der Arithmetik (G. Frege
1892 and 1903) could handle elementary arithmetic, set
theory, logic, and quantification.
Also in early 1900, a number of questions/problems were
posed which were to have a huge impact on logic and
computation: (e.g., Hilbert’s 23 problems).
One very important question in the early 1900 was: Can any
logical statement have a proof or be disproved.
More than 30 years later, this question was negatively
answered by Turing (Turing machines), Goedel
(incompleteness results) and Church (λ-calculus).

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

And so, the birth of computation machines, and limits of

computability

The first half of the 20th century saw a surge of different
formalisms and saw the birth of computers (Turing machines,
Von Neumann’s machine, etc).

E.g., the discovery of Russell’s paradox was the reason for the
invention of the first type theory.

There was a competition between set/type/category theory as
a better foundation for mathematics.

The second half of the 20th century would see a surge of
programming languages and softwares for mathematics.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Can we solve/compute everything?

Turing answered the question in terms of a computer.
Turing’s machines are so powerful: anything that can ever be
computed even on the most powerful computers, can also be
computed on a Turing machine.

Church invented the λ-calculus, a language for programming.
λ-calculus is so powerful: anything that can ever be computed
can be described in the λ-calculus.

Goedel’s result meant that no absolute guarantee can be given
that many significant branches of mathematics are entirely
free of contradictions.

This meant that: we can compute a very small (countable)
amount compared to what we will never be able to compute
(uncountable).

Hilbert’s dream was shattered. According to the great
historian of Mathematics Ivor Grattan-Guinness, Hilbert
behaved coldly towards Goedel.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

And so!! different theories, different formalisms

Translations of Mathematics into logic (Hilbert, Ackermann,
Weyl, Russell, Whitehead, Frege, etc.) showed that no logic is
fully satisfactory.

First order logics? Higher order logics? Predicative logics/
impredicative ones?

There are different set theories: well-founded, non
well-founded, with/without foundation axiom/axiom of
choice, etc.

There are different type theories: simple, polymorphic,
dependent,etc.

There are arguments that category theory can serve parts of
mathematics better than type theory or set theory.

And new logics, set/type/category theories are regularly being
developed.

Worst, the ordinary mathematician is not interested in any of
this progress.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Common Mathematical Language of mathematicians:

Cml

+ Cml is expressive: it has linguistic categories like proofs and
theorems.

+ Cml has been refined by intensive use and is rooted in long
traditions.

+ Cml is approved by most mathematicians as a
communication medium.

+ Cml accommodates many branches of mathematics, and is
adaptable to new ones.

– Since Cml is based on natural language, it is informal and
ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the
reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural
aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and
cannot be easily automated.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis (Landau 1930,
1951).

Theorem 6 (Commutative Law of Addition)

x + y = y + x.

Proof Fix y, and let M

be the set of all x for
which the assertion
holds.
I) We have

y + 1 = y′,

and furthermore, by the
construction in the proof
of Theorem 4,

1 + y = y′,

so that

1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M,
then

x + y = y + x,

Therefore

(x+y)′ = (y+x)′ = y+x′.

By the construction in
the proof of Theorem 4,
we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M.

The assertion therefore

holds for all x. 2

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The problem with formal logic

No logical language is an alternative to Cml

A logical language does not have mathematico-linguistic
categories, is not universal to all mathematicians, and is not a
good communication medium.
Logical languages make fixed choices (first versus higher order,
predicative versus impredicative, constructive versus classical,
types or sets, etc.). But different parts of mathematics need
different choices and there is no universal agreement as to
which is the best formalism.
A logician reformulates in logic their formalization of a
mathematical-text as a formal, complete text which is
structured considerably unlike the original, and is of little use
to the ordinary mathematician.
Mathematicians do not want to use formal logic and have for
centuries done mathematics without it.

So, mathematicians kept to Cml.
We would like to find an alternative to Cml which avoids
some of the features of the logical languages which made
them unattractive to mathematicians.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

What are the options for computerization?

Computers can handle mathematical text at various levels:

Images of pages may be stored. While useful, this is not a
good representation of language or knowledge.

Typesetting systems like LATEX, TEXmacs , can be used.

Document representations like OpenMath, OMDoc, MathML,
can be used.

Formal logics used by theorem provers (Coq, Isabelle, Mizar,
Isar, etc.) can be used.

We are gradually developing a system named MathLang which we
hope will eventually allow building a bridge between the latter 3
levels.
This talk aims at discussing the motivations rather than the details.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The issues with typesetting systems

+ A system like LATEX, TEXmacs , provides good defaults for
visual appearance, while allowing fine control when needed.

+ LATEX and TEXmacs support commonly needed document
structures, while allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical
structure of symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural
language text is not represented. Automated discovery of the
semantics of natural language text is still too primitive and
requires human oversight.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

LATEX example
draft documents ✓
public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}
$$x+y=y+x.$$

\end {theorem}
\begin{proof}
Fix y, and \mathfrak{M} be the set of all x for which

the assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$ and furthermore, by the construction

in the proof of Theorem \ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$ and 1 belongs to \mathfrak{M}.
\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore $$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem \ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence $$x’+y=y+x’,$$ so that $x’$ belongs to \mathfrak{M}.
\end{enumerate}
The assertion therefore holds for all x.

\end{proof}

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The differences of OMDoc

OMDoc attempts to solve some of the difficulties of typesetting
systems.

+ Translation to LATEX (still needed) or MathML can handle
visual appearance.

– Precise appearance control must work through a translation
(difficult!).

+ OMDoc supports commonly needed document structures.

+ The tree structure of symbolic formulas is represented.

– The semantics of symbolic formulas is not represented.

– Type checking symbolic formulas (beyond arity) must be
outside OMDoc.

– The logical structure of mathematics as embedded in natural
language text is still not represented. There are ways to
associate symbolic formulas with natural language text, but
no way to check their consistency.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The beginnings of computerized formalization

In 1967 the famous mathematician de Bruijn began work on
logical languages for complete books of mathematics that can
be fully checked by machine.

People are prone to error, so if a machine can do proof
checking, we expect fewer errors.

Most mathematicians doubted de Bruijn could achieve
success, and computer scientists had no interest at all.

However, he persevered and built Automath (AUTOmated
MATHematics).

Today, there is much interest in many approaches to proof
checking for verification of computer hardware and software.

Many theorem provers have been built to mechanically check
mathematics and computer science reasoning (e.g. Isabelle,
HOL, Coq, etc.).

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text
proving the same facts. Making the latter involves extensive
knowledge and many choices:

The choice of the underlying logical system.

The choice of how concepts are implemented (equational
reasoning, equivalences and classes, partial functions,
induction, etc.).

The choice of the formal foundation: a type theory
(dependent?), a set theory (ZF? FM?), a category theory?
etc.

The choice of the proof checker: Automath, Isabelle, Coq,
PVS, Mizar, ...

An issue is that one must in general commit to one set of choices.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems
when fully formalizing it:

A single (big) step may need to expand into a (series of)
syntactic proof expressions. Very long expressions can replace
a clear Cml-text.

The entire Cml-text may need reformulation in a fully
complete syntactic formalism where every detail is spelled out.
New details may need to be woven throughout the entire text.
The text may need to be turned inside out.

Reasoning may be obscured by proof tactics, whose meaning
is often ad hoc and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text
useful.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓
From Module Arith.Plus of Coq standard library
(http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with

arith.

Qed.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

http://coq.inria.fr/

MathLang’s Goal: Open borders between mathematics,

logic and computation

Ordinary mathematicians avoid formal mathematical logic.

Ordinary mathematicians avoid proof checking (via a
computer).

Ordinary mathematicians may use a computer for
computation: there are over 1 million people who use
Mathematica (including linguists, engineers, etc.).

Mathematicians may also use other computer forms like
Maple, LaTeX, etc.

But we are not interested in only libraries or computation or
text editing.

We want freedeom of movement between mathematics, logic
and computation.

At every stage, we must have the choice of the level of
formalilty and the depth of computation.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Aim for MathLang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as
possible the ambiguities of natural language, while still
guaranteeing the following four goals?

1 The formalised text looks very much like the original
mathematical text (and hence the content of the original
mathematical text is respected).

2 The formalised text can be fully manipulated and searched in
ways that respect its mathematical structure and meaning.

3 Steps can be made to do computation (via computer algebra
systems) and proof checking (via proof checkers) on the
formalised text.

4 This formalisation of text is not much harder for the ordinary
mathematician than LATEX. Full formalization down to a
foundation of mathematics is not required, although allowing
and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)
MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

MathLang
draft documents ✓

public documents ✓

computations and proofs ✓

A MathLang text captures the grammatical and reasoning
aspects of mathematical structure for further computer
manipulation.

A weak type system checks MathLang documents at a
grammatical level.

A MathLang text remains close to its Cml original, allowing
confidence that the Cml has been captured correctly.

We have been developing ways to weave natural language text
into MathLang.

MathLang aims to eventually support all encoding uses.

The Cml view of a MathLang text should match the
mathematician’s intentions.

The formal structure should be suitable for various automated
uses.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Example of a MathLang Path (into Mizar)
(Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

What is CGa? (Kamareddine, Maarek and Wells 2005)

CGa is a formal language derived from MV (N.G. de Bruijn
1987) and WTT (Kamareddine and Nederpelt 2004) which
aims at expliciting the grammatical role played by the
elements of a CML text.

The structures and common concepts used in CML are
captured by CGa with a finite set of
grammatical/linguistic/syntactic categories: Term “

√
2”, set

“Q”, noun “number”, adjective “even”, statement “a = b”,
declaration “Let a be a number”, definition “An even number
is..”, step “a is odd, hence a 6= 0”, context “Assume a is
even”.

Generally, each syntactic category has a corresponding weak
type.

CGa’s type system Kamareddine, Maarek and Wells 2005
derives typing judgments to check whether the reasoning parts
of a document are coherently built.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Examples of linguistic categories

Terms: the triangle ABC; the center of ABC ; d(x , y).

Nouns: a triangle; an edge of ABC ; a group.

Adjectives: equilateral triangle ; prime number ; Abelian
group .

Statements: P lies between Q and R ; 5≥ 3 ; AB is
an edge of ABC .

Definition: a number p is prime whenever

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa’s Commonality with MV

MV is somewhat faithful to Cml yet is formal and avoids
ambiguities.

MV is close to the usual way in which mathematicians write.

MV has a syntax based on linguistic categories not on
set/type theory.

MV is weak as regards correctness: the rules of MV mostly
concern linguistic correctness, its types are mostly linguistic so
that the formal translation into MV is satisfactory as a
readable, well-organized text.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Problems with MV

MV makes many logical and mathematical choices which are
best postponed.

MV incorporates certain correctness requirements, there is for
example a hierarchy of types corresponding with sets and
subsets.

MV is already on its way to a full formalization, while we
want the option of remaining closer to a given informal
mathematical content.

A Cml text tagged into MathLang

has the advantages of the original Cml text but not its
disadvantages and
respects the original Cml content.

MV does not respect Cml content.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa’s relation to WTT

An MV text is not close to its Cml original.

Weak Type Theory, WTT (Kamareddine adn Nederpelt 2004),
is MV minus the added logic.

Although in many ways WTT succeeds and improves on MV,
it still fails on respecting the original text. A WTT text is not
close to its Cml original.

With CGa, we start from WTT, add some features, and
investigate how to integrate it with natural language text.

Our ongoing development of MathLang is driven by testing it
in translating a set of sample texts chosen to cover a large
portion of Cml usages, both current and historical.

At the conception of MathLang (Kamareddine and Wells 2001
and 2002) we proposed Euclid’s geometry (Heath 1956),
Landau’s analysis (Landau 1930, 1951), and the Compendium
of lattices (Gierz etal 1980) as a start.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa’s grammatical categories (taken from MV/WTT)

term “a + b”

set “N”

noun “ring”

adjective “Abelian”

statement “a + 0 = a”

declaration “Let a be . . . ”

definition “A ring is . . . ”

step “. . . , therefore . . . ”

context “Assume . . . ”

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

. . . and is an element of the set R,

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

. . . and is an element of the set R,

a and 0 are terms,

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

. . . and is an element of the set R,

a and 0 are terms,

Their sum is also a term,

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

. . . and is an element of the set R,

a and 0 are terms,

Their sum is also a term,

The equality between a + 0 and a is a statement,

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a .

0 is being declared,

. . . and is an element of the set R,

a and 0 are terms,

Their sum is also a term,

The equality between a + 0 and a is a statement,

Finally, the overall sentence is a step.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element −a in R such that
a + (−a) = 0 for all a in R.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element − a in R such that

a + (− a) = 0 for all a in R.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element − a in R such that

a + (− a) = 0 for all a in R.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element − a in R such that

a + (− a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that
a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that
a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Another example

There is an element - a in R such that

a + (- a) = 0 for all a in R .

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa typing rules

The CGa syntax is an adaptation of that of WTT and has
almost the same categories to both MV and WTT.

A CGa text can be type checked using CGa type rules which
are again an adaptation of those of WTT.

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A

B; Γ ⊢ an :: N
(adj−noun)

The automatic type checker type checks a CGa annotated
text and if it succeeds, the text is said to be syntactically
correct, else a type error message is printed.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa Weak Type Checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set,
y and x are natural numbers ,

if x belongs to M

then x + y=y + x

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

CGa Weak Type checking detects grammatical errors

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set,
y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How complete is the CGa?

CGa is quite advanced but remains under development
according to new translations of mathematical texts. Are the
current CGa categories sufficient?

The metatheory of WTT has been established in
(Kamareddine and Nederepelt 2004). That of CGa remains to
be established. However, since CGa is quite similar to WTT,
its metatheory might be similar to that of WTT.

The type checker for CGa works well and gives some useful
error messages. Error messages should be improved.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Example of a MathLang Path (into Mizar)
(Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

What is TSa? (Kamareddine, Lamar, Maarek and Wells
2007)

TSa (Kamareddine, Lamar, Maarek and Wells) builds the
bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or
symbols which aims to act as its CML representation.

TSa plays the role of a user interface

TSa can flexibly represent natural language mathematics.

The author wraps the natural language text with boxes
representing the grammatical categories (as we saw before).

The author can also give interpretations to the parts of the
text.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Interpretations

There is 0an element 0 in RR such that eq plus aa + 00 = aa

{ 0 : R; eq (plus (a, 0), a); };

At the lower CGa level, these interpretations are helpful for example
for dealing with the natural language aspect. At the higher aspects
(e.g., filling incomplete proofs), these interpretations could enable

assiging intended logical meanings to parts of the text.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Interpretations

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Rewrite rules enable natural language representation

0 + a0 = a0 = a(0 + 0) = a0 + a0

eq 0 + a0= shared a0 eq= shared a(0 + 0) eq= a0 + a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How do you do this?

0+a0 = a0 = a(0+0) = a0+a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How do you do this?

0+a0 = a0 = a(0+0) = a0+a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How do you do this?

0+a0 = a0 = a(0+0) = a0+a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How do you do this?

0+a0 = <share> a0 = <share> a(0+0) = a0+a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How do you do this?

0+a0 = <share> a0 = <share> a(0+0) = a0+a0

0+a0 = a0 a0 = a(0+0) a(0+0) = a0+a0

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How complete is TSa?

TSa provides useful interface facilities but it is still under
development.

So far, only simple rewrite (souring) rules are used and they
are not comprehensive. E.g., unable to cope with things like

n times
︷ ︸︸ ︷

x = . . . = x.

The TSa theory and metatheory need development.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Example of a MathLang Path (into Mizar)
(Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

What is DRa? (Kamareddine, Maarek, Retel and Wells
2007b)

DRa (Kamareddine, Maarek, Retel and Wells 2007b):
Document Rhetorical structure aspect.

Structural components of a document like chapter,
section, subsection, etc.

Mathematical components of a document like theorem,
corollary, definition, proof, etc.

Relations between above components.

These enhance readability, and ease the navigation of a
document.

Also, these help to go into more formal versions of the
document.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Relations

Description

Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.

Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation

Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

What does the mathematician do?

The mathematician wraps into boxes and uniquely names
chunks of text

The mathematician assigns to each box the structural and/or
mathematical rhetorical roles

The mathematician indicates the relations between wrapped
chunks of texts

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m
2

= 2n
2

& m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It follows that

m2 is even, but then m must be even, as odds square to odds. So m = 2k and we have

2n
2

= m
2

= 4k
2

=⇒ n
2

= 2k
2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n). Moreover, m2 =

n2 + n2 > n2 , so m2 > n2 and hence m > n. So we can take m′ = n.
By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m). Contradiction. Therefore
m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z −{0}. Then
√

2 = m/n with m = |p|, n =

|q| 6= 0. It follows that m2 = 2n2 . But then n = 0 by the lemma. Contradiction shows that√
2 /∈ Q.

Barendregt

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m
2

= 2n
2

& m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It follows that

m2 is even, but then m must be even, as odds square to odds. So m = 2k and we have

2n
2

= m
2

= 4k
2

=⇒ n
2

= 2k
2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n). Moreover, m2 =

n2 + n2 > n2 , so m2 > n2 and hence m > n. So we can take m′ = n.
By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m). Contradiction. Therefore
m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z −{0}. Then
√

2 = m/n with m = |p|, n =

|q| 6= 0. It follows that m2 = 2n2 . But then n = 0 by the lemma. Contradiction shows that√
2 /∈ Q.

Barendregt

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The automatically generated dependency Graph

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

How complete is DRa?

The dependency graph can be used to check whether the
logical reasoning of the text is coherent and consistent (e.g.,
no loops in the reasoning).

However, both the DRa language and its implementation need
more experience driven tests on natural language texts.

Also, the DRa aspect still needs a number of implementation
improvements (the automation of the analysis of the text
based on its DRa features).

Extend TSa to also cover DRa (in addition to CGa).

Extend DRa depending on further experience driven
translations.

Establish the soundness and completeness of DRa for
mathematical texts.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Example of a MathLang Path (into Mizar)
(Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The remaining very rough path into Mizar

(Kamareddine, Maarek, Retel and Wells 2007a).

We have not built the remaining aspects all the way into
Mizar, but we have a rough path.

First, DRa annotations of a text and its automatically
generated dependency graph are used to create via a number
of tranformation hints, a Mizar FPS Text-Proper skeleton of
the text.

Next, the CGa encoding of the text is used to build relevant
parts of the Mizar FPS (Wiedijk 2003) of the text (e.g., the
CGa preamble could be used to find counterparts in Mizar
MML and to build parts of the Environment in Mizar).

At this stage, a Mizar expert would be able to complete the
Mizar FPS version of the text.

Now, the Mizar experts can complete the formalisation by
filling all the gaps in the reasoning (i.e., filling the holes in
sentences labelled with the error *4 by the Mizar system.)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Transformation hints from DRa annotations to Mizar

skeletons (Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

DRa annotation into Mizar skeleton for Barendregt’s

example (Kamareddine, Maarek, Retel and Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

MathLang preamble as subset of Mizar environment for

Barendregt’s example (Kamareddine, Maarek, Retel and
Wells 2007a)

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

The Mizar FPS version of Barendregt’s example

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Much more work needed on the MathLang path into Mizar

The MathLang path after the DRa annotation and checking
stage, has been given informally and in a very rough manner.
We would like to develop full blown aspects that clearly and
precisely take the text into full Mizar.
Aspects must be well developped (theory, implementation,
automation and consistency between aspects).
Immediate attention is needed to make the transformation
hints into a more precise calculus and an automated algorithm
be given. Full automation may not be possible, but a good
balance of interaction between the user and the computer
needs to be created.
The passage from CGa annotated parts of text into Mizar text
parts (e.g., Preamble into Environment) needs to be
formalised and a balance between user and computer created.
Open question: what aspects are needed to pass into full
Mizar (including what aspects can transfrom a Mizar FPS text
into full Mizar text).

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Other MathLang paths

A current PhD project (with student Lamar), is to work on
the MathLang path into Isabelle.

After the CGa, and DRa annotations of the text (using TSa
as far as possible), and after obtaining a number of
correctness checks on the text (grammatical, relational, DG,
etc), it would be interesting to check at which stage the path
into Mizar differs from the path into Isabelle and how much
can we keep in common.

Although we are currently working on MathLang paths into
Isabelle and Mizar, we are open to other provers. We will be
assessing both direct paths and paths through translations.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Some points to consider

We do not at all assume/prefer one type/logical theory
instead of another.

The formalisation of a language of mathematics should
separate the questions:

which type/logical theory is necessary for which part of
mathematics
which language should mathematics be written in.

Mathematicians don’t usually know or work with type/logical
theories.

Mathematicians usually do mathematics (manipulations,
calculations, etc), but are not interested in general in
reasoning about mathematics.

The steps used for computerising books of mathematics
written in English, as we are doing, can also be followed for
books written in Arabic, French, German, or any other natural
language.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Some points to consider, continued

MathLang aims to support non-fully-formalized mathematics
practiced by the ordinary mathematician as well as work
toward full formalization.

MathLang aims to handle mathematics as expressed in natural
language as well as symbolic formulas.

MathLang aims to do some amount of type checking even for
non-fully-formalized mathematics. This corresponds roughly
to grammatical conditions.

MathLang aims for a formal representation of Cml texts that
closely corresponds to the Cml conceived by the ordinary
mathematician.

MathLang aims to support automated processing of
mathematical knowledge.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Some points to consider, continued

MathLang aims to be independent of any foundation of
mathematics.

MathLang allows anyone to be involved, whether a
mathematician, a computer engineer, a computer scientist, a
linguist, a logician, etc.

MathLang allows more accurate translation between different
languages whithin the mathematical dictionary.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

N.G. de Bruijn 1987.
The mathematical vernacular, a language for mathematics with typed sets.
In Workshop on Programming Logic, 1987.

G. Cantor 1895.
Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel).
Mathematische Annalen, 46:481–512, 1895.

G. Cantor 1897.
Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter Artikel).
Mathematische Annalen, 49:207–246, 1897.

A.-L. Cauchy 1897.
Cours d’Analyse de l’Ecole Royale Polytechnique.
Debure, Paris, 1821.
Also as Œuvres Complètes (2), volume III, Gauthier-Villars, Paris, 1897.

R. Dedekind 1872.
Stetigkeit und irrationale Zahlen.
Vieweg & Sohn, Braunschweig, 1872.

G. Frege 1879.
Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens.
Nebert, Halle, 1879.

G. Frege 1892.
Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I.
Pohle, Jena, 1892.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Reprinted 1962 (Olms, Hildesheim).

G. Frege 1903.
Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume II.
Pohle, Jena, 1903.
Reprinted 1962 (Olms, Hildesheim).

Heath 1956.
The 13 Books of Euclid’s Elements.
Dover, 1956.

Fairouz Kamareddine and J. B. Wells.
Promath PResenting, PROving, and PROgramming MATHematical books
(Case for Support). 9 pages.
A research proposal to UK funding body, submitted December 2001,
acknowledgement G583082.

Fairouz Kamareddine and J. B. Wells.
MathLang: A new language for mathematics, logic, and proof checking (Case
for Support). 9 pages.
A research proposal to UK funding body, submitted September 2002,
acknowledgement 2002102111273723614163.

Kamareddine and Nederpelt 2004.
A refinement of de Bruijn’s formal language of mathematics.
J. Logic Lang. Inform., 13(3):287–340, 2004.

Kamareddine, Maarek, and Wells 2005.
Toward an object-oriented structure for mathematical text.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

In Michael Kohlhase, editor, Mathematical Knowledge Management, 4th Int’l

Conf., Proceedings, volume 3863 of Lecture Notes in Artificial Intelligence, pages
217–233. Springer, 2006.

Kamareddine, Maarek, Retel and Wells 2007b.
Narrative Structure of Mathematical Texts
Sixth International Conference on MATHEMATICAL KNOWLEDGE
MANAGEMENT, 27-30 June, 2007, Linz, Austria. Lecture Notes in AI 4573,
Pages 296-312, M. Kauers, Manfred Kerber, Robert Miner and Wolfgang
Windsteiger (Eds), ISBN 978-3-540-73083-5. Springer-Verlag, June 2007.

Kamareddine, Maarek, Retel and Wells 2007a.
Gradual computerisation/formalisation of mathematical texts into Mizar.
In From Insight to Proof, Festschrift in honour of Andrzej Trybulec, Roman
Matuszewski and Anna Zalewska (eds), Studies in Logic, Grammar and Rhetoric,
Volume 10(23), Pages 95-120, University of Bialystok, Polish Association for
Logic and Philosophy of Science, 2007.

Kamareddine, Lamar, Maarek and Wells 2007. Fairouz Kamareddine, Robert
Lamar, Manuel Maarek, and J. B. Wells.
Restoring natural language as a computerised mathematics input method. Sixth
International Conference on MATHEMATICAL KNOWLEDGE MANAGEMENT,
27-30 June, 2007, Linz, Austria. Lecture Notes in AI 4573, Pages 280-295, M.
Kauers, Manfred Kerber, Robert Miner and Wolfgang Windsteiger (Eds), ISBN
978-3-540-73083-5. Springer-Verlag, June 2007.

Landau 1930.
Grundlagen der Analysis.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

Chelsea, 1930.

Landau 1951.
Foundations of Analysis.
Chelsea, 1951.
Translation of [Lan30] by F. Steinhardt.

G. Peano 1989.
Arithmetices principia, nova methodo exposita.
Bocca, Turin, 1889.

Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott 1980.
A Compendium of Continuous Lattices.
Springer-Verlag, 1980.

Wiedijk 2003.
Formal proof sketches.
In Proceedings of TYPES’03, volume 3085 of LNCS, pages 378–393.
Springer-Verlag, December 2004.

MathLang, SYNASC 2007, Romania Computerising Mathematical Texts with MathLang

