Automath and Pure Type Systems

Fairouz Kamareddine

Joint work with

Twan Laan and Rob Nederpelt

www.macs.hw.ac.uk/~fairouz/talks/talks2003/mlcauttalk03.ps

4 July 2003

Pure Type Systems: PTSs

- PTSs were introduced by Berardi and Terlow in 1988 and 1989 [1, 11].
- PTSs rules are highly influenced by rules of Automath (see van Daalen [3]).
- $\bullet \ \ \mathbb{T} ::= \mathbb{V} \mid \mathbb{C} \mid \mathbb{TT} \mid \lambda \mathbb{V} : \mathbb{T}.\mathbb{T} \mid \Pi \mathbb{V} : \mathbb{T}.\mathbb{T}.$
- $(\lambda x:A_1.A_2)B \rightarrow_{\beta} A_2[x:=B]$
- Note, there is no rule $(\Pi x: A_1.A_2)B \rightarrow_{\Pi} A_2[x:=B]$
- A specification (S, A, R): sorts $S \subseteq \mathbb{C}$, axioms $A \subseteq S \times S$ and (Π -formation) rules $R \subseteq S \times S \times S$.

Typing rules of PTSs

$$(\text{start}) \qquad \langle \rangle \vdash s_1 : s_2 \qquad (s_1, s_2) \in A$$

$$(\text{start}) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \qquad x \not\in \text{DOM} (\Gamma)$$

$$(\text{weak}) \qquad \frac{\Gamma \vdash A : B}{\Gamma, x : C \vdash A : B} \qquad x \not\in \text{DOM} (\Gamma)$$

$$(\Pi) \qquad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A . B) : s_3} \qquad (s_1, s_2, s_3) \in R$$

$$(\lambda) \qquad \frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash (\lambda x : A . b) : (\Pi x : A . B) : s} \qquad (s_1, s_2, s_3) \in R$$

$$(\lambda) \qquad \frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash (\lambda x : A . b) : (\Pi x : A . B)} \qquad (s_1, s_2, s_3) \in R$$

$$(\lambda) \qquad \frac{\Gamma \vdash F : (\Pi x : A . B)}{\Gamma \vdash (\lambda x : A . B)} \qquad \Gamma \vdash a : A}{\Gamma \vdash F : (\Pi x : A . B)} \qquad \Gamma \vdash a : A} \qquad \Gamma \vdash F : (\Pi x : A . B) \qquad \Gamma \vdash A : B$$

$$(Conv) \qquad \frac{\Gamma \vdash A : B}{\Gamma \vdash A : B} \qquad \Gamma \vdash B' : s \qquad B =_{\beta} B'}{\Gamma \vdash A : B'}$$

Examples

$$\bullet$$
 $\lambda \rightarrow : A = (*, \square)$ and $R = \{(*, *, *)\}.$

(axiom)
$$\langle \rangle \vdash * : \Box$$

$$(\Pi) \qquad \frac{\Gamma \vdash A : * \quad \Gamma, x : A \vdash B : *}{\Gamma \vdash (\Pi x : A : B) : *}$$

• $\lambda 2$: $A = (*, \Box)$ and $R = \{(*, *, *), (\Box, *, *)\}.$

(axiom)
$$\langle \rangle \vdash * : \Box$$

(
$$\Pi$$
)
$$\frac{\Gamma \vdash A : * \quad \Gamma, x : A \vdash B : *}{\Gamma \vdash (\Pi x : A : B) : *}$$

(
$$\Pi$$
)
$$\frac{\Gamma \vdash A : \Box \quad \Gamma, x : A \vdash B : *}{\Gamma \vdash (\Pi x : A : B) : *}$$

The Barendregt Cube

Typing Polymorphic identity needs $(\square, *)$

$$\underbrace{y:*\vdash y:*\quad y:*,x:y\vdash y:*}_{y:*\vdash\Pi x:y.y:*}$$

by
$$(\Pi) (*,*)$$

by
$$(\lambda)$$

$$\bullet \ \frac{\vdash * : \Box \quad y : * \vdash \Pi x : y . y : *}{\vdash \Pi y : * . \Pi x : y . y : *}$$

by
$$(\Pi)$$
 $(\square,*)$

$$\underbrace{y: * \vdash \lambda x: y.x: \Pi x: y.y \quad \vdash \Pi y: *.\Pi x: y.y: *}_{ \vdash \lambda y: *.\lambda x: y.x: \Pi y: *.\Pi x: y.y}$$

by
$$(\lambda)$$

AUT-68

- Contexts $\Gamma ::= \langle \rangle \mid \Gamma, \mathcal{V} : \mathcal{E}$ where variables are declared at most once.
- Lines $l ::= \Gamma; \mathcal{V}; -; \mathcal{E}^+ \mid \Gamma; \mathcal{C}; PN; \mathcal{E}^+ \mid \Gamma; \mathcal{C}; \mathcal{E}; \mathcal{E}^+$
- Books \mathfrak{B} ::= \emptyset | \mathfrak{B}, l .

Example of an AUTOMATH-book

Ø	prop	PN	type	(1)
Ø	X		prop	(2)
x	У		prop	(3)
x , y	and	PN	prop	(4)
x	proof	PN	type	(5)
x , y	px		<pre>proof(x)</pre>	(6)
x,y,px	ру		<pre>proof(y)</pre>	(7)
x,y,px,py	and-I	PN	<pre>proof(and)</pre>	(8)
x,y	pxy		<pre>proof(and)</pre>	(9)
x,y,pxy	and-01	PN	<pre>proof(x)</pre>	(10)
x,y,pxy	and-02	PN	<pre>proof(y)</pre>	(11)
x	prx		<pre>proof(x)</pre>	(12)
x,prx	and-R	and-I(x,x,prx,prx)	<pre>proof(and(x,x))</pre>	(13)
x,y,pxy	and-S	and- $I(y,x,and-02,and-01)$	<pre>proof(and(y,x))</pre>	(14)

Notions of correctness and of typing

- See D. van Daalen 1980 [4].
- \mathfrak{B} ; $\varnothing \vdash OK$ indicates that book \mathfrak{B} is correct.
- \mathfrak{B} ; $\Gamma \vdash OK$ indicates that the context Γ is correct with respect to the (correct) book \mathfrak{B} .
- \mathfrak{B} ; $\Gamma \vdash \Sigma_1 : \Sigma_2$ indicates that Σ_1 is a correct expression of type Σ_2 with respect to \mathfrak{B} and Γ .
- We also say: $\Sigma_1 : \Sigma_2$ is a correct *statement* with respect to \mathfrak{B} and Γ .
- The Automath book given earlier is correct.

Correct books and contexts

$$(axiom) & \varnothing;\varnothing \vdash \text{OK} \\ \frac{\mathfrak{B}_1, (\Gamma; x; -; \alpha), \mathfrak{B}_2; \Gamma \vdash \text{OK}}{\mathfrak{B}_1, (\Gamma; x; -; \alpha), \mathfrak{B}_2; \Gamma \vdash \text{OK}} \\ \hline (book ext.: var1) & \frac{\mathfrak{B}; \Gamma \vdash \text{OK}}{\mathfrak{B}, (\Gamma; x; -; type); \varnothing \vdash \text{OK}} \\ \hline (book ext.: var2) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_2 : type}{\mathfrak{B}, (\Gamma; x; -; \Sigma_2); \varnothing \vdash \text{OK}} \\ \hline (book ext.: pn1) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_2 : type}{\mathfrak{B}, (\Gamma; k; PN; type); \varnothing \vdash \text{OK}} \\ \hline (book ext.: pn2) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_2 : type}{\mathfrak{B}, (\Gamma; k; PN; \Sigma_2); \varnothing \vdash \text{OK}} \\ \hline (book ext.: def1) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_1 : type}{\mathfrak{B}, (\Gamma; k; \Sigma_1; type); \varnothing \vdash \text{OK}} \\ \hline (book ext.: def2) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_2 : type \mathfrak{B}; \Gamma \vdash \Sigma_1 : \Sigma_2' \mathfrak{B}; \Gamma \vdash \Sigma_2 = _{\beta d} \Sigma_2'}{\mathfrak{B}, (\Gamma; k; \Sigma_1; \Sigma_2); \varnothing \vdash \text{OK}} \\ \hline$$

For rules (book ext.) we assume $x \in \mathcal{V}$ and $k \in \mathcal{C}$ do not occur in \mathfrak{B} or Γ .

Correct statements

$$\begin{array}{l} (\textbf{start}) & \frac{\mathfrak{B}; \Gamma_1, x:\alpha, \Gamma_2 \vdash \text{OK}}{\mathfrak{B}; \Gamma_1, x:\alpha, \Gamma_2 \vdash x:\alpha} \\ \mathfrak{B} \equiv \mathfrak{B}_1, (x_1:\alpha_1, \ldots, x_n:\alpha_n; b; \Omega_1; \Omega_2), \mathfrak{B}_2 \\ (\textbf{parameters}) & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_i : \alpha_i [x_1, \ldots, x_{i-1} := \Sigma_1, \ldots, \Sigma_{i-1}] (i=1, \ldots, n)}{\mathfrak{B}; \Gamma \vdash b(\Sigma_1, \ldots, \Sigma_n) : \Omega_2 [x_1, \ldots, x_n := \Sigma_1, \ldots, \Sigma_n]} \\ \textbf{(abstr.1)} & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_1 : \text{type} \quad \mathfrak{B}; \Gamma, x:\Sigma_1 \vdash \Omega_1 : \text{type}}{\mathfrak{B}; \Gamma \vdash [x:\Sigma_1]\Omega_1 : \text{type}} \\ \textbf{(abstr.2)} & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_1 : \text{type} \quad \mathfrak{B}; \Gamma, x:\Sigma_1 \vdash \Omega_2 : \Omega_1}{\mathfrak{B}; \Gamma \vdash [x:\Sigma_1]\Sigma_2 : [x:\Sigma_1]\Omega_1} \\ \textbf{(application)} & \frac{\mathfrak{B}; \Gamma \vdash \Sigma_1 : [x:\Omega_1]\Omega_2 \quad \mathfrak{B}; \Gamma \vdash \Sigma_2 : \Omega_1}{\mathfrak{B}; \Gamma \vdash \Sigma_1 : \Omega_1 \quad \mathfrak{B}; \Gamma \vdash \Omega_2 : \text{type} \quad \mathfrak{B}; \Gamma \vdash \Omega_1 =_{\beta d} \Omega_2} \\ \textbf{(conversion)} & \frac{\mathfrak{B}; \Gamma \vdash \Sigma : \Omega_1 \quad \mathfrak{B}; \Gamma \vdash \Omega_2 : \text{type} \quad \mathfrak{B}; \Gamma \vdash \Omega_1 =_{\beta d} \Omega_2}{\mathfrak{B}; \Gamma \vdash \Sigma : \Omega_2} \end{aligned}$$

When using the parameter rule, we assume that $\mathfrak{B}; \Gamma \vdash OK$, even if n = 0.

Definitional Equality

- (β) $\langle \Sigma \rangle [x:\Omega_2]\Omega_1 \to_{\beta} \Omega_1[x:=\Sigma].$
- (δ) If $\Sigma = b(\Sigma_1, \dots, \Sigma_n)$, and \mathfrak{B} contains a line $(x_1:\alpha_1, \dots, x_n:\alpha_n; b; \Xi_1; \Xi_2)$ where $\Xi_1 \in \mathcal{E}$, then $\Sigma \to_{\delta} \Xi_1[x_1, \dots, x_n:=\Sigma_1, \dots, \Sigma_n]$.

From Aut-68 to PTSs

$$\overline{[\ldots]}: \;\; \mathsf{Correct} \; \mathsf{Expressions} \; \mathsf{in} \; \mathcal{E} \;\; \mapsto \;\; \mathbb{T}$$

$$x \mapsto x$$

$$\mathsf{type} \qquad \qquad \mapsto \ *$$

$$b(\Sigma_1, \dots, \Sigma_n) \qquad \mapsto \ b\overline{\Sigma_1} \cdots \overline{\Sigma_n}$$

$$\overline{\langle \Omega \rangle \Sigma} \qquad \qquad \mapsto \quad \overline{\Sigma} \; \overline{\Omega}$$

$$[x:\Sigma]\Omega \qquad \qquad \mapsto \quad \left\{ \begin{array}{ll} \Pi x: \overline{\Sigma}. \overline{\Omega} & \text{if } [x:\Sigma]\Omega \text{ has type type,} \\ \lambda x: \overline{\Sigma}. \overline{\Omega} & \text{otherwise} \end{array} \right.$$

Common features of modern types and functions

- We can *construct* a type by abstraction. (Write A : * for A is a type)
 - $-\lambda_{y:A}.y$, the identity over A has type $A \to A$
 - $-\lambda_{A:*}.\lambda_{y:A}.y$, the polymorphic identity has type $\Pi_{A:*}.A \to A$
- We can *instantiate* types. E.g., if $A = \mathbb{N}$, then the identity over \mathbb{N}
 - $-(\lambda_{y:A}.y)[A:=\mathbb{N}]$ has type $(A\to A)[A:=\mathbb{N}]$ or $\mathbb{N}\to\mathbb{N}$.
 - $(\lambda_{A:*}.\lambda_{y:A}.y)\mathbb{N}$ has type $(\Pi_{A:*}.A \to A)\mathbb{N} = (A \to A)[A:=\mathbb{N}]$ or $\mathbb{N} \to \mathbb{N}$.
- $(\lambda x : \alpha . A)B \to_{\beta} A[x := B]$ $(\Pi x : \alpha . A)B \to_{\Pi} A[x := B]$
- Write $A \to A$ as $\prod_{y:A} A$ when y not free in A.

Extending PTSs with Π -reduction and Π -application

• Π -reduction $(\Pi x:A.B)N \rightarrow_{\Pi} B[x:=N]$

•
$$\Pi$$
-application
$$\frac{\Delta; \Gamma \vdash M: \Pi x : A.B \quad \Delta; \Gamma \vdash N: A}{\Delta; \Gamma \vdash MN: (\Pi x : A.B)N}$$

- Also need to change in conversion, $=_{\beta}$ to $=_{\beta\Pi}$
- Kamareddine in 1996 [9] showed that PTSs with Π -reduction and Π -application lose Subject Reduction. For instance, one can derive $\alpha:*, x:\alpha \vdash (\lambda y:\alpha.y)x: (\Pi y:\alpha.\alpha)x$, but it is not possible to derive $\alpha:*, x:\alpha \vdash x: (\Pi y:\alpha.\alpha)x$.
- Kamareddine in 1999 [8] showed that PTSs with Π -reduction and Π -application have the desirable properties if a definition system is used.

Identifying λ and Π

Kamareddine 2002 [7] showed that:

- ullet as long as the usual application rule of PTSs is used, a PTS system remains unchanged whether Π -reduction is included or not.
- If the usual application rule of PTSs is used, a PTS system remains unchanged whether λ s and Π s are unified or not.
- [7] concluded that a PTS system where λ s and Π s are unified and where the application is changed to Π -application faces the same problem (and inherits the same solution) as that of the PTSs where λ s and Π s are not unified but where Π -application and Π -reduction are used.
- $\bullet \;\; \mathcal{T}_{\flat} \; ::= \mathcal{V} \;|\; \mathcal{C} \;|\; \mathcal{T}_{\flat} \mathcal{T}_{\flat} \;|\; \flat \mathcal{V} {:} \mathcal{T}_{\flat} . \mathcal{T}_{\flat}$

• (\flat) $(\flat_{x:A}.B)C \to_{\flat} B[x:=C].$

$$(axiom) \qquad \langle \rangle \vdash s_1 : s_2 \qquad \text{if } (s_1, s_2) \in \pmb{A}$$

$$(start) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} x \not\in \text{DOM} (\Gamma)$$

$$(weak) \qquad \frac{\Gamma \vdash A : B \qquad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B} x \not\in \text{DOM} (\Gamma)$$

$$(\flat_2) \qquad \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash (\flat x : A . B) : s}{\Gamma \vdash (\flat x : A . b) : (\flat x : A . B)}$$

$$(appb) \qquad \frac{\Gamma \vdash F : (\flat x : A . B) \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : B[x := a]}$$

$$(\flat_1) \qquad \frac{\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\flat x : A . B) : s_3} \qquad (s_1, s_2, s_3) \in \pmb{R}$$

$$\Gamma \vdash A : B \qquad \Gamma \vdash B' : s \qquad B =_{\flat} B'$$

 $\Gamma \vdash A : B'$

De Bruijn's 85th anni (exsamy)

ullet For $A\in\mathcal{T}$, we define $\overline{A}\in\mathcal{T}_{\flat}$ as follows:

$$-\overline{s} \equiv s$$
 $\overline{x} \equiv x$ $\overline{AB} \equiv \overline{A} \overline{B}$

- $\overline{\lambda_{x:A}.B} \equiv \overline{\Pi_{x:A}.B} \equiv \flat_{x:\overline{A}}.\overline{B}.$
- For contexts we define: $\overline{\langle \rangle} \equiv \langle \rangle$ $\overline{\Gamma, x : A} \equiv \overline{\Gamma}, x : \overline{A}$.
- For $A \in \mathcal{T}_{\flat}$, we define [A] to be $\{A' \in \mathcal{T} \text{ such that } \overline{A'} \equiv A\}$.
- For context, obviously: $[\Gamma] \equiv \{\Gamma' \text{ such that } \overline{\Gamma'} \equiv \Gamma\}.$

Isomorphism of the cube and the \(\beta\)-cube

Kamareddine 2002 [7] showed that:

- If $\Gamma \vdash A : B$ then $\overline{\Gamma} \vdash_{\flat} \overline{A} : \overline{B}$.
- If $\Gamma \vdash_{\flat} A : B$ then there are unique $\Gamma' \in [\Gamma]$, $A' \in [A]$ and $B' \in [B]$ such that $\Gamma' \vdash_{\pi} A' : B'$.
- The b-cube enjoys the desirable properties of the cube such as Church Rosser, Strong Normalisation and Subject reduction.

Extending the \flat -cube with Π -reduction

If we change (appb) by (new appb) in the b-cube we lose subject reduction.

$$(\mathsf{appb}) \ \frac{\Gamma \vdash_{\flat} F: (\Pi_{x:A}.B) \quad \Gamma \vdash_{\flat} a: A}{\Gamma \vdash_{\flat} Fa: B[x:=a]}$$

$$(\text{new appb}) \ \ \frac{\Gamma \vdash_{\flat} F : (\flat_{x:A}.B) \quad \Gamma \vdash_{\flat} a : A}{\Gamma \vdash_{\flat} Fa : (\flat_{x:A}.B)a}$$

ML

- The example below is due to Joe Wells:
- ML treats let val id = (fn $x \Rightarrow x$) in (id id) end as this Cube term $(\lambda id:(\Pi\alpha:*.\alpha\to\alpha).id(\beta\to\beta)(id\beta))(\lambda\alpha:*.\lambda x:\alpha.x)$
- To type this in the Cube, the $(\Box, *)$ rule is needed (i.e., $\lambda 2$).

ullet Therefore, ML should not have the full Π -formation rule $(\square,*)$.

- ML's type system is none of those of the eight systems of the Cube.
- Parameters helped Laan [10] place the type system of ML on a refined Cube (between $\lambda 2$ and $\lambda \omega$).

LF

- LF [6] is often described as λP of the Barendregt Cube.
- Geuvers showed that Use of Π -formation rule $(*, \square)$ is very restricted in the practical use of LF [5].
- The only need for a type $\Pi x:A.B: \square$ is when the Propositions-As-Types principle PAT is applied during the construction of the type $\Pi \alpha: \mathtt{prop}.*$ of the operator Prf where for a proposition Σ , $\mathsf{Prf}(\Sigma)$ is the type of proofs of Σ .

$$\frac{\texttt{prop}:* \vdash \texttt{prop}:* \quad \texttt{prop}:*, \alpha : \texttt{prop} \vdash *: \square}{\texttt{prop}:* \vdash \Pi \alpha : \texttt{prop}.*: \square}.$$

• In LF, this is the only point where the Π -formation rule $(*, \square)$ is used.

- But, Prf is only used when applied Σ :prop. We never use Prf on its own.
- This use is in fact based on a parametric constant rather than on Π -formation.
- Hence, the practical use of LF would not be restricted if we present Prf in a parametric form, and use $(*, \Box)$ as a parameter instead of a Π -formation rule.
- Again, Laan [10] finds a more precise position of LF on the Cube (between $\lambda \rightarrow$ and λP).

Extending the Cube with parametric constants

- We add parametric constants of the form $c(b_1, \ldots, b_n)$ with b_1, \ldots, b_n terms of certain types and $c \in C$.
- b_1, \ldots, b_n are called the *parameters* of $c(b_1, \ldots, b_n)$.
- R allows several kinds of Π -constructs. We also use a set P of (s_1, s_2) where $s_1, s_2 \in \{*, \square\}$ to allow several kinds of parametric constants.
- $(s_1, s_2) \in P$ means that we allow parametric constants $c(b_1, \ldots, b_n) : A$ where b_1, \ldots, b_n have types B_1, \ldots, B_n of sort s_1 , and A is of type s_2 .
- If both $(*, s_2) \in P$ and $(\square, s_2) \in P$ then combinations of parameters allowed. For example, it is allowed that B_1 has type *, whilst B_2 has type \square .

The Cube with parametric constants

- Let $(*,*) \subseteq R, P \subseteq \{(*,*),(*,\square),(\square,*),(\square,\square)\}.$
- $\lambda RP = \lambda R$ and the two rules ($\overset{\rightarrow}{\mathbf{C}}$ -weak) and ($\overset{\rightarrow}{\mathbf{C}}$ -app):

$$\frac{\Gamma \vdash b : B \quad \Gamma, \Delta_i \vdash B_i : s_i \quad \Gamma, \Delta \vdash A : s}{\Gamma, c(\Delta) : A \vdash b : B} \ (s_i, s) \in \boldsymbol{P}, c \text{ is } \Gamma\text{-fresh}$$

$$\Gamma_{1}, c(\Delta):A, \Gamma_{2} \vdash b_{i}:B_{i}[x_{j}:=b_{j}]_{j=1}^{i-1} \quad (i=1,\ldots,n)
\Gamma_{1}, c(\Delta):A, \Gamma_{2} \vdash A:s \quad \text{(if } n=0)
\Gamma_{1}, c(\Delta):A, \Gamma_{2} \vdash c(b_{1},\ldots,b_{n}):A[x_{j}:=b_{j}]_{j=1}^{n}$$

$$\Delta \equiv x_1:B_1,\ldots,x_n:B_n.$$

$$\Delta_i \equiv x_1:B_1,\ldots,x_{i-1}:B_{i-1}$$

The refined Barendregt Cube

LF, ML, $\mathrm{Aut}\text{-}68$, and $\mathrm{Aut}\text{-}\mathrm{QE}$ in the refined Cube

The $\flat_{i\delta\sigma p}$ -cube

- Bloo showed in [2] that PTSs with explicit substitutions lose desirable properties. He gives a solution based on definitions in contexts.
- Kamareddine showed in [7] that the b-cube loses the desirable properties of correctness of types and subject reduction. She gives a solution based on definitions in contexts. Parameters cause no problems in the cube.
- \bullet Substitutions can help solve the problem of local reductions of $\Delta\Lambda$ (see tomorrow).
- Kamareddine [7] defines the cube which has definitions in contexts, substitutions, parameters, and identifies λ and Π
- $\mathcal{T}_a ::= * | \Box | \mathcal{V} | \mathcal{C}(\mathcal{L}_T) | \flat_{\mathcal{V}:\mathcal{T}_a} \mathcal{T}_a | \mathcal{T}_a \mathcal{T}_a | \mathcal{T}_a [\mathcal{V} \leftarrow \mathcal{T}_a]$, and $\mathcal{L}_T ::= \varnothing | \mathcal{L}_T, \mathcal{T}_a$.

• [7] shows that this cube has the desirable properties of correctness of types and subject reduction.

References

- [1] S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions and the other systems in Barendregt's cube. Technical report, Dept. of Computer Science, Carnegie-Mellon University and Dipartimento Matematica, Universita di Torino, 1988.
- [2] R. Bloo. The Barendregt cube with explicit vsubstitutions. Mathematical Structures in Computer Science, 2000.
- [3] D.T. van Daalen. A description of Automath and some aspects of its language theory. In P. Braffort, editor, *Proceedings of the Symposium APLASM*, volume I, pages 48–77, 1973.

- [4] D.T. van Daalen. *The Language Theory of Automath*. PhD thesis, Eindhoven University of Technology, 1980.
- [5] J.H. Geuvers. *Logics and Type Systems*. PhD thesis, Catholic University of Nijmegen, 1993.
- [6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In *Proceedings Second Symposium on Logic in Computer Science*, pages 194–204, Washington D.C., 1987. IEEE.
- [7] F. Kamareddine. *On Functions and Types: A Tutorial*, volume 2540 of *Lecture Notes in Computer Science*, pages 74–93. Springer Verlag, 2002.
- [8] F. Kamareddine, R. Bloo, and R.P. Nederpelt. On π -conversion in the λ -cube and the combination with abbreviations. *Annals of Pure and Applied Logics*, 97:27–45, 1999.

- [9] F. Kamareddine and R.P. Nederpelt. Canonical typing and Π -conversion in the Barendregt Cube. *Journal of Functional Programming*, 6(2):245–267, 1996.
- [10] T. Laan. *The Evolution of Type Theory in Logic and Mathematics*. PhD thesis, Eindhoven University of Technology, 1997.
- [11] J. Terlouw. Een nadere bewijstheoretische analyse van GSTT's. Technical report, Department of Computer Science, University of Nijmegen, 1989.