MathLang: experience-driven development of a mathematical language

Fairouz Kamareddine

Manuel Maarek

Joe Wells

{fairouz,mm20,jbw}@macs.hw.ac.uk.

ULTRA Group, MACS, Heriot-Watt University

Situation of Mathematics on Computers

Encoding uses

draft documents
public documents
calculations and proofs

Existing encodings

for printing and rendering
for formalization
for semantical manipulations

Our Aim

One single language which can satisfy each use to be the interface between mathematicians and computers

A framework to make the link with existing systems

MathLang

An example

From chapter 1, § 2 of E. Landau's Foundations of Analysis [Lan51].

Theorem 6 (Commutative Law of Addition)

$$x + y = y + x$$
.

Proof Fix y, and \mathfrak{M} be the set of all x for which the assertion holds.

I) We have

$$y + 1 = y',$$

and furthermore, by the construction in the proof of Theorem 4,

$$1 + y = y',$$

so that

$$1 + y = y + 1$$

and 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$x + y = y + x,$$

Therefore

$$(x+y)' = (y+x)' = y+x'.$$

By the construction in the

proof of Theorem 4, we have

$$x' + y = (x + y)',$$

hence

$$x' + y = y + x',$$

so that x' belongs to \mathfrak{M} .

The assertion therefore holds for all x.

A LATEX encoding

draft documents

public documents

calculations and proofs

X

```
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}
 $$x+y=y+x.$$
\end{theorem}
\begin{proof}
 Fix y, and \mathbf{M} be the set of all x for which the
 assertion holds.
 \begin{enumerate}
 \item We have \$\$y+1=y',\$\$
   and furthermore, by the construction in
   the proof of Theorem \ref{theorem:4}, \$\$1+y=y',\$\$
   so that
   $$1+y=y+1$$
   and $1$ belongs to \mathbf{M}.
 \item If x$ belongs to \mathrm{mathfrak}\{M\}$, then x+y=y+x
   Therefore
   $$(x+y)'=(y+x)'=y+x'.$$
   By the construction in the proof of
   hence
   $$x'+y=y+x',$$
   so that x'$ belongs to \mathbf{M}
 \end{enumerate}
 The assertion therefore holds for all $x$.
\end{proof}
```

A formal encoding in Coq

From Module Arith. Plus of Coq standard library

```
(http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Oed.
```

A view of a formal encoding

draft documents

public documents

calculations and proofs

✓

Same Module Arith.Plus presented by HEAM (http://helm.cs.unibo.it/).

```
DEFINITION plus_sym()
TYPE =
       "n:nat."m:nat.((n+m)=(m+n))
BODY =
       ln:nat
         .lm:nat
           .We prove ((n+m)=(m+n))
           by induction on n
               Case O
                   (plus_n_0 .) Proof of
                    we proved (m=(m+0))
               Case (S y:nat)
                   By induction hypothesis, we have:
                   (H) ((y+m) = (m+y))
                   (f equal . . . . H)
                   we proved ((1+(y+m))=(1+(m+y)))
                   Rewrite (1+(m+y)) with (m+(1+y)) by (plus_n\_Sm...)
                    we proved ((1+(y+m))=(m+(1+y)))
           we proved ((n+m)=(m+n)) Proof of
        we proved "n:nat."m:nat.((n+m)=(m+n))
```

An OMDoc/OpenMath encoding

draft documents

public documents

calculations and proofs

✓

OMDoc / OpenMath

```
http://www.mathweb.org/omdoc/ http://www.openmath.org/
<assertion id="th6" type="theorem">
   <commonname> Commutative Law for Addition
   <FMP> x + y = y + x
of id="pr-th6" for="th6">
   <CMP> Fix y, and \mathfrak{M} be the set of all x for which
         the assertion holds.
   <derive> <CMP> /) base case
   <derive> <CMP> // induction hypothesis
   <conclude> <CMP> The assertion therefore holds
                     for all x.
```

draft documents	✓
public documents	✓
calculations and proofs	1

- MathLang describes the grammatical and reasoning structure of mathematical texts
- A weak type system checks MathLang documents at a grammatical level
- MathLang eventually should support all encoding uses

From MV to WTT to MathLang

N.G. de Bruijn's Mathematical Vernacular

The idea to develop MV arose from the wish to have an intermediate stage between ordinary mathematical presentation on the one hand, and fully coded presentation in Automath-like systems on the other hand.

[dB87]

- Variables, constants and binders
- Line-by-line structure
- Notions of low-typing and high-typing

From MV to WTT to MathLang

The Weak Type Theory

- WTT refined MV by assigning a unique atomic weak type to each text element
- A meta-theory describes properties of WTT documents

WTT and its meta-theory have been designed by F. Ka-mareddine and R. Nederpelt [NK01, KN]

From MV to WTT to MathLang

MathLang

- MathLang extends MV and WTT
- MathLang is closer to a grammatical encoding
- MathLang's development is driven by translation experiences
- MathLang's framework development intends to eventually satisfy mathematicians' needs

Grammatical categories

- ${\mathbb T}$ terms
- S sets
- $\mathbb N$ nouns
- A adjectives
- P statements

- **D** definitions
- **Z** declarations
- Γ contexts with flags
- L lines
- K blocks
- B books

Weak type checking

Terms Sets N Nouns P Statements Z Declarations Γ Context

```
Let \mathfrak{M} be a set, y and x are natural numbers, if x belongs to \mathfrak{M} then x+y=y+x
```

(idealized view of presentation form, not yet designed)

Weak type checking

```
    Terms Sets N Nouns P Statements Z Declarations Γ Context
```

```
Let \mathfrak{M} be a set, y and x are natural numbers, if x belongs to \mathfrak{M} then x + y
```

← error

Theorem 6 (Commutative Law of Addition)

$$x + y = y + x$$
.

Proof Fix y, and \mathfrak{M} be the set of all x for which the assertion holds.

I) We have

$$y + 1 = y',$$

and furthermore, by the construction in the proof of Theorem 4,

$$1 + y = y',$$

so that

$$1 + y = y + 1$$

and 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$x + y = y + x,$$

Therefore

$$(x+y)' = (y+x)' = y+x'.$$

By the construction in the

proof of Theorem 4, we have

$$x' + y = (x+y)',$$

hence

$$x' + y = y + x',$$

so that x' belongs to \mathfrak{M} . The assertion therefore holds for all x.

An internal view of a MathLang document

$x:\mathbb{N},y:\mathbb{N} hoTh6(x,y):=x+y=y+x$	(97)
Proof Theorem 6	{2.5.4}
Proof Theorem 6 part I	{2.5.4.1}
$y:\mathbb{N}$	
m:SET	
$\forall_{x:\mathfrak{M}}Th6(x,y)$	
$ (Def + (38)) \triangleright y + 1 = y'$	(98)
$ \{2.5.1\} \triangleright 1 + y = y'$	(99)
$(98), (99) \triangleright 1 + y = y + 1$	(100)
	(101)
	(102)
Proof Theorem 6 part II	{2.5.4.2}
$x:\mathfrak{M}$	
	(103)
$(103) \triangleright (x+y)' = (y+x)'$	(104)
$ (Def + (39)) \triangleright (y + x)' = y + x' $	(105)
$(104), (105) \triangleright (x+y)' = y+x'$	(106)
$ \{2.5.2\} \triangleright x' + y = (x+y)' $	(107)
$ (107), (Def + (39)) \triangleright x' + y = y + x' $	(108)
	(109)
	(110)
	(111)
$(111) \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} Th6(x,y) $	(112)

Experience-driven development of MathLang

- Language description
 blocks flags references
- Translation first chapter of Foundations of Analysis [Lan51]
- Implementation type checker

Implementation

- XML syntax internal representation, not for users to read/write
- Checker for weak types analysing the bindings and the grammatical structure
- Transformation programs
 overview of the content, structure and type information

Future Work

- Extensions of the language
- Translations of Foundations of Analysis [Lan51] and The 13 Books of Euclid's Elements [Hea56]
- Transparent integration of MathLang in the scientific text editor T_EX_{MACS} http://www.texmacs.org/
- Annotation of OMDoc with MathLang grammatical information

Conclusion

MathLang

- Experience-driven development
- Inspired by the common mathematical language
- Mathematician-oriented framework

References

- [dB87] N.G. de Bruijn. The mathematical vernacular, a language for mathematics with typed sets. In *Workshop on Programming Logic*, 1987.
- [Hea56] Heath. The 13 Books of Euclid's Elements. Dover, 1956.
- [KN] Fairouz Kamareddine and Rob Nederpelt. A refinement of de Bruijn's formal language of mathematics. To appear in Journal of Logic, Language and Information.
- [Lan51] Edmund Landau. *Foundations of Analysis*. Chelsea, 1951. Translation from German by F. Steinhardt.
- [NK01] Rob Nederpelt and Fairouz Kamareddine. An abstract syntax for a formal language of mathematics. In *Fourth International Tbilisi Symposium on Language, Logic and Computation*, September 2001.