A Refinement of Barendregt’s Cube with
Non-First-Class Functions
Fairouz Kamareddine
Heriot-Watt University

Edinburgh, Scotland
http://www.macs.hw.ac.uk/ "fairouz/talks/talks2003/indiana.ps

4 April 2003

Indiana University

Summary

e General definition of function is key to Frege's formalisation of logic (1879).
e Self-application of functions was at the heart of Russell’s paradox (1902).

e To avoid paradoxes, Russell controlled function application via type theory.
o Russell (1908) gives the first type theory: the Ramified Type Theory (RTT).
e RTT is used in Russell and Whitehead's Principia Mathematica (1910-1912).
e Simple theory of types (STT): Ramsey (1926), Hilbert and Ackermann (1928).

e Frege's functions # Principia’s functions # \-calculus functions (1932).

Indiana University

e Church’s simply typed A-calculus A— = A-calculus 4+ sTT (1940).

e Both RTT and STT are unsatisfactory. Hence, birth of different type systems,
each with different functional power. All based on Church’'s A-calculus.

e Eight influential typed A\-calculi 1940-1988 unified in Barendregt’s cube.

e Not all functions need to be fully abstracted as in the A-calculus. For some
functions, their values are enough.

e Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

e We extend the cube of the eight influential type systems with non-first-class
functions showing that this allows placing the type systems of ML, LF and
Automath more accurately in the hierarchy of types.

Indiana University 2

Prehistory of Types (Paradox Threats)

e [ypeshave always existed in mathematics, but not explicited until 1879. Euclid
avoided impossible situations (e.g., two parallel points) via classes/types.

e In formal systems, intuition can’t use implicit types to avoid impossibilities.

e In 19th century, controversies in analysis led to mathematical precision.
(Cauchy, Dedekind, Cantor, Peano, Frege).

e Frege's general definition of function was key to his formalisation of logic.

Abstraction Principle 1.
“If in an expression, [. . . | a simple or a compound sign has one or more occurrences and
if we regard that sign as replaceable in all or some of these occurrences by something else
(but everywhere by the same thing), then we call the part that remains invariant in the
expression a function, and the replaceable part the argument of the function.”

Indiana University 3

Prehistory of Types (Begriffsschrift/Grundgesetze)

e An argument could be a number (as in analysis), a proposition, or a function.

e Distinguishing I1st- and 2nd-level objects avoids paradox in Begriffsschrift:

“As functions are fundamentally different from objects, so also functions whose arguments
are and must be functions are fundamentally different from functions whose arguments are
objects and cannot be anything else. | call the latter first-level, the former second-level.”

e In Grundgesetze Frege described arithmetic in an extension of Begriffsschrift.
e To avoid paradox, he applied a function to its course-of-values, not itself

e Frege treated courses-of-values as ordinary objects. Hence, a function that
takes objects as arguments could have its own course-of-values as an argument.

Indiana University 4

Russell’s Paradox, vicious circle principle

e In 1902, Russell wrote Frege saying he discovered a paradox in Begriffsschrift
using f(z) = —x(x), (Begriffsschrift does not suffer from a paradox).

o Frege replied: Russell's derivation was incorrect, f(f) is not possible in
Begriffsschrift: f(x) needs objects as arguments; functions are not objects.

e Using courses-of-values, Russell’s argument gives a paradox in Grundgesetze

Russell avoided all possible self-references by the “vicious circle principle VCP”:

“Whatever involves all of a collection must not be one of the collection.”

e VCP implemented by a double hierarchy of types: (simple) types and orders.

e The ideas behind simple types was already explained by Frege.

Indiana University 5

e Due to problems with RTT, the (Axiom of Reducibility AR) was introduced
“For each formula f, there is a formula g with a predicative type such that f and g are
(logically) equivalent.”

e RTT without AR was considered too restrictive and AR itself was questionned.
e Ramsey distinguishes the logical/syntactical and semantical paradoxes.

e RTT without orders eliminates logical paradoxes. Separating language and
meta language eliminates semantical paradoxes. No need for orders.

e Simple Theory of Types (STT) is RT'T without orders.

e STT is not Church’s A —. STT existed (1926) before \-calculus (1932).

Indiana University 6

The evolution of functions with Frege and Church

Historically, functions have long been treated as a kind of meta-objects.

Function values were the important part, not abstract functions.

In the low level/operational approach there are only function values.

The sine-function, is always expressed with a value: sin(7), sin(xz) and
properties like: sin(2x) = 2sin(z) cos(x).

In many mathematics courses, one calls f(z)—and not f—the function.

Frege, and Church wrote z — x + 3 resp. as = + 3, and \z.x + 3.

Principia’s functions are based on Frege's Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

Indiana University 7

e Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.

e In Principia Mathematica [15]: If, for some a, there is a proposition ¢a, then
there is a function ¢z, and vice versa.

e The function ¢ is not a separate entity but always has an argument.

e Frege denoted the course-of-values (graph) of a function ®(x) by ¢®(¢).

e :P(e) may have given Russell's 2®(x) for the class of objects with property ®.
e According to Rosser, the notation 2®(x) is the basis of the notation \xz.P.

e Church wrote Nz®(z) for x — ®(x) to distinguish it from the class 2®(x).

Indiana University 8

A-calculus does not fully represent functionalisation

1. Abstraction from a subexpression 2+ 3 — z + 3

2. rT+3— .z +3
3. (Az.z + 3)2
4. (Az.(x+3))2—2+3

e cannot abstract only half way: = 4+ 3 is not a function, Az.xz + 3 is.

e cannot apply z + 3 to an argument: (x + 3)2 does not evaluate to 2+3.

Indiana University

Common features of modern types and functions

e We can construct a type by abstraction. (Write A : x for A is a type)

— A\y:4.Y, the identity over A has type A — A
— Aa:x.A\y: 4.y, the polymorphic identity has type I14... A — A

e We can instantiate types. E.g., if A =N, then the identity over N

— (Ay:a.y)[A :=N]| has type (A - A)[A:=N] or N - N.
— (Aa:x-Ay:a.y)N has type (I14... A - A)IN = (A — A)[A:=N] or N— N.

o (\r:a.A)B —p Alz := B] (Iz:a.A)B —11 Alz := B]

o Write A — A asIl,.4.A when y not free in A.

Indiana University 10

e Syntax: A=z |x| 0| AB | x:A.B|1lz:A.B

The Barendregt Cube

I'-A:s I'x:AF B :s
e Formation rule: - i—lﬂx:/;.B = 2 if (s1,s2) € R
Simple Poly- Depend- | Constr- | Related Refs.
morphic ent uctors | system

A— (*, *) AT 4, 1, 9]
A2 (%, *) (O, *) F 7, 14]
AP (%, %) (%, 0) AUT-QE, LF | [3, 8]
Aw (%, %) (O0,0) | POLYREC 13]
AP2 | (x,%) (O, *) (x,0) 11]
Aw | (k%) | (0, %) (0,0) | Fw 7]
APw | (x, %) (x,0) (O, 0)
AC | (%) | (B,%) | (x,0) | (3,0) | CC 5]

Indiana University

11

The Barendregt Cube

AW

/

A2

AP2

MPw

AP

/

Indiana University

/

1, %

)ER

- (%, [

JER

12

Typing Polymorphic identity needs (O, *)

y:xFy:x yrixziyby:x

by (II) (x,
* y . x Flziy.y @ y (I (%)

yrx,xiytFaxiy y:xEIriyy :ox

by (A
) y:xEAryx: Hey.y y (A)

- [X TR T
.I—* y:x EIlxy.y % by (I1) (7,)
- Iy : x.Ilx:y.y @ *

y:xFAryx:lryy Flly: «Ilzy.y: *
. by ()
Ay cxAx oy Iy - xIlx:y.y

Indiana University 13

ML

o ML treats let val id = (fn 2z =) in (id id) end as this Cube term
(Aid:(TTa:*. @ —). id(B — B)(id B)) (Aazx. Az:a.)

e To type this in the Cube, the (O, %) rule is needed (i.e., A2).

e ML's typing rules forbid this expression:
let val id = (fn z = z) in (fn y = yy)(id id) end
Its equivalent Cube term is this well-formed typable term of A\2:
(Aid : (TTazx. a —).
(Ay:(Iaz. o =). y(B — B)(y B))
(Aazx.id(a — a)(ida)))
(Aazx. Ax:a. x)

e Therefore, ML should not have the full II-formation rule (O,).

Indiana University 14

e ML has limited access to the rule (O, %) enabling some things from A2 but not
all.

e ML's type system is none of those of the eight systems of the Cube.

e We place the type system of ML on our refined Cube (between A2 and \w).

Indiana University 15

LF
e LF [8] is often described as AP of the Barendregt Cube.

e Use of II-formation rule (*,0) is very restricted in the practical use of LF [6].
e The only need for a type Ilz:A.B : O is when the Propositions-As-Types

principle PAT is applied during the construction of the type Ila:prop.* of the
operator Prf where for a proposition ¥, Prf(X) is the type of proofs of 3.

prop:* - prop: * prop:*,a:prop - *:0
prop:* F Ila:prop.x : O '

e In LF, this is the only point where the II-formation rule (x, O) is used.

e But, Prf is only used when applied >:prop. We never use Prf on its own.

Indiana University 16

e This use is in fact based on a parametric constant rather than on II-formation.

e Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (*,0) as a parameter instead of a II-formation rule.

e We will find a more precise position of LF on the Cube (between A\— and A\P).

Indiana University 17

Parameters: What and Why

We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

Parameters enable the same expressive power as the high-level case, while

allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [10].

Desirable properties of the lower order theory (decidability, easiness of

calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

This low-level approach is still worthwhile for many exact disciplines. In fact,

both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

Indiana University 18

Automath
The first tool for mechanical representation and verification of mathematical

proofs, AUTOMATH, has a parameter mechanism.

Mathematical text in AUTOMATH written as a finite list of /ines of the form:
r1: A, ApFg(xy, ..) =t T,

Here g is a new name, an abbreviation for the expression ¢t of type 1" and

x1,...,%, are the parameters of g, with respective types A4, ..., A,.

Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

Developments of ordinary mathematical theory in AUTOMATH [2] revealed
that this combined definition and parameter mechanism is vital for keeping
proofs manageable and sufficiently readable for humans.

Indiana University 19

Extending the Cube with parametric constants

We add parametric constants of the form ¢(b1,...,b,) with by,...,b, terms
of certain types and ¢ € C.

b1, ...,by, are called the parameters of c(by,...,b,).

R allows several kinds of II-constructs. We also use a set P of (s1,s2) where
1,82 € {x,0} to allow several kinds of parametric constants.

(s1,s2) € P means that we allow parametric constants ¢(by,...,b,) : A where
bi,...,b, have types Bq,..., B, of sort s1, and A is of type ss.

If both (x,s2) € P and (I, s3) € P then combinations of parameters allowed.
For example, it is allowed that B; has type *, whilst By has type .

Indiana University 20

The Cube with parametric constants
o Let (x,%) C R, P C {(x,%),(x,0),(0,%),(0,0)}.

— —
¢ \RP = AR and the two rules (C-weak) and (C-app):

I'c(A): AFb: B (si,8) € P,cis I'-fresh

Fl, C(A):A, FQ - bz Bi[SBjZ: J]; 11 (’L — 1, ,’I’L)
Fl, C(A)ZA, Fg F A:s (If n — 0)
Fl, C(A) A, FQ - C(bl, c oy bn) A[xj::bj]?zl

A=ux1:By,...,x,:B,.
Ai = $1:B1, “. ,SCi_ltBi_l

Indiana University 21

Properties of the Refined Cube
e (Correctness of types) If ' - A : B then (B = Oorl' + B

S for some sort §).
e (Subject Reduction SR) If ' A: Band A =3 A" thenI' - A': B
e (Strong Normalisation) For all t--legal terms M, we have SN_,, ;(M).
e Other properties such as Uniqueness of types and typability of subterms hold.
e \RP is the system which has II-formation rules R and parameter rules P.

o Let ARP parametrically conservative (i.e., (s1,s2) € P implies (s1,s2) € R).

— The parameter-free system AR is at least as powerful as ARP.
—If l_RP a : A then ‘F‘ |_R |a| : |A‘ .

Indiana University 22

Example
o R={(xx%),(x,0)}
Pi=0 Py={(xx} Ps={(x0} Pi={(x*),(0)
All A\ARP; for 1 <1 < 4 with the above specifications are all equal in power.

o R5={(x,%)} P5 = {(x,%), (x,0)}.
A— < AR5Ps5 < AP: we can to talk about predicates:

o %,
eq(x:, y:av) %,
refl(x:a) eq(x, x),
sym(xa, o, peq(x,y)) ¢ eqly,x),
trans(x:a, y:a, z:a, p:eq(x,y),q:eq(y, 2)) eq(x, z)

eq not possible in A—.

Indiana University

23

The refined Barendregt Cube
|/[)\<|y/|

Indiana University

A2

/

AP2

Aw
=

pb—

APw

_— AP

24

LF, ML, AuT-68, and AuT-QE in the refined Cube

Indiana University

A2

ML

AP2

VE

APw

LF

25

Logicians versus mathematicians and induction over numbers

Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in AR where R = {(x,), (%,), (O, %) }:

Ind = Ip:(N—x).p0— (IIn:N.Ilm:N.pn— Snm—pm)—1n:N.pn (1)
Mathematician uses ind only with P : N—x, (¢ : PO and R
(ITn:N.IIm:N.Pn— Snm—Pm) to form a term (ind PQR):(IIn:N.Pn).

The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, ¢ and r are the parameters of the scheme):

ind(p:N—=x, ¢:p0, r:(IIn:N.Ilm:N.pn— Snm—pm)) : IIn:N.pn (2)
The logician’'s type Ind is not needed by the mathematician and the types
that occur in 2 can all be constructed in AR with R = {(x*,*)(x, O)}.

Indiana University 26

Logicians versus mathematicians and induction over numbers

e Mathematician: only applies the induction axiom and doesn’'t need to know
the proof-theoretical backgrounds.

e A logician develops the induction axiom (or studies its properties).

e (O,x) is not needed by the mathematician. It is needed in logician's approach
in order to form the Il-abstraction IIp:(N — *).---).

e Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

e Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

Indiana University 27

Conclusions

e Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [10].

e Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

e Parameters describe the difference between developers and users of systems.

Indiana University 28

References

[1] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics 103. North-Holland,
Amsterdam, revised edition, 1984.

[2] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the
Automath system. PhD thesis, Eindhoven University of Technology, 1977.
Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch
Centrum, 1979).

[3] N.G. de Bruijn. The mathematical language AUTOMATH, its usage and
some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger,

Indiana University 29

editors, Symposium on Automatic Demonstration, pages 29-61, IRIA,
Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics
125; also in [12], pages 73-100.

[4] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56—68, 1940.

[5] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95-120, 1988.

[6] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of
Nijmegen, 1993.

[7] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
I'arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Indiana University 30

[8] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Proceedings Second Symposium on Logic in Computer Science, pages
194-204, Washington D.C., 1987. IEEE.

[9] J.R. Hindley and J.P. Seldin. Introduction to Combinators and A-calculus,
volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, 1986.

[10] Twan Laan and Michael Franssen. Parameters for first order logic. Logic
and Computation, 2001.

[11] G. Longo and E. Moggi. Constructive natural deduction and its modest
interpretation. Technical Report CMU-CS-88-131, Carnegie Mellono
University, Pittsburgh, USA, 1988.

Indiana University 31

[12] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers
on Automath. Studies in Logic and the Foundations of Mathematics 133.
North-Holland, Amsterdam, 1994.

[13] G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for
recursively defined types. Information and Computation, 99:154-177, 1991.

[14] J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture
Notes in Computer Science, pages 408—425. Springer, 1974.

[15] A.N. Whitehead and B. Russell. Principia Mathematica, volume 1, Il, IlI.

Cambridge University Press, 1910%, 19272. All references are to the first
volume, unless otherwise stated.

Indiana University 32

