ULTRA: Useful Logics, Types,
Rewriting, and Automation

Fairouz Kamareddine
Heriot-Watt University

2003-01-31

Overview

Introduction to ULTRA.
Logics, Types, and Rewriting: What and Why.

Specific Research Topics and Future Directions.

Aain way information
ravels in society:

lumber of parts in
omplex machine:

Vorst consequences of
ingle machine failure:

ikelihood a machine
1cludes a computer:

A Century of Complexity

1900

2000

paper

electric signals, radio

10,000 (locomotive)

1,000,000,000 (CPU)

100s die

end of all life?

very low

very high

The Need for Formalism

Because of the increasing interdependency of systems and the faster and more automatic
travel of information, failures can have a wide impact. So correctness is important.

Modern technological systems are just too complicated for humans to reason about
unaided, so automation is needed.

Systems have so many possible states that testing is often impractical. It seems that
proofs are needed to cover infinitely many situations.

So some kind of formalism is needed to aid in design and to ensure safety.

What Kind of Formalisms?

reasoning formalism should at /east be:

Correct: Only correct statements can be “proven”.
Adequate: Needed properties in the problem domain can be stated and proved.

Feasible: The resources (money, time) used in stating and proving needed properties
must be within practical limits.

What Kind of Formalisms?

suming a minimally acceptable formalism, we would also like it to be:

Efficient. Costs of both the reasoning process and the thing being reasoned about should
be minimized.

Supportive of reuse: Slight specification changes should not force reproving properties
for an entire system. Libraries of pre-proved statements should be well supported.

Elegant: The core of the reasoning formalism should be as simple as possible, to aid in
reasoning about the formalism itself.

Hseful ULTRA Research Themes

]ogics
Logic is the foundation for rigorous reasoning. There is an ongoing search for better
logics and for better methods for verifying the correctness of logics.

lypes
Types are a foundation for making logics more flexible without losing correctness and

safety. Types are also being used increasingly often for analyzing complex higher-order
systems.

]ewriting

Rewriting is using rules of logic, mathematics, or computation in a stepwise manner.
Rewriting theory supports reasoning about equivalences between propositions or programs
and efficient computation strategies.

d their

Jutomation
Modern theories of logic, types, and rewriting and the systems to which they are applied
have become so complicated that automation is essential.

Jpplications
Systems of logic, types, and rewriting have applications in the design and implementation
of programming languages and theorem provers, in mathematics and in natural language.

Overview

Introduction to ULTRA.
Logics, Types, and Rewriting: What and Why.

Specific Research Topics and Future Directions.

Proofs? Logics? What are they?

A proof is the guarantee of some statement provided by a rigorous explanation stated
using some /logic.

A logic is a formalism for statements and proofs of statements. A logic usually has
axioms (statements “for free”) and rules for combining already proven statements to
prove more statements.

For example, this is provable in the logic PROP:
A B, A—-B—-CFC

This is not:
A B, A—-D—-CHC

Why do we believe the explanation of a proof? Because a proved statement is derived
step by step from explicit assumptions using a trusted logic.

Logic is an Area of Active Research

New logics are regularly invented for specialized purposes. Known logics may be too
inflexible for the task. Or they may be too flexible, interfering with automated proof

search.

Broken logics are regularly invented. A recent example: The 1988 version of the OCL
(Object Constraint Language) sublanguage of UML (Unified Modelling Language) had
Russell's paradox of a nearly a century earlier! It is still not known if the revised OCL

and/or UML is consistent.

There has been an explosion of new logics in the 20th century. How do we know which
ones to trust?

What are Types?

Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

5. A circle is a plane figure contained by one line such that all the straight lines falling
upon it from one point among those lying within the figure are equal to one another.

Although the above seems to merely define points, lines, and circles, more importantly
it distinguishes between them.

This prevents undesired reasoning, like considering whether two points (instead of two
lines) are parallel.

Undesired reasoning? Euclid would have said: impossible reasoning. When considering
whether objects are parallel, intuition implicitly forced Euclid to think about the type of
the objects. Because intuition does not support parallel points, Euclid does not even try
such reasoning.

Why Types are Needed for Logic

Mathematical systems have become less intuitive, for several reasons:

— very complex or abstract
— formal

— Something without intuition is using the system: a computer.

Non-intuitive systems are vulnerable to paradoxes. The human brain’s built-in type
machinery can fail to warn against an impossible situation. Reasoning can proceed
obtaining results that may be wrong or paradoxical.

Example: Russell [1902] and Frege [1902] showed that Naive Set Theory had a paradox.
Let S be “the set of all sets which do not contain themselves’. Then, both of these are
provable:

Ses S¢S

Russell [1908] Russell began the use of types to solve this problem.

A Quick Introduction to Rewriting

e all know how to do algebra:

(a+0b)—a by rule rT+y=y+zx
= (b+a)—a by rule r—y=z+ (—y)
= (b+a)+ (—a) by rule (x+y)+z=x+ (y+ 2)
= b+ (a+ (—a)) by rule x4+ (—z) =0
= b+0 by rule r+0=x
= b

writing is the action of replacing a subexpression which is matched by an instance of one
e of a rule by the corresponding instance of the other side of the same rule. If you know
rebra, you understand the basics of rewriting.

Important Issues in Rewriting

Orientation: Usually, most rules can only be used from left to right as in z + 0 — x.
Forward use of the oriented rules represents progress in computation. Unoriented rules

usually do trivial work as in x +y = y + «.

Termination: It is desirable to show that rewriting halts, i.e., to avoid infinite sequences
of the form P — Py — P, — - --.

Confluence: It is desirable that the result of rewriting is independent of the order in the
rules are used. For example, 1+ 2+ 3 should rewrite to 6, no matter how we evaluate it.

Higher-Order Rewriting and Logic

Church’s A-calculus provides higher-order rewriting, allowing equations like:

F(Oa. 2+ (1/))5) = £(5+ (1/5)) = f(5+0.2) = £(5.2)

Church [1940] introduced the simply typed A-calculus (STLC) and on top of it his Simple
Type Theory (CSTT) to provide paradox-free logic. The modern descendant of CSTT is

the so-called “higher-order logic” (HOL).

The Convergence of Logics, Types, and Rewriting

Heyting [1934], Kolmogorov [1932], Curry and Feys [1958] (improved by Howard [1980]),
and de Bruijn [Nederpelt et al., 1994] all observed the “propositions as types’ or “proofs
as terms" (PAT) correspondence.

In PAT, not only is the A-calculus embedded in the propositions as in HOL, but the
structure of proofs is also given by another level of A\-terms. A-terms are viewed as proofs
of the propositions represented by their types.

Advantages of PAT include:

— better proof manipulation,

— better independent proof checking,

— the extraction of computer programs from proofs, and

— proving the consistency of the logic via the termination of the rewriting system.

Overview

Introduction to ULTRA.
Logics, Types, and Rewriting: What and Why.

Specific Research Topics and Future Directions.

Automated Proving of Termination of Recursive Functions

EPSRC funded. Joint work with Francois Monin at IRISA in France.

Although the termination of recursive functions is an undecidable question, nevertheless
theorem provers need to prove the termination of user-supplied recursive functions.

Via the Curry-Howard isomorphism, this has implications for (functional) programming
languages (programs are proofs).

NQTHM requires the user to supply a decreasing measure. Coq establishes the
termination fully automatically, but only for a restricted class of functions (structurally
inductive).

In Germany and France, proving termination of recursive functions (automatically and
non-automatically) is a thriving subject.

New automatable techniques are needed for larger classes of functions.

Precise Systems for Theorem Proving and Prog. Languages

fined the well known Lambda Cube of 8 Pure Type Systems (PTSs) with 19 additional
ermediate systems:

AW

A2 AP2

/ML/ |

AW APw

LF AP

nded by the Royal society, the British council and the Dutch research council (NWO).
int work with Rob Nederpelt and Twan Laan in the Netherlands.

This provides logics with exact/y the needed reasoning power for the task at hand. This
can help both with automation as well as with proving a logic to be correct.

Some previous systems correspond to some of the new systems, giving better
classifications and improving our understanding.

Termination of Entire Systems

Joint work with: Alejandro Rios in Argentina and Roel Bloo in the Netherlands.
Funded by EPSRC and the Dutch research councils (NWO and SION).

Although termination is always useful and is essential for proving consistency of PAT-
based logics, in general it is undecidable.

Weak normalization involves showing termination for a specific strategy of choosing
rewrite steps. The hard part is finding the strategy.

New methods are needed for proving termination and finding terminating strategies.

The termination of subsystems of As. remains open despite many efforts in NL, France
and UK.

Automation of these methods is also a hot topic and libraries of automated proofs are
being developed in the USA, France and the UK.

With Qiao Hayan of Gothenberg, Sweden, we have automated the proofs of termination
of two entire calculi:
the French o-calculus and my own s-calculus in the Swedish theorem prover ALF.

(Higher-Order) Unification via Explicit Substitution

Funded by EPSRC and the Brasilian funding body CNPq.

Joint work with Mauricio Ayala-Rincon and Flavio de Moura at University of Brasilia in
Brasil. Based on work:

— In France: the Coq and rewriting teams in INRIA, universities of Paris and Nancy,
France.

Robinson’s resolution principle was extended to other settings such as the typed M-
calculus (Huet). This is essential for automated deduction in higher order logics. Several
Higher Order Unification (HOU) approaches have been developed and used in PLs and
TPs (e.g., A-prolog and lIsabelle).

HOU is undecidable and involves substitution (which is tricky in the A-calculus).

We need HOU methods that are useful for deduction in typed A-calculus and other
Higher-Order systems.

Unification Problem

Pre-cooking
translation Unification
rules
HOU-Problem Solutions
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Back
translation
Pre-cooking 1
Solutions

Language of the A-calculus
o Language of a A-calculus
-substitution- . L
of explicit substitutions

-grafting-

Figure 1: HOU method via calculi of explicit substitutions

Formalising and automating the natural language of mathematics

Joint work with Rob Nederpelt in Eindhoven, the Netherlands.

Funded by EU through a network of excellence involving Italy, France, UK, NL, Austria
and Germany, with collaborations from USA and Canada.

Mathematics is written in natural language: ambiguous, incomplete, poorly organised.

Mathematicians have rarely became interested in the huge amount of work of automating
mathematics (e.g., Automath) and of formalising it (e.g., Russell, Whitehead, Frege).

Existing automated systems are complex. Mathematicians do not see their advantages.

The challenge is to write mathematics in a formal automatable way which engages
mathematicians and promotes collaboration with computer scientists.

This enables:

. Computer assistance in the development of mathematics.

Il. Computerized verification of mathematical theories.

More Powerful Type Analysis for Programming Languages

- -~

F: System F. ,///// ML ﬂz\\\\\\\\
Ag: rank-k System F. /|| Ay ,"\" ‘\ﬂ3
(: intersection types. | |\ T
M,: rank-k of . ':\ 1_\'3// ,’: o ﬂ,':

| N /
Undecidable. 4 /

Wells has: T

Established the undecidability of System F and its finite-rank restrictions.
Proved decidability of finite-rank restrictions of intersection types at rank 3 and above.

Developed the first understandable analysis algorithms for the systems of intersection
types at rank 3 and above.

Supported by EPSRC, NSF and EU funding to develop these ideas for practical use.

onzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56—68,
1940.

B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1958.

Frege. Letter to Russell. English translation in [Heijenoort, 1967], pages 127-128, 1902.

van Heijenoort, editor. From Frege to Godel: A Source Book in Mathematical Logic,
1879-1931. Harvard University Press, Cambridge, Massachusetts, 1967.

Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Ergebnisse
der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1934.

. A. Howard. The formulaes-as-types notion of construction. In J. R[oger] Hindley and
J[onathan] P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 479-490. Academic Press, 1980. ISBN 0-12-349050-2.

An earlier version was privately circulated in 1969.

N. Kolmogorov. Zur Deutung der Intuitionistischen Logik. Mathematisches Zeitschrift,
35:58-65, 1932.

b Nederpelt, J. H. Geuvers, and Roel C. de Vrijer. Selected Papers on Automath.
North-Holland, Amsterdam, 1994.

Russell. Letter to Frege. English translation in [Heijenoort, 1967], pages 124-125, 1902.

Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, 30:222-262, 1908. Also in [Heijenoort, 1967], pages 150-182.

