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Some Notation
The notation t1 −

R−� t2 means t1 is related to t2 by zero or
more steps of the relation R.

The notation t1 −
R,nf−−� t2 means t1 −

R−� t2 and furthermore
t2 is not related by 1 further step of R to any other term.

The notation has-nf(R, t1) means t1 −
R,nf−−� t2 for some t2.

Trm, Conf, LConf, and Std are short names for
termination, confluence local confluence, and
standardization.
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An Example Operational Semantics
Example: functions with call-by-name evaluation to weak
head normal form.

Terms: t ∈ T ::= x | (λx. t) | (t1 t2)

Evaluation contexts: E ∈ EvalContext ::= 2 | (E t)

Evaluation rewriting: E[(λx. t1) t2] −
E−→ E[t1[x := t2]]

Operational meaning: result(t) =











diverges if ¬has-nf(E, t)

halt if t −E,nf−−� λx. t′

stuck if t −E,nf−−� t′ 6= λx. t′′
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Rewriting for Program Equivalences
Suppose we want to use the evaluation rewrite rule in
arbitrary contexts C, i.e., the usual β rule:

C[(λx. t1) t2] −−→ C[t1[x := t2]]

Example rewrite steps in non-evaluation position:

(λy. (λw.w) y) −−→ (λy. y)

(λx. xx) (λy. (λw.w) y) −−→ (λx. xx) (λy. y)

Is this meaning-preserving, i.e., does t1 −−→ t2 imply that
result(t1) = result(t2)?

Is it an observational equivalence, i.e., does t1 −−→ t2 imply
result(C[t1]) = result(C[t2]) for any context C?

Diagrams for Meaning Preservation – p.5/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Rewriting for Program Equivalences
Suppose we want to use the evaluation rewrite rule in
arbitrary contexts C, i.e., the usual β rule:

C[(λx. t1) t2] −−→ C[t1[x := t2]]

Example rewrite steps in non-evaluation position:

(λy. (λw.w) y) −−→ (λy. y)

(λx. xx) (λy. (λw.w) y) −−→ (λx. xx) (λy. y)

Is this meaning-preserving, i.e., does t1 −−→ t2 imply that
result(t1) = result(t2)?

Is it an observational equivalence, i.e., does t1 −−→ t2 imply
result(C[t1]) = result(C[t2]) for any context C?

Diagrams for Meaning Preservation – p.5/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Rewriting for Program Equivalences
Suppose we want to use the evaluation rewrite rule in
arbitrary contexts C, i.e., the usual β rule:

C[(λx. t1) t2] −−→ C[t1[x := t2]]

Example rewrite steps in non-evaluation position:

(λy. (λw.w) y) −−→ (λy. y)

(λx. xx) (λy. (λw.w) y) −−→ (λx. xx) (λy. y)

Is this meaning-preserving, i.e., does t1 −−→ t2 imply that
result(t1) = result(t2)?

Is it an observational equivalence, i.e., does t1 −−→ t2 imply
result(C[t1]) = result(C[t2]) for any context C?

Diagrams for Meaning Preservation – p.5/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Rewriting for Program Equivalences
Suppose we want to use the evaluation rewrite rule in
arbitrary contexts C, i.e., the usual β rule:

C[(λx. t1) t2] −−→ C[t1[x := t2]]

Example rewrite steps in non-evaluation position:

(λy. (λw.w) y) −−→ (λy. y)

(λx. xx) (λy. (λw.w) y) −−→ (λx. xx) (λy. y)

Is this meaning-preserving, i.e., does t1 −−→ t2 imply that
result(t1) = result(t2)?

Is it an observational equivalence, i.e., does t1 −−→ t2 imply
result(C[t1]) = result(C[t2]) for any context C?

Diagrams for Meaning Preservation – p.5/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Rewriting for Program Equivalences
Suppose we want to use the evaluation rewrite rule in
arbitrary contexts C, i.e., the usual β rule:

C[(λx. t1) t2] −−→ C[t1[x := t2]]

Example rewrite steps in non-evaluation position:

(λy. (λw.w) y) −−→ (λy. y)

(λx. xx) (λy. (λw.w) y) −−→ (λx. xx) (λy. y)

Is this meaning-preserving, i.e., does t1 −−→ t2 imply that
result(t1) = result(t2)?

Is it an observational equivalence, i.e., does t1 −−→ t2 imply
result(C[t1]) = result(C[t2]) for any context C?

Diagrams for Meaning Preservation – p.5/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Overview
Motivation.

The AES framework.

Methods for proving meaning preservation.

Discussion.

Diagrams for Meaning Preservation – p.6/28



Useful

Logics,

Types,

Rewriting, and their

Automation

Abstract Evaluation Systems
To discuss the issues, the notion of abstract evaluation
system (AES) will be used.

An AES is a 6-tuple:

(T, set of terms
S, set of rewrite steps
R, set of evaluation results
endpoints, maps S to T× T

E, a subset of S, the evaluation steps
result) maps T to R

Let the non-evaluation steps be N = S \ E.
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Comments on AES Framework (1)
There is a separate set S of steps which are not just
term pairs.

This helps distinguish between different redexes that
reach the same term, e.g.:

((λx. xx) (λx. xx)) ((λx. xx) (λx. xx))

So an AES definer does not need to reason about all
other redexes in the same term when deciding
whether a step is in E or N.

Rewriting notation for a subset S ⊂ S:

t1 −
S−→ t2 ⇔ ∃s ∈ S. endpoints(s) = (t1, t2)

t1 −
S1,S2−−−→ t2 ⇔ t1 −

S1∩S2−−−→ t2
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Comments on AES Framework (2)
Evaluation rewriting (i.e., −E−→) must be subcommutative.
Often, it will be deterministic, but the extra flexibility is
there for when needed.

The special result value diverges is reserved for terms
with non-halting evaluation.

Evaluation steps must preserve results, i.e., t1 −
E−→ t2

must imply that result(t1) = result(t2).

The intention is to model execution where the only way
to observe a result is to do evaluation steps as long as
possible and then inspect the halted term, which is
unique even when evaluation is non-deterministic (a
deliberate AES framework limitation).
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Example AES

Terms: t ∈ T ::= x | (λx. t) | (t1 t2)

Contexts: C ∈ Context ::= 2 | x | (λx. t) | (t1 t2)

Rewrite steps: s ∈ S ::= (C, ((λx. t1) t2))

Evaluation results: r ∈ R = {diverges, stuck, halt}

Rewrite step endpoints: endpoints(C, (λx. t1) t2)

= (C[(λx. t1) t2], C[t1[x := t2]])

Evaluation contexts: E ∈ EvalContext ::= 2 | (E t)

Evaluation steps: s ∈ E ::= (E, ((λx. t1) t2))

Operational meaning: result(t) =











diverges if ¬has-nf(E, t)

halt if t −E,nf−−� λx. t′

stuck if t −E,nf−−� t′ 6= λx. t′′
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Evaluation results: r ∈ R = {diverges, stuck, halt}

Rewrite step endpoints: endpoints(C, (λx. t1) t2)

= (C[(λx. t1) t2], C[t1[x := t2]])

Evaluation contexts: E ∈ EvalContext ::= 2 | (E t)

Evaluation steps: s ∈ E ::= (E, ((λx. t1) t2))

Operational meaning: result(t) =











diverges if ¬has-nf(E, t)

halt if t −E,nf−−� λx. t′

stuck if t −E,nf−−� t′ 6= λx. t′′
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The AES framework.

Methods for proving meaning preservation.

Previous high-level proof methods.

New high-level proof methods.

Low-level proof methods with elementary diagrams.

Marks (e.g., finite developments).

Discussion.
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Proving Program Equivalences
Denotational methods (semantic models).

Logical relations. Requires a type system, so hard to
use for the full untyped calculus. (An intersection type
system can sometimes cover an entire untyped system,
but this is difficult.)

Operational techniques. Applicative bisimulation and
co-induction. Howe’s method.

This talk will focus on rewriting-based methods: Plotkin
[1975], Machkasova and Turbak [2000], Odersky
[1993], Ariola and Blom [2002].
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Plotkin’s Method
Suppose t1 ←−→ t2.

If both diverge, they are assigned same meaning
(important!).

Suppose evaluation of one halts, maybe t1. Then:

t1 t3 t5

t6

t2 t4

E,nf

Conf

E

NStd

E

NStd

By definition, result(t1) = result(t5) and result(t2) = result(t4).

Because t5 has halted and N-conversion preserves both
this fact and results (important!), result(t5) = result(t4).
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Comments on Plotkin’s Method
Plotkin [1975] originally developed it for the
call-by-name and call-by-value λ-calculus.

Other researchers have used it for variations on the
λ-calculus, e.g., λ-calculus plus assignments and
continuations [Felleisen and Hieb, 1992] and the
call-by-need λ-calculus [Ariola and Felleisen, 1997;
Maraist, Odersky, and Wadler, 1998].

Requiring confluence prevents using some approaches
for reasoning about mutually recursive bindings
[Ariola and Klop, 1997].

Requiring standardization tends to force the evaluation
contexts and rewrite rules to look arbitrarily deep into
the term and inspect an arbitrary number of tree nodes.
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Lift & Project Method
Machkasova and Turbak [2000] introduced the Lift and
Project diagrams:

Lift :

t1 t4

t2 t3
E

E

N Proj :

t1 t2 t4

t3 t5

E E

E

N

Lift and Project can be substituted for confluence and
standardization when proving meaning preservation.

The key benefit is that Lift and Project do not imply
confluence, although Lift is equivalent to standardization.

In particular, Lift and Project can be used to prove
correctness of Ariola/Blom/Klop-style rewrite rules for letrec.
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Comparison of Previous Proof Methods
Lift & Project can handle cases for which confluence &
standardization fail, e.g.:

t1 t2

t3

N
N

(New result:) Confluence & standardization can handle
cases for which Lift & Project fail, e.g.:

t1 t2

t3

E

N N

E

E
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Overview
Motivation.

The AES framework.

Methods for proving meaning preservation.

Previous high-level proof methods.

New high-level proof methods.

Low-level proof methods with elementary diagrams.

Marks (e.g., finite developments).

Discussion.
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Weakening the Proof Burden (1)
By carefully inspecting how confluence &
standardization and Lift & Project prove meaning
preservation, we obtained the following weaker
Lift/Project (LP) diagram which implies meaning
preservation:

LP :
t1 t3 t5

t2 t4

E E

E
N

We further weakened LP to the following Lift/Project
when Terminating (LPT) diagram:

LPT :
t1 t3

t2 t4

E,nf

E
N
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Weakening the Proof Burden (2)
The LPT diagram gives the fundamental essence of this
family of proof methods and is the weakest condition we
know of its kind. It is weaker than similar conditions in
the related work by Ariola and Blom [2002].

We further weaken the conditions by parameterizing all
diagrams on rewrite steps or step sets.

E.g., actual definition of LPT is:

s ∈ LPT ⇔
t1 t3

t2 t4

s
E,nf

E
N

This is important because sometimes different
methods are needed for different parts of a rewriting
system.
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Proving the High-Level Diagrams
Diagrams like confluence, standardization, Lift, Proj, LP,
and LPT can be used to prove meaning preservation,
but they are themselves quite hard to prove, because
the diagrams are quite high-level and abstract.

We present 2 new meaning preservation proof methods
which are low-level because their conditions are only
elementary diagrams and simple (to understand, not
necessarily to prove) kinds of termination.

It is expected that a rewriting system will be partitioned
into step sets that are closed under “residuals w.r.t.
evaluation” and the right method will be used for each
partition. Often, each partition will contain all of the
steps for some subset of the rewrite rules.
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Low-level Method 1
Well Behaved with Standardization:

WB+Std(S) ⇐⇒ Trm(E ∩ S) ∧WL1(S,S) ∧WL1(S, S) ∧WP1(S)

Weak Lift 1-Step: Weak Project 1-Step:

WL1(S,S ′) ⇐⇒
t1 t4

t2 t3

N,S
E,S ′

E,S ′

S WP1(S) ⇐⇒
t1 t2

t3 t4

E
N,S

E
S

Useful for difficult rewrite step sets which do not have finite
developments, e.g., Ariola/Blom/Klop-style letrec rewrite
rules.
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Low-level Method 2
Well Behaved without Standardization:

WB“Std(S) ⇐⇒ Trm(S) ∧ LConf(S) ∧WLP1(S) ∧ NE(S)

Weak Lift/Project 1-Step: N-Steps Do Not Create E-Steps:

WLP1(S) ⇐⇒
t1 t4

t2 t3

N,S
E

S
E

NE(S) ⇐⇒
t1 t4

t2 t3

N,S
E,S

E,S

Useful for difficult rewrite step sets which do not have
standardization but do have termination.
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When Termination Properties Fail
Sometimes, a desired termination property fails for a
rewrite step set S generated by some rewrite rule(s),
but holds for S ∩M where M is a set of marked steps.

The marks typically force termination by forbidding
contracting unmarked redexes and ensuring “created”
redexes are unmarked.

The rewriting system is embedded in a larger marked
system with additional marked terms and rewrite steps.
Proving the larger system correct is enough.

We give conditions on marking such that proving LPT

for S ∩M (i.e., the marked fragment of the larger
marked system) is sufficient to prove LPT for S.
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Related Work
Our work is a direct successor to the work of
Machkasova and Turbak [2000].

The work of Ariola and Blom [2002] has important
similarities at a deep level. Their framework does not
make it easy to prove operational properties, e.g., the
user must prove a connection between infinite normal
forms and operational behavior. Also, there are no
low-level abstract proof methods.

Odersky [1993] gives conditions that a transformation is
an observational equivalence. Despite similarities, the
formal presentation is quite different and tied to a
particular syntactic formalism.
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Conclusions
Overall, the meaning-preservation proof methods we
present gather together the strengths of existing
methods and improve on them in a number of ways.

Our proof methods are designed to be easy for
someone who is not a rewriting specialist to read,
understand, and apply to their programming language
calculi.

We expect that our methods will help in making the
expertise of the rewriting community accessible and
useful to the outside world.
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