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The Need for Formalism

Because of the increasing interdependency of systems and the faster and more automatic
travel of information, failures can have a wide impact. So correctness is important.

Modern technological systems are just too complicated for humans to reason about
unaided, so automation is needed.

Systems have so many possible states that testing is often impractical. It seems that
proofs are needed to cover infinitely many situations.

So some kind of formalism is needed to aid in design and to ensure safety.



What Kind of Formalisms?

reasoning formalism should at /east be:

Correct: Only correct statements can be “proven”.
Adequate: Needed properties in the problem domain can be stated and proved.

Feasible: The resources (money, time) used in stating and proving needed properties
must be within practical limits.



What Kind of Formalisms?

suming a minimally acceptable formalism, we would also like it to be:

Efficient. Costs of both the reasoning process and the thing being reasoned about should
be minimized.

Supportive of reuse: Slight specification changes should not force reproving properties
for an entire system. Libraries of pre-proved statements should be well supported.

Elegant: The core of the reasoning formalism should be as simple as possible, to aid in
reasoning about the formalism itself.



Hseful ULTRA Research Themes

]ogics
Logic is the foundation for rigorous reasoning. There is an ongoing search for better
logics and for better methods for verifying the correctness of logics.

lypes
Types are a foundation for making logics more flexible without losing correctness and

safety. Types are also being used increasingly often for analyzing complex higher-order
systems.

]ewriting

Rewriting is using rules of logic, mathematics, or computation in a stepwise manner.
Rewriting theory supports reasoning about equivalences between propositions or programs
and efficient computation strategies.

d their

Jutomation
Modern theories of logic, types, and rewriting and the systems to which they are applied
have become so complicated that automation is essential.

Jpplications
Systems of logic, types, and rewriting have applications in the design and implementation
of programming languages and theorem provers, in mathematics and in natural language.
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Proofs? Logics? What are they?

A proof is the guarantee of some statement provided by a rigorous explanation stated
using some logic.

A logic is a formalism for statements and proofs of statements. A logic usually has
axioms (statements “for free”) and rules for combining already proven statements to
prove more statements.

For example, this is provable in the logic PROP:
A B, A—-B—-CFC

This is not:
A B, A—-D—-CHC

Why do we believe the explanation of a proof? Because a proved statement is derived
step by step from explicit assumptions using a trusted logic.



Logic is an Area of Active Research

New logics are regularly invented for specialized purposes. Known logics may be too
inflexible for the task. Or they may be too flexible, interfering with automated proof

search.

Broken logics are regularly invented. A recent example: The 1988 version of the OCL
(Object Constraint Language) sublanguage of UML (Unified Modelling Language) had
Russell's paradox of a nearly a century earlier! It is still not known if the revised OCL

and/or UML is consistent.

There has been an explosion of new logics in the 20th century. How do we know which
ones to trust?



What are Types?

Euclid’'s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

5. A circle is a plane figure contained by one line such that all the straight lines falling
upon it from one point among those lying within the figure are equal to one another.

Although the above seems to merely define points, lines, and circles, more importantly
it distinguishes between them.

This prevents undesired reasoning, like considering whether two points (instead of two
lines) are parallel.

Undesired reasoning? Euclid would have said: impossible reasoning. When considering
whether objects are parallel, intuition implicitly forced Euclid to think about the type of
the objects. Because intuition does not support parallel points, Euclid does not even try
such reasoning.



Why Types are Needed for Logic

Mathematical systems have become less intuitive, for several reasons:

— very complex or abstract
— formal

— Something without intuition is using the system: a computer.

Non-intuitive systems are vulnerable to paradoxes. The human brain’s built-in type
machinery can fail to warn against an impossible situation. Reasoning can proceed
obtaining results that may be wrong or paradoxical.

Example: Russell [1902] and Frege [1902] showed that Naive Set Theory had a paradox.
Let S be “the set of all sets which do not contain themselves’. Then, both of these are
provable:

Ses S¢S

Russell [1908] Russell began the use of types to solve this problem.



A Quick Introduction to Rewriting

e all know how to do algebra:

(a+0b)—a by rule rT+y=y+zx
= (b+a)—a by rule r—y=z+ (—y)
= (b+a)+ (—a) by rule (x+y)+z=x+ (y+ 2)
= b+ (a+ (—a)) by rule x4+ (—z) =0
= b+0 by rule r+0=x
= b

writing is the action of replacing a subexpression which is matched by an instance of one
e of a rule by the corresponding instance of the other side of the same rule. If you know
rebra, you understand the basics of rewriting.



Important Issues in Rewriting

Orientation: Usually, most rules can only be used from left to right as in z + 0 — x.
Forward use of the oriented rules represents progress in computation. Unoriented rules

usually do trivial work as in x +y = y + «.

Termination: It is desirable to show that rewriting halts, i.e., to avoid infinite sequences
of the form P — Py — P, — ---.

Confluence: It is desirable that the result of rewriting is independent of the order in the
rules are used. For example, 1+ 2+ 3 should rewrite to 6, no matter how we evaluate it.



The invention of computers and computability

Types have always existed in mathematics, but not explicited until 1879. Euclid avoided
impossible situations (e.g., two parallel points) via classes/types.

In 19th century, controversies in analysis led to logical precision.
(Cauchy, Dedekind, Cantor, Peano, Frege).

In 1900, Hilbert posed an impressive list of difficult questions including his 23rd question:
Given a formula of predicate logic, can we decide whether the formula is true or false?

It took more than 30 years to answer this is impossible: Turing Machines, Goedel’s
incompleteness and Church’s \-calculus.

f is computable iff f can be computed on a Turing Machine.
f is computable iff f can be definable in the A-calculus.

Types, Logics, and Rewriting have become the heart of Computer Science.



Higher-Order Rewriting and Logic

Church’s A-calculus provides higher-order rewriting, allowing equations like:

F(Oa. 2+ (1/2))5) = £(5+ (1/5)) = f(5+0.2) = £(5.2)

Church [1940b] introduced the simply typed A-calculus (STLC) and on top of it his

Simple Type Theory (CSTT) to provide paradox-free logic. The modern descendant of
CSTT is the so-called “higher-order logic” (HOL).



The Convergence of Logics, Types, and Rewriting

Heyting [1934], Kolmogorov [1932], Curry and Feys [1958] (improved by Howard [1980]),
and de Bruijn [Nederpelt et al., 1994a] all observed the “propositions as types’ or “proofs
as terms" (PAT) correspondence.

In PAT, not only is the A-calculus embedded in the propositions as in HOL, but the
structure of proofs is also given by another level of A\-terms. A-terms are viewed as proofs
of the propositions represented by their types.

Advantages of PAT include:

— better proof manipulation,

— better independent proof checking,

— the extraction of computer programs from proofs, and

— proving the consistency of the logic via the termination of the rewriting system.
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Syntax of type free lambda calculus

http://www.cee.hw.ac.uk/“ceepll/csd4project/index.htm

V ={x,y,z2,...} is an infinite set of term variables. We let v,v’,v",--- range over V
M =V |(AV.M) | (MM). Welet A, B,C --- range over M.

Examples (Azx.z), (Az.(zz)), (Az.(Ay.z)), (Az.(Ay.(zy))), and ((Az.x)(Az.z)).

This simple language is surprisingly rich. Its richness comes from the freedom to create
and apply functions, especially higher order functions to other functions (and even to
themselves).



Meaning of Terms

Assume a model D of the lambda calculus. Let ENV = {o |0 : V — D}

Variables The meaning of a variable is determined by what the variable is bound to in
the environment.

Expressions have variables and variables take values according to environment.

Example, if V = {z,y,2} and if D contains all natural numbers, then one possible
environment might be o where o(z) =1, o(y) =3 and o(2) = 1.

Function application If A and B are A-expressions, then so is (AB). This expression
denotes the result of applying the function denoted by A to the meaning of B.

For example, if A denotes the identity function and B denotes the number 3 then AB
denotes identity applied to 3 which is 3.

Abstraction \v.A denotes the function which takes an object a and returns the result of
applying the function denoted by A in an environment in which V' denotes a.



The semantic function

Let o(a/v) : V — D where
ola/v)(v") =0o(@) if v #v" and o(a/v)(v) = a

Let [] : M — ENV — D.

(Mv.A)]e = f where f: D D and f(a) = [Als(a/v)-

Example: [(Ax.z)]e = f where f(a) = [7],(q/z) = 0(a/z)(z) = a.

Hence, (Az.x) denotes the identity function.



Exercises

Exercise, show that (Axz.(Ay.z)) denotes the function which takes two arguments and
returns the first.

Represent the following mathematical functions in the A-calculus:

1. f:z—>gwhereg : y—>x+y.

2. f:x—x+yandg : y—>x+y.

3. The function f that takes three functions g, h, k and composes them.
4. The function f that takes a function g and iterates it five times.

Describe the functions denoted by (Az.(Ay.(xy))), (Az.(Ay.y)) and (Az.(Ay.x)).



Notational Conventions

Functional application associates to the left. So ABC denotes ((AB)C).

The body of a A is anything that comes after it. So, instead of (A\v.(A145...A4,)), we
write )\’U.AlAQ c. An

A sequence of \'s is compressed to one, so Azyz.t denotes Ax.(Ay.(Az.t)).

a consequence of these notational conventions we get:

Parentheses may be dropped: (AB) and (Av.A) are written AB and A\v.A.
Application has priority over abstraction: Az.yz means Ax.(yz) and not (Az.y)z.

Do exercises 2 and 3 of tutorial sheet 1 of the web page of the course.



Free and Bound Variables

Evaluating (Afxz.fx)g to Az.gx is perfectly acceptable but evaluating (Afz.fz)x to
Ax.xx IS not.

Check the meaning of these two expressions. Ax.gx takes a and applies g to a. Az.zx
takes a and applies it to itself.

Also, (Afx.fx) is the same as (Afy.fy) but (Afz.fzx)x evaluates to Az.xx and
(Afy.fy)z evaluates to \y.zy

We define the notions of free and bound variables which will play an important role in
avoiding the problem above. The free = in (Afz.fz)x should remain free in the result.

FV(v) =def {v} BV (v) =des 0
FV(M.A) =4y FV(A) —{v} BV (MA.A) =4 BV(A)U{v}
FV(AB) =g FV(A)UFV(B) BV(AB) =4 BV(A)UBV(B)

Exercise: In (Ay.z(Az.x)) which variables are bound and which are free?



Substitution

For any A, B,v, we define A[v := B] to be the result of substituting B for every free
occurrence of v in A, as follows:

v|v := B] = B
v'|[v = B] = v ifv#Ed
(AC)lv:=B] = Alv:=B]Cv:= B]
(M. A)v:=B] = M.A
(M A)v:=B] = M.A[v:= B]
if v 2vand (v € FV(B) orv & FV(A))
(M A)v:=B] = MN'"AP :=v"][lv:= B]

if v Zvand (v € FV(B) and v € FV(A))

So, in
(Az.fx

Ae.fx)|f == x|, as x € FV(z) and f € FV(fz), we use last clause and get
[z = y][f == 2] = Ay.fy)lf == 2] = (Ay.2y).

N—" N

Calculate (Az.y)|y := x]. Why do we disallow the result to be Az.x?



Evaluate:

1. (Az.zy)|z = Az.2]

2. (\y.xz(Ax.z))|x := Ay.yz]
3. (y(Az.z2))|x := Ay.zy]

Check that:

- (A\y.yx)[z = 2] = A\y.yz,

— (A\y.yz)[x :=y| = Az.zy,

— (A\y.yz)|z = Az.2] = \y.yz.

Exercises



ALPHA Reduction

Compatibility
A— B A— B A— B

AC — BC CA— CB M. A — \.B

—, IS defined to be the least compatible relation closed under the axiom:

(@)  A.A—q MW . Alv:=1"] wherev' € FV(A)

—» o IS the reflexive, transitive closure of — .
= IS the reflexive, transitive, symmetric closure of —,,.

AT.T— o AY.y but it is not the case that Az.xy— o Ay.yy.
Moreover, \z.(Ax.x)x—» Az.(Ay.y)T.

AL.T =, AY.Y.



BETA Reduction

— g is defined to be the least compatible relation closed under the axiom:

(B) (A.A)B—sAlv:= B]

—» 3 Is the reflexive transitive closure of — 3.
=3 Is the reflexive transitive, symmetric closure of — 3.
We say that A is in B-normal form if there is no B such that A—3B.

Check that:

- (Azr.x)(A\z.2)—=>pA2.2,
- (Ay.(Az.x)(Az.2))xy—>3Y,
— both Az.z and y are 3-normal forms.



Exercises

Give the sets of free and bound variables of the following A-terms and for each variable
occurrence, say whether it is bound or free:

1. Az \y.(A\y.(Az.2)A\y.2)y
2. Az.( Ay Az.pq)y)xz
3. \x.yz(Ayz.y)x

For each of the above terms apply B-reduction until no S-redexes can be found.



Metatheory

Some Programs loop/don’t terminate: (Ax.xx)(Ax.xx) does not have a normal form.

We can evaluate programs in different orders, but always get the same final result:
(Ay.(Ax.x)(A2.2))zy—5(Ay.A2.2)zy—3(A2.2)y— 3y and

(Ay.(Az.x)(Az.2))zy—p((Ax.2)(Az2.2))y—=5(Az.2)y—8Y

The order we use to evaluate programs can affect termination:
A term may be normalising but not strongly normalising:
(Ay.2)(A\z.zx)(Az.zx))— 52 Yet
(Ay.2)(Az.zz)(Az.22)) = 8(AY.2) (A2.222 ) (A2 ) ) =3 - - -

A program may grow after reduction:

(Az.zzz)(Az.zzx) —p (Azv.zzz)(Az.zzz)(Az.zzx)
=5  (Azr.zzz)(Ar.azx)(Ae.zzx)(Az.czx)
L




If an expression (3-reduces in two different ways to two values, then those values, if they
are in B-normal form are the same (up to a-conversion).

(Azryz.xz(yz))(Az.z)(Ar.2)—=s(Ayz.(A\r.2)2(y2)) (Az.2) =3
(Ayz.z(yz))(Az.x)—=pAz.2((Ax.x)2) > 5Az.22.

(Aryz.xz(yz))(Az.z)(Ar.x)—=s(Ayz.(Ar.2)2(y2)) (Az.2) =3
Az.(Ax.x)z((Az.z)2) = pAz.2((Ax.x)2) = pAz.22.

(Azyz.xz(yz))(Az.z)(Ax.x)—=p(Ayz.(Ar.2)2(y2)) (Az.2) =3
Az.(Ax.x)z((Az.z)2) = sA2.(Ar.) 22— 8 A2 22.

Church-Rosser Theorem
VA,B,C e M dD e M :(A —»3 B N A —»3 C):>(B —»g D A C%)ﬁ D)



Call by Name and Call by Value

Normal Order/Call by name: At every stage, reduce the leftmost-outermost redex. E.g.,
Ay.y)(A\z.x)l) = (Az.x)l — 1.

Applicative Order/Call by value: At every stage, reduce the leftmost-innermost redex.
Eg., Ay.y)(Az.x)1) = (A\y.y)l — 1.

If a program terminates, call by name reduction will reach final value but call by value
may not.

Call by Name: (Ay.z)((Az.zz)(Ax.2x))—p2 yet

Call by Value: (A\y.z)((Azx.zz)(Az.2x))—=s(Ay.2)(Az.zz)(Ar.22)) =58 . .

Call by value is faster than call by name:

Call by Value: (Ax.xzx)((Ay.y)(Az.2)) = (Az.xx)(A2.2) = (A2.2)(Az2.2) = (Az2.2).

Call by Name: Az.xzz)((Ay.y)(Az.2)) — ((Ayy)(Az.2)(Ay.y)(Az.z)) —
(Az.2)(Ay.y)(Az.2)) = (Ayy)(Az.2) = (Az.2)




Booleans in \-calculus

true = A\ry.x
false = A\Ty.y
not = MAzx.z false true
and = Azy.xy false
or = Axy.z true y
if M then Ny else Ny = MN;N,
and true true =g  true true false

=3 (Azy.x) true false
=3 (Ay. true) false
=g  true

if true then N; else Ny =3  true N1 N
—B (Ay.N1)No
=B N1 Note that Yy Q FV(N1>



Numerals in )\-calculus

/N

0= Azy.y, 1 = Azy.xy, 2 = Axy.x(zy) and so on.

Axyz.xy(yz)
Axyzp.xz(yzp)
Axyz.x(yz)

ATY. YT

Azx.x(true false)true

NEg»>®n
11111

Sn =3 n+1
Amn =3 m+n
Z0 =g true
Z(Sn) =g false



Recursion in )\-calculus

a is a fixed point of E if Ea = a.
Every program E (term of \-calculus) has a fixed point:
Let Y = (\f.(Az.f(zz))(Ax.f(xz))) and let a = (Y E).

FEa = a: because: a = (YE) = Af.(Qx.f(xx))(Ax.f(xx)))E =
(Az.E(zx))(Ax.E(xx)) = E((Ax.E(xx))(A\z.E(zzx))) = E(YFE) = Fa.

With the presence of fixed points, we can solve recursive equations;
fact = Ax. if Zx then 1 else Mx( fact (Px))
fact is defined in terms of itself.

Let E = Ayz. if Zx then 1 else Mz (y(Px)).
As we see, E is defined in terms of things that already exist and not in terms of itself.

Now, we take fact = (Y E), and so, as E(YFE) = (Y E) we have:
fact = E(fact) = Az. if Zx then 1 else Mz( fact (Px)).



PAIRING in \-calculus

pair = Axyz.zzy
fst = Azx.x true
snd = Mx.x false
is easy to prove that
fst(pair AB) = A
snd(pair AB) = B
fst(pair AB) = (Ax.x true )(pair AB) = (pair AB) true = pair AB true

(Aryz.zxy)AB true = true AB = (Azy.x)AB = A.

snd(pair AB) = (Ax.x false )(pair AB) = (pair AB) false = pair AB false
(Axyz.zxy)AB false = false AB = (Axy.y)AB = B.



LISTS in )-calculus

The equation zy = = has a solution L. where Ly = 1 for any y.

le E=MAzy.z andlet L =YFE. ThenYE = E(YE).
So, L=Fl and ly=Fly= (Azy.x)ly = L.

null = fst

[ ] = pair true L

[F] = pair false (pair E [ ])

[Ey,...,Ey] = pair false (pair By [Eo, ... E,])
Exercise: null [ | = true and null [Eq,..., E,] = false

null [ ] = fst(pair true L) = true .

null [Eq, ..., E,] = fst(pair false (pair £ [Es,... Ey,])) = false



hd = AL if (nulll) then L else (fst (snd [))
tl = AL if (null ) then L else (snd (snd [))
cons = Axl. pair false ( pair z )

ercises:

null (cons zl) = fst ((Azl. pair false ( pair zl))xl) = fst ( pair false ( pair zl)) = false
snd (cons x I) = snd (pair false ( pair z 1)) = ( pair x 1)

hd (cons x 1) = (Al. if (null I) then L else (fst (snd [)))(cons x 1) =
if (null (cons x 1)) then L else (fst (snd (cons z1))) =

if false then L else (fst (snd (cons x1))) =

fst (snd (cons z 1)) = fst ( pairxl) =z

tl (cons z 1) = (Al. if (null I) then L else (snd (snd [)))(cons x 1) =
if (null (cons z 1)) then L else (snd (snd (cons z1))) =

if false then L else (snd (snd (cons z1))) =

snd (snd (cons z 1)) =snd ( pair zl) =1



Find a A-expression append such that

append z y = if ( null x) then y else ( cons(hd z)(append ( tl z)y)
Let F = Aaxzy. if ( null z) then y else (cons (hd z)(a(tl z)y) and let append = Y E.
Then, append zy = Y Ezy = E(Y E)xy = E(append)zy =

T
(Aazxy. if ( null z) then y else ( cons ( hd z)(a(tl x)y)))append zy =
if ( null ) then y else ( cons ( hd x)( append(tl z)y)



UNDECIDABILITY of HALTING
Note that | loops: | =YE =FE(YE)=FE(FE(YFE)) =FEFEFEYE)))....
Let halts £ = true if E has a normal form and halts E = false otherwise.
halts is Not definable in the A-calculus.
Assume the contrary (i.e. halts is a A-term), then
Let foo = Az. if (halts z) then L else 0.
Let W be a solution to x = foo z. Hence, W = foo W = if (halts W) then L else 0.

Case halts W is true then W = if (halts W) then L else 0 = L.
Absurd as L does not have normal form.

Case halts W is false then W = if (halts W) then L else 0 = 0.
Absurd as 0 does have a normal form.

Hence, what we assumed is false and so, halts is not a lambda term.
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Church’s Simply Typed A-calculus \— 1940

Types e Basic individuals/propositions e Arrows oo — (3

Examples of types: (a — B) — (8 — ), a — (B8 — 7), Bool — Bool.
Terms variables, AB, \z:a.A.

(B) (Az:a.A)B =3 Alx := B].

Start If (z:a) €T then 'z : a.

—-introduction If I', x:a - A : B then ' F Az:ac. A : o« — 3
—-elimintation f I' - A:a— fand ' B:athen ' AB : [

AT a.xa— Q.

Az (a— B)x: (a— B) = (a— F).

A ady:Bax:a— (8= a).



r:a F 1« start
F A :ax:a— a —-introduction
r:a—0 F x:a—p0 start

- M:a— Bx:(a—B)— (a— ) —-introduction

r:o,y:0 F x:a start
T o F Ay:fB.x: B — « —-introduction
F Ao (Ay:fB.x):a— (6 — a) —-introduction

But, Az.xx cannot be typed.



Overview

Introduction to ULTRA.

Logics, Types, and Rewriting: What and Why.
Type Free lambda calculus

Simply typed lambda calculus

Polymorphic lambda calculus



In A—, the function which takes f : N — N and and = : N and returns f(f(x)) is:
Af:N—= Nz :N.f(f(x))

and has type
(N—N) - (N—N)

If we want the same function on booleans, we would need to write:
A :B— Blx:B.f(f(x))

which has type
(B— B) = (B— B)

Instead of repeating the work, we can write the Polymorphic doubling function as:

A x A fra—= a)dr:af(f(x))

Now, we can instantiate « to what we need:



a =N then: Aa:*xAf:a—=alr:a.f(f(x))N=Af:N—= Nz :N.f(f(z)).
a = Bthen: Aa:*xAf:a—=alx:a.f(f(x))B=Af:8B— BXx:B.f(f(x)).

a= (B — B) then: (Aa:*Af:a— adx:a.f(f(x)))(B— B) =
AMf:(B—=B)— (B— B)Ax:(B— B).f(f(z)).

So, types can be abstracted over (like for terms) and we can pass types as arguments
(like for terms).

But, as we have new terms like Aa : x A\f : @« = a.\z : a.f(f(x)), we need to say what
their types is.

The type of this function is: Ila : x.(a — a) = (a — «).



Common features of modern types and functions

We can construct a type by abstraction. (Write o : * for «v is a type)

— Ay : a.y, the identity over a has type o — «
— Ao @ x.\y : .y, the polymorphic identity has type Ila : x.a0 — «

We can instantiate types. E.g., if @« = N, then the identity over N

— (A\y : a.y)|a := N] has type (o« = a)[a:=N] or N — N.
— (Aa: * Ay : a.y)N has type (lla : x.a - a)N = (o = a)[a:=N] or N — N.

(Az:a.A)B —p Alz := B] (z:a.A)B —11 Alz := B]

Write o« — « as Ily : a.cx when y not free in a.



Are we getting into self-application/Trouble?

ML treats let val id = (fn = z) in (id id) end as this polymorphic term
(Aid: (Ha:x. a — ). id(B — B)(id B)) (Aa:x. Ax:a. x)

The polymorphic identity function can be applied to its type too:
(Aa :x Ay ay)(lla: s.a = a) = Ay : (o x.a — a).y

So, we can now apply this result to polymorphic identity:
Ay : (Mo : x.a = a).y)Aa: x Ay : a.y) =g (Aa Ay : a.y)

Problem??

(Aa :x Ay ay)(la: x.a — a)(Aa: Ay ay) =p (Ao x Ay @ a.y)

THE NEW SYSTEM IS VERY SAFE.
Subject Reduction: f ' A:aand A —3 A" thenT'F A" : a.

Termination: f I'H A : a then both A and « terminate.



More Powerful Type Analysis for Programming Languages

- -~

7/ AN\ \\
F: System F. ,///// ML ﬂ2\\\\\\\\
Ag: rank-k System F. /1| Ay I,'\‘. W13 \
(: intersection types. | |\ T
Ny: rank-k of N. O\ ds ] |
. \ NN / /
Undecidable. \\\
.

. Wells has:

Established the undecidability of System F and its finite-rank restrictions.
Proved decidability of finite-rank restrictions of intersection types at rank 3 and above.

Developed the first understandable analysis algorithms for the systems of intersection
types at rank 3 and above.



Syntax: A==z |« |0|AB | \z:A.B |1llz:A.B

The Barendregt Cube

I'FA:s I''z:AF B :s

Formation rule: = l—ll_[x:f,l.B ™ = if (s1,82) € R

Simple Poly- Depend- | Constr- | Related Refs.

morphic ent uctors | system

— | (*, %) AT Church [1940a]; Barendregt
2 (%, *) (O, *) F Girard [1972]; Reynolds [197
P (%, *) (%, 0) AUT-QE, LF | Bruijn [1968]; Harper et al.
\w (%, *) (0,0) | POLYREC Renardel de Lavalette [1991
P2 | (%, %) (O, %) (%,0) Longo and Moggi [1988]
\w (%, *) (O, *) (0,0) | Fw Girard [1972]
\Pw (*7*) (*7‘3) (Dalj)
\C (%, *) (O, *) (%, 0) (0,0) | CC Coquand and Huet [1988]
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Typing Polymorphic identity needs (O, x)

y:xFy:x yrxzyby:x

TRl N TR T

yrx,xryFaxy  y:xEIriyy :ox

by (A
y:x e ryx o lzy.y y (M)
Fx:0  y:rxFIlziyy: x
[
F Iy @ x.Ilx:y.y @ * by (1) (O, %)
y:xFEAr:yx:lryy Flly: xIlz:y.y : *
by (A)

Ay cx Az y.x o Iy o« Ilx:y.y



The refined Barendregt Cube
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ML in the refined Cube
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Item Notation/Lambda Calculus a la de Bruijn

7 translates to item notation:

I(z) =z, ZI(\a.B)=[2]Z(B), ZI(AB)= (Z(B))Z(A)

(A\z.\y.zy)z translates to (z)[x]|y](y)x.

The items are (z), [z], [y] and (y). The last x is the heart of the term.
The applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.
The S rule (2. A) B —3 Alxz := B] becomes in item notation:

A —)5 [LE = B]A



Redexes in Item Notation

Classical Notation Iltem Notation
(- (A Azzd)o)b)a (a) (0)ly][z](d)=
¥ %
(Ay-Az-zd)c)a (a)(c)ly][z](d)=
¥ ¥
(\..zd) (d)z
¥ \¥:
ad (d)a
e



Segments, Partners, Bachelors

The “bracketing structure” of ((\,.(A,.A.. ——)c)b)a), is ‘|1 {2 {5 }2 ', where ‘{;’
and '};" match.
The bracketing structure of (¢)lyl z](d) is simpler: {}}-

and |z| are partners. and || are partners. (c) and [y| are partners.

(d) is bachelor.

A segment s is well balanced when it contains only partnered main items.
(¢)lyl| =] is well balanced.

A segment is bachelor when it contains only bachelor main items.



More on Segments, Partners, and Bachelors

The main items are those at top level.

In ([y](y)y)[z]z the main items are: ([y](y)y) and [z].
[y] and (y) are not main items.

Each main bachelor || precedes each main bachelor ().
For example, look at: [u] (o) ly]l z[(d)u.

Removing all main bachelor items yields a well balanced segment.
For example from |u] (o)lyl| z](d) we get: (c)|y]

Removing all main partnered items yields a bachelor segment [vq] ... [v,](a1) ... (am).
For example from [u] (o) |yl[z](d) we get: [u](d).

If and are partnered in 51(b)s5|v 53, then s5 must be well balanced.



Even More on Segments, Partners, and Bachelors
ch non-empty segment s has a unique partitioning into sub-segments s = 5357 - - - 5,, such
it n > 0,

S; is not empty for ¢ > 1,

s; is well balanced if 7 is even and is

if ;= |z1] - [zm] and 5 = (a1) - - - (ap) then §; precedes s;
Example: 5 = [z][y](a)[Z] (e) is partitioned as:
5 7 51
s= 0 ‘[lﬂy] (a)[2] _ . @
51 S3 S5
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