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| ntroduction

We are interested in programming language
with the point of view: Proofs as Programs
(Curry-Howard correspondence).
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| ntroduction

We are interested in programming language
with the point of view: Proofs as Programs
(Curry-Howard correspondence).

The specifications are the types and the
lambda-terms are the extracted programs
(the code).

The verification of the types (compilation) is
a proof of program.

The ProPre system was designed as a
prototype to show the feasibility of the theory.
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M otivation

The difficulty Is to find formal proofs
automatically.
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M otivation

The difficulty Is to find formal proofs
automatically.

Example:

quot(x,0,0) = 0, quot(s(z), s(y), z) = quot(x,y, z),
quot(0,s(y),z) =0, quot(x,0,s(z)) = (quat(x s(z),s(2))

The term quot(z,y,y) computes | |.

WOLLIC’02, 30th July-2nd August 2002, Rio de Janeiro, Brazi°

° —p3/2



I%amareddine, Monin and Ayala

M otivation

The difficulty Is to find formal proofs
automatically.

Example:

quot(x,0,0) = 0, quot(s(x), s(y), z) = quot(x,y, z),
quot(0,s(y),z) =0, quot(x,0,s(z)) = (C]UOt(LE s(z),s(2))
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M otivation

The difficulty Is to find formal proofs
automatically.

Example:

quot(x,0,0) = 0, quot(s(x), s(y), z) = quot(x,y, z),
quot(0,s(y),z) =0, quot(x,0,s(z)) = (C]UOt(LE s(z),s(2))

The term quot(z,y,y) computes | |.

The proofs are expressed in natural
deduction style.

The automated termination proofs =£
technigques of rewriting systems.
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M otivation

Is It possible to go further than the ProPre
system but using the same theory ?

We analyse the proofs made in the system.

We then develop some particular formal
proofs using product types.

The formal proofs are released from the
termination part.

This allows automated termination proofs to
be incorporated while lambda-terms are still
extracted from the proofs.
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M otivation

Is It possible to go further than the ProPre
system but using the same theory ?

We analyse the proofs made in the system.

We then develop some particular formal
proofs using product types.

The formal proofs are released from the
termination part.

This allows automated termination proofs to
be incorporated while lambda-terms are still
extracted from the proofs.

The class of automated extracted programs

are thus enlarged.
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Overview

The ProPre system

Logical framework: AF2, TTR
The rules and proofs in ProPre
Analysis of the I-proofs

The skeleton proofs

The connection between skeleton proofs and
I-proofs

The product type

The canonical proofs

Conclusion . . . _
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TheProPre system

ProPre is a program synthesis system.
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Example:
The type of the list of natural number In
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Type Ln : NI | cons N Ln;
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TheProPre system

ProPre is a program synthesis system.

Example:
The type of the list of natural number In
ProPre:

Type Ln : NI | cons N Ln;

The append function in ProPre:
Let append : Ln | Ln -> Ln
Nl y =>1y
(Cons n x) y => (Cons n (append x Vy));
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TheProPre system

ProPre is a program synthesis system.

Example:
The type of the list of natural number In
ProPre:

Type Ln : NI | cons N Ln;

The append function in ProPre:
Let append : Ln | Ln -> Ln
Nl y =>1y
(Cons n x) y => (Cons n (append x Vy));

The systems leads from a specification of a
function to a program.
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TheProPre system

Functional programming language based on
the paradigm:

Programming by Proofs

("Proofs as Programs")
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TheProPre system

Functional programming language based on
the paradigm:

Programming by Proofs

("Proofs as Programs")

Type System:
program extraction =—- lambda-term

Automated strategies for proving termination
of recursive functions.
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L ogical Framewor k

The type system is a Second Order Type with
Lambda-Calculus: Second Order Functional
Arithmetic, AF2 (D. Leivant, J.L. Krivine).
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The type system is a Second Order Type with
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Data types are multisorted terms algebras
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L ogical Framewor k

The type system is a Second Order Type with
Lambda-Calculus: Second Order Functional
Arithmetic, AF2 (D. Leivant, J.L. Krivine).

Data types are multisorted terms algebras
defined by formulas with one free variable.

The Integers sort nat
0 :— nat, s : nat — nat

The data type N (x) of natural numbers:
vX(X(0) = (Vy(X(y) — X(s(y))) — X()))
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L ogical Framewor k

The type system is a Second Order Type with
Lambda-Calculus: Second Order Functional
Arithmetic, AF2 (D. Leivant, J.L. Krivine).

Data types are multisorted terms algebras
defined by formulas with one free variable.

The Integers sort nat

0 :— nat, s : nat — nat

The data type N (x) of natural numbers:

VX(X(0) — (Vy(X(y) — X(s(y))) — X(z)))
Logical Interpretation coincides with the
Algorithmic Interpretation of the formula.
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TheL ogical framewor k

Lambda-terms correspond to the algorithmic
content of the formulas.
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TheL ogical framewor k

Lambda-terms correspond to the algorithmic
content of the formulas.

Data-Type . Formula of Second Order

\

Programs for constructors (sucessor for integers
cons for lists, etc ...)
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| ntuitionistic rules

— (az) T+ A[u]r : A[g] S y— (eq)
ll:,I—AA:% (—) Led LEA=B ()
rrva (V) rrwva (%)
FP:AV[?T%] (Ve) FF:ATJX //)1/] (Ve)
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Second Order Functional Arithmetic

AT (6%) — A[llj]l— A[E]Fg —  (eq)
FFI— AFA—>BB (=) — é‘l— — =8 (=)
rrwa (V) rewa (V)
rray (V) rrary (V)
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A main result in AF2

A statement of a theorem:
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A main result in AF2

A statement of a theorem:

Dy,...,D,, D datatypes, f a
function symbol, £, a set of equations, ¢ a
lambda-term.
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A main result in AF2

A statement of a theorem:

Dy,...,D,, D datatypes, f a
function symbol, £, a set of equations, ¢ a
lambda-term.

l_Sf t: \V/le,,,, 7V$R{D1[$1]7“' 7Dn[ajn] — D[f(ajl? 73:71)]}
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A main result in AF2

A statement of a theorem:

Dy,...,D,, D datatypes, f a
function symbol, £, a set of equations, ¢ a
lambda-term.

Fe, t VT, . Vo Dhlzy), ..., Dplzn| — Df(21,... ,2,)|}
"t computes f"
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A main result in AF2

A statement of a theorem:

Dy,...,D,, D datatypes, f a
function symbol, £, a set of equations, ¢ a
lambda-term.

Fe, t VT, . Vo Dhlzy), ..., Dplzn| — Df(21,... ,2,)|}
"t computes f"

Let f : nat — nat. ' k¢, t :Va(N(z) — N[f(z)])

e, f(57(0)) = s™(0)  (tn) —pm
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Recursive Type Theory

TTR Is an extension of AF2 (M. Parigot)
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Recursive Type Theory

TTR Is an extension of AF2 (M. Parigot)

Its aims Is to allow more efficiency extracted
programs.
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Recursive Type Theory

TTR Is an extension of AF2 (M. Parigot)

ts aims is to allow more efficiency extracted
orograms.

t uses a logical operator of least fixed point
allowing recursive definitions of data types.
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Recursive Type Theory

TTR Is an extension of AF2 (M. Parigot)

ts aims is to allow more efficiency extracted
orograms.

t uses a logical operator of least fixed point
allowing recursive definitions of data types.

A logical hiding connective for hiding the
algorithmic content of some part of the
proofs.
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Somesrulesin TTR

Rules of the hiding operator |

If Ais a formula, u, vtermsthen A4 | (v <o) IS

a formula.
I'Fet:tA T Fee [' Fe t:Ale I' Fe t:Ale
T Ee iale (1) Trepa (2) T, e (I3)
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Somesrulesin TTR

Rules of the hiding operator |

If Ais a formula, u, vtermsthen A4 | (v <o) IS

a formula.
I'Fet:tA T Fee [' Fe t:Ale I' Fe t:Ale
T Ee iale (1) Trepa (2) T, e (I3)

External induction rule

I'ke t:Va|Vz|Dzsr — Blz/z]] — |[D(x) — B]]
I' e (T't) :Va|D(x) — B]

T Is a turing fixed-point operator,

The relation < Is a well founded partial

ordering on the terms of the algebra.
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Macro Rules (tactics, derived rules)

Thm : Application of an already proven
termination statement (auxiliary functions)

Hyp : Application of induction hypotheses
AX : Application of Axiom

Eq : Application of an equational rule

Struct : Use of structural rules +

manipulations of formulas (Reasoning by
cases)

Ind : Use of induction rules + manipulations
of formulas
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Shape of 1-Proofs

Struct

Distributing tree

Ind
lnglDl(X)’ -, Ux, Do) = D(f(xy, ..., %)
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Shape of |-Proofs

The Distributing tree must follow a property:

Theformal terminal state property

D

Distributing tree

Struct

Ind

- 04Dy (x), - 0%, D) = D (flxy, o, 3,)
f
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Enlarging the class of extracted programs

We revisit the ProPre system and analyse
the formal proofs obtained in Propre.
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Enlarging the class of extracted programs

We revisit the ProPre system and analyse
the formal proofs obtained in Propre.

In order to alleviate and simplify the
notion of formal terminal state property
(kernel of the I-proofs)
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We revisit the ProPre system and analyse
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In order to alleviate and simplify the
notion of formal terminal state property
(kernel of the I-proofs)

In order to enlarge the class of extracted
programs
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I%amareddine, Monin and Ayala

Enlarging the class of extracted programs

We revisit the ProPre system and analyse
the formal proofs obtained in Propre.

In order to alleviate and simplify the
notion of formal terminal state property
(kernel of the I-proofs)

In order to enlarge the class of extracted
programs

We make simplification of Distributing Trees
and Formulas.
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The skeleton proofs

The of a formula F': It gives rise to a
term ¢.
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The skeleton proofs

The of a formula F': It gives rise to a
term ¢.
The on the distributing

tree gives rise to a term distributing tree.
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The skeleton proofs

The of a formula F': It gives rise to a
term ¢.
The on the distributing

tree gives rise to a term distributing tree.
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Formal proofsfrom skeleton forms

The skeleton operation is not injective
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Formal proofsfrom skeleton forms

The skeleton operation is not injective

The design of abstract terminal state
property

WOLLIC’02, 30th July-2nd August 2002, Rro de Janetro, Brazi ° . °—p.19/2



I%amareddine, Monin and Ayala

Formal proofsfrom skeleton forms

The skeleton operation is not injective

The design of abstract terminal state
property

skelet L
( on) Termdistributing trees

; H’
Formal terminal —
state property -
Inverse of A~
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Formal proofsfrom skeleton forms

The skeleton operation is not injective

The design of abstract terminal state
property

skelet L
( on) Termdistributing trees

; H’
Formal terminal —
state property -
Inverse of A~

We can rebuild proofs from
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Termination proofs

It IS easler to work on term distributing trees
for termination proofs.
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Termination proofs

It IS easler to work on term distributing trees
for termination proofs.

We can extend the termination property
Independently from formal proofs.
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Termination proofs

It IS easler to work on term distributing trees
for termination proofs.

We can extend the termination property
Independently from formal proofs.

Can we extend the class of extracted
programs in the same way as in ProPre ?
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Termination proofs

It IS easler to work on term distributing trees
for termination proofs.

We can extend the termination property
iIndependently from formal proofs.

Can we extend the class of extracted
programs in the same way as in ProPre ?

Example:
quot(x,0,0) = 0, quot(s(z), s(y)

3 Z) — QU,Ot(.T, Y, Z);
quot(0,s(y),z) =0, quot(x,0,s(z)) =

s(quot(z, s(z),5(2))
The term quot(z,y,y) computes | |.
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The main scheme

Termination proof
of afunctionf

WOLLIC’02, 30th July-2nd August 2002, Rro de Janetro, Brazi ° . °—p.21/2



I%amareddine, Monin and Ayala

The main scheme

Termination proof | Product
of afunctionf 7

Types
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The main scheme

Termination proof | Product
of afunctionf | _ 7
Types

Formal Proof of
Totality of fo
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The main scheme

Termination proof | Product
of afunctionf

- Types

Formal Proof of Formal Proof of
Totality of f  Totalityof f
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Product Type
Let f: Dy,...,D, — D be a function with &;
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Product Type

Let f: Dy,...,D, — D be a function with &;

The product type of Dy,... ,D, IS
VXYY1, . ynDi(yn)s - Dn(yn) = (X(0(y1, - - 5 9n)) — X(2))
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Product Type

Let f: Dy,...,D, — D be a function with &;

The product type of Dy,... ,D, IS
VXYY1, . ynDi(yn)s - Dn(yn) = (X(0(y1, - - 5 9n)) — X(2))

We can define a new function f with £; from
&
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Product Type

Let f: Dy,...,D, — D be a function with &;

The product type of Dy,... ,D, IS
VXYY1, . ynDi(yn)s - Dn(yn) = (X(0(y1, - - 5 9n)) — X(2))

We can define a new function f with £; from
&

Termination proof | Product
of afunctionf
Types
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Product Type

The termination statement of f is

~

T; =Va((Dy x ... x D,)(x) — D(f(x))).
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Product Type

The termination statement of f is

~

T; =Va((Dy x ... x D,)(x) — D(f(x))).

Fact: If there is a \-term F such that
. then there Is a \-term I such that

with
& = E UL f(ar,. ) = flep(ar,... ,2))}UES,
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Product Type

The termination statement of f is

~

T; =Va((Dy x ... x D,)(x) — D(f(x))).

Fact: If there is a \-term F such that
. then there Is a \-term I such that

with
& = E UL f(ar,. ) = flep(ar,... ,2))}UES,

Formal Proof of Formal Proof of
Totality of f Totality of f
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Canonical |-proofs

We change the relation < about .:

['ke t:Va|Vz|Dzsr — Blz/z]] — |[D(x) — B]]
' e (T't) :Va|D(x) — B]

(Ext)
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Canonical |-proofs

We change the relation < about f.:
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' e (T't) :Va|D(x) — B]

} Struct
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Canonical |-proofs

We change the relation < about f.:
['ke t:Va|Vz|Dzsr — Blz/z]] — |[D(x) — B]]

(Ext)

' e (T't) :Va|D(x) — B]

} Struct

Ind(x)

The hiding rules allow the formal proofs to be

released from the termination part.
I |—g t:A I |—g € r |—5 t:A[e
r |—5 t:A[e r |—g t:A
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Canonical |-proofs

Termination proof | Product
of afunctionf

- Types

Formal Proof of Formal Proof of
Totality of f  Totalityof f
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Conclusion

The ProPre system showed the feasibllity of
the theory based on "Proofs as Programs".
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The ProPre system showed the feasibllity of
the theory based on "Proofs as Programs".

A main issue Is the automation of formal
proofs.

We have shown we can go further for the
automation of extracted programs.
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Conclusion

The ProPre system showed the feasibllity of
the theory based on "Proofs as Programs".

A main issue Is the automation of formal
proofs.

We have shown we can go further for the
automation of extracted programs.

It remains the implementation.
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The End
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