Parameters in Pure Type Systems

Roel Bloo (Eindhoven University of Technology, NL)
Fairouz Kamareddine (Heriot-Watt University, Edinburgh)
Twan Laan and Rob Nederpelt (Eindhoven University of Technology, NL)

5 April 2001

The Low Level approach of functions

- Historically, functions have long been treated as a kind of meta-objects.
- Function *values* have always been important, but abstract functions have not been recognised in their own right until the third of the 20th century.
- In the *low level approach* or *operational* view on functions, there are no functions as such, but only function values.
- E.g., the sine-function, is always expressed together with a value: $\sin(\pi)$, $\sin(x)$ and properties like: $\sin(2x) = 2\sin(x)\cos(x)$.
- It has long been usual to call f(x)—and not f—the function and this is still the case in many introductory mathematics courses.

The revolution of treating functions as first class citizens

- In the nowadays accepted view on functions, they are 'first class citizens'.
- Abstraction and application form the basis of the λ -calculus and type theory.
- This is rigid and does not represent the development of logic in 20th century.
- Frege and Russell's conceptions of functional abstraction, instantiation and application do not fit well with the λ -calculus approach.
- In *Principia Mathematica* [Whitehead and Russell, 1910^1 , 1927^2]: If, for some a, there is a proposition ϕa , then there is a function $\phi \hat{x}$, and vice versa.
- The function ϕ is not a separate entity but always has an argument.

λ -calculus does not fully represent functionalisation

- 1. Abstraction from a subexpression $2+3 \mapsto x+3$
- 2. Function construction $x + 3 \mapsto \lambda . x + 3$
- 3. Application construction $(\lambda x.(x+3))2$
- 4. Concretisation to a subexpression $(\lambda x.(x+3))2 \rightarrow 2+3$
- Cannot identify the original term from which a function has been abstracted.

$$let add_2 = (\lambda x.x + 2) in add_2(x) + add_2(y)$$

- ullet cannot abstract only half way: x+3 is not a function, $\lambda x.x+3$ is.
- ullet cannot apply x+3 to an argument: (x+3)2 does not evaluate to 2+3.

Parameters: What and Why

- we speak about *functions with parameters* when referring to functions with variable values in the *low-level* approach. The x in f(x) is a parameter.
- Parameters enable the same expressive power as the high-level case, while allowing us to stay at a lower order. Cf. [Laan and Franssen, 2001] and [Kamareddine et al., 2001].
- Desirable properties of the lower order theory (decidability, easiness of calculations, typability) can be maintained, without losing the flexibility of the higher-order aspects.
- This low-level approach is still worthwile for many exact disciplines. It has not been wiped out in logic and in computer science, and for good reasons.

Automath

- The first tool for mechanical representation and verification of mathematical proofs, AUTOMATH, has a parameter mechanism.
- The representation of a mathematical text in Automath consists of a finite list of *lines* where every line has the following format:

$$x_1: A_1, \dots, x_n: A_n \vdash g(x_1, \dots, x_n) = t: T.$$

Here g is a new name, an abbreviation for the expression t of type T and x_1, \ldots, x_n are the parameters of g, with respective types A_1, \ldots, A_n .

• Each line introduces a new definition which is inherently parametrised by the variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in AUTOMATH [Benthem Jutting, 1977] revealed that this combined definition and parameter mechanism is vital for keeping proofs manageable and sufficiently readable for humans.

The Barendregt Cube

• $\mathcal{T}_P ::= \mathcal{V} \mid S \mid \mathcal{T}_P \mathcal{T}_P \mid \lambda \mathcal{V}: \mathcal{T}_P.\mathcal{T}_P \mid \Pi \mathcal{V}: \mathcal{T}_P.\mathcal{T}_P$

• \mathcal{V} is a set of variables and $S = \{*, \square\}$.

(axiom)
$$\langle \rangle \vdash * : \Box$$

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \ x \not\in \mathrm{DOM} \ (\Gamma)$$
 (weak)
$$\frac{\Gamma \vdash A : B}{\Gamma, x : C \vdash A : B} \ x \not\in \mathrm{DOM} \ (\Gamma)$$

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B} \ x \not\in \mathrm{DOM} \ (\Gamma)$$
 (II)
$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A : B) : s_2} \ (s_1, s_2) \in \mathbf{R}$$

(
$$\lambda$$
)
$$\frac{\Gamma, x:A \vdash b:B \quad \Gamma \vdash (\Pi x:A.B):s}{\Gamma \vdash (\lambda x:A.b):(\Pi x:A.B)}$$

$$\frac{\Gamma \vdash F : (\Pi x : A . B) \quad \Gamma \vdash a : A}{\Gamma \vdash F a : B[x := a]}$$

LATI N'02, APRIL 2002, Cancun, Mexico (conv)
$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s \quad B =_{\beta} B'}{\Gamma \vdash A : B'}$$

Different type formation conditions

(
$$\Pi$$
)
$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A : B) : s_2} \ (s_1, s_2) \in \mathbf{R}$$

- $(\square, *)$ takes care of polymorphism. $\lambda 2$ is weakest on cube satisfying this.
- (\Box, \Box) takes care of type constructors. $\lambda \underline{\omega}$ is weakest on cube satisfying this.
- $(*, \Box)$ takes care of term dependent types. λP is weakest on cube satisfying this.

λo	(*,*)			
$\lambda 2$	(*,*)	$(\square,*)$		
λ P	(*,*)		$(*,\Box)$	
$\lambda \underline{\omega}$	(*,*)			(\Box,\Box)
λ P2	(*,*)	$(\square,*)$	$(*,\Box)$	
$\lambda \omega$	(*,*)	$(\square,*)$		(\Box,\Box)
λ P ω	(*,*)		$(*,\Box)$	(\Box,\Box)
λC	(*,*)	$(\square,*)$	$(*,\Box)$	(\Box,\Box)

Systems of the Barendregt Cube

Bloo, Kamareddine, Laan and Nederpelt

System	Rel. system	Names, references
λo	$\lambda^{ au}$	simply typed λ -calculus;
		[Church, 1940], [Barendregt,
		1984] (Appendix A), [Hindley
		and Seldin, 1986] (Chapter
		14)
$\lambda 2$	F	second order typed λ -
		calculus; [Girard, 1972],
		[Reynolds, 1974]
λ P	aut-QE	[Bruijn, 1968]
	LF	[Harper et al., 1987]
λ P2		[Longo and Moggi, 1988]
$\lambda \underline{\omega}$	POLYREC	[Renardel de Lavalette, 1991]
$\lambda \omega$	F ω	[Girard, 1972]
λC	CC	Calculus of Constructions;
		[Coquand and Huet, 1988]

The Barendregt Cube

LF

- LF (see [Harper et al., 1987]) is often described as λP of the Barendregt Cube.
- [Geuvers, 1993] shows that the use of the Π -formation rule $(*, \Box)$ is very restricted in the practical use of LF.
- This use is in fact based on a parametric construct rather than on Π -formation.
- We will find a more precise position of LF on the Cube (between $\lambda \rightarrow$ and λP).

ML

- We only consider an explicit version of a subset of ML.
- In ML, One can define the polymorphic identity by:

$$Id(\alpha:*) = (\lambda x : \alpha . x) : (\alpha \to \alpha) \tag{1}$$

• But in ML, it is not possible to make an explicit λ -abstraction over $\alpha:*$ by:

$$Id = (\lambda \alpha: * .\lambda x: \alpha.x) : (\Pi \alpha: * .\alpha \to \alpha)$$
 (2)

• The type $\Pi\alpha: * .\alpha \to \alpha$ does not belong to the language of ML and hence the λ -abstraction of equation (2) is not possible in ML.

ML

- Therefore, we can state that ML does not have a Π -formation rule $(\square, *)$.
- Nevertheless, ML has some parameter mechanism (α parameter of Id)
- ML has limited access to the rule $(\Box, *)$ enabling equation (1) to be defined
- ML's type system is none of those of the eight systems of the Cube.
- We place the type system of ML on our refined Cube (between $\lambda 2$ and $\lambda \underline{\omega}$).

Extending PTSs with parameters and definitions

Figure 1: The hierarchy of parameters, constants and definitions

- $\mathcal{L}_V ::= \varnothing \mid \langle \mathcal{L}_V, \mathcal{V}: \mathcal{T}_P \rangle;$ $\mathcal{L}_T ::= \varnothing \mid \langle \mathcal{L}_T, \mathcal{T}_P \rangle.$
- Parametric constructs are $c(b_1, \ldots, b_n)$ with b_1, \ldots, b_n terms of certain types. C is a set of constants, b_1, \ldots, b_n are called the *parameters* of $c(b_1, \ldots, b_n)$.
- R allows several kinds of Π -constructs. We also use a set \mathbf{P} of (s_1, s_2) where $s_1, s_2 \in \{*, \square\}$ to allow several kinds of parametric constructs.
- $(s_1, s_2) \in \mathbf{P}$ means that we allow parametric constructs $c(b_1, \ldots, b_n) : A$ where b_1, \ldots, b_n have types B_1, \ldots, B_n of sort s_1 , and A is of type s_2 .

• If both $(*, s_2) \in \mathbf{P}$ and $(\square, s_2) \in \mathbf{P}$ then combinations of parameters allowed. For example, it is allowed that B_1 has type *, whilst B_2 has type \square .

$$(\delta 1): \quad \Gamma_{1}, c(\Delta) = a:A, \Gamma_{2} \vdash c(b_{1}, \ldots, b_{n}) \rightarrow_{\delta} a \left[x_{i} := b_{i}\right]_{i=1}^{n}$$

$$(\delta 2): \quad \frac{c \not\in \operatorname{CONS}(b)}{\Gamma \vdash c(\Delta) = a:A \text{ in } b \rightarrow_{\delta} b} \qquad (\delta 3): \quad \frac{\Gamma, c(\Delta) = a:A \vdash b \rightarrow_{\delta} b'}{\Gamma \vdash c(\Delta) = a:A \text{ in } b \rightarrow_{\delta} c(\Delta) = a:A \text{ in } b'}$$

$$\frac{\Gamma, \Delta \vdash a \rightarrow_{\delta} a'}{\Gamma \vdash c(\Delta) = a:A \text{ in } b \rightarrow_{\delta} c(\Delta) = a':A \text{ in } b} \qquad \frac{\Gamma, \Delta \vdash A \rightarrow_{\delta} A'}{\Gamma \vdash c(\Delta) = a:A \text{ in } b \rightarrow_{\delta} c(\Delta) = a:A' \text{ in } b}$$

$$\frac{\Gamma, \Delta_{i} \vdash B_{i} \rightarrow_{\delta} B'_{i}}{\Gamma \vdash c(\Delta) = a:A \text{ in } b \rightarrow_{\delta} c(x_{1} : B_{1}, \ldots, x_{i} : B'_{i}, \ldots, x_{n} : B_{n}) = a:A \text{ in } b}$$

$$\frac{\Gamma \vdash a \rightarrow_{\delta} a'}{\Gamma \vdash ab \rightarrow_{\delta} a'b} \qquad \frac{\Gamma \vdash b \rightarrow_{\delta} b'}{\Gamma \vdash ab \rightarrow_{\delta} ab'}$$

$$\frac{\Gamma, x:A \vdash a \rightarrow_{\delta} a'}{\Gamma \vdash \lambda x:A.a \rightarrow_{\delta} \lambda x:A.a'} \qquad \frac{\Gamma \vdash A \rightarrow_{\delta} A'}{\Gamma \vdash \lambda x:A.a \rightarrow_{\delta} \lambda x:A'.a}$$

$$\frac{\Gamma, x:A \vdash a \rightarrow_{\delta} a'}{\Gamma \vdash \Pi x:A.a \rightarrow_{\delta} \Pi x:A.a'} \qquad \frac{\Gamma \vdash A \rightarrow_{\delta} A'}{\Gamma \vdash \Pi x:A.a \rightarrow_{\delta} \Pi x:A'.a}$$

$$\frac{\Gamma \vdash a_{j} \rightarrow_{\delta} a'_{j}}{\Gamma \vdash C(a_{1}, \ldots, a_{n}) \rightarrow_{\delta} c(a_{1}, \ldots, a'_{j}, \ldots, a_{n})}$$

$$\frac{\Gamma \vdash c(a_{1}, \ldots, a_{n}) \rightarrow_{\delta} c(a_{1}, \ldots, a'_{j}, \ldots, a_{n})}{\Gamma \vdash c(a_{1}, \ldots, a_{n}) \rightarrow_{\delta} c(a_{1}, \ldots, a'_{j}, \ldots, a_{n})}$$

$$(\vec{\mathsf{C}}\text{-weak}) \quad \frac{\Gamma \vdash^{\overrightarrow{C}} b : B \; \Gamma, \Delta \vdash^{\overrightarrow{C}} A : s \; \Gamma, \Delta_i \vdash^{\overrightarrow{C}} B_i : s_i \quad (s_i, s) \in \textbf{\textit{P}} \quad (i = 1, \ldots, n)}{\Gamma, c(\Delta) : A \vdash^{\overrightarrow{C}} b : B}$$

$$\Gamma_1, c(\Delta) : A, \Gamma_2 \quad \vdash^{\overrightarrow{C}} \quad b_i : B_i [x_j := b_j]_{j=1}^{i-1} \quad (i = 1, \ldots, n)$$

$$(\vec{\mathsf{C}}\text{-app}) \quad \frac{\Gamma_1, c(\Delta) : A, \Gamma_2 \quad \vdash^{\overrightarrow{C}} A : s \qquad (\text{if } n = 0)}{\Gamma_1, c(\Delta) : A, \Gamma_2 \vdash^{\overrightarrow{C}} c(b_1, \ldots, b_n) : A[x_j := b_j]_{j=1}^n}$$

Figure 2: Typing rules for parametric constants

$$(\vec{\mathsf{D}}\text{-weak}) \quad \frac{\Gamma \vdash^{\overrightarrow{D}}b : B \ \Gamma, \Delta \vdash^{\overrightarrow{D}}a : A : s \ \Gamma, \Delta_i \vdash^{\overrightarrow{D}}B_i : s_i \quad (s_i, s) \in \textbf{\textit{P}} \quad (i = 1, \dots, n)}{\Gamma, c(\Delta) = a : A, \Gamma_2 \vdash^{\overrightarrow{D}}b_i : B_i [x_j := b_j]_{j=1}^{i-1} \quad (i = 1, \dots, n)}$$

$$(\vec{\mathsf{D}}\text{-app}) \quad \frac{\Gamma_1, c(\Delta) = a : A, \Gamma_2 \vdash^{\overrightarrow{D}}a : A \quad (\text{if } n = 0)}{\Gamma_1, c(\Delta) = a : A, \Gamma_2 \vdash^{\overrightarrow{D}}c(b_1, \dots, b_n) : A [x_j := b_j]_{j=1}^n}$$

$$(\vec{\mathsf{D}}\text{-form}) \quad \frac{\Gamma, c(\Delta) = a : A \vdash^{\overrightarrow{D}}b : B \quad \Gamma \vdash^{\overrightarrow{D}}b : B \quad s}{\Gamma \vdash^{\overrightarrow{D}}c(\Delta) = a : A \text{ in } B : s}$$

$$(\vec{\mathsf{D}}\text{-intro}) \quad \frac{\Gamma, c(\Delta) = a : A \vdash^{\overrightarrow{D}}b : B \quad \Gamma \vdash^{\overrightarrow{D}}c(\Delta) = a : A \text{ in } B : s}{\Gamma \vdash^{\overrightarrow{D}}c(\Delta) = a : A \text{ in } b : c(\Delta) = a : A \text{ in } B}$$

$$(\vec{\mathsf{D}}\text{-conv}) \quad \frac{\Gamma \vdash^{\overrightarrow{D}}b : B \quad \Gamma \vdash^{\overrightarrow{D}}B' : s \quad \Gamma \vdash B =_{\delta}B'}{\Gamma \vdash^{\overrightarrow{D}}b : B'}$$

LATIN'02, APRIL 2002, Cancun, Mexico Figure 3: Typing rules for parametric definitions

Conclusions

- Parameters enable the same expressive power as the high-level case, while allowing us to stay at a lower order. E.g. first-order with parameters versus second-order without [Laan and Franssen, 2001].
- Desirable properties of the lower order theory (decidability, easiness of calculations, typability) can be maintained, without losing the flexibility of the higher-order aspects.
- Parameters enable us to find an exact position of type systems in the generalised framework of type systems.
- Parameters describe the difference between developers and users of systems.

Bibliography

- H.P. Barendregt. *The Lambda Calculus: its Syntax and Semantics*. Studies in Logic and the Foundations of Mathematics **103**. North-Holland, Amsterdam, revised edition, 1984.
- L.S. van Benthem Jutting. *Checking Landau's "Grundlagen" in the Automath system*. PhD thesis, Eindhoven University of Technology, 1977. Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch Centrum, 1979).
- N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, *Symposium on Automatic Demonstration*, pages 29–61, IRIA, Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics **125**; also in [Nederpelt et al., 1994], pages 73–100.
- A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56-68, 1940.
- T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–120, 1988.

- J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen, 1993.
- J.-Y. Girard. *Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur*. PhD thesis, Université Paris VII, 1972.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In *Proceedings Second Symposium on Logic in Computer Science*, pages 194–204, Washington D.C., 1987. IEEE.
- J.R. Hindley and J.P. Seldin. *Introduction to Combinators and* λ -calculus, volume 1 of London Mathematical Society Student Texts. Cambridge University Press, 1986.
- F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining the barendregt cube using parameters. *Fifth International Symposium on Functional and Logic Programming, FLOPS 2001,*, Lecture Notes in Computer Science 2024: 375–389, 2001.
- T. Laan. The Evolution of Type Theory in Logic and Mathematics. PhD thesis, Eindhoven University of Technology, 1997.

Twan Laan and Michael Franssen. Parameters for first order logic. Logic and Computation, 2001.

- G. Longo and E. Moggi. Constructive natural deduction and its modest interpretation. Technical Report CMU-CS-88-131, Carnegie Mellon University, Pittsburgh, USA, 1988.
- R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. *Selected Papers on Automath*. Studies in Logic and the Foundations of Mathematics **133**. North-Holland, Amsterdam, 1994.
- G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for recursively defined types. *Information and Computation*, 99:154–177, 1991.
- J.C. Reynolds. *Towards a theory of type structure*, volume 19 of *Lecture Notes in Computer Science*, pages 408–425. Springer, 1974.
- A.N. Whitehead and B. Russell. *Principia Mathematica*, volume I, II, III. Cambridge University Press, 1910^1 , 1927^2 .