)\-calculus a la Automath

Fairouz Kamareddine (Heriot-Watt University)

12 April 2002

35 Years of Automath, 12 April 2002

Item Notation/Lambda Calculus a la de Bruijn

e 7 translates to item notation:
I(z) ==z, I(Mz.B) =[z|I(B), Z(AB)= (Z(B))Z(A)
o (Az.\y.xy)z translates to (z)|z][y|(y)z.
e The wagons are (z), [x], [y] and (y). The last = is the heart of the term.
e The applicator wagon (z) and abstractor wagon |[x] occur NEXT to each other.
e The B rule (\z.A)B —3 A|x := B] becomes in item notation:

A — 3 [ZE = B]A

35 Years of Automath, 12 April 2002

35 Years

Redexes in Item Notation

Classical Notation ltem Notation
((Ae-(Ay-Azzd)o)b)a (@) (D)[z[(c)[y][z](d) 2
¥ %
(Ay-Az-zd)c)a (a){c)y][z]{d)=
¥ ¥
(N\..zd) (a)z](d)z
% %
ad (d)a

of Automath, 12 April 2002

Segments, Partners, Bachelors

e The “bracketing structure” of ((\,.(A,.\.. — —)c)b)a),is ‘|1 {2 {3 }2 g
where ‘{;" and ‘};" match.

e The bracketing structure of (¢)ly] z](d) is simpler: {}}.

. and || are partners. and || are partners. (c) and [y| are partners.

e (d) is bachelor.

o A segment s is well balanced when it contains only partnered main items.
(¢)[yl[z] is well balanced.

e A segment is bachelor when it contains only bachelor main items.

35 Years of Automath, 12 April 2002 3

More on Segments, Partners, and Bachelors

The main items are those at top level.

In (yy)[z]z the main items are: (yy) and [z].
[y] and (y) are not main items.

Each main bachelor || precedes each main bachelor ().

For example, look at: [u] (o) |yl z](d)u.

Removing all main bachelor items yields a well balanced segment.

For example from [u] (o)lyl|z](d) we get: (c)|y]

Removing all main partnered items vyields a bachelor segment
[v1] .. [vn(a) ... (am).

For example from [u] (o)lyl z](d) we get: [u](d).

|f and are partnered in 51(0)s5|v s3, then 55 must be well balanced.

35 Years of Automath, 12 April 2002 4

Even More on Segments, Partners, and Bachelors

Each non-empty segment s has a unique partitioning into sub-segments

S =505, -5, such that n > 0,

e 5, is not empty for ¢ > 1,

e 5, is well balanced if 7 is even and is

o if 5, =[z1] - |xm] and 5 = (a1) - - - (ap) then 5; precedes s;

e Example: 5= [z]|y (e) is partitioned as:

~—~
S

~—

A

[P NI G
® 5= @%M(a)[z]‘ s_, é?,

35 Years of Automath, 12 April 2002 5

More on Item Notation

e Above discussion and further details of item notation can be found
in [Kamareddine and Nederpelt, 1995, 1996].

e ltem notation helped greatly in the study of a one-sorted style of
explicit substitutions, the As-style which is related to Ao, but has certain

simplifications [Kamareddine and Rios, 1995, 1997; Kamareddine and Rios,
2000].

e For explicit substitution in item notation see [Kamareddine and Nederpelt,
1993]

35 Years of Automath, 12 April 2002 6

Canonical Forms

e Nice canonical forms look like:

bachelor []s | ()[]-pairs, A; in CF end var
e classical:

A1 A (A (Ay (A

e For example, a canonical form of:

IS

35 Years of Automath, 12 April 2002

][y (a)[2][z"]
[][yl[z](a)[2]

Some Helpful Rules for reaching canonical forms

Name | In Classical Notation | In Item Notation
(Az-N)P) (P)|z]N
(0) b }
(\e. NP (P)[x](C))N
(°)‘y°N) ly|N
(7) J }
Ay (A\.-IN) Y] N
(Ao Ay-N)P)Q (@) lyIN
(ve) i 4
(Ay-(A-N))@ (Q)ly] N
((Az-r).N)P) (P)|z]ly/ N
(9) J J
(A\2-N)P | (P)lz] N

35 Years of Automath, 12 April 2002

A Few Uses of Generalised Reduction and Term Reshuffling

Regnier [1992] uses term reshuffling and generalized reduction in analyzing
perpetual reduction strategies.

Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

[Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

[Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

[Kamareddine and Nederpelt, 1995; Kamareddine et al., 2001, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

[Kamareddine, 2000] shows various strong properties of generalised reduction.

35 Years of Automath, 12 April 2002 9

Obtaining Canonical Forms

6-nf: ()] |-pairs mixed with bach. [|s | bach. ()s end var
| (A alE (A2 - .

v-nf: bach. | |s ()] |-pairs mixed with bach. ()s end var
z1][zg] - -- (A1)[z](B2) - - - x

6-v-nf: | bach. |]s ()] |-pairs bach. ()s end var
z1[wo] - -+ | (A1)[31)(A2)[y2] - - - (Am)[Ym] z

~v-0-nf: | bach. | |s ()] |-pairs bach. ()s end var
z1][za] - -+ | (A1) [y1](A2)[ya] . - - (Am)[Ym] z

35 Years of Automath, 12 April 2002 10

Example

For M = [z][y](a)[2][] z

O(M): bach. [|s | ()] |-pairs mixed with bach. [|s | bach. ()s | end var
=]y (a)[][x] z

y(M): bach. [|s | ()| |-pairs mixed with bach. ()s | bach. ()s | end var
2llylie’] | ()] :

O(y(M)): | bach. []s | ()]]-pairs bach. ()s | end var
z]ly]lz’] | (a)|z] z

v(@(M)): | bach. |]s ()[__—pairs bach. ()s | end var
z]ly]l2] | (a)lz] z

35 Years of Automath, 12 April 2002

Classes of terms modulo reductional behaviour
—¢ and —., are SN and CR. Hence 6-nf and «-nf are unique.

Both 6(v(A)) and v(6(A)) are in canonical form.

6(v(A)) =, v(6(A)) where —, is the rule
(A1) [y1] B —p (A1)[y1]B if y1 ¢ FV(As)
We define: [A] to be {B | 0(y(A)) =, 0(~(B))}.
When B € [A], we write that B ~.qu; A.
=0, =, =, =0, =pCRequi C=p (strict inclusions).

Define CCF(A) as {A’ in canonical form | A" =, 6(v(A))}.

35 Years of Automath, 12 April 2002 12

Reduction based on classes [Kamareddine et al., 2001]

e One-step class-reduction ~3 is the least compatible relation such that:

A~sB iff JA' € [A].9B € [B]. A" =3 B’
e ~3 really acts as reduction on classes:

o If then forall A" ~cqui A, forall B' ~.qu: B, we have A" ~3 B’

35 Years of Automath, 12 April 2002

13

Properties of reduction modulo classes

e ~ g3 generalises —, and —g: —g C —4,C ~g C =g.
e ~3 and =g are equivalent: A ~g B iff A =3 B.

e ~»g Is Church Rosser:
If A~»3 B and A ~»g C, then for some D: B ~»g D and C' ~»3 D.

o (lasses preserve SN_, ;- If A€ SN_,; and A" € [A] then A" € SN_, .
o Classes preserve SN..,,: If A€ SN, and A’ € [A] then A" € SN, .

e SN_,;, and SN.,, are equivalent: A€ SN.,, ift A€ SN_,.

35 Years of Automath, 12 April 2002 14

Using Item Notation in Type Systems

e Now, all items are written inside () instead of using () and |].
o ()\,.x)y is written as: (yd)(A;)x instead of (y)[x|x.

o II....(\;...x)y is written as: (xII,)(yd)(zA;)x.

35 Years of Automath, 12 April 2002

15

The Barendregt Cube in item notation and class reduction

e The formulation is the same except that terms are written in item notation:

o T=+|0[V(TO)T[(TAv)T | (TIy)T.

e The typing rules don’t change although we do class reduction ~»3 instead of
normal S-reduction —3 .

e The typing rules don't change because =g is the same as ~3.

35 Years of Automath, 12 April 2002 16

AW

A2

\

A

P

/

2

APw

AP

35 Years of Automath, 12 April 2002

/

[, %

)ER

(O0,0) € R

Figure 1: The Barendregt Cube

(%, 0

) ER

17

Subject Reduction fails

e Most properties including SN hold for all systems of the cube extended with
class reduction. However, SR only holds in A_, (%, %) and Aw (O, 0).

e SR fails in AP (x,0) (and hence in AP2, \Pw and A\('). Example in paper.

e SR also fails in A2 (I,) (and hence in AP2, A\w and \C):

35 Years of Automath, 12 April 2002 18

Why does Subject Reduction fails

. (80)(*Aa) (40)(ade)z ~5(B0)(xAa) (y'6) (e).
o (Aa-yia-(Azia-@)y) By ~p(Aass-(Azia-2)y') B

o 3%,y B F2(Aax-Aya-(Msia-2)y) BY

o Yet, B: %4 : B Hro(Parw.Oaa-2)y’) B : T for any 7.

e the information that v’ : 3 has replaced v : « is lost in

e But we need 3’ : o to be able to type the subterm ()\,.,.x)y" of
and hence to type - (Az:a-)y') B 1 B.

35 Years of Automath, 12 April 2002 19

Solution to Subject Reduction: Use “let
expressions /definitions”

e Definitions/let expressions are of the form: let z : A = B and are added to
contexts exactly like the declarations y : C.

Iletx: A =BFC:D
['F¢ (Ap:a.C)B : D|zx := A]

e (def rule)

e we define I' =¢ - =4+ - to be the equivalence relation generated by:

— if then
— if is in I' and if B arises from A by substituting one

particular occurrence of = in A by N, then

35 Years of Automath, 12 April 2002 20

The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs) and (form) are unchanged.

(start) I'F*A:s I'A:s TI'F*B:A ash
>rar 'z:AFcz: A ['letz:A =BFx:A vITes

weak) DEODE THAis TreA:s DEB:ATEDE oo
ea Tz AF°D:E T letz:A=BFD:E vITes

'kcA: B kB : S [' ¢ B =40¢ B’
'FcA: B’

I'letx: A =BFC:D
' (Az.a.C)B : D|x := A]

(conv)

(def)

35 Years of Automath, 12 April 2002 21

Table 1: Definitions solve subject reduction

1. B:x,vy : 0, let a:
2. B:x9y : 0, let o:
3. B:%x,vy :0, let a:
4. B:*,9y" : 8, let o :
5. B:x,vy" 08, let o :

35 Years of Automath, 12 April 2002

* = f3 ey
*= [=€ o =ger
x = f3 F¢y' o (from 1 and 2)

x =0, letzx:a =9y Fux:a
x = 3 F¢ (Apa-)y ajz =y =«

= ()‘x:a-ﬂf)y/ : CV[OA = 6] —

22

Automath
Mathematical text in AUTOMATH written as a finite list of /ines of the form:
ry: A1, xn ApF gz, ..) =1t T.

Here g is a new name, an abbreviation for the expression ¢ of type T' and
x1,...,T, are the parameters of g, with respective types Aq,..., A,.

Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

If linexy: Ay,...,2,: Ay F g(zy,...,2,) =t : T occursin a book B then we
can unfold the definition by: b(31,...,%,) —=s E1[T1,. .., Tn: =21, ..., Lnl.

Developments of ordinary mathematical theory in AUTOMATH (van Benthem
Jutting) revealed that this combined definition and parameter mechanism is
vital for keeping proofs manageable and sufficiently readable for humans.

35 Years of Automath, 12 April 2002 23

AA

e In AUT-SL, de Bruijn described how a complete AUTOMATH book can be
written as a single A-calculus formula.

e Disadvantage of AuUT-SL: in order to put the book into the A-calculus
framework, we must first eliminate all definitional lines of the book.

e De Bruijn did not like this: without definitions, formulae grow exponentially.

e For this reason, de Bruijn developed the AA with which he wanted to embrace
all essential aspects of AUTOMATH apart from type inclusion.

e AA is the lambda calculus written in his wagon notation (as above).

e In AA, de Bruijn favours trees over character strings and does not make use
of AT-couples.

35 Years of Automath, 12 April 2002 24

Local versus Global reductions

In AA, de Bruijn replaced B-reduction by a sequence of local S-reductions and
AT-removals.

The reason for this is that the delta reductions —5 of AUTOMATH can be
considered as local -reductions, and not as ordinary 3-reductions.

De Bruijn defined local S-reduction, which keeps the AT-pair and does (-
reduction at one instance (instead of all the instances).

Example
(y)z < Lg (Z)z —1g ()Y

Doing a further local 5-reduction gives
(V)Y <Lp (Y)T +Lp (T)x =g (T)y = Lp)y

35 Years of Automath, 12 April 2002 25

e Now we can remove the AT-pair from (y)y obtaining (y)y.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. The call-by-need lambda calculus. In Conf. Rec. 22nd Ann. ACM
Symp. Princ. of Prog. Langs., pages 233-246, 1995.

Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube with

definitions and generalised reduction. Inform. & Comput., 126(2):123-143,
May 1996.

Philippe de Groote. The conservation theorem revisited. In Proc. Int’l Conf. Typed
Lambda Calculi and Applications, pages 163-178. Springer-Verlag, 1993.

F. Kamareddine, R. Bloo, and R. Nederpelt. On II-conversion in the A-cube and
the combination with abbreviations. Ann. Pure Appl. Logic, 97(1-3):27-45,
1999.

35 Years of Automath, 12 April 2002 26

F. Kamareddine, R. Bloo, and R. Nederpelt. De Bruijn’s syntax and reductional
equivalence of A-terms. PPDP 2001, ACM publications.

F. Kamareddine and A. Rios. Relating the Ao- and As-styles of explicit
substitutions. J. Logic Comput., 10(3):399-431, 2000.

Fairouz Kamareddine. Postponement, conservation and preservation of strong
normalisation for generalised reduction. J. Logic Comput., 10(5):721-738,
2000.

Fairouz Kamareddine and Rob Nederpelt. On stepwise explicit substitution. Int’l
J. Foundations Comput. Sci., 4(3):197-240, 1993.

Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the A-calculus.
J. Funct. Programming, 5(4):637-651, October 1995.

35 Years of Automath, 12 April 2002 27

Fairouz Kamareddine and Rob Nederpelt. A useful A-notation. Theoret. Comput.
Sci., 155(1):85-109, 1996.

Fairouz Kamareddine and Alejandro Rios. A A-calculus a la de Bruijn with explicit
substitution. In 7th Int’l Symp. Prog. Lang.: Implem., Logics & Programs,
PLILP 95, volume 982 of LNCS, pages 45—62. Springer-Verlag, 1995.

Fairouz Kamareddine and Alejandro Rios. Extending a A-calculus with explicit
substitution which preserves strong normalisation into a confluent calculus on
open terms. J. Funct. Programming, 7(4):395-420, 1997.

Fairouz Kamareddine, Alejandro Rios, and J. B. Wells. Calculi of generalised
B-reduction and explicit substitutions: The type free and simply typed versions.
J. Funct. Logic Programming, 1998(5), June 1998.

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2

35 Years of Automath, 12 April 2002 28

fragment of the second-order A-calculus. In Proc. 1994 ACM Conf. LISP Funct.
Program., pages 196-207, 1994. ISBN 0-89791-643-3.

A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs
of B-strong normalization in typed A-calculi. In Proc. 10th Ann. IEEE Symp.

Logic in Computer Sci., pages 311-321. 1995. ISBN 0-8186-7050-9.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawet Urzyczyn. An analysis of ML typability.
J. ACM, 41(2):368-398, March 1994.

Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus With Lambda
Structured Types, PhD thesis, Eindhoven, 1973.

Laurent Regnier. Lambda calcul et réseaux. PhD thesis, University Paris 7, 1992.

35 Years of Automath, 12 April 2002 29

