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Item Notation/Lambda Calculus a la de Bruijn

e 7 translates to item notation:
I(z) ==z,  I(Mz.B) =[z|I(B),  Z(AB)= (Z(B))Z(A)
o (Az.\y.xy)z translates to (z)|z][y|(y)z.
e The wagons are (z), [x], [y] and (y). The last = is the heart of the term.
e The applicator wagon (z) and abstractor wagon |[x] occur NEXT to each other.
e The B rule (\z.A)B —3 A|x := B] becomes in item notation:

A — 3 [ZE = B]A
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35 Years

Redexes in Item Notation

Classical Notation ltem Notation
((Ae-(Ay-Azzd)o)b)a (@) (D)[z[(c)[y][z](d) 2
¥ %
(Ay-Az-zd)c)a (a){c)y][z]{d)=
¥ ¥
(N\..zd) (a)z](d)z
% %
ad (d)a
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Segments, Partners, Bachelors

e The “bracketing structure” of ((\,.(A,.\.. — —)c)b)a),is ‘|1 {2 {3 }2 g
where ‘{;" and ‘};" match.

e The bracketing structure of (¢)ly] z](d) is simpler: {}}.

. and || are partners. and || are partners. (c) and [y| are partners.

e (d) is bachelor.

o A segment s is well balanced when it contains only partnered main items.
(¢)[yl[z] is well balanced.

e A segment is bachelor when it contains only bachelor main items.
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More on Segments, Partners, and Bachelors

The main items are those at top level.

In ([y](y)y)[z]z the main items are: ([y](y)y) and [z].
[y] and (y) are not main items.

Each main bachelor || precedes each main bachelor ().

For example, look at: [u] (o) |yl z](d)u.

Removing all main bachelor items yields a well balanced segment.

For example from [u] (o)lyl|z](d) we get: (c)|y]

Removing all main partnered items vyields a bachelor segment
[v1] .. [vn(a) ... (am).

For example from [u] (o)lyl z](d) we get: [u](d).

|f and are partnered in 51(0)s5|v s3, then 55 must be well balanced.
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Even More on Segments, Partners, and Bachelors

Each non-empty segment s has a unique partitioning into sub-segments

S =505, -5, such that n > 0,

e 5, is not empty for ¢ > 1,

e 5, is well balanced if 7 is even and is

o if 5, =[z1] - |xm] and 5 = (a1) - - - (ap) then 5; precedes s;

e Example: 5= [z]|y (e) is partitioned as:

~—~
S

~—

A

[P NI G
® 5= @%M(a)[z]‘ s_, é?,
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More on Item Notation

e Above discussion and further details of item notation can be found
in [Kamareddine and Nederpelt, 1995, 1996].

e ltem notation helped greatly in the study of a one-sorted style of
explicit substitutions, the As-style which is related to Ao, but has certain

simplifications [Kamareddine and Rios, 1995, 1997; Kamareddine and Rios,
2000].

e For explicit substitution in item notation see [Kamareddine and Nederpelt,
1993]
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Canonical Forms

e Nice canonical forms look like:

bachelor []s | ()[]-pairs, A; in CF end var
e classical:

A1 A (A ( Ay (A

e For example, a canonical form of:

IS
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Some Helpful Rules for reaching canonical forms

Name | In Classical Notation | In Item Notation
(Az-N)P) (P)|z]N
(0) b }
(\e. NP (P)[x](C))N
( °)‘y°N) ly|N
(7) J }
Ay (A\.-IN) Y] N
(Ao Ay-N)P)Q (@) lyIN
(ve) i 4
(Ay-(A-N) )@ (Q)ly] N
((Az-r).N)P) (P)|z]ly/ N
(9) J J
(A\2-N )P | (P)lz] N
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A Few Uses of Generalised Reduction and Term Reshuffling

Regnier [1992] uses term reshuffling and generalized reduction in analyzing
perpetual reduction strategies.

Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

[Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

[Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

[Kamareddine and Nederpelt, 1995; Kamareddine et al., 2001, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

[Kamareddine, 2000] shows various strong properties of generalised reduction.
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Obtaining Canonical Forms

6-nf: ()] |-pairs mixed with bach. [|s | bach. ()s end var
| (A alE (A2 - .

v-nf: bach. | |s ()] |-pairs mixed with bach. ()s end var
z1][zg] - -- (A1)[z](B2) - - - x

6-v-nf: | bach. |]s ()] |-pairs bach. ()s end var
z1[wo] - -+ | (A1)[31)(A2)[y2] - - - (Am)[Ym] z

~v-0-nf: | bach. | |s ()] |-pairs bach. ()s end var
z1][za] - -+ | (A1) [y1](A2)[ya] . - - (Am)[Ym] z
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Example

For M = [z][y](a)[2][] z

O(M): bach. [|s | ()] |-pairs mixed with bach. [|s | bach. ()s | end var
=]y (a)[][x] z

y(M): bach. [|s | ()| |-pairs mixed with bach. ()s | bach. ()s | end var
2llylie’] | ()] :

O(y(M)): | bach. []s | ()]]-pairs bach. ()s | end var
z]ly]lz’] | (a)|z] z

v(@(M)): | bach. |]s ()[__—pairs bach. ()s | end var
z]ly]l2] | (a)lz] z
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Classes of terms modulo reductional behaviour
—¢ and —., are SN and CR. Hence 6-nf and «-nf are unique.

Both 6(v(A)) and v(6(A)) are in canonical form.

6(v(A)) =, v(6(A)) where —, is the rule
(A1) [y1] B —p (A1)[y1]B if y1 ¢ FV(As)
We define: [A] to be {B | 0(y(A)) =, 0(~(B))}.
When B € [A], we write that B ~.qu; A.
=0, =, =, =0, =pCRequi C=p (strict inclusions).

Define CCF(A) as {A’ in canonical form | A" =, 6(v(A))}.
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Reduction based on classes [Kamareddine et al., 2001]

e One-step class-reduction ~3 is the least compatible relation such that:

A~sB iff JA' € [A].9B € [B]. A" =3 B’
e ~3 really acts as reduction on classes:

o If then forall A" ~cqui A, forall B' ~.qu: B, we have A" ~3 B’
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Properties of reduction modulo classes

e ~ g3 generalises —, and —g: —g C —4,C ~g C =g.
e ~3 and =g are equivalent: A ~g B iff A =3 B.

e ~»g Is Church Rosser:
If A~»3 B and A ~»g C, then for some D: B ~»g D and C' ~»3 D.

o (lasses preserve SN_, ;- If A€ SN_,; and A" € [A] then A" € SN_, .
o Classes preserve SN..,,: If A€ SN, and A’ € [A] then A" € SN, .

e SN_,;, and SN.,, are equivalent: A€ SN.,, ift A€ SN_,.
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Using Item Notation in Type Systems

e Now, all items are written inside () instead of using () and |].
o ()\,.x)y is written as: (yd)(A;)x instead of (y)[x|x.

o II....(\;...x)y is written as: (xII,)(yd)(zA;)x.
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The Barendregt Cube in item notation and class reduction

e The formulation is the same except that terms are written in item notation:

o T=+|0[V(TO)T[(TAv)T | (TIy)T.

e The typing rules don’t change although we do class reduction ~»3 instead of
normal S-reduction —3 .

e The typing rules don't change because =g is the same as ~3.
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Subject Reduction fails

e Most properties including SN hold for all systems of the cube extended with
class reduction. However, SR only holds in A_, (%, %) and Aw (O, 0).

e SR fails in AP (x,0) (and hence in AP2, \Pw and A\('). Example in paper.

e SR also fails in A2 (I, ) (and hence in AP2, A\w and \C):

35 Years of Automath, 12 April 2002 18



Why does Subject Reduction fails

. (80)(*Aa) (40)(ade)z ~5(B0)(xAa) (y'6) (e ).
o (Aa-yia-(Azia-@)y) By ~p(Aass-(Azia-2)y') B

o 3%,y B F2(Aax-Aya-(Msia-2)y) BY

o Yet, B: %4 : B Hro(Parw.Oaa-2)y’) B : T for any 7.

e the information that v’ : 3 has replaced v : « is lost in

e But we need 3’ : o to be able to type the subterm ()\,.,.x)y" of
and hence to type - (Az:a-)y') B 1 B.
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Solution to Subject Reduction: Use “let
expressions /definitions”

e Definitions/let expressions are of the form: let z : A = B and are added to
contexts exactly like the declarations y : C.

Iletx: A =BFC:D
['F¢ (Ap:a.C)B : D|zx := A]

e (def rule)

e we define I' =¢ - =4+ - to be the equivalence relation generated by:

— if then
— if is in I' and if B arises from A by substituting one

particular occurrence of = in A by N, then
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The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs) and (form) are unchanged.

(start) I'F*A:s I'A:s TI'F*B:A ash
>rar 'z:AFcz: A ['letz:A =BFx:A vITes

weak) DEODE THAis TreA:s DEB:ATEDE oo
ea Tz AF°D:E T letz:A=BFD:E vITes

'kcA: B kB : S [' ¢ B =40¢ B’
'FcA: B’

I'letx: A =BFC:D
' (Az.a.C)B : D|x := A]

(conv)

(def)
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Table 1: Definitions solve subject reduction

1. B:x,vy : 0, let a:
2. B:x9y : 0, let o:
3. B:%x,vy :0, let a:
4. B:*,9y" : 8, let o :
5. B:x,vy" 08, let o :
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* = f3 ey
*= [ =€ o =ger
x = f3 F¢y' o  (from 1 and 2)

x =0, letzx:a =9y Fux:a
x = 3 F¢ (Apa-)y ajz =y =«

= ()‘x:a-ﬂf)y/ : CV[OA = 6] —

22



Automath
Mathematical text in AUTOMATH written as a finite list of /ines of the form:
ry: A1, xn ApF gz, .. ) =1t T.

Here g is a new name, an abbreviation for the expression ¢ of type T' and
x1,...,T, are the parameters of g, with respective types Aq,..., A,.

Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

If linexy: Ay,...,2,: Ay F g(zy,...,2,) =t : T occursin a book B then we
can unfold the definition by: b(31,...,%,) —=s E1[T1,. .., Tn: =21, ..., Lnl.

Developments of ordinary mathematical theory in AUTOMATH (van Benthem
Jutting) revealed that this combined definition and parameter mechanism is
vital for keeping proofs manageable and sufficiently readable for humans.
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AA

e In AUT-SL, de Bruijn described how a complete AUTOMATH book can be
written as a single A-calculus formula.

e Disadvantage of AuUT-SL: in order to put the book into the A-calculus
framework, we must first eliminate all definitional lines of the book.

e De Bruijn did not like this: without definitions, formulae grow exponentially.

e For this reason, de Bruijn developed the AA with which he wanted to embrace
all essential aspects of AUTOMATH apart from type inclusion.

e AA is the lambda calculus written in his wagon notation (as above).

e In AA, de Bruijn favours trees over character strings and does not make use
of AT-couples.
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Local versus Global reductions

In AA, de Bruijn replaced B-reduction by a sequence of local S-reductions and
AT-removals.

The reason for this is that the delta reductions —5 of AUTOMATH can be
considered as local -reductions, and not as ordinary 3-reductions.

De Bruijn defined local S-reduction, which keeps the AT-pair and does (-
reduction at one instance (instead of all the instances).

Example
(y)z < Lg (Z)z —1g ()Y

Doing a further local 5-reduction gives
(V)Y <Lp (Y)T +Lp (T)x =g (T)y = Lp )y
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e Now we can remove the AT-pair from (y)y obtaining (y)y.
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