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The M\o-calculus

Terms Aot ::=1 | ActAct | Ao? | Act[Ac?]
Substitutions Ac® :=1id | T | Aot-Ao® | Ao® o Ao*®
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(Beta) (Aa) b
(Varld) 1 [id]
(VarCons) 1]a- s]
(App) (ab)s
(Abs) ()\a,)[s:
(Clos) (als])[t
(IdL) idos
(Shiftld) 1 oid
(ShiftCons) 1o (a-s)
(Map) (a-s)ot
(Ass) (s1082) 0 3

LELLLLELLLL

a|b-id]

(als]) (b]s])
Aall-(soT)])

alsot]

alt]-(sot)
S1 0 (82 083)

We can code n by the term 1[1"1].
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The M\v-rules

Avt = IN | AvtAvt | AAvt | Avt[Av®]
Av® =1 | 1 (Av®) | Aot
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(Beta)
(App)

(Abs)

(FVar)
(RVar)
(FVarLift)
(RVarLift)
(VarShift)
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The Mo ;-rules

Aot == IN | Ao® Ac’, | AAd®, | Aot [Ao?]

Ao% ==dd | 1T | f(Ac%) | Ad?y - Ao® | Ao®, o Aos,.
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(Beta) Aa)b
(App) (ab)ls
(Abs) (Aa)ls
(Clos) (a[s])t]
(Varshift1) n 1]
(Varshift2) n [t o s
(F'VarCons) 1la - s]
(RVarCons) n+1la- s
(F'VarLift1) 1M (s)]
(FVarLift2) 1[f(s) ot]
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(RVarLift1) n+1[1(s)]
(RVarLift2)  n+ 1[{t(s)ot]
(Map) (a-s)ot
(Ass) (sot)owu
(ShiftCons) 1To(a-s)
(ShiftLift1) o1 (s)
(ShiftLift2) To(f(s)ot)
(Lift1) fr(s)o ()
(Lift2) f(s) o (1 (£) ou)
(LiftEnv) f(s) o (a-t)
(1dL) idos
(IdR) soid
(Liftld) 1 (id)
(Id) a [id]
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Lambda calculus with de Bruijn indices

o A= IN | (AA) | (AA) (M) B —5 A{1+< B}

e meta-updatings U} : A — A for k> 0 and i > 1:

Ui(AB) = Ui (4) Uj(B) Ui(AA) = AUL,,(A))
v ={ 2

e meta-substitutions at level 2 > 1, of aterm B &€ A inaterm A€ A:
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(AlAQ){i < B}}

(A1{i < B}) (A2{i < B})

(M) {i <+~ B} = \NA{i+ 1+ B})
n—1 if n>1

n{{i«+ B} = { Ué(B) if n=1
n if n<zq.
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e Lemma 1.

— U,i(A){{n(—B}} = U,i_l(A)
Ui(A){n+B} = Ui(A{n—1i+ 1+ B})
— ULU}(A)) = U377 H(4)
UL (U3(A)) = Uj(Uip_;(4))

— Meta-substitution lemma For 1 <1 <mn we have:

ifk<n<k+1
ifk+i1<mn

ifp<k<j+p
if j+p<k+1

A{i+ B}{n<+C}=A{n+ 1+ CH{i+<Bf{n—1i+1<C}}.

— Distribution lemma

For n <k+1 we have: U,(Afn+B}) =U;_ (A)fn<U;_, . (B)}.
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The )\s-calculus

As :=IN | AsAs | Ms | Asc7As | ot As
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where 3,1 >1, kK>0.
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o-generation (Ma)b — aocld
o-A-transition (Aa) b —  A(ao?T1b)
o-app-transition (a1 as)o’b  — (a1 07b) (az0’b)
(n—1 if n>j

o-destruction nolb — ¢ gp‘éb if n=y

| | n if n<jy
©-A-transition, pp(Aa)  — Aoy a)
p-app-transition  ¢j(a1a2) — (¢} a1) (o}, az)
p-destruction pin  — { E_I_ 11 :i Z i Z
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The extra rules of the \s.-calculus

@ Asop i=V | IN | AsopAsop | ASop | Asop?Asep | 0L Asep

e [oss of confluence

(Xo'V)oll « (AX)Y)ol1— (AX)ol1)(Yol1)

(Xo'Y)o'1 and ((AX)o'1)(Yo'1) have no common reduct
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o -0 -transition (ac'b)o’c — (acd?Tec) o' (bo? " The) if i<
o-p-transition 1 (pha)oc?b — 902_1 a if k<j<k+1
o-p-transition 2 (ol a)o’b —  @i(ac? ") if k+i<j
p-o-transition prlac?b) —  (phq0a)0’ (gofcﬂ_j b) if j<k+1
p-p-transition 1 @' (go*Z a) —> go{ (goi;ﬂ_j a) if [ +7<k
p-p-transition 2 @ (cpg a) —> gp{Jri_l a if [ <k<Il+j
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e Forevery £ € {0,04,v,s}, £is SN and X is confluent [1, 4, 9, 10, 6, 2] on
closed terms.

e Only Ao, and the As. are confluent on open terms [3, 7]
e Only Av and \s have Preservation of Strong Normalisation (PSN) [6, 2]

e )\s has an extension As. [7] which is confluent on open terms, but Av does
not.

e Is s. Strongly Normalising? We know s. Weakly Normalising [7].
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e We have fully proof checked the proof of SN of o in ALF, we have investigated
different termination techniques, but are still unable to show SN of s..
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Techniques for showing the o-calculus is SN

There are various proofs of this theorem in the literature:

1. The first is based on the strong normalisation of SUBST [5], which is, within
C'CL, the set of rewriting rules that compute the substitutions.

2. The proof in [4] shows the termination of o via a strict translation from o to
another calculus oy (an economic variant of o) and the termination of oy.

3. Zantema gives two proofs in [9, 10]. The first is based on a suitable
generalisation of polynomial orders to show the termination of the calculus oy
(and hence the termination of o). The second uses semantic labelling to show
the termination of o.
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These techniques cannot be applied for s,

e Problem 1: Unable to use recursive path ordering By taking a look at the
s.-rules, it becomes obvious that the unfriendly rules, with respect to SN, are
o-o-transition and to a lesser extent p-o-transition. These rules prevent us
from finding an order on the set of operators in order to solve the normalisation
problem with a recursive path ordering (rpo).

e Problem 2: Unable to use Zantema’s distribution elimination lemma.
The s.-rules “look like" associative rules but unfortunately they are not; e.g.
in o-o-transition one could think the o7-operator distributes over the o'-
operator, but it is not a “true” distribution: ¢’ changes to o/*! when acting
on the first term and to ¢/ ~*T! when acting on the second. This prevents use
of Zantema's distribution elimination method [9] to show SN.
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Can we apply modularity?

e Another technique to show SN is modularity where SN is proved for certain
subcalculi os s, which are shown to satisfy a commutation property.

e s. can be divided into two subcalculi which are SN.

xp = {o-p-tr.1, o-@p-tr.2, p-p-tr.1, p-p-tr.2},
xo = {o-0-tr., p-o-tr.},

xo~ = {o-p-tr.1, p-p-tr.2}, xo~ " = {o-p-tr.2, p-p-tr.1}.
Note that s, = (s + *p) + *0.

e Unfortunately, the needed commutation results do not hold.
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SN of s + *xp

e \We prove that s + x¢ is SN by giving a weight that decreases by reduction.

o Let P:Asy,, — IN and W : As,, — IN be defined by:
P(X)=P(n) =2 W(X)=W(mn)=1

P(ab) = P(a) + P(b) Wi(ab) =W(a)+W(b)+1
P(\a) = P(a) W(Aa) =W(a)+1

P(aclb) = j* P(a)* P(b) Wi(ao’b) =2+ W(a)* (W(b) + 1)
P(pra) = (k+ 1) = (P(a) +1)  W(ppa) =2 W(a)

o (W(a),P(a)) decreases with the lexicographical order for each s + x(-
reduction.
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The \w- and \w.-calculi

e In order to establish SN of xo, we will use an isomorphism established in [8]
between As. and Aw,, a calculus written in the Ao-style.

Terms Aw' = IN | Aw'Aw? | Mw' | Aw'[Aw®];
Substitutions Aw?® ::=1" | Aw?/
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o-generation
o-app-transition
o-A-transition

o-/-destruction

o-T-destruction

(Aa)b — alb/]x
(ad)ls]l; — (als];) (b]s];)
(Aa)lsl;  —  Ala[s]j+1)
n—1 if n>j
nla/];, — { a1 if n=j
n | if n.<j
o {3422

Termination 2001

Figure 1: The Aw-calculus
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Open Terms Awf)p =V | IN | Awf)pAwf)p | )\Awf)p | Awgp[Awﬁp]j
Substitutions Aw], :=1" | Awf,/

o-/-transition  a[b/lx[s]; — als]jy1[blslj—ks1/lk if k<

/M-transition  a[M]k[b/]; — { Zi?l/]_jﬁ;” Ik :]t z i Zjijk ny
SUTEPY . o .

tt-transition o [Mk[1Y]; — { Z:Llﬁﬁé” I :i z ;;ij e

Figure 2: The new rules of the Aw.-calculus
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Properties of \w and \w.

1. The w-calculus is SN and confluent on Aw?.

2. Let a,be A. If a—»x, b then a =3 b. If a —5b then a —»,, b.

3. The A\w-calculus is confluent on Aw?.

4. Pure terms which are SN in the A-calculus are also SN in the Aw-calculus.
5. The w,-calculus is weakly normalising and confluent.

6. The Aw.-calculus is confluent on open terms.

Termination 2001
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7. Let a,be A. If a—»x,. b then a =5b. If a =30 then a =%, b.

Termination 2001
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SN for xo

e To prove SN for xo we use the above isomorphism and the technique that
Zantema used to prove SN for the calculus whose only rule is o-o-transition.

e Following this isomorphism, the schemes o-o-tr. and @-o-tr. of As. both
translate into the same scheme of Aw,, namely o-/-transition.

e Hence, to show that o is SN, it is enough to show that the calculus whose
only rule is o-/-transition, let us call it o-/-calculus, is SN.

1. The o-/-calculus is weakly normalising.
2. The o-/-calculus is locally confluent.
3. The o-/-calculus is increasing.
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Commutation does not hold

e xo does not commute over s + x(.

let k+1<j5,h<j—1+4+1and h > k+ 1. Now take the following derivation:
(ph(a o)) olc —.p @t ((ac™b) o ) = o 4 0i((ao? " 2c) o™ (bo? 7 2e))
It is easy to see that (! (ac"b))o’c does not contain any xo-redex.

e s+ xp does not commute over 0.

let ¢ < 4 and take the derivation: (Ma) o'b) 0ic) —o_o—ir
(Aa) o7 Te) ot (bo? ™" le) =, (Mao?T2c)) ot (bo? T le).

Reducing the only s-redex in ((\a) o'b) 07¢) we get (A(a o*T1b)) o7c which also
has a unique s-redex. Reducing it we get A((ac*™1b) 0’ T1c) and now there
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is only the o-o-transition redex which gives us \((a o’ 2c)o' T (bo? " T1ic))
which has no further redexes. Therefore, (A\(a o/ 72c)) o*(bo’ ~*T1c) cannot be
reached from ((\a) o'b) o'c) with an s.-derivation beginning with an s-step.
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Conclusions

Does the s.-calculus TERMINATE?7?7

Termination 2001
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