Is the s_e calculus strongly normalising?

Fairouz Kamareddine

Joint work with *Alejandro Ríos*

http://www.macs.hw.ac.uk/~fairouz/talks/talks2001/termination01.ps

May 2001

The $\lambda \sigma$ -calculus

We can code n by the term $1[\uparrow^{n-1}]$.

The λv -rules

$$\begin{array}{l} \Lambda v^t ::= I\!\!N \ | \ \Lambda v^t \Lambda v^t \ | \ \lambda \Lambda v^t \ | \ \Lambda v^t [\Lambda v^s] \\ \Lambda v^s ::=\uparrow \ | \ \uparrow (\Lambda v^s) \ | \ \Lambda v^t. \end{array}$$

```
(Beta) \qquad (\lambda a) b \longrightarrow a [b/]
(App) \qquad (ab)[s] \longrightarrow (a[s]) (b[s])
(Abs) \qquad (\lambda a)[s] \longrightarrow \lambda (a [\uparrow (s)])
(FVar) \qquad 1[a/] \longrightarrow a
(RVar) \qquad n+1[a/] \longrightarrow n
(FVarLift) \qquad 1[\uparrow (s)] \longrightarrow 1
(RVarLift) \qquad n+1[\uparrow (s)] \longrightarrow n[s] [\uparrow]
(VarShift) \qquad n[\uparrow] \longrightarrow n+1
```

The $\lambda\sigma_{\uparrow}$ -rules

$$\Lambda \sigma_{\,\,\Uparrow}^t ::= I\!\!N \,\mid\, \Lambda \sigma_{\,\,\Uparrow}^t \Lambda \sigma_{\,\,\Uparrow}^t \,\mid\, \lambda \Lambda \sigma_{\,\,\Uparrow}^t \,\mid\, \Lambda \sigma_{\,\,\Uparrow}^t [\Lambda \sigma_{\,\,\Uparrow}^s]$$

$$\Lambda \sigma^s_{\,\,\uparrow} ::= id \,\mid\,\, \uparrow \,\mid\,\, \uparrow \,(\Lambda \sigma^s_{\,\,\uparrow}) \,\mid\, \Lambda \sigma^t_{\,\,\uparrow} \cdot \Lambda \sigma^s_{\,\,\uparrow} \,\mid\, \Lambda \sigma^s_{\,\,\uparrow} \circ \Lambda \sigma^s_{\,\,\uparrow}.$$

```
 \begin{array}{ccc} (\lambda a) \, b & \longrightarrow & a \, [b \cdot id] \\ (a \, b)[s] & \longrightarrow & (a \, [s]) \, (b \, [s]) \end{array} 
(Beta)
(App)
            (\lambda a)[s] \longrightarrow \lambda(a \left[ \uparrow (s) \right])
(Abs)
(Clos) \hspace{1cm} (a\,[s])[t] \hspace{1cm} \longrightarrow \hspace{1cm} a\,[s\circ t]
(Varshift1) 	extbf{n} [\uparrow] \longrightarrow 	extbf{n} + 1
(Varshift2) \mathbf{n} [\uparrow \circ s] \longrightarrow \mathbf{n} + \mathbf{1} [s]
(RVarCons) n+1[a\cdot s] \longrightarrow n[s]
(FVarLift2) \mathbf{1} \left[ \uparrow (s) \circ t \right] \longrightarrow \mathbf{1} \left[ t \right]
```

Termination 2001 6

(RVarLift1)	$\mathtt{n}+\mathtt{1}\left[\mathop{\Uparrow}(s)\right]$	\longrightarrow	$\mathtt{n}[s \circ \uparrow]$
(RVarLift2)	$\mathtt{n} + \mathtt{1} \left[\mathop{\Uparrow} (s) \circ t \right]$	\longrightarrow	$\mathtt{n}[s\circ (\uparrow \circ t)]$
(Map)	$(a \cdot s) \circ t$	\longrightarrow	$a[t] \cdot (s \circ t)$
(Ass)	$(s \circ t) \circ u$	\longrightarrow	$s\circ (t\circ u)$
(Shift Cons)	$\uparrow \circ (a \cdot s)$	\longrightarrow	S
(ShiftLift1)	$\uparrow \circ \Uparrow(s)$	\longrightarrow	$s\circ \uparrow$
(ShiftLift2)	$\uparrow \circ (\mathop{\uparrow}(s) \circ t)$	\longrightarrow	$s\circ (\uparrow \circ t)$
(Lift1)	$\Uparrow(s) \circ \Uparrow(t)$	\longrightarrow	$\mathop{\Uparrow} (s \circ t)$
(Lift2)	$\mathop{\Uparrow}(s) \circ (\mathop{\Uparrow}(t) \circ u)$	\longrightarrow	$\mathop{\Uparrow} (s \circ t) \circ u$
(LiftEnv)	$\uparrow\!\!\!\uparrow(s)\circ(a\cdot t)$	\longrightarrow	$a\cdot (s\circ t)$
(IdL)	$id\circ s$	\longrightarrow	S
(IdR)	$s \circ id$	\longrightarrow	S
(LiftId)	$\uparrow (id)$	\longrightarrow	id
(Id)	$a\left[id ight]$	\longrightarrow	a

Lambda calculus with de Bruijn indices

$$\bullet \ \Lambda ::= I\!\!N \ | \ (\Lambda\Lambda) \ | \ (\lambda\Lambda) \qquad \qquad (\lambda A) \, B \to_\beta A \{\!\!\{ \mathbf{1} \!\leftarrow\! B \}\!\!\}$$

• meta-updatings $U_k^i: \Lambda \to \Lambda$ for $k \geq 0$ and $i \geq 1$:

$$\begin{split} U_k^i(AB) &\equiv U_k^i(A) \, U_k^i(B) & U_k^i(\lambda A) \equiv \lambda(U_{k+1}^i(A)) \\ U_k^i(\mathbf{n}) &\equiv \left\{ \begin{array}{ll} \mathbf{n} + \mathbf{i} - \mathbf{1} & \text{if} \quad n > k \\ \mathbf{n} & \text{if} \quad n \leq k \, . \end{array} \right. \end{split}$$

ullet meta-substitutions at level $i\geq 1$, of a term $B\in \Lambda$ in a term $A\in \Lambda$:

• Lemma 1.

$$\begin{array}{lll} - & U_k^i(A)\{\!\!\{\mathbf{n}\!\leftarrow\!B\}\!\!\} & \equiv & U_k^{i-1}(A) & \text{if } k < n < k+i \\ & U_k^i(A)\{\!\!\{\mathbf{n}\!\leftarrow\!B\}\!\!\} & \equiv & U_k^i(A\{\!\!\{\mathbf{n}-\mathbf{i}+\mathbf{1}\!\leftarrow\!B\}\!\!\}) & \text{if } k+i < n \end{array}$$

$$\begin{array}{lll} -& U_k^i(U_p^j(A)) & \equiv & U_p^{j+i-1}(A) & \text{if } p \leq k < j+p \\ & U_k^i(U_p^j(A)) & \equiv & U_p^j(U_{k+1-j}^i(A)) & \text{if } j+p \leq k+1 \end{array}$$

- Meta-substitution lemma For $1 \le i \le n$ we have: $A\{\{i \leftarrow B\}\}\{\{n \leftarrow C\}\} \equiv A\{\{n+1 \leftarrow C\}\}\{\{i \leftarrow B\{\{n-i+1 \leftarrow C\}\}\}\}$.
- Distribution lemma

For
$$n \leq k+1$$
 we have: $U_k^i(A\{\{\mathbf{n} \leftarrow B\}\}) \equiv U_{k+1}^i(A)\{\{\mathbf{n} \leftarrow U_{k-n+1}^i(B)\}\}$.

The λs -calculus

 $\Lambda s ::= I\!\!N \ | \ \Lambda s \Lambda s \ | \ \lambda \Lambda s \ | \ \Lambda s \, \sigma^j \Lambda s \ | \ \varphi^i_k \Lambda s \qquad where \quad j, \ i \geq 1 \, , \quad k \geq 0 \, .$

$$\begin{array}{|c|c|c|c|c|}\hline \sigma\text{-}generation & (\lambda a)\,b & \longrightarrow & a\,\sigma^1\,b \\ \hline \sigma\text{-}\lambda\text{-}transition & (\lambda a)\,\sigma^j b & \longrightarrow & \lambda(a\sigma^{j+1}b) \\ \hline \sigma\text{-}app\text{-}transition & (a_1\,a_2)\,\sigma^j b & \longrightarrow & (a_1\,\sigma^j b)\,(a_2\,\sigma^j b) \\ \hline \sigma\text{-}destruction & & \mathbf{n}\,\sigma^j b & \longrightarrow & \begin{cases} \mathbf{n}-\mathbf{1} & \text{if} & n>j \\ \varphi_0^j \, b & \text{if} & n=j \\ \mathbf{n} & \text{if} & nk \\ \mathbf{n} & \text{if} & n\leq k \end{cases} \\ \hline \end{array}$$

The extra rules of the λs_e -calculus

• $\Lambda s_{op} ::= \mathbf{V} \mid I \!\! N \mid \Lambda s_{op} \Lambda s_{op} \mid \lambda \Lambda s_{op} \mid \Lambda s_{op} \sigma^j \Lambda s_{op} \mid \varphi_k^i \Lambda s_{op}$

Loss of confluence

$$(X\sigma^1Y)\sigma^1\mathbf{1} \leftarrow ((\lambda X)Y)\sigma^1\mathbf{1} \rightarrow ((\lambda X)\sigma^1\mathbf{1})(Y\sigma^1\mathbf{1})$$

 $(X\sigma^1Y)\sigma^1$ 1 and $((\lambda X)\sigma^1$ 1) $(Y\sigma^1$ 1) have no common reduct

σ - σ -transition	$(a \sigma^i b) \sigma^j c$	\longrightarrow	$(a \sigma^{j+1} c) \sigma^i (b \sigma^{j-i+1} c)$	if	$i \leq j$
σ - φ -transition 1	$(arphi_k^{i}a)\;\sigma^jb$	\longrightarrow	$\varphi_k^{i-1} a$	if	k < j < k + i
σ - φ -transition 2	$(arphi_k^{i}a)\;\sigma^jb$	\longrightarrow	$\varphi_k^i(a\;\sigma^{j-i+1}b)$	if	$k+i \le j$
φ - σ - $transition$	$arphi_k^i(a\ \sigma^j\ b)$	\longrightarrow	$(\varphi_{k+1}^i a) \sigma^j (\varphi_{k+1-j}^i b)$	if	$j \le k + 1$
φ - φ -transition 1	$arphi_k^i \left(arphi_l^j a ight)$	\longrightarrow	$\varphi_l^j\left(\varphi_{k+1-j}^ia\right)$	if	$l+j \le k$
φ - φ -transition 2	$arphi_{k}^{i}\left(arphi_{l}^{j}a ight)$	\longrightarrow	$\varphi_l^{j+i-1} a$	if	$l \le k < l + j$

- For every $\xi \in \{\sigma, \sigma_{\uparrow}, \upsilon, s\}$, ξ is SN and $\lambda \xi$ is confluent [1, 4, 9, 10, 6, 2] on closed terms.
- ullet Only $\lambda\sigma_{\,\uparrow}$ and the λs_e are confluent on open terms [3, 7]
- Only λv and λs have Preservation of Strong Normalisation (PSN) [6, 2]
- λs has an extension λs_e [7] which is confluent on open terms, but λv does not.
- Is s_e Strongly Normalising? We know s_e Weakly Normalising [7].

• We have fully proof checked the proof of SN of σ in ALF, we have investigated different termination techniques, but are still unable to show SN of s_e .

Techniques for showing the σ -calculus is SN

There are various proofs of this theorem in the literature:

- 1. The first is based on the strong normalisation of SUBST [5], which is, within CCL, the set of rewriting rules that compute the substitutions.
- 2. The proof in [4] shows the termination of σ via a strict translation from σ to another calculus σ_0 (an economic variant of σ) and the termination of σ_0 .
- 3. Zantema gives two proofs in [9, 10]. The first is based on a suitable generalisation of polynomial orders to show the termination of the calculus σ_0 (and hence the termination of σ). The second uses semantic labelling to show the termination of σ .

These techniques cannot be applied for s_e

- **Problem 1: Unable to use recursive path ordering** By taking a look at the s_e -rules, it becomes obvious that the unfriendly rules, with respect to SN, are σ - σ -transition and to a lesser extent φ - σ -transition. These rules prevent us from finding an order on the set of operators in order to solve the normalisation problem with a recursive path ordering (rpo).
- **Problem 2: Unable to use Zantema's distribution elimination lemma.** The s_e -rules "look like" associative rules but unfortunately they are not; e.g. in σ - σ -transition one could think the σ^j -operator distributes over the σ^i -operator, but it is not a "true" distribution: σ^j changes to σ^{j+1} when acting on the first term and to σ^{j-i+1} when acting on the second. This prevents use of Zantema's distribution elimination method [9] to show SN.

Can we apply modularity?

- Another technique to show SN is modularity where SN is proved for certain subcalculi os s_e which are shown to satisfy a commutation property.
- s_e can be divided into two subcalculi which are SN.

```
\begin{split} *\varphi &= \{\sigma\text{-}\varphi\text{-tr.}1,\, \sigma\text{-}\varphi\text{-tr.}2,\, \varphi\text{-}\varphi\text{-tr.}1,\, \varphi\text{-}\varphi\text{-tr.}2\},\\ *\sigma &= \{\sigma\text{-}\sigma\text{-tr.},\, \varphi\text{-}\sigma\text{-tr.}\},\\ *\varphi^- &= \{\sigma\text{-}\varphi\text{-tr.}1,\, \varphi\text{-}\varphi\text{-tr.}2\},\, *\varphi^{--} = \{\sigma\text{-}\varphi\text{-tr.}2,\, \varphi\text{-}\varphi\text{-tr.}1\}. \end{split} Note that s_e = (s + *\varphi) + *\sigma.
```

Unfortunately, the needed commutation results do not hold.

SN of $s + *\varphi$

- We prove that $s + *\varphi$ is SN by giving a weight that decreases by reduction.
- Let $P: \Lambda s_{op} \to I\!\!N$ and $W: \Lambda s_{op} \to I\!\!N$ be defined by:

$$\begin{array}{ll} P(X) = P(\mathbf{n}) = 2 & W(X) = W(\mathbf{n}) = 1 \\ P(a\,b) = P(a) + P(b) & W(a\,b) = W(a) + W(b) + 1 \\ P(\lambda a) = P(a) & W(\lambda a) = W(a) + 1 \\ P(a\,\sigma^j b) = j * P(a) * P(b) & W(a\,\sigma^j b) = 2 * W(a) * (W(b) + 1) \\ P(\varphi_k^i a) = (k+1) * (P(a)+1) & W(\varphi_k^i a) = 2 * W(a) \end{array}$$

• (W(a), P(a)) decreases with the lexicographical order for each $s + *\varphi$ -reduction.

The $\lambda\omega$ - and $\lambda\omega_e$ -calculi

• In order to establish SN of $*\sigma$, we will use an isomorphism established in [8] between λs_e and $\lambda \omega_e$, a calculus written in the $\lambda \sigma$ -style.

 $\begin{array}{lll} \textbf{Terms} & \Lambda\omega^t ::= I\!\!N \mid \Lambda\omega^t\Lambda\omega^t \mid \lambda\Lambda\omega^t \mid \Lambda\omega^t[\Lambda\omega^s]_j \\ \textbf{Substitutions} & \Lambda\omega^s ::= \uparrow^i \mid \Lambda\omega^t/ \end{array}$

```
 \begin{array}{|c|c|c|c|c|c|c|}\hline \sigma\text{-}generation & (\lambda a) \ b & \longrightarrow & a \ [b/]_1 \\ \hline \sigma\text{-}app\text{-}transition & (a \ b)[s]_j & \longrightarrow & (a \ [s]_j) \ (b \ [s]_j) \\ \hline \sigma\text{-}\lambda\text{-}transition & (\lambda a)[s]_j & \longrightarrow & \lambda (a \ [s]_{j+1}) \\ \hline \sigma\text{-}/\text{-}destruction & \mathbf{n}[a/]_j & \longrightarrow & \begin{cases} \mathbf{n}-1 & \text{if} \ n>j \\ a \ [\uparrow^{j-1}]_1 & \text{if} \ n=j \\ \mathbf{n} & \text{if} \ n<j \end{cases} \\ \hline \sigma\text{-}\uparrow\text{-}destruction & \mathbf{n}[\uparrow^i]_j & \longrightarrow & \begin{cases} \mathbf{n}+\mathbf{i} & \text{if} \ n\geq j \\ \mathbf{n} & \text{if} \ n<j \end{cases} \\ \end{array}
```

Figure 1: The $\lambda\omega$ -calculus

Figure 2: The new rules of the $\lambda \omega_e$ -calculus

Properties of $\lambda \omega$ and $\lambda \omega_e$

- 1. The ω -calculus is SN and confluent on $\Lambda \omega^t$.
- 2. Let $a, b \in \Lambda$. If $a \to_{\lambda\omega} b$ then $a \to_{\beta} b$. If $a \to_{\beta} b$ then $a \to_{\lambda\omega} b$.
- 3. The $\lambda\omega$ -calculus is confluent on $\Lambda\omega^t$.
- 4. Pure terms which are SN in the λ -calculus are also SN in the $\lambda\omega$ -calculus.
- 5. The ω_e -calculus is weakly normalising and confluent.
- 6. The $\lambda \omega_e$ -calculus is confluent on open terms.

7. Let $a, b \in \Lambda$. If $a \twoheadrightarrow_{\lambda \omega_e} b$ then $a \twoheadrightarrow_{\beta} b$. If $a \to_{\beta} b$ then $a \twoheadrightarrow_{\lambda \omega_e} b$.

SN for $*\sigma$

- To prove SN for $*\sigma$ we use the above isomorphism and the technique that Zantema used to prove SN for the calculus whose only rule is σ - σ -transition.
- Following this isomorphism, the schemes σ - σ -tr. and φ - σ -tr. of λs_e both translate into the same scheme of $\lambda \omega_e$, namely σ -/-transition.
- Hence, to show that $*\sigma$ is SN, it is enough to show that the calculus whose only rule is σ -/-transition, let us call it σ -/-calculus, is SN.
 - 1. The σ -/-calculus is weakly normalising.
 - 2. The σ -/-calculus is locally confluent.
 - 3. The σ -/-calculus is increasing.

Commutation does not hold

• $*\sigma$ does not commute over $s + *\varphi$.

Let $k+i \leq j$, $h \leq j-i+1$ and h>k+1. Now take the following derivation: $(\varphi_k^i(a\ \sigma^h b))\ \sigma^j c \to_{*\varphi} \varphi_k^i((a\ \sigma^h b)\ \sigma^{j-i+1} c) \to_{\sigma-\sigma-tr} \varphi_k^i((a\ \sigma^{j-i+2} c)\ \sigma^h(b\ \sigma^{j-i-h+2} c))$ It is easy to see that $(\varphi_k^i(a\ \sigma^h b))\ \sigma^j c$ does not contain any $*\sigma$ -redex.

• $s + *\varphi$ does not commute over $*\sigma$.

Let $i \leq j$ and take the derivation: $((\lambda a) \, \sigma^i b) \, \sigma^j c) \to_{\sigma-\sigma-tr} ((\lambda a) \, \sigma^{j+1} c) \, \sigma^i (b \, \sigma^{j-i+1} c) \to_s (\lambda (a \, \sigma^{j+2} c)) \, \sigma^i (b \, \sigma^{j-i+1} c).$

Reducing the only s-redex in $((\lambda a) \sigma^i b) \sigma^j c)$ we get $(\lambda (a \sigma^{i+1} b)) \sigma^j c$ which also has a unique s-redex. Reducing it we get $\lambda ((a \sigma^{i+1} b) \sigma^{j+1} c)$ and now there

is only the σ - σ -transition redex which gives us $\lambda((a\,\sigma^{j+2}c)\sigma^{i+1}(b\,\sigma^{j-i+1}c))$ which has no further redexes. Therefore, $(\lambda(a\,\sigma^{j+2}c))\,\sigma^i(b\,\sigma^{j-i+1}c)$ cannot be reached from $((\lambda a)\,\sigma^i b)\,\sigma^i c)$ with an s_e -derivation beginning with an s-step.

Conclusions

Does the s_e -calculus TERMINATE???

References

- [1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional Programming, 1(4):375–416, 1991.
- [2] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λv , a calculus of explicit substitutions which preserves strong normalisation. *Functional Programming*, 6(5), 1996.
- [3] P-L Curien, T. Hardin, and J-J Lévy. Confluence Properties of weak and strong calculi of explicit substitutions. *Journal of the ACM*, 43, 362-397, 1996.

- [4] P-L Curien, T. Hardin, and A. Ríos. Strong normalisation of substitutions. Logic and Computation, 6:799–817, 1996.
- [5] T. Hardin and A. Laville. Proof of Termination of the Rewriting System SUBST on CCL. *Theoretical Computer Science*, 46:305–312, 1986.
- [6] F. Kamareddine and A. Ríos. A λ -calculus à la de Bruijn with explicit substitutions. Proceedings of PLILP'95. *LNCS*, 982:45–62, 1995.
- [7] F. Kamareddine and A. Ríos. Extending a λ -calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms. Journal of Functional Programming, 7(4):395–420, 1997.
- [8] F. Kamareddine and A. Ríos. Relating the $\lambda \sigma$ and λs -styles of explicit substitutions. *Logic and Computation*, 10(3):349–380, 2000.

- [9] H. Zantema. Termination of term rewriting: interpretation and type elimination. *J. Symbolic Computation*, 17(1):23–50, 1994.
- [10] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24:89–105, 1995.