Term Reshuffling in the Barendregt Cube*

Roel Bloo! Fairouz Kamareddine! Rob Nederpelt}

April 16, 1997

1 Brief Synopsis

Automath was invented by de Bruijn ([Nederpelt 73]) with the basic goal of automating
Mathematics. The language and theory of Automath were designed to deal with very basic
questions of which only now the computing community is becoming aware. Of these topics,
we mention explicit substitution and definitions ([1] and [SP 93]). In the beginning, it was
claimed that the notation of Automath is too difficult. Now, it became clear that the influence
of Automath on various theorem provers is invaluable.

In Automath, (A;.4.B) and (AB) are written as (A\;B) and (BJA) respectively. We
propose to change slightly the Automath notation so that the above two terms would be
written in our notation (item notation), as (A\;)B and (BJ)A respectively. This slight change
has been studied for explicit substitution in [KN 93], generalised reduction and definitions
in [BKN 9x] and was shown to bear attractive advantages over both the classical and the
Automath notations. This paper will concentrate on a new feature related to reshuffling
terms so that more redexes become visible. The idea is explained as follows:

Assume a redex is a ‘[’ next to a ‘|’. What will happen in a term of the form ‘[[][]]"7
We know that the two internal ‘[]’ are redexes, but classical notation does not allow us to
say that the outside ‘[’ and ‘]’ form a redex. In [BKN 9x]|, we generalised the notion of a
redex from a pair of adjacent matching parentheses to simply a pair of matching parentheses.
Hence, with generalised reduction all the three redexes are visible in ‘[[][]]’. In this paper,
we propose to reshuffle [[][]]" to ‘[][][]’ where the first {[" has been moved next to the last
‘I'. The item notation enables us to see the matching parentheses and to reshuffle terms so
that all matching paretheses become adjacent.

We show that term reshuffling is correct in that it preserves the semantical meaning and
the type of a term. Moreover, when definitions are added, the Cube with term reshuffling,
would satisfy all its original properties including Church Rosser, Subject Reduction and Strong
Normalisation.

*We are grateful for the Netherlands Computer Science Research Foundation (SION), the Netherlands
Organisation for Scientific Research (NWO), the universities of Glasgow and Eindhoven and to the Basic
Action for Research ESPRIT project “Types for Proofs and Programs”, for their financial support.

fDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,
5600 MB Eindhoven, the Netherlands, fax: +31 40 43 66 85, email: bloo@win.tue.nl

tDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, fax: +44 41 330 4913, email: fairouz@dcs.glasgow.ac.uk

Ssame address as Bloo. email: wsinrpn@win.tue.nl

Contents

1

2

Brief Synopsis

The formal machinery and item notation

2.1 Pseudo-Expressions in item notation
2.2 Background for Typing in item notation
2.3 Machinery for Strong Normalisation

The ordinary typing relation and its properties
3.1 The typing relation
3.2 Properties of the ordinary typing relation

Term reshuffling

4.1 Partitioning the term into bachelor and well-balanced segments
4.2 A reshuffling procedure and its properties
4.3 Another reshuffling procedure and its properties

Shuffle reduction
5.1 Properties of ordinary typing with generalised reduction

Extending the Cube with definition mechanisms
6.1 The definition mechanisms and extended typing
6.2 Properties of the Cube with definitions

The Cube with definitions and shuffle-reduction

Comparing the type system with definitions to the original type system
8.1 Conservativity e
8.2 Shorter derivations L e

20
21
23

25
26
27
29

32
34

39
40
42

45

Based on these observations related to reduction and definitions, we divide the paper into
the following sections:

e In Section 2, we start by introducing the item notation and the formal machinery of the
Cube as in [Barendregt 92] using this notation.

e In Section 3, we introduce the ordinary typing rules of the cube and the properties that
will be shown for our extended typing with definitions and shuffle reduction.

e In Section 4, we introduce term reshuffling and study their characteristics.

e In Section 5, we introduce shuffle reduction ~ g5, and show that it is a generalisation
of —» 4 such that =5 and ~g are the same and hence ~»3 is Church Rosser. We show
moreover that A ~»3 B then 3B’ € [B|[T'S(A) —3 B'].

e In Section 6, we study the Cube as in [Barendregt 92] with term reshuffling using shuffle
reduction and adding definitions. We show that this extension of the Cube preserves
its original properties. In particular, we show that SR, SN and CR hold. We show
moreover that term reshuffling preserves typing in the sense that I' 58 A : B then
[2 TS(A): B.

2 The formal machinery and item notation

Assume a translation function Z from terms in classical notation to terms in item notation
such that:

Z(A) = A if A is a variable or a constant
Z(Oy:a.B) = (Z(A)O)I(B) O=Xorll
Z(AB) = (Z(B)0)Z(A)

With this notation, a redex is a term that starts with a d-item next to a A-item. An
extended redex is a term that starts with a d-item followed by a sequence of matching d\-
items followed by a A-item. Term reshuffling amounts to moving d-items in the term through
sequences of definitions in order to occupy a place next to their matching A-item.

Example 2.1 Z((Ap.4-(B=0)-Ay:a-y)z) = (20)(A — (B — C)Ay)(ANy)(yd)z. The items
are (20), (A = (B = C)\), (A\y) and (yd)and the whole term is a redex. Note that the
translation into item notation of a redex (A;:p.A)C becomes (Z(C)d)(Z(B)Az)Z(A) and that
the scope of a A is precisely the term to the right of it.

Let us explain here why this notation enables us to see more redexes and to reshuffle terms
enabling one to contract any visible redex independently of other redexes. Let us start first
by rewriting the axiom [in item notation:

Definition 2.2 (Classical redexes and (-reduction in item notation)

In the item notation of the \-calculus, a classical redex is of the form (C6)(BA;)A. We
call the pair (C0)(BM\;), a d\-pair, or a d\-segment. The classical 3-reduction aziom is:
(CO)(BAy)A — 5 Alx := C]. Many step B-reduction —» g, is the reflezive transitive closure of
—g, and =g 1is the least equivalence relation closed under —g.

Bound and free variables and substitution are defined as usual. We write BV (A) and F'V (A)
to represent the bound and free variables of A respectively. We write A[z := B] to denote
the term where all the free occurrences of x in A have been replaced by B. Furthermore, we
take terms to be equivalent up to variable renaming. For example, we take A;.4.7 = A4y
where = is used to denote syntactical equality of terms. We assume moreover, the Barendregt
variable convention which is formally stated as follows:

Convention 2.3 (BC': Barendregt’s Convention)

Names of bound variables will always be chosen such that they differ from the free ones in a
term. Moreover, different \’s have different variables as subscript. Hence, we will not have
(Az:a.x)x, but (Ay.a.y)x instead.

Now, let us look at A = ((Ap:p.(Ay:@-Az:r-2yz)v)w)u and B = (Ap:p.(Ay:@-(Az:r-zyz)u)v)w.
Note that A =g wvu and B =g wvu. In other words, A and B are semantically equivalent.
There is an even closer relation between A and B. Namely, a relation between the redexes.

Example 2.4 In A = ((Ag:p-(A\y:@-Az:r-2y2)v)w)u, we have the following redexes which are
all needed to get the normal form of A:

L. (Ay:@-Az:r-wyz)v
2. (Az:P-(Ay:@-Aair-xy2z)v)w
3. (Az:g-wvz)u which appears as ((A;:r.2y2)[y = v][z := w])u

The first and second redexes are classical redexes, immediately visible and subject to con-
traction. The third redex is neither a classical redex nor is immediately visible, nor is subject
to contraction without having unfolded in A,.p.xyz the two definitions that y is v and z
is w. It will only be a proper visible classical redex and subject to contraction, after we
have contracted the first two redexes (we will not discuss the order here). For example, as-
sume we contract the second redex in the first step, and the first redex in the second step, then

((A:EZP-(Ay;Q-)\Z;R.xyZ)’U)w)u —3
(Ay:@-Az:r-zY2)v)U g
(Az:r-wv2)u —5 wou

There is however a need to make as many needed redexes visible as possible (see [BKKS 87]).
In fact, even though the notion of a needed redex is undecidable, much work has been carried
out in order to study some classes of needed redexes (as in [BKKS 87] and [Gardena 94]). In
B = (Az:p-(Ay:@-(Ma:r-2y2)u)v)w, the redexes are:

L. (Ap:@-(Az:r-wyz)u)v
2. (Az:p-(Ay:g-(Azir-zyz)u)v)w
3. (A\sg-xy2z)u

All the three redexes of B are classical, immediately visible and subject to contraction.
Hence, for A, there is a semantically equivalent term B where more redexes of A become
visible, and even subject to contraction before any other redexes.

Looking again at A and B, we see that not only A has a semantically equivalent term B where
more redexes become visible and subject to contraction, but also we can find that there is a
relation between the redexes of A and B.

Basic to our study in this paper will be a new notation the item notation and a term
rewriting called term reshuffling. The term reshuffling of a term will rewrite it so that as
many redexes as possible become visible.

With the presence of more visible redexes, and with the fact that in the reshuffled version
of a term all visible redexes are classical, we generalise reduction and instead of reducing a
term, we reduce its reshuffled version.

Example 2.5 Let A = ((Az:p.(Ay:Q.-Az:r-2a)b)c)d and B = (Ap.p.(Ay:0-(Az:r-za)d)b)c. We
denote the reshuffled version of A by T'S(A). Now, T'S(A) = T'S(B) = B and it is obvious
that A =5 B. Hence, A and B are semantically equivalent. Moreover, it is evident that all
extended redexes of A, namely: (Ag.p.—)c, (Ay:0.—)b and (A;.z.—)d, are classical redexes of
B. Furthermore, these redexes can be contracted independently of each other.

Of course here, there will be complaints that this reshuffling is not so easy or obvious. We
agree and this is what we are trying to say. The classical notation which we have used so far
cannot extend redexes or enable reshuffling in an easy way. Our notation however, the item
notation will solve these problems. We call this reduction which works with the reshuffled
version of the term, shuffle reduction.

Extending redexes and enabling newly visible redexes to be contracted before other ones,
and studying the classes of terms that are semantically equivalent, may act as a power-
ful tool in the study of some programming languages. For example, in lazy evaluation
([Launchbury 93]), some redexes get frozen while other ones are being contracted. Now,
if we had the ability of choosing which redex to contract out of all visible redexes, rather than
waiting for some redex to be evaluated before we can proceed with the rest, then we can say
that we have achieved a flexible system where we have control over what to contract rather
than letting reductions force themselves in some order. This may lead to some advantages
concerning optimal reductions as in [Lévy 80].

Moreover, we may avoid explosion if we had the choice of making more redexes visible
and the ability of contracting any visible redex before any other ones:

Example 2.6 Let M = (A\piw-Ayiw-y(Cxx ... 2))B(X,y.u) where B is a BIG term. Then
M =5 (M- y(CBB...B))(Asw-u) =3 (Asw-u)(CBB...B) =3 u and u is in normal form.
Now the first and second reduct both contain the segment CBB --- B, so they are very, very
long terms. Shuffle reduction however allows us to reduce M in the following way: T'S(M) =
Aziu-(Ay y(Cxz ... x)) A) B =5 (Agiu-(Apiy-v)(Cax ...) B =g (Api-u) B =g u, and in
this reduction all the terms are of equal or smaller size than M! So shuffle reduction might
allow us to define clever strategies that reduce terms via paths of relatively small terms.

Let us assure the reader again here that one must not be anxious that it is not obvious how
to reshuffle the term or to work with classes of terms. The notation that we will provide
will make term reshuffling a straightforward operation. Furthermore, reshuffling terms makes
us realise that there is a certain part of the term which passes through another part which
can be viewed as a definition. In fact, look at how we rewrote ((Az:p.(Ay:Q-Az:r-Tyz)w)v)u
to ((Az:p-(Ay:@-(Az:r-zy2)u)v)w. u went through two definitions (or redexes) (Az.p.—)w and
(Ay:9-—)v to occupy a place next to its matching A,.

Example 2.7 A of Example 2.4 is written (ud)(wd)(PAz)(v6)(QAy)(RA;)(20)(yd)z in item
notation (for convenience sake, we assume u,v,w, P, @, R are variables). Here, the first two
redexes, the classical redexes, correspond to dA-pairs as follows:

1. (Ay:@-Az:r-xyz)v corresponds to (v)(QAy). (RA;)(20)(yd)x is omitted as it is easily
retrievable in item notation. It is the maximal subterm of A to the right of (QA).

2. (Az:P-(A\y:@-Azir-2yz)v)w corresponds to (wd)(PAy).
Again (v0)(QXy)(RA;)(26)(yd)x is ignored for the same reason as above.

If one looks more closely at A written in item notation however, one sees that the third redex
can be obtained by just matching ¢- and A-items. The third redex (A,.g.xyz)u is visible as it
corresponds to the matching (ud)(RA;) where (ud) and (R),) are separated by the segment
(wd)(PAz)(v0)(QAy). Hence, by extending the notion of a redex from being a J-item adjacent
to a A-item, to being a matching pair of §- and A-items, we can make more redexes visible.
This extension furthermore is simple, as in (C'0)3(B\;), we say that (C'd) and (B);) match
if § has the same structure as a matching composite of opening and closing brackets, each -
item corresponding to an opening bracket and each A-item corresponding to a closing bracket.
For example, in A above, (ud) and (RA;) match as (wd)(PA;)(vd)(QAy) has the bracketing
structure [][] (see Figure 1).

e

(ud) (wd) (PAz) (00) (QAy)(RA;) (20) (yd)x

Figure 1: Extended redexes in item notation

Now, when we see a §-item which matches a A-item, we move the d-item to occur next to
its matching A-item. With this extension of redexes and term reshuffling, we refine one-step
(B-reduction by making it a sequence of two operations: a reshuffling of the original term
(so that all matching dA-couples occur adjacent) followed by a classical one-step [(-reduction.
Hence A of Example 2.7 will be reshuffled to (wd)(PAy)(vd)(QAy)(ud)(RA,)(20)(yd)z and
Figure 1 changes to Figure 2. Note that the item (ud) is being shuffled into the scope of
(PXg) and (QX\y), so we have to make sure by variable-renaming that no unwanted bindings
are being introduced. Note also that no items are being shuffled outside scopes of A-items
they previously were in.

We use T'S(A) to describe the term reshuffled version of A. Now, we apply classical
B-reduction to T'S(A) and we contract the classical redex (ud)(RA;). We use ~»3 for one
step shuffle reduction which is the sequence of term reshuffling followed by one-step ordinary
reduction — 3. The following example summarizes all this.

Example 2.8 Back to Example 2.4, A = (ud)(wd)(PA;)(v0)(QXy)(RA;)(26)(yd)x. Now,
TS(A) = (wo)(PAg)(v0)(QAy) (ud) (RA;)(20)(yd)x. AsT'S(A) =5 (wd)(PAg)(vd)(QAy)(ud)(yd)z,

(wd) (PAg) (v0) (QAy) (wd) (RA;) (20) (yd)z

Figure 2: Term reshuffling in item notation

we get that A ~g (wo)(PAg)(v0)(QAy)(ud)(yd)x. Le. one-step ~»g amounts to a term reshuf-
fling followed by one-step — 4.

It is this shuffle reduction that we will put on the top of the Cube and we will investigate
its properties. This reduction will be introduced in Section 5.

Notation 2.9 Throughout the whole paper, we take O to range over {\,II} and w over
{57)\xanx}

2.1 Pseudo-Expressions in item notation

The Cube is a generalisation of some type systems which are explicitly typed a la Church
(see [Barendregt 92]). The system A_, of [Church 40] is one of the systems of the Cube. Now
the systems of the Cube are based on a set of pseudo-expressions T defined by the following
abstract syntax (again see [Barendregt 92]):

T=VI|C|(THT |(TOvV)T

where V' and C are infinite collections of variables and constants respectively. We assume
that z,y, z,... range over V and we take two special constants * and O. These constants
are called sorts and the meta-variables S, S51,.52,... are used to range over the set of sorts
S = {*,0}. We take A, B,C,a,b,... to range over pseudo-expressions. Note furthermore
that there is no distinction between term- and type-variables and that there are two notions
of abstraction: A- and II-abstraction. Parentheses will be omitted when no confusion occurs.

For convenience sake, we divide V' in two disjoint sets V* and V", the sets of object
respectively constructor variables. We take z*,y*, z*,... to range over V* and z",y", 2", ...

to range over V",

Definition 2.10 (Compatibility)
Let w range over {0} U{O, | x € V}. We say that a relation — on terms is compatible iff
the following holds:

A1 — A2 B1 — B2
(Alw)B — (Agu))B (Aw)31 — (Au))Bg

Basically compatibility means that if A — B then T[A] — T[B] where T[] is a “pseudo-
expression with a hole in it”.

Definition 2.11 (B-reduction —g for the Cube)
In the Cube, B3-reduction —g, is the least compatible relation generated out of the following
aziom:

(8) (C0)(BA;)A —p Alz = (]

We take —»g to be the reflexive transitive closure of —g and we take =g to be the least
equivalence relation generated by —»g.

Note that in the Cube, 8-reduction is only assumed for A-expressions and not for [I-expressions.
That is, we do not have (C§)(BIl;)A =5 A[x := C]. For an extension of (/) to II-expressions,
see [KN 9y].

Definition 2.12 ((main) items, (main, 6O-)segments, end variable, weight)

e [f x is a variable and A is a pseudo-expression, then (AN;), (All;) and (Ad) are items
(called \-item, T-item and o-item respectively). We use s, s1, 8, ... to range over items.

e A concatenation of zero or more items is a segment. We use 5,51,5;,... as meta-
variables for segments. We write () for the empty segment.

e FEach pseudo-expression A is the concatenation of zero or more items and a variable or
constant: A = s189---spx. These items s1,82,..., 8, are called the main items of A,
x s called the end variable of A, notation endvar(A).

e Analogously, a segment S is a concatenation of zero or more items: S = S$189- - Sp;
again, these items si,So,...,8y (if any) are called the main items, this time of 3.

e A concatenation of adjacent main items (in A or 3), Sy Smik, 1S colled a main
segment (in A ors).

e A)O-segment is a 0-item immediately followed by an O-item.

e The weight of a segment s, weight(s), is the number of main items that compose the
segment. Moreover, we define weight(5z) = weight(3s).

When one desires to start a S-reduction on the basis of a certain J-item and a A-item occurring
in one segment (recall, no reductions are based on §- and Il-items), the matching of the o
and the A in question is the important thing, even when the J- and A-items are separated by
other items. IL.e., the relevant question is whether they may together become a JA-segment
after a number of 3-steps. This depends solely on the structure of the intermediate segment.
If such an intermediate segment is well-balanced then the d-item and the A-item match and
[B-reduction based on these two items may take place. Some well-balanced segments also play
an important role. They may act as a definition. For example, (AJ)(BA,)C means define x of
type B to be A in C. Sometimes, definitions are interleaved as in (A10)(510)(B2Az)(A2Ay)D
where the definition “z becomes B;” is used inside the definition “y becomes A;”7. We will
assume definitions not to contain Il-items in this paper. Extending this work to the case
where for example (A0)(BII;) is a definition will be investigated in [?]. (TOEVOEGEN in
literatuurlijst: artikel over SIl-reduction) Here is the definition of well-balanced/definitional
segments and applying definitions:

Definition 2.13 (well-balanced segments, definitions, definition application)

e The empty segment () is a well-balanced segment.
o If5 is well-balanced, then (A0)s(BO;) is well-balanced.

o If 5 is well-balanced which does not contain main M-items, then (A0)3(B)\;) is a defi-
nition.

e The concatenation of well-balanced segments is a well-balanced segment.

o Let 5 be a well-balanced segment which is o sequence of definitions and A € T. We
define the application of the definition 5 in A, [Als inductively as follows: [A]y = A,
[Al(Bsyst(ca.) = [Alz := Bllsy and [Alsy 55 = [[Alss]sr- Note that substitution takes place
from right to left and that when none of the binding variables of 5 are free in A, then
[Alz = A.

Lemma 2.14 If 53 is a definition, none of the binding variables in $3 is free in A, and (AJ)
does not match a Il-item in B, then

51(A0)52B =p 5152(A0)B

Proof: induction on weight(33):

e 53 = (): by definition of [B-equality.
51(Ad0)s3B = S1(A0)(DJ)(EN))B =5
o 53 = (DO)(EN;) then 37(A8)(Bly:=D]) =Y 37((46)Bly :=D]) =g
5T(D8)(EA,)(A49)B
o 53 = (D0)33(EN,), 53 well-balanced, then
51(A0)5::B = 57(40)(Dé)s3(EN,)B Z}
51(A0)53(DO)(EA)B = 5153(A0)(D6)(EA,)B L
s153(DO)(EN)(46)B Hj 5155(Do)(EN,)(46)B £
STDOSI(EN,) (A9)B

a

Corollary 2.15 If 53 is a sequence of definitions, none of the binding variables in 53 is free
in A, and (A6) does not match a ll-item in B, then

51(A0)52B =p 5152(A0) B

a

Remark 2.16 Note that this does not hold in case 33 is well-balanced but neither a definition
nor a sequence of definitions. The reason for this failure is that we have no way of reducing
0II-segments. For example, (ud)(x0d)(zIly)(yA,)z #g (20)(«Ily)(wd)(yA;)z. This will not be
a problem we face as in legal terms of the cube, all [I-items are bachelor.

Lemma 2.17

1. If none of the binding variables of the sequence of definitions s is free in A, then [Alz =
A.

2. [Als =5 5A.
Proof:
1. Obvious.
2. Induction on weight(s):
o Ifs=10, then [A]z =5A by definition.

e If5 = (B8)ST(CAy), then [Als = [A[z := Blls; 25 51(A[z := B]) =5 51(B68)(CA,) A
Lem@gzM (B6)s1(CAp)A as none of the binding variables of 51 is free in B by VC.

o 5= 57520 [A]s = [[Alsslsr 25 51]Als; 25 57524,

a

A well-balanced segment has the same structure as a matching composite of opening and
closing brackets, each d- (or O-)item corresponding with an opening (resp. closing) bracket.
In a definition, the first [matches the last | and no Il-items are allowed.

Remark 2.18 Note that the definition of well-balanced segments and definitions is equivalent
to saying that

1. 0 is well-balanced.

2. If 57,33 are well-balanced, then (Ad)s7(B0O,)s3 is well-balanced.

3. If 5 is well-balanced and does not contain II-items, then (AJ)S(BA;) is a definition.
Sometimes we use this definition in proofs by induction.

Now we can easily define what matching dO-couples are, given a segment 5. Namely, they are
a main J-item and a main O-item separated by a well-balanced segment. Such couples are
reducible couples in case O = A. The J-item and O-item of the JO-couple are said to match
and each of them is called a partner or a partnered item. The items in a segment that are
not partnered are called bachelor items. The following definition summarizes all this:

Definition 2.19 (match, §O- (reducible) couple, partner, partnered item, bachelor item)
Let A€ T. Let 3= s1--- s, be a segment occurring in A.

o We say that s; and s; match, when 1 <i < j < n, s; is a 0-item, s;j is a O-item, and
the sequence si11,...,5j-1 forms a well-balanced segment.

o When s; and s; match, we call s;s; a 0O-couple. If O = X and s;y1---5j_1 contains
no Il-item then s;s; is a reducible couple.

o When s; and sj match, we call both s; and s;j the partners in the 6O-couple. We also
say that s; and s; are partnered items.

o All the O- (or 6-)items sy in A that are not partnered, are called bachelor O- (resp.
Jd-)items.

Example 2.20 In 5 = (a)y)(bA,)(c8)(dA:)(eXu) (£8)(98) (h0) (ido) (A) (K6):

10

e (¢d) matches with (dA,), (hd) matches with (i)\,) and (gd) with (j\,). The segments
(¢d)(dX,) and (hd)(i\,) are dA-segments (and dA-couples). There is another dA-couple
in 3, viz. the couple of (gd) and (jAy).

o (cd), (dA;), (99), (hd), (iXy) and (jAy), are the partnered main items of 5. (aX;), (bAy),
(eAy), (f6) and (kd), are bachelor items.

e (g0)(ho)(iXy)(jAw) is a well-balanced segment.

2.2 Background for Typing in item notation

In this section, we let |- range over the typing relations of Sections 3 --- 7 and —» range over
both —#5 and =~ g.

Definition 2.21 (declarations, statements, pseudocontexts, =_, judgements, C')

1. A declaration is of the form s(AN;) where s = 0 or 5 = (Bd)sy with 51 well-balanced
not containing main Il-items. Hence declarations are either definitions or of the form
(AXg). We take d,dq, ... to range over declarations.

2. In a declaration d = 3(AN;), we define subj(d) and pred(d) to be x and A respectively.
d and def(d) are defined to be) if s =10 and to be 57, B respectively if s = (Bd)37.

3. We define dom(d) to be {x | (A\;) is a main item in d}.

4. A statement is of the form A : B, A and B are called the subject and the predicate of
the statement respectively.

5. A pseudocontext is a concatenation of declarations such that if (AX;) and (BA,) are
two different main items of the pseudocontext, then v Z y. We use I'; A, I, T'1,s, ...
to range over pseudocontexts.

6. IfT =d; ---dy then dom(I') = Uy<i<pdom(d;) and d €' T iff Ji[d = d;].

7. If ' =dy - - - d,,, we define the set of subdeclarations of I', I'-decl inductively as follows:
o {dy,...,d,} CT'-decl.
e Ifd € T'-decl and d Z | then for all d' € d-decl, d' € I'-decl.

Note that dom(I') = {subj(d) | d € I"-decl}. We define the set of definitions of I' by
I'-def = {d € I'-decl | d is a definition}.

8. Let I' be a pseudocontext and d be a declaration. We say that I' invites d with respect
to F, notation I' F_ d iff

e Case d = (AX;) then T' = A : S for some sort S, x is fresh in ', A, case S =
then x € V* and case S = O then x € V",

e Case d = (Ad)d(BX;) then Tdt- A: B, I'd+ B : S for some sort S, x is fresh in
I'd, A, B, [A]lg = A, case S = x then x € V* and case S =0 then z € V",

9. When T is a pseudocontezt and A : B is a statement, we call ' = A : B, a judgement,
and write ' A:B:C to meanT'FA: BATFB:C.

11

10. We define C' between pseudocontexts to be the least reflexive transitive relation which
satisfies:

o A C'T(CA)A if x is fresh in Ty A, C and no A-item in A matches a d-item in
[and FV(C) C dom(T).

e I'dA C' T'dA if d is a definition, subj(d) is fresh in T'dA,def(d),pred(d) and
FV(def(d)) C dom(I"), FV(pred(d)) C dom(I'd),

o I'S(AXN;)A C'T(DI)S(AN)A if (AN) is bachelor, 5 is well-balanced and FV (D) C
dom(T).

Definition 2.22 (Definitional 3-equality) For all legal contexts I' we define the binary rela-
tion I' = - =4t - to be the equivalence relation generated by

® zfA:gBthenFI—A:defB

o ifd e '-def and A,B € T such that B arises from A by substituting one particular free
occurrence of subj(d) in A by def(d), then I'+ A =4¢¢ B.
Remark 2.23 If no definitions are present in I' then I' = A =4.¢ B is the same as A =3 B.

Definition 2.24 Let I" be a pseudocontext and A be a pseudo-expression.

1. Let d,dy,...,d, be declarations. We define ' = d and I' - dy ---d, simultaneously as
follows:

e I'-d iff I F subj(d) : pred(d) AT - def(d) : pred(d) A' F dAT F
subj(d) =4et def(d).
e 'dy---d, iff ThHd;foralll <i<n.

S

. ' is called F-legal if AP,Q € T such that T - P : Q.

8. Ae€T iscalled al"-term if 3B€T[HA:BorTF B: A
We take T -terms = {A € T |3Be T[T - A: BV + B : A]}.

4. We take T"-kinds = {A | T+ A: 0O} and T -types={A € T |T+ A : *}.

5. A€T iscalled a I -element if IB € TISE€ ST FA:Band '+ B: S]. We have
two categories of elements: constructors and objects. We take T -constructors = {A €
T|3BeT[LFA:B:0)} and T -objects ={A €T |IBe€T[FA:B:x|}.

6. AcT is called --legal if 3IT[A € I'"-terms]. Moreover, A is a --X, if AT[A € T -X3
for X € {type, term, kind, object, constructor}.

Definition 2.25 Define a map # : T — {0,1,2,3} by #(0) = 3, #(x) = 2, #(z) =1,
#(z*) =0, #(A) = #(endvar(A)). For A €T, #(A) is called the degree of A.

We shall use # to prove that the classes of kinds, constructors and objects are mutually
exclusive. First we collect some basic facts about O and * in the type systems:

Lemma 2.26

12

1. If T A: B then A # 0.
. If T is a legal context, then O ¢ T".

. If A is a legal term, then A =0 or O ¢ A.

2

3

4. Suppose I' = A : B, then endvar(A) =+ < B = 0.

5. If (A0) is an item in a legal context then endvar(A) # .
6

. If (A0) is an item in a legal term then endvar(A) # .

Proof:
1. induction on the derivation rules.
2. simultaneous induction with 3. on the derivation rules using 1.

4. induction on the derivation rules; for = use 1. and 3. We treat the case in which
' A: B is a consequence of ' W A: B,IT' B :S and ' -V B = B'. From the
induction hypothesis it follows that B = O. Then substituting and reducing introduce
no O in B as by 1. O¢ 7T, so O€ B'. But then by 3.: B' = 0.

5. induction on the derivation rules; use 4. and 2.

6. induction on the derivation rules; use 5., 4. and 5.

Now we can prove that whenever I' = A : B then #(A) + 1 = #(B).

Lemma 2.27 Call a statement A : B OK iff #(A) + 1 = #(B), call a definition d OK iff
#(def(d)) = #(subj(d)) = #(pred(d)) — 1, and call a judgement T' - A: B OK iff A: B is
OK, all definitions d € I'-def are OK and for all items (CO,) € I';A,B (O € {\,11}): z: C
is OK.

Then for all contexts I' and terms A,B: if (- A: B then ' A: B is OK.

Proof: We use induction on the derivation rules, we treat three cases.

o I' - (ad)F : Blx := a] as a consequence of I' = F : (All;)B, I' - a : A, then by the
induction hypothesis #(x) = #(A) — 1 = #(a) and it can easily be seen that #(x) =
#(a) = #(Blx := a]) = #(B).

o ['dC : [D]g out of 'd = C : D, then by the induction hypothesis: for all subdefinitions
d' of d, #(def(d')) = #(subj(d')) so by repeatedly applying #(x) = #(a) = #(B[z :=
a]) = #(B) we get #([D]a) = #(D).

e 'FA:B outof THFA:B, I'B":5", TI'B= B, then by the generation corollary
3.12B=0or'FB:S for some sort S.

If B=0O then I' = B = B' implies B' = O as in the proof of lemma 2.26.
If B # O then S #2 OA B’ # 0O implies S = S’; suppose now S = 0, then ' - B : O

so by lemma 2.26 endvar(B) = * so again by lemma 2.26 also endvar(B') = x, hence

#(B') = #(B) = 2. If 8" = 0O then similar #(B) = #(B') = 2.

13

Corollary 2.28 If I is a legal context, then

1. T -kinds N T -constructors = 0),
I'"-kinds N T -objects = 0,
I'"-constructors N T -objects = 0,
O ¢ " -kinds U T -constructors U T -objects.
2. If (All)B is a T -term then A and B are both a T"-kind or a T™ -type.

8. If (A\;)B is a T -term then A is a I -kind or a T -type and B is a " -constructor or
a T -object.

4. If (A0)B is a T -term then A and B are both a T -constructor or a T -object.

Proof: 1. is a direct consequence of lemma 2.27.
2., 8. and 4. are an easy corollary of the relevant Generation Lemma and Generation
Corollary. O

2.3 Machinery for Strong Normalisation

In [BKN 9x|, we used the technique of [Barendregt 92] to show Strong Normalisation for
A, with extended reduction. However, here we use the proof of [Geuvers 94] due to its
flexibility and the possibility of its generalisation to systems beyond the Cube, which we may
be investigating in the future. Here is the terminology that will be needed. Let — be a
reduction relation containing —»3, which is Church Rosser and where the least equivalence
relation closed under it, denoted =_, is the same as =g, and let - be a typing relation for
which the sets of objects, constructors and kinds are pairwise disjoint.

Lemma 2.29 (Soundness of —») If A,B € T are legal terms such that A =_, B then there
is a path of one-step reductions and expansions via legal terms between A and B.

Proof: By Church-Rosser there exists a term C such that A =5 C and B =5 C. By
Subject Reduction for ordinary (-reduction all terms on the path A---C--- B are legal. O

Definition 2.30
e Define the set of untyped A-terms by
A=V ClADA] (AV)A

o We say that a term M € A is strongly normalising with respect to —» iff every
—»-reduction path starting at M, terminates.

o We define SN, = {M € A : M is strongly normalising with respect to —»}.
o For A,B C A we define A— B={M € A|VN € A[(NJ)M € BJ}.

Definition 2.31 Define the key redex of a term M as follows:

1. (Ad0)(BAz)C has key redex (Ad)(BA;)C.

14

2.

If M has key redex N, then (PS)M has key redexz N.

Define redi (M) to be the term obtained from M by contracting its key redex. Note that not
all terms have a key redex and that if a term has a key redex then it is unique.

Definition 2.32

e Define the set of base terms B, C A by

1. VCB,.
2. If M € B,, N € SN, then also (NO)M € B_;.

o We call X C A saturated, iff:

1. X CSN,.
2- B—) g .X-
3. For all M € A: if M € SN_; and redi,(M) € X then also M € X.

o We define SAT_, = {X C A: X is saturated_, }

Lemma 2.33

1.
2.

/.
5.

SN, € SAT,,.
VX € SAT,, : X # 0.

If N e SN, M e X € SAT., and v ¢ FV (M) then (N§)(Ay)M € X. (Note here that
[Geuvers 94] takes (NS)(M6)(Ay)(Ae)y instead of (NO)(Az)M. The first however, will
not fit our purposes as is explained in Remark 5.12)

A, Be SAT , = A— Be SAT,,.
If I is a set and X; € SAT., for all © € I, then (;c; X; € SATL,.

Proof:

1.

SN_, C SN, B, C SN_,. Furthermore, if M € SN_, and redy(M) € SN_, then also
M € SN, as —»5C—».

By 2. of the definition of saturated sets.

By 3. of the definition of saturated sets.

. Suppose A, B € SAT.,.

e Asve A forallveV, wesee:tec A— B = (vd)t € B= (vd)t € SN, =>t¢€
SN.,. So A—s BC SN.,.

o Ifx € V, N € A then (No)xt € B as B, C B, soV C A — B. Also, if
M eB,NA— B, N € SN, then for all N' € A: N' € SN_, so (N'§)(NO)M €
B, CB so(N0))M e A— B. Hence B, CA— B.

o If M € SN, redi(M) € A — B then for all N € A: (No)redy(M) € B hence
(NO)M € B, hence also M € A — B.

15

5. Easy. O

We define three maps, first CP", of I'"-kinds to the function space of SAT.,, then [lex, of

I'"-terms\I""-objects to elements of the function space of SAT_,, and third (Dy, of I'"-terms
to A, such that when certain conditions are met we have:
I'tA:B:0= [A]g € OP5(B),[Blg, € SAT, and ' A: B = (A) 7, € [Blg..

Definition 2.34 Define for all kinds A the set of computability predicates for A in the fol-
lowing way:

—_— o~

e CPL(dA) = CPS(A) if d a definition

(with CP5(A) — CP5(B) is meant the function space of CPS(A) to CPS(B)).
Now define CP-, = J{CP5(A) | A is a F-kind }.

Lemma 2.35

1. If A is a legal kind, B a legal constructor and C is a legal object, then CPL(A) =
CP.(A[z" := B]) and CP5(A) = CP5(Alz* = C]).

2. If dA is a legal kind (remember Remark ?77) where d is a definition, then CPS(dA) =
CP5(A).

Proof: 1. is by induction on the structure of A, noting that A cannot contain bachelor
0- or A-items, 2. is by 1. noting that all definienda in a definition are either constructors or
objects. O

Definition 2.36 Let I' be a F-legal context.

e A TI'-constructor valuation, notation 7, =" T, is a map £, : V2 — CPL, such that
for all (A\;) €' T with A a T-kind (i.e. x € VP): €7, (x) € CP5(A).

o If £, is a constructor valuation, then [e - I -terms\I'" -objects — CPL, is defined
inductively as follows:

[z]e, = (27)
o [Bler [Aler, if A€ '™ -constructors
[(49)Ble, = { [Blex, if A € T -objects
| Af e CPL(A).[Bleyeyy if A €T -kinds
) { [Ble, if A €T -types
[(ATL) Bler, = { [Aler, — [Bles, if A €T -types,x € V*

16

where €7, (x := N) is the valuation that assigns £, (y) toy # x and N to x. Furthermore,
with [A]er [Ble, we mean application of the function [A]e onto its argument [Ber
and by X we mean function-abstraction.

Now we have to verify that [| ¢, is a well defined mapping, but first we need some helpful

facts about [Jer .

Lemma 2.37 Let A, A’ € T"-terms\I'" -objects, B € T -constructors,C € T'"-objects,z"” a
constructor variable and x* an object variable. Then

1. [AR? = Blle; = [Ales oo,)
2. [Ale* := Clle- = [Ale-
3. A =3 A = [[A]]e_—» = [[AI]]Q_—»

Proof: 1. and 2. are by induction on the structure of A.
3. is by induction on the generation of =g. O

Remark 2.38 Note that we use =g and not =_,, because the equality relations generated
by —#35 and <5 are both =g.

Lemma 2.39 (Soundness of [Jer)

IfT = A: B : 0O then for all &, such that £&&, E7 T, we have: [Aler and [B]g, are

well-defined and [A]q € CP"(B), [Ble-, € SATL,.

Proof: By induction on the derivation rules. We treat two cases:

o ' - (ad)F : Blx := A] as a consequence of I' = F : (All;)B and I' - a : A. 1t is
not difficult to see that [Blz := Al]er € SATL, if [Blx := A]]g is a kind, because by
Lemma 2.27, then also B is a kind. Furthermore, by the induction hypothesis [[F]]g_h, €
CPL((AIL,)B) and if A is a kind then also lales, € CPL(A).

If A is not a kind, then [(ad)F]g, = [Fle, € CPL((Ally)B) = CPS(B). If A is
a kind, then [F|¢ € CPY((All,)B) = CPL(A) — CPL(B) and hence [(ad)Fler, =
[Fle-[ale- € CPL(B) "2 CPL(B[z = d]).

I' - dC : [D]g as a consequence of 'd = C : D. Then by the induction hypothesis
[Cle, € CPS(D) for all ¢, =" Td and if D is a kind, then [Dle-, € SAT.,. Now
let &5, = T, then [dCes, "= [[Claly, = [Clery- where & " (a%) = €5,(27) if

x is not the subject of a subdefinition in d, and &' 5+"(z") = [def(d")]e- if x" is the
subject of a d' a subdefinition of d.

But &' 557 E7 I'd, so [Cla- € CPL(D) ™ 2*% CPL([D]a).

a

Definition 2.40 If &5, EP T, then we call €5, cute with respect to T if for all d € T-def such
that subj(d) € V7, ¢5, (subj(d)) = [def(d)]- -

Lemma 2.41

17

3.

CIFES =P T and A s T-legal, then [Algr, depends only on the values of £, on the free

constructor variables of A.

If €&, EV T then there is a cute £ 53" such that & 57 = T and &' 557 = €5, on the
non-definitional constructor variables of dom(T').

If &5 =P T and €, is cute with respect to T then T - A =408 B = [[A]]gt» = [[B]]i_h,

Proof: 1. is easy, 2. is a consequence of 1. and 3. 1is proved by induction on the
generation of =qer using Lemma 2.37.

Definition 2.42

o Let &7, EP T such that €7, is cute with respect to T'. An object valuation of T with

respect to &5, notation p7,, &5 =T, is a map po, : V — A such that for all (A)\;) €' T:
po,(z) € [Algr, (regardless of whether A € I -kinds or A € T"-types).

e For p°,, &5 =T we define a map (Do, : I'"-terms — A as follows:

(@), = PS5

([*Dpt» = x

(IDDpt» =0
(No)M),r, = ((N),0) (M),
((ANe)B) e, = ((A)pr,0) (M) M) (B)pt (ai=a) (where y & FV(B))
((AIL)B),r, == (M) (Bt (2:=a)0) ((A) pr, 0)

o We define another map [| : T -terms — A by

[x] = =z

[*] = =*

o] = 0O
[(NO)MT = ([N10)[M]
[(AXe)B] = ([A]0)(Ay)(A)[B] (where y ¢ FV(B))
[(All)B] = ((A)[B10)([A]d)z

Definition 2.43 Let I' be a context, A, B € I'"-terms. We say that T' satisfies that A is of
type B with respect to - and —», notation T =", A : B, iff

Lemma 2.44

1. If T(A8)d(BX:)A is a legal context and p,, 7, = T'(AS)d(BX\,)A then (A),r, € [Ble,

and (B) . € SAT,.

2.Tdl=A:B=T|=dA:[B]4

18

Proof:

1. Induction on the derivation rules of F.

2. Induction on weight(d). If d = 0 then nothing to prove, suppose now d = (C§)s1(DA;)32
Then by the induction hypothesis I'(C0)31(DA;) =524 : [Bls,.

Suppose x € V*. Let p,, 7, = T'5;. Then for all E € [Dler, we have oo (z =
E),¢5 = T(C)51(DA,). Hence GZEQADPE»(I::E) € [[[B]g2]]§t», hence (/\x)([EQA])pt»(I::w) €
[Dlg, = 11Bls.ler, and also ((D),5,0)(Ay)(Ax) (524) i (i) € [Dler, — [[Bls.]e,
(by 1. (D), € SAT.,, use Lemma 2.53).

This means I'sy |= (DA;)S2A @ (DI1,)[Bls,, so by the induction hypothesis T’ |=
EI(DAQ:)EZA : ([D]§1Ha:)[B]§1§2' If pt)vét)): L' then by 1. (ICDp’_‘» € [[D]]ﬁ’_‘» and
(51(DA2)524) i, € [[Dlsiler, = [[Blsisle,, hence ((C),,0)(51(DA)524) 1, €
[[[]8182]]§_» = [[[] Co)51(DAz 52]]§_»’ so I |_ (C0)51(DAg)52A : [B] C6)51(DAz)S2
Suppose x € VI Let po,, €7, ET51. Then po,(z := E), &5 (2 := f) ET(CH)51(DA,)
for all f € CPL(D) and E € [Dle, so (52A) . (ai-p) € [Bller 5z = f),
hence (Az)(524) pr, (z:=2) € [Dler, = Nyecerp)[[Bls.ler (wi=p)- But then also (use

1. and Lemma 2.33) ((D),1,0)(Ay) (Ae) (524t (2:=) € [Pler, = Nyecriyn)[[Blsler @)
Hence we see: 1'sy = (DA;)s2A @ (DI1,)[Bls,, so by the induction hypothesis
['=51(DAg)524 : ([Dlsy I12) [Bls, s, -

Now let p-,, &7, = T. Then (51(DAs)52A) o, € [([D]s5, 1) [Bls5,]er, and (C),r, €

[[Dls, e, by 1., s0 ((O) 1,p50) ((51(DA2)52A4) . 05,) € NrecPbOBE 5,1 o p)

This means ((C0)51(DA)52A4) 05, € [[Bls,s, &@=[0ly. = [Bmlr = Clle =
B
[[[B](C5)§1(D)\z)§2]]§gﬁ7 hence I' |= (C0)51(DAy)524 1 [B](cs)5,(DAs)ss -
O

Lemma 2.45 ((])p'_',, versus [|)

—

1. For all M € T"-terms, for all p-,: (M), = [M[Z = p5(x)] where & are the free
variables of M.

2. If s is a well-balanced segment then [SA] = [S|[A] and [3] is also well-balanced. More-

over,

FV([A]) = FV(A).

3. For all M € T" -terms: [M] is strongly normalising = M is strongly normalising.

Proof:

The first statement is easy to verify. The second statement is also easy. The

third statement can be proved as follows: we prove by induction on the structure of M, that
whenever M —» N, then [M] —» [N]. We show the only non-trivial case (note that when —»
is —»g, then s=0).

If M = (A8)5(BA,)C —» E(C[m —A) =N,
then [M] = ([A]6)[5(BA;)CT = ([A]6)[S1([B10)(Ay) (A)[C]
— ([A10)[5](A2) [C] (note that y & FV((As)[C 1))
— [3][Cl[z == [A]] = [5][Clz := A]] = [5(C[z := A])] = [N].

19

Lemma 246 'FA:B=TEFA:B
Proof: Use induction on the structure of A to prove that if pt,, €7 = T then ([A])p:» €

[Ble-, -

e A = x. Then by the generation lemma for some B': T'+ B' =4 B and (B')\;) €
I-decl, so by p',, €0, =T, (B')\;) € I-decl, and Lemma 2.37, we get (4),r, = oo, (z) €
[B']er, = [Ble- -

e A= (P)\,)Q, with P € " -kinds.

Then by the generation lemma for some R, I'(PX\;) - Q : R with I' F (PIl;)R =q4e¢ B,
I't P : 0. By IH we find that (Q)r (v:=p) € [Bler =) for all p € [Ple, f €
CPL(P), 50 (Q)y(w:=p) € Nyecrsp)[Blerwmy)- By IH also (P),, € [A]g, = SN,
ﬂfeC’Pr»(P) [[R]]ﬁ’_‘»(a:::f) = [[B]]gt,,-

e A= (P\,)Q with P € T" -types. Then similar to the previous case.
o If - is ordinary typing and A = (P6)Q with P € T" -objects. Then T' - Q : (RII,)T,

I' = P: R for some R,T with I' - T[x := P| =4es B (again generation lemma). Now
by IH and lemma 2.33 we see that (Q),r, € [R]e, — [T, and (P),r, € [R]es,

s0 (A) y, = ((PO)Q)r, = ((P) 5, 0)(@) s, € [T]er, = [T := Pllgr, = [Blgs,-

o A = dP where d is a definition. Then by the Generation Lemma I'd F¢ P : C, I'd ¢
C =q4et B. By the induction hypothesis we then know that ([P])pFSh € [[C]]g;__»sh. Now by

Lemma 2.44 we get that also (dP) . € [Cle .

o A= (P§Q with P € T™ -constructors where (P§) is bachelor in (P§)Q then also similar.

o A= (PII;)Q. Then by generation I' = P : S1, I'(PA;) - Q : S2, So =3 B.

If P € T"-kinds, then IH says (P),r, € [Olers (Qpei=p) € [S2ler(ui=y) for all p €
[Pl f € CP(P), hence [P, € SN, (As)(Q) p(a:=2) € SN

But this means (A) r = (A2)(Q) p(z:=2)0) ((P)r,0)x € SN = [S2]er, = [Ble, -
If P € T" -types, then similar.

3 The ordinary typing relation and its properties

In the Cube as presented in [Barendregt 92], the only declarations allowed are of the form
(AX;). Hence there are no definitions. Therefore, I' -_ d is of the form I' F_ (A\;) and
means that I' = A : S for some S and that x is fresh in ', A. Moreover, for any d = (A\;),
d =10, subj(d) = z and pred(d) = A.

20

3.1 The typing relation

As the Cube is a generalisation of eight systems, the rules of the Cube are divided in two:
1. The general axioms and rules valid for all systems of the Cube.

2. The specific rules, which are specific to the various systems of the Cube. All these
specific rules are parameterised II-introduction rules.

Now the general rules are as follows:
Definition 3.1 (General azioms and rules of the Cube)
(aziom) <>Fx:0

'—_d

(start rule) Td F subj(d) : pred(d)

(weakening rule) e dFd = Dl'jdEl_ D:FE

T+ F: (AIL)B Tha:A
I'F (ad)F : Blx :=q]

(application rule)

T'(AX\,) Fb: B '+ (All)B: S
I'F (AX,)b: (All,)B

(abstraction rule)

'-A:B rEB:S I'F B =g4es B’
'-A:B

(conversion rule)

The specific rules are given by (S1,.52) rules which we sometimes refer to as formation rules:

Definition 3.2 (The specific rules of the Cube)

(S1,S2) rule [+ (AIl,)B : S,

The systems of the Cube are defined by taking the general rules plus a specific subset of
the set {(x,x*), (%,0),(0,%),(0,0)} as (S1,S52) rules. In this Cube, there are eight systems
of typed lambda calculus. They differ in whether * and/or O may be taken for S; and So
respectively in the above (S7,52) rule. The basic system is the one where (S1,52) = (%, %)
is the only possible choice. All other systems have this version of the formation rules, plus
one or more other combinations of (x,0), (3,%) and (O,0) for (S1,S52). The system with
only (x,) for (S1,S2) is the system A\-Church or A_, (this is essentially the Automath-system
AUT-68). The addition of (x,0) gives AP, which is a system that is rather close to another
variant of the Automath-family, AUT-QE (see [de Bruijn 80]). The addition of (O, %) to A_,
gives the second order typed lambda calculus, also called A\2. Adding (0, 0) to A_,, we obtain
Aw. There are three systems that are defined by adding a combination of two of the three
last-mentioned possibilities to A_,. When all mentioned (S, S2)-combinations are permitted,
we have a version of the Calculus of Constructions (AC) (see [CH 88]). Here is the table
which presents the eight systems of the Cube:

21

System Set of specific rules

Al (%, %)

A2 (x,%) | (O, %)

AP (*,*) (*7 D)

AP2 (,%) | (O,%) | (x,0)

Aw (*7*) (D7 D)
Aw (*,%) | (O,x%) (O0,0)
APw (%, %) (x,0) | (O,0)
APw = AC | (x,%) | (O,%) | (x,0) | (O,0)

Figure 3: The Cube

Here are examples of typable terms in some systems of the Cube that we will use further
on.

Example 3.3

1. Fg (+IIy)(ally)a : « as we have the rule (O, %), but tz (+ILy) (oL,) : 7 for any 7 where
L e {25, \w, AP, \Pw}.

2. (%Ag)(BAy) Faz (¥0)(B9)(¥Aa)(a)y)(yd)(adz)x : B can be seen by using the following

22

derivation steps and filling in the extra conditions:

Fx:0O

(*)\ﬂ) l_/\g ﬂ x: 0

(:X8) (BAy) Fa2 v - % : O

($Ag) (BAy) (¥Aa) Fa2 ot %

(*AB)(ﬁ/\y’)(*)\a)(a/\y) Fa2y:a:*

(xA8) (BAy) (¥Aa) (@A) (@A) Fa2 @ vt %

(*AB)(ﬁ/\y’)(*)\a)(a/\y) Fa2 (anx)a Dk (*7 *)
(xA8) (BAy) (¥Aa) (@Xy) Fa2 (adg)x @ (ally)a : *
(*AB)(ﬁ/\y’)(*)\a)(a/\y) Fa2 (?J(S)(a/\a:)x «

(+Ag) (BAy) (¥Aa) Faz (ally)a = * (*, %)
(xA5) (BAy) (¥ Aa) Faz (@)y) (o) (arg)z : (ally)or: *

(xA8) (BAy) Faz (+I1a) (ol)a = (4, %)
(xA3) (BAy) Fxz (#Aa) (@dy) (y0)(ade) : (+I1a) (ally o

(xAg) (BAy) Faz (B0)(xAa) (@dy) (y6) (dg)z = (BILy) B

(xAg) (BAy) Faz (4'6)(86) (xAa) (Ay) (y0) (@) = B

But If £ € {_,, A\w}, then (xAg)(BAy) 2 (¥'0)(86) (¥Aa)(a)y)(yd)(aAz)z : 3. The reason is
that the term of part 1 of this example is not typable in these systems. Note that when we
introduce definitions in the Cube, the last 9 of the above steps will be replaced by a single
one. See Example 6.4.

3. (A) (@A) (01L,) * AQ) (B)QAN) Fap (NO)(t8) (0h,) () QA) (w0) (x8)QA2)Z : (t9)Q
but this derivation could not be obtained in A_,, Aw or A2 as we need the (*,0) rule in order
to derive that (oll;)+ : O and hence that ((oll,) * Ag) is allowed in the context.

3.2 Properties of the ordinary typing relation

Here we list the properties of the Cube without proofs. The reader can refer to [Barendregt 92]
for details. These properties will be established for the Cube extended with term reshuffling,
shuffle reduction and definition mechanisms. Now, here are the properties of the Cube that
we will concentrate on.

Theorem 3.4 (The Church Rosser Theorem for —3)
If A= B and A —»35 C then there exists D such that B —»3 D and C' —»g D. O

Lemma 3.5 (Free variable lemma for =)
Let T be a legal context such that I' = B : C. Then the following holds:

1. If d and d' are two different elements of I'-decl, then subj(d) # subj(d').
2. FV(B),FV(C) C dom(T).
3. For s1 a main item of I, FV(s1) C {subj(d) | d € I'-decl,d is to the left of s; in T'}.

Proof: All by induction on the derivation of ' - B : C. O

The following lemmas show that legal contexts behave as expected.

23

Lemma 3.6 (Start Lemma for =)
Let T be a legal context. Then I'F x:0 and Vd € T+ d].

Proof: As T is legal, then A, B € T such that ' - A : B. Now use induction on the
derivation ' F A : B. O

Lemma 3.7 (Invitation Lemma for)
If I'd is legal then T' =_ d.
Proof: By induction on the derivation I'd - A : B. O

Lemma 3.8 (Transitivity Lemma for +)
Let I' and A be legal contexts. Then: 'FANAFA:B]=TFA:B.
Proof: Induction on the derivation rules. |

Lemma 3.9 (Substitution Lemma for =)
Assume I'(AXNG)AF B :C and I' = D : A then I'(Alx := D)) F Bz := D] : Clx := D].
Proof: By induction on the derivation rules. o

Lemma 3.10 (Thinning Lemma for)
Let T and A be legal contexts such that T C' A. ThenTHA:B= A+ A:B
Proof: By induction on the length of the derivation of ' A : B. O

Lemma 3.11 (Generation Lemma for)
1. FI—x:C:>5|81,82GSEIB:5C[FI—B:81 VAN (BAQ;) e'rAa Fl—C:SQ].

2. F(All)B : C = 3(51,5 € S)[I'FA: S ANT(AXN;) E B : Sy A (S1,52) is a rule A

3. TF (AN)b: C = 3(S,B)[T F (AIl,)B: S A T(AX\,) Fb: B A C =5 (AIL,)B A (C #
(All,)B = 3S € S[T' + C : S])].

4. TF(ad)F :C=3A,B,2[lT - F: (All;) B ANT'Fa: AN C=gBlx:=a] \ (Blx:=
al ZC =35 SI'HC:9))].

Proof: By induction on the derivation rules, using thinning lemma. O

Corollary 3.12 (Generation Corollary for)
I.TFA:B=3S[B=S orI'FB: 5]
2. T+ A:(BiIL)By = 3S[T - (BIL,)Bs : S]
3. If A is a T -term, then A is O, a I -kind or a T -element.

4. If A is legal and B is a subexpression of A then B is legal. O

Theorem 3.13 (Subject Reduction for = and —g)

THA:BAA -z A =TFA:B

Proof: TFA:BANA =g A =>THA :BandT'-FA:BAT =3IV =T1"F A: B, where
I' =5 " means T' = T'1(AX;)To, TV = T1(A'A;)2 and A —5 A', are proved simultaneously
by induction on the derivation rules. O

24

Corollary 3.14 (SR Corollary for = and —»3)
1. IfT-FA:Band B —»g B' thenT' - A: B'.

2. If Ais aT"-term and A —»5 A’ then A’ is a TV -term. O

Lemma 3.15 (Unicity of Types for = and —3)
1. F"A:BIAFI—A:BgiBlzﬂBQ

2. FI—A:B/\FFA':B'/\A:/BA':>B:gB’
3. I'-B:S,B=3B'\I'+-A":B thenT -B':8S.

Proof: 1. by induction on the structure of A, 2. by Church Rosser, Subject Reduction and
1, and 3. by Corollary 3.12, Subject Reduction and 1. O

Theorem 3.16 (Strong Normalisation with respect to = and —3)
For all &=-legal terms M, M 1is strongly normalising with respect to —»g. O

4 Term reshuffling

In this section we shall rewrite terms so that all the newly visible redexes (obtained as a
result of our item notation), can be subject to the ordinary classical B-reduction —3. We
shall show in this section that this term rewriting is correct in the sense that A is semantically
equivalent to B in that A =3 T'S(A). Moreover, A and T'S(A) are procedurally equivalent.

Let us go back to the definition of dO-couples. Recall that if 5 = s1---s,, for m > 1
where $1,, is a dO-couple then so-- - $p,_1 is a well-balanced segment, s is the §-item of the
0O-couple and s, is its O-item. Now, we can move s; in 5 so that it occurs adjacently to s,,.
That is, we may rewrite S as So- -+ Sm;—151Sm-

Example 4.1 The term A = (ud)(wd)(PAz)(v6)(QAy)(RA,)(20)(yd)z is reshuffled to T'S(A) =
(W) (PAz)(v0)(QAy)(ud)(RA;)(26)(yd)x by moving the item (ud) to the right. Hence, we can
rewrite (or reshuffle) a term so that all -items stand next to their matching O-items. This
means that we can contract redexes in any order. Such an action of reshuffling is not easy to de-
scribe in the classical notation. That is, it is difficult to describe how ((Az:p.(Ay:@-Az:r-2y2)u)w)u
is reshuffled to (Az:p.(Ay:0.(Az:r-2y2)u)v)w.

Note furthermore that the shuffling is not problematic because we use the Barendregt Con-
vention which means that no free variable will become unnecessarily bound after reshuffling
due to the fact that names of bound and free variables are distinct.

Lemma 4.2 If z° is a free occurrence of x in s31 A, then x° is free in 57 s A.
Proof: By BC as \; does not occur in sS1A. O

Example 4.3 Note that in Example 4.1, reshuffling does not affect the “meaning” of the
term. In fact, in A = (ud)(wd)(PA;)(vd)(QNy)(RA;)(26)(yd)x, none of the free variable of u
can be captured by A; or \,. Moreover, A is equivalent, semantically and procedurally, to

TS(A) = (wo)(PAs)(00)(QAy) (ud) (RA)(20)(yd).

We call this process of moving §-items of §O-couples in a term to occupy positions adjacent to
their O-partners, term reshuffling. This term reshuffling should be such that all the J-items
of well-balanced segments in a term are shifted to the right until they meet their O-partners.
To do this however, we must study the classes of partnered and bachelor items in a term.

25

4.1 Partitioning the term into bachelor and well-balanced segments

With Definition 2.19, we may categorize the main items of a term A into different classes:

1. The “partnered” items (i.e. the - and O-items which are partners, hence “coupled” to
a matching one).

2. The “bachelors” (i.e. the bachelor O-items and bachelor J-items).

Lemma 4.4 Lets be the body (NIET GEDEFINIEERD???) of a term A. Then the following
holds:

1. Each bachelor main O-item in S precedes each bachelor main §-item in 3.
2. The remowal from 5 of all bachelor main items, leaves behind a well-balanced segment.

3. The removal from 5 of all main dO-couples, leaves behind a O---OJ---d-segment,
_—— —

n m
consisting of all bachelor main O- and J-items.
Proof: 1 is by induction on weight(s') for 5 = s'(BO,)s" and (BO,) bachelor in 5. 2
and 8 are by induction on weight(3). O

Note that we have assumed () well-balanced. We assume it moreover non-bachelor.

Corollary 4.5 For each non-empty segment s, there is a unique partitioning in segments
50,81, --,50, such that

1"'%;

1.5

Il
2|
[e=)

2. For all 0 < i <mn, s is well-balanced for even i and s; is bachelor in s for odd 1.
3

. For all 0 < 4,5 < n: if 5; contains bachelor O-items and 55 contains bachelor d-items
then 1 < j.

4. Son Z0 for n > 0. O

Example 4.6 5 = (A\;)(B)y)(C6)(DIL,)(EX,)(F6)(ad)(bd)(cAy)(dAy)(ed) has the follow-
ing partitioning:

e well-balanced segment 57 = (),
e bachelor segment 57 = (AX\;)(BAy),

e well-balanced segment 53 = (C0)(DIL,),

)

(
bachelor segment 53 = (E\,)(F9),
well-balanced segment 53 = (ad)(bd)(cAy)(dAy),

bachelor segment 55 = (ed).

26

4.2 A reshuffling procedure and its properties
In what follows, we use wy,ws, ... to range over {0} U {\;;z € V} U {ll;;z € V}.
Definition 4.7 T'S is defined recursively such that:

TS(E:C) =df TS(E):C

TS((Aywr) - (Apwn)) =g (TS(ADwr) - (TS(An)wn) if (Arwr) -+ (Apwy) is bachelor

TS(sp--5n) =g TS(50)---TS(5,) If 50,...,5, is the unique
partitioning of Corollary 4.5

TS(s1...3,) =q TS(51)...TS(3) if 5; is well-balanced

TS((Ad)s(BAy)) =qg TSGE)TS(A))(TS(B)As) if 5 is well-balanced

TS((Ad)s(BIl,)) =g (TS(A)OTS(E)(TS(B),) if 5 is well-balanced

Note that in this definition, we use s bachelor to mean S bachelor in 5.

The following lemma will be needed in the proofs:

Lemma 4.8
1. If 5 contains no items which are partnered in A then T'S(5A) =TS(5)TS(A).
2. If 5 is bachelor in SA or is well-balanced, then TS(5A) =TS(5)TS(A).

Proof: 1: let A=35---5,0 and § = %- --s! " be partitionings. Use cases on 5y being
empty or not and on s], being bachelor or well-balanced. 2: This is a corollary of 1. O

The following lemma shows that T'S(A) changes all d\-couples of A to d\-segments.
Lemma 4.9 For every term M, the following holds:
1. TS(M) is well-defined.

2. If 3= (B6)s'(C)\;) is a segment occurring in M where s' is well-balanced, then TS(3) =
TS(s')(TS(B)d)(TS(C)Az)-

3. If5 = (Ajw1) - - - (Apwy) 18 a bachelor segment in M, then T'S(3) = (T'S(A1)w1) -+ (TS(Ap)w

is a bachelor subterm of TS(A).
4. If 5 is a subsegment occurring in M which is well-balanced, then T 'S(3) is well-balanced.
Proof: By induction on the structure of M.
o Case M =z then all 1---4 hold.

e Case M = (Bw)C where (Bw) bachelor in M. Then M = SC' where 5 is of mazimal
weight and bachelor in M, and TS(M) = TS(3)TS(C) by Lemma 4.8(2) and 1---4
hold by IH on's and C.

o Case M = (B6)s1(DA;)s2E where 51, 53 well-balanced, E a variable or starting with a
bachelor item. Then by using Lemma 4.8, we see:

TS(M)= TS((BS)ST(DA,)5E)

TS(E)(TS(B)O)(TS(D)A)TS(52)TS(E)

and again 1---4 hold by IH.

27

n)

e Case M = (B6)s1(DIl,)szE where 51, 53 well-balanced, E a variable or starting with a
bachelor item. Then by using Lemma 4.8, we see:

TS(M) = TS((BO)s(DIL)5E)
= (TS(B)S)TS(7)(TS(D)A)TS(5)TS(E)
and again 1---4 hold by IH. O

Note that it is not the case in general that T'S(A[zx := B]) = T'S(A)[z := T'S(B)]. This
can be seen by the following counterexample: let A = (yd)(yd)x and B = (zA,)(2A,)v. Then
TS(Alz = B]) = TS((y0)(y0)(zAn) (2 y)v) = (yd)(2Ay)(yd)(2Ay)v, whereas T'S(A)[x =
TS(B)] = (43) (98) (M) (Do)

Lemma 4.10 For all variables x and terms A, B we have:
1. TS(A)=TS(TS(A))
2. TS(Alx :=B]) =TS(TS(A)[z :=TS(B)]).
Proof:

1. Induction on the structure of A like in the proof of Lemma 4.9.

2. Induction on the structure of A, use 1. in case A= (COy)D where y = x.

Lemma 4.11 For all pseudoterms A without 611-couples: A =g T'S(A).
Proof: by induction on the number of symbols in A:

e A =z, nothing to prove.

e A = (Bw)C, where (Bw) is bachelor in A, then A = (Bw)C é% (TS(B)w)TS(C)
TS((Bw)C) =TS(A).

o A= (B0)3(CA;)D, 3 well-balanced, thens contains no Il-items and TS(A) =Lemmas 1.8, 4.9

TS(5)(TS(B)8)(TS(C)A:)TS(D) = 5(B8)(CAy) D =femmes 214 (B)5(CA,) D = A,
as no binding variables of 5 are free in B by VC O

Corollary 4.12 For all pseudoterms A, B which do not contain partnered I1-items, we have:
TS(A) =3 TS(B) iff A= B.
Proof: A=3TS(A) =3 TS(B) =3 B. O

Corollary 4.13 Let B contain no partnered Il-item. For all A € [B], A and B are seman-
tically equivalent.

Proof: A € [B] implies A contains no partnered ll-items. As TS(A) = TS(B), then by
Corollary 4.12, A =3 B.

28

4.3 Another reshuflling procedure and its properties

The reshuffling that we introduced in Section 4.2, takes a term Sz = 35557 ... 5,2 according
to the partitioning of Corollary 4.5 and reshuffles it to s} s} ... s/ x where: s = T'S(5;) and if
5 = (A1w1) ... (Apwm), is bachelor, then s. = (T'S(A1)wi) ... (T'S(Ay)wm), is bachelor and
if 57 is well-balanced, then all the §A-couples in 5; become dA-segments. This means that the
structure Sy 37 .. .5, does not change as the partitioning %g .. 8! corresponds to 3537 - - . 3p-

Example 4.14 Let 5 = (ud)(z6)(zAy)(yAz) and s’ = (z6)(xzy)(ud)(yA;). Now, (ury)(z6)5(26)z
is reshuffled to (uMy)(zd)s'(20)z

It can be claimed however that A = (u);)3(20)(20)z and B = (u\;)(20)3(20)z have the same
meaning semantically and procedurally and that if T'S(A) is to create the class of all terms
which are equivalent semantically and procedurally, then 7'S(A) must be the same as T'S(B).
For this, we refine T'S as follows:

Definition 4.15 T'S is defined recursively such that:

TS(5x) =g TSz

TS((AO;)3) =g (T'S(A)0,)TS(3) if (AOy) is bachelor in s

TS((A10)...(Apd)x) =g (TS(A1)d)...(T'S(An)J)

TS((A19)...(An0)SB) =g TSBE)TS((A19)...(Au0)B) if 5 is well-balanced,
(A;0) bachelor in B

TS((A6)s(BAy)) =g TSGE)TS(A))(TS(B)A) if 5 is well-balanced

TS((Ad)s(BIl,)) =g (TS(A)TSE)(TS(B),) if 5 is well-balanced

Now, T'S((uAz)(20)52(20)2) = (uAz)T'S(52)(x0)(29)z. This means that [A] = {B | T'S(A4) =
TS(B)} according to the reshuffling of this section contains more elements than according to
the T'S of Section 4.2. These extra terms should themselves belong to [A].

Now we come to the point of whether we can also increase the class of those terms which
are equivalent procedurally and semantically. With term reshuffling, well-balanced segments
must only be rewritten so that d \-couples become d \-segments. Moreover, all bachelor main §-
items, are moved to the right of all well-balanced segements. Hence, for any A, T'S(A) becomes
So81x where 57 consists of all the bachelor main d-items of A. 3y is of the form 53353 . . . 5, where
5; is either a dA-segment or a dll-couple where all §A-couples are JA-segments or a bachelor
main O-item. Now, look for example at P = (AX,)(B0)(CAz)(DAy)(F6)(GA,)(H)(Id)x.
The question one poses now is whether all the bachelor main O-items can be moved to the
left of all nonempty well-balanced segments. I.e. can we rewrite P above (assuming A... [
are already reshuffled) as P’ = (AX;)(DAy)(B)(CAy)(FO)(GA\y)(HO)(I6)z? The answer is
no as D may contain variables bound by the A;. So, we can’t move main bachelor O-items
to the right, but can we move them to the left? The answer is again no. In P above, B and
C may contain variables bound by A, so A, cannot move to the right of (B¢)(C\;). Hence,
in a term A, all main bachelor O-items will occur in the same position as in T'S(A).

In this paper we shall stick to the term reshuffling of this section as in Definition 4.15.
Now, let us show the properties of this new T'S.

Lemma 4.16
1. For all pseudoterms M, T'S(M) is well defined.
2. If 5 is well-balanced, then TS(5A) = TS(5)TS(A).

29

Proof:

1. Every time a rule TS(M) is used, weights of the resulting terms become shorter or T'S
disappears.

2. By induction on's.

O
Lemma 4.17
If 5 is a well-balanced segment, then T'S(3) is well-balanced.
Proof: By induction on weight(s). O

Lemma 4.18 For a term A, T'S(A) = 50 S1x where © = endvar(A), 57 consists of the term
reshufflings of all bachelor main d-items of A and Sy is a sequence of term reshufflings of
main dA-segments and bachelor main O-items.

Proof: Induction on weight(A).

e A =z, then nothing to prove.
e A= (B0O,)C or A=3C wheres well-balanced, use lemma 4.16 and IH on C.

e A = (B10)---(B;0)sC where 5 well-balanced and (s Z) or (C = x and n > 0)).
TS(A) = TSGE)TS((B16) -+ (Bpd)C). By lemma 4.17, 5 is well-balanced and hence by
IH on's, TS(3) is a sequence of 600-segments, if § Z () then by IH on (B10)--- (B,0)C
we are done, else C = x and by IH TS((B19)--- (Br0)C) = (T'S(B1)d) - -- (T'S(Bp)d)z
which also has the required format.

Lemma 4.19 For all pseudoterms A, B and variable z:
1. TS(A) = TS(TS(A))
2. TS(Afz := B)]) = TS(T'S(A)[z := TS(B)))
Proof:

1. induction on the structure of A.

o A=z, then A=TS(A).
e A= (BO,.)C, use IH.

o A= (Byd)--(Bn0)sC where 5 well-balanced and (5 Z 0 or (C = x and n > 0)),
use lemma 4.16.2 and IH.

2. induction on the structure of A, use 1.

Lemma 4.20 For all pseudoterms A not containing partnered Il-items: A =5 TS(A).
Proof: by induction on the number of symbols in A:

30

o A =z obvious.

o A= (By6)-- (Bpd)z, then TS(A) = (TS(B1)5)--- (TS(By)8)x £ (B16) - (B,d)x
A.

e A= (BO,)C, then TS(A) = (TS(B)O,)TS(C) £} (BO,)C = A.

A = (B1d)--- (Bpd)sE, where n > 1, 3 # 0 and s well balanced. Then TS(A) =
TS((B19) -+ (Bb)SE) = TS()TS((B19) - - (Bud)E) L5 5(B,19) - (Bad)E
nrme gt 2 (B16) - (Bud)SE = A (use VC).

Lemmas 4.16, 4.17

e A= (B0)s(CA;)D, whereswell balanced, then TS(A) = TSE)TS(B))(TS(C)A:)TS(D)
=5 5(BO)(CA,)D "2 (BI)S(CA.)D = A.

a

Corollary 4.21 For all pseudoterms A, B not containing partnered II-terms: if TS(A) =g
TS(B) then A =3 B. O

Lemma 4.22 If A contains no partnered l-items then for all B € [A], B contains no part-
nered 1I-items.

Lemma 4.23 Let B contain no partnered ll-item. For all A € [B], A and B are semantically
and procedurally equivalent.

Proof: A € [B] implies A contains no partnered Il-items. As TS(A) = T'S(B), then by
Corollary 4.12, A =g B.

Lemma 4.24 for all A € [B], A and B are semantically and procedurally equivalent.
Proof: By induction on the number of symbols in A:

e A =1z nothing to prove.

e A= (Cw)D where w= Oy or w =96 and (C9) is bachelor, then B = (C'w)D" where
C € [C'] and D € [D'].

— Case r is in C then by IH, 3r' € C' such that r¢ =g r¢v. Hence ra = ro =g
e =Tg.

— Case r is in D then by IH 3r' € D' such that rp = |ber},,. Hence rqa =
(Cw)TD :g’orollary 4.12 (C'w)rb, =rg.

o If A= (C8)S(DO,)E then B =357(C"6)53(D'Oy)E" where TS((C6)3(DO,)) = TS(51(C"6)53(D'O,)).
The only case worth considering is if r = (C0)(DO,). The other cases have been dealt
with above. Take r' = (C'0)(D'O,). Now, ra = A and rg = B and by Corollary 4.12,
A =g B. Hence, we are done.

31

5 Shuffle reduction

Let us recall that to reduce A, we reshuffle it and then use ordinary S-reduction. As we see,
A~spg A for any A" € {B;TS(A) —3 B}.

Definition 5.1 (Eztended redezes and (3-reduction in item notation)

In the item notation of the A-calculus, an extended redex is of the form (C§)s(BAy)A where
S is well-balanced not containing partnered l-items. The shuffle class of a term A is [A] =
{A"| TS(A) = TS(A")}. General one-step B-reduction ~»g 1is the least compatible relation
generated out of the following azxiom:

(C6)3(BA)A~p TSE)(TS(A)x :=TS(C)))
In other words,
(CO)5(BA)A~p B iff TS((C6)5(BA;)A) =3 B

Note that ~ g is compatible and transitive because —g is. General ~»g is the reflevive and
transitive closure of ~»g and =g is the least equivalence relation generated by ~»g.

Remark 5.2 Now it is not in general true that A ~»3 B = 3A' € [A]3B’ € [B][A’ —»3 B'].
This can be seen by the following counterexample:
Let A = ((aAy)(aA,)vd)((odly,)(all,)ad,) (wd)(wd)z and B = (wd)(al,)w. Now A ~»p
(wd)(wé) () (aAy)v ~5 B,
but [A] = {A, (wd) ((aXy)(ary)vd)((adly) (eIl)ar,) (wd)z, (wd) (wd) ((ady) (ady)vd)((ally,) (all,)ady)z},
[B] = {B} and if A" € [A] then the only —4 reduct of A’ is (wd)(wd)(aA,)(aA,)v, which
doesn’t — g-reduce to B.

Lemma 5.3 Let A be a pseudoterm which does not contain partnered Il-items. If A —5 B
then for all A" € [A] A’ ~4 B.

Proof: It is sufficient to prove (Ad)(BA;)C —p3 Clz := B] and TS(A') = (Ad)(BX;)C
then A~sg Clx := B]. The compatibility cases are easy. O

Lemma 5.4 If C is an extended redex in A, then C is a classical redex in TS(A), and if
(B6)(CAy) is a classical redex in TS(A) then there exist terms B',C' such that TS(B') = B,
TS(C') =C and (B'0)(C'\;) is an extended redez in A.

Proof: by induction on the number of symbols in A:

o A= (B1)--(Byd)x, then extended redexes of A are extended redexes of B; for some i,
use IH on B;. As TS(A) = (T'S(B1)d)--- (T'S(By)d)x, classical redezes in TS(A) are
in one of T'S(B;), use IH on B;.

e A = (B10,)Bs, then similar to the previous case.

o A= (DO)(EN,)F. then the extended redex (DS)(EN;) in A corresponds to the classical
redex (T'S(D)0)(TS(E)\;) in TS(A), for extended redexes in D,E or F use IH, for
classical redexes in TS(D), TS(E) or TS(F), use IH.

o A= (D1d) - (Dnd)(DO)(EN)F, thenTS(A) = (TS(D)O)(TS(E)\;)TS((D10) -+ (Dpd)F).
Now extended redexes of A are either in (D196)--- (Dp0)F or in (DS§)(EN;), use IH
on these terms. Classical redezes in TS(A) are either in (T'S(D)S)(T'S(E)Ag)x or
in TS((D10)--- (Dpd)F), so use IH on these terms, noting that an extended redex in
(D10) - -+ (Dy0)F is also an extended redex in (D10)--- (Dy0)(DJ)(EX)F).

32

a

Lemma 5.5 Let A,B € T. If A =g B in the sense of Definition 2.11, then A ~5 B in
the sense of Definition 5.1. Moreover, if A~+g B comes from contracting a d\-segment then
A -3 B.

Proof: easy induction on the structure of A. O

Lemma 5.6 If A’ € [A] then A" =3 A.
Proof: See Corollary 4.12 O

Lemma 5.7 Let A, B have no partnered Il-items. If A~»3 B then A =g B.
Proof: If A ~g B then TS(A) —3 B. But by Lemma 4.20, A =3 TS(A) =3 B =4
TS(B). O

Corollary 5.8
1. If A~»g B then A =3 B.
2. A~g B iff A=3 B.
O

This Corollary is important. It shows the typing relation of Section 3 does not change as a
result of the conversion rule.

Theorem 5.9 (The general Church Rosser theorem for ~»g)
If A~»3 B and A ~»g C, then there exists D such that B ~»g D and C ~»g D.

Proof: As A ~»g B and A ~»g C then by Corollary 5.8, A =g B and A =5 C. Hence,
B =5 C and by the Church Rosser property for the classical lambda calculus, there exists D
such that B —g D and C —»g D. But, A —»3 B implies A ~»g B. Hence the Church-Rosser
theorem holds for the general B-reduction. O

Note that our example in subsection 4.2, can be easily adapted to an example showing the
following: if A —4 B and if all the d\-couples in A are dA\-segments, then it is not necessary
that all the dA-couples of B are dA-segments. In other words, we can have T'S(C) —3 D
where D # T'S(D). Counsider for example the terms C' = ((zAy)(2A,)vd)(wAz)(yd)(yd)z and
D = (y0)(yo)(2Ay)(2Ay)v. Then T'S(A) = C —g D whereas T'S(D) = (yo)(2A)(yd)(2Ay)v.
But we still can show that in a certain sense, term reshuffling preserves S-reduction.

Lemma 5.10 If A,B € T and A ~3 B then (3B’ € [B])[TS(A) —3 B']. In other words,
the following diagram commutes:

3 B
TSl
TS(Ay————3 B' €[B]

33

Proof: we prove with induction to the structure of A’ that if A" =5 B’ € [B], then for
some B", TS(A") =3 B" € [B].

o A’ = x, then nothing to prove.

o A" = (Cw)D, where (Cw) bachelor in A'. Assume B' = (C'w)D, the case B' = (Cw)D'
is similar. Then by IH there is C" such that TS(C) —5 C" € [C"].

NowTS(A") = (T'S(C)w)T'S(D) =5 (C"w)T'S(D), and TS((C"w)T'S(D)) = (T'S(C")w)T'S(T'S(D))

rmz M (P S(CMw)TS(D) = TS((C'w)D) € [B.
o A'=(CH)3(DO,)E, where s well-balanced. If B' = (C'0)s(D’
previous case, assume now B' =35E[x := C]. ThenTS(A") =
=3 TS(E)(TS(E)[x :=T15(C)]), and TS(TS(5)(TS(E)[x =

O)E' then similar to the
TS(
TS

TS(C)]) "= TS(5)TS(Elx = C)) = TS(B') € [B].
O
Corollary 5.11 If A~»g B then there exist Ag, A1, ..., Ay such that
[(A = Ao) AN (TS(A()) -3 Al) N (TS(Al) —3 Ag) VANRIERIVAN (TS(Anfl) -3 An) A (TS(An) =
TS(B))]
Proof: O

5.1 Properties of ordinary typing with generalised reduction

If we look at Section 3.2 and because =g and ~g are equivalent according to Lemma 5.8, we see
that the only lemmas/theorems affected by our extension of reductions are those which have
—#g in their heading. Hence, the only (very important) properties that get affected by ~4
are: Church Rosser (Theorem 3.4), Subject Reduction (Theorem 3.13) and its Corollary 3.14,
Unicity of Types (Lemma 3.15) and Strong Normalisation (Theorem 3.16). In this section, we
shall show that Church Rosser and Strong Normalisation hold for the Cube with generalised
reduction. We shall moreover show that Subject Reduction holds for Aw and A_, but not for
any of the other six systems. Unicity of typing depends on SR and on the fact that =4 is the
same as ~» . Hence, we ignore it here as once we prove SR, its proof will be exactly that of
Lemma 3.15.

Now we come to the proof of Strong Normalisation for the Cube with extended reduction.
Those familiar with the proof of Strong Normalisation of the Cube, will notice that we have
accommodated ~» 3 in the definition of SN.,; (recall Section 2.3).

Remark 5.12 With Definition ??, it becomes clear why we depart from [Geuvers 94] by
using [(AX;)B] to be ([A]0)(Ay)(Az)[B] instead of ([A]0)((Az)[B10)(Au)(Av)u.

Consider for example P = (Ad)(BJ)(CAy)(DAy)E and Q = (B6)(CAy)E[y := A]. It is
obvious that P~y Q and that [P] = ([A]18)([B1)(IC18)(A) () (D)) Ag) (A [E] ~

5)
A

Q1 = (B10)(C1)(A) A Bl — 14
) A

1]. Yet, if we use the translation of [Geuvers 94],
then we get [P] = ([A 1 8)([B19)([C0)((Ae) [(DAy) E16) (Au) (Av)u
75 [Q1 = ([B19)([CT0)((A)[Ely == [A]]0) (A)(t)$-

Theorem 5.13 (Strong Normalisation with respect to = and ~»3)
For all &=-legal terms M, M 1is strongly normalising with respect to ~»g.

34

5)(TS(C)0)(TS(D)O:)TS(E)
(ON) =TS(TSE)TS(TS(E)x

Proof: Let M be a legal term. Then either M = O or for some context I' and term N,
'FM:N.

In the first case, clearly M is strongly normalising.

In the second case, define canonical elements ¢ € CPLB (A) for all A € T"-kinds as
follows:

C* = SNMB
c(All)B . A\f € CPf,,g (A),CB if A€ " -kinds
JAIL)B . B if A €T -types

Take fiﬂ such that 5'«_»3 (z) = ¢ whenever (AN;) €' T and take pt/,ﬂ = id.
Then pﬁ»ﬂ,f';ﬁ = T, hence ([M])p:m € [[N]]é-;g, where ([M])p:m = [M] as mentioned in
lemma 2.45. Hence [M] € [[N]]é‘t"ﬁ C SN..;. By lemma 2.45 now also M € SN... O

Hence, up to now, almost all the properties of the Cube hold when reduction is generalised.
The only exception is Subject Reduction. Here we show that it holds for Aw and A_;, yet fails
for A2. In the following, £ stands for one of the systems Aw, A_,.

Lemma 5.14 IfI' g A: O then A € {*, (*IL;)*, (xII;) (+IL,), ((+I1;) * IIy)*,...}.
Proof: By induction on the derivation rules. O

Lemma 5.15 If B is a legal L-term, B' is a L-kind and B =3 B' then B is a kind.

Proof: First show by induction on the derivations: If x is a subterm of A and A is legal
then A is a kind or x is type-information in A (as in (xM\;)y). Now, as B' is a kind, B’ is in
normal form, hence B —g B' and it can easily be seen using the former result that B must
be a kind too. O

Lemma 5.16 IfT' -, (AIl,)B: S, then Tz A: S, T(AXy) bz B: S and x & FV(B).
Proof: Show by induction on the derivation of I' -y A : B that if B a kind, then for all
(CAg+) € I-decl, x* ¢ FV(A).

o application rule: T Fg (ad)F : Blx := a] out of I' b F : (All)B and T’ ¢ a : A.
Suppose Bz := a] is a kind and (C)\y) € T, T Fp C:x. Ifx ¢ FV(B) then B is
a kind, so A and (All;)B are kinds too, hence y ¢ FV(a), FV(F) by the induction
hypothesis.

If x € FV(B) then a is a kind (as Blx := a] is a kind) and hence A = O which is
impossible as T' b, F : (All,)B.

o conversion rule: 'z A: B out of Tz A: B, Tz B': S, B=g B'. Suppose B is a
kind, then by lemma 5.15: B is a kind, hence by induction hypothesis we are done.

o the other cases are easy. O

Lemma 5.17
1.TH(A0)B:C=THF+C:S for some sort S.
2. If 't A: S, 'z B: Sy and A =g B then Sy = Ss.
Proof:

35

1. Generation Lemma gives

'-A:D
I'FB: (DIL)E
Elxz:=Al=3C

if BElx:=A]|#C then'HFC: S
So suppose Elx := Al = C, then I' - B : (DII;)E implies by lemma 5.16 that I' - E :
S,z ¢ FV(E) hence C = E and we are done.
2. Note that Sy = 0 or So = 0O, hence by Lemma 5.15, S1 = 5s.

a

The crucial step in the proof of Subject Reduction in Aw and A_, will be proved in the following
’shuffle’-lemma:

Lemma 5.18 (Shuffle Lemma for Aw and A_,)
[ke 51(A40)52B : C <= T b, 5152(A0)B : C where 3o is well-balanced and the binding
variables in 9 are not free in A.

Proof: By induction on weight(32).

e Case weight(s2) = 0 then nothing to prove.

o Case weight(52) = 2, say Sy = (DJ)(EX;). We use induction on weight(s1). Suppose
first, weight(s;) = 0.
=) suppose I' = (A0)(DJ)(EXNy)B : C

Using the Generation Lemma three times, we obtain:

PheA:F (1)
'z (DO)(EXN)B : (FII,)G (2)
G=Gly:=A]=3C (Lemma 5.16,Corollary 3.12) (3)
PbeD:H (4)

bz (EA)B : (HIL)I
I =I[z:= D] =5 (FII,)G (Lemma 5.16, Corollary 3.12) (5)

T (EIL)J : S
D(EXg) bz B :J (6)
(HIL,)I =5 (ETL,)J (7)
Out of (7) and Lemma 5.16 we see that x = z, H =g E, I =3 J, y ¢ FV(G),z ¢
FVI)UFV(J), TrzF,GHILE:S (8)
and out of (7) and (5): J =5 (FII,)G. Hence (9)
L(EX) b2 B (FIL,)G (conversion, (6), (9), (8) implies (10)

by the generation and thinning

36

lemmas: I'(EX;) F¢ (FIL,)G - S1)

C(EX;) b A F (thinning lemma, (1)) (11)
D(EX,) Fz (A0)B : G ((10), (11), application, Gly :== Al = G) (12)
['+c (HIO,)G, (ET,)G : S1 (formation, thinning, T' - H,G,E : S1) (13)
UFe (EXN)(A0)B : (HII,)G ((12), (13), abstraction, conversion, (14)
(8) = (FIL)G = (HIL)G)
CFz (DO)(EX:)(AO)B : G ((14), application, (4), Gz := D] =G) (15)
L', C:S (Lemma 5.17, hypothesis) (16)
Lk (DO)(EX)(AO)B : C (conversion, (15), (16), (3)) (17)
(18)
<) Suppose I' b (D) (EX;)(A0)B : C

Then L' C: 5 (Lemma 5.17) (19)

and by generation three times we get:
ke D:F (20)

I'Fr (EX)(A0)B : (FII,)G
G=Gly:=D]l=3C (Lemma 5.16, Corollary 3.12) (21)
[b (EIL)H : S, (22)

D(EXg) bz (A0)B : H

(ETL,)H =4 (FIL)G (23)
T(EXg) bz A: 1 (24)
D(EX) bz B : (ITL)J (25)
J=Jz:=Al=3 H (Lemma 5.16, Corollary 3.12) (26)

Now (25) and Corollary 3.12 imply that for some Ss, T'(EA,) b, (IT1,)J : Ss.
Hence, by Lemma 5.16, z ¢ FV(J),T(EXy) b J : S5.

Also, by Lemma 5.16, we get out of (22) that T by E : So,T'(EXy) bz H : So and
« & FV(H).

Now, J =g H from (26), hence x € FV(J).

Moreover, by Lemma 5.17, we see Sy = S3. Hence,

['Fe (Pg)(ITL,)J = Sy formation (27)
Ik (EXg)B : (Elly)(I11,)J ((27), (25), abstraction) (28)

L'k (DO)(EXNg)B = (111,)J (application, (28), © € FV(I,J)
'tz D : E because (23) (29)

implies E =g F
and we use conversion, (20), 'tz E : S3)
[bp (A0)(DO)(EXy)B = J (out of (EXg) Fe A: T and T D E (30)
we find by substitution (v ¢ FV(A,I)),

37

I'Fz A:I. Now, use application)
T'Fz (A0)(DO)(EX,)B : C ((30), (conversion; C =g J
follows from (26),
(23) and (21))

Now suppose weight(s1) =n + 1.

Using the generation lemma we obtain T' -, 51 (A0)52B : C', where weight(s)) = n,
hence the induction hypothesis says I' b 3152(A0)B : C" and by applying the appropri-
ate derivation rule we obtain I' b, 5159(A0)B : C.

e case weight(Sy) =2(n+1),n > 1.

Then 5o = (D0)53(E ;)34 for some terms C, D, variable x and well-balanced segments
S3,84. Then, weight(S3), weight(Ss) < 2n and we see:

T bp 51 (A6)(D6)S3(EN,)5uB : C £
T br 5 (A6)53(D6)(ENy)5aB : C £
T bp 555(A0)(DS) (BN 5B : C £
I bp 555(D6)(EX)(A0)5B : C £
T b 51 (D6)53(EN)(A8)5.B : C £
Iz 51(D6)s3(EA;)54(A6)B : C O

Now we can prove Subject Reduction for generalised S-reduction.

Theorem 5.19 (Generalised Subject Reduction for Aw and A_, for F and ~p)
IfTF; A:Band A~pg A thenT -, A': B
Proof: We prove by simultaneous induction on the generation of I't-y A : B that
F"ﬁA:B/\AMﬂAI = F"ﬁAI:B (Z)
Pk A:BAT~g D" = T'F.A:B (i7)

where I’ ~ T means I = T'1(AX;)T2, I =T (A'A)T2 and A~ A’ for someT',Ty, A, A, x.
The cases in which the last rule applied is axiom, start, weakening or conversion are easy (for
start: use conversion). We treat the three other cases.

o The last rule applied is the formation rule: I' b (A111,)By : Sy is a direct consequence
of T'kp Ay S1 and T'(Ay)g) Fe By 2 S1. Now (i) follows from IH(i) and IH(ii); (ii)
follows from IH(it).

o The last rule applied is the abstraction rule: similar to the previous case.

o The last rule applied is the application rule: T Fp (ad)F : Bilx := a] is a direct
consequence of T'tp F : (A11;)By and Tz a: Ay. Now (i1) follows from IH(ii). We
consider various cases:

— Subcase 1: (ad)F ~»g (ad)F" because F ~»g F'. Then (i) follows from IH(i).

38

— Subcase 2: (ad)F ~»p (a'6)F because a ~p a'. Then from IH(i) and application,
it follows that T & (a'0)F : B[z := d']. Moreover, from Corollary 3.12, it follows
that for some sort S1: T by (A11l,)By : S and hence by the generation lemmas:
L(AX,) B By @ St and thus by the substitution lemma U g B[z :=a] : S1. Now
conversion gives I' bz (a/0)F : By[x := a] which proves (i).

— Subcase 3: F = 5(A'\))F', 5 well-balanced and (ad)F ~»3 5F'[y := a]. Now,
by lemma 5.18 we have I’ -z 5(ad)(A'\y)F' : Bz := a] and 5(ad)(A'\y)F' —3
SF'[y := a] so by subject reduction for ordinary [-reduction we have:

'k, 5F'y := a] : Bi[z := a] which proves (i). 0

Hence SR is valid for A_, and Aw. It is not however valid for the remaining six systems of the
Cube as the following examples show:

Example 5.20 (SR does not hold in A2 using ~»g)

(M) () Pz (7 Tox £ € (s,) (43)(50) (<)) (0
Moreover, (y'0)(80)(xAa)(ady)(y8)(ads)z ~ 5 (B6)(+Aa)(y'0)
Yet, (xAg)(BAy) a2 (89)(xAa)(y'6) (ahg)z = B.

Even, (*Ag)(BAy) a2 (80)(xAa)(y'0)(aXg)z : 7 for any 7.
The reason why this really fails is that (a\;)z : (adl;)o and y : 5 yet @ and [are unrelated
and hence we fail in firing the application rule to find the type of (y'd)(a\;)z. If one looks
closer however, one finds that (36)(x)\,) is defining « to be (3, yet no such information can
be used to combine (all;)a with 3. We will redefine the rules of the Cube so that such
information can be taken into account. Finally note that failure of SR in A2, means its failure
in AP2, A\w and A\C

)(aAz)x : B (see Example 3.3).
aMg)T.

(

Example 5.21 (SR does not hold in AP using ~»g)

(#A0) (@A) ((01lg) ¥ AQ) ((E6) QAN) Fap (N6)(t0)(aAz)((26)QAy) () ((x0)QAz)Z : (t0)Q). Note
here that this cannot be derived in A_,, A2 or \w (see Example 3.3).

And (N6)(t0) (o) ((26)QAy) (y0) (0)QAZ) Z ~p (t6) (0 As) (NG)((26)QAz)Z

Now, N : (t0)Q,t : 0,y : (x0)Q,z : 0, (t0)Q # (x0)Q.

(xAg) (o) ((0Iy) * XQ)((£6) QAN) Fap (t0)(0Az)(NO)((20)QAz)Z - T for any 7.

Here again the reason of failure is similar to the above example. At one stage, we need
to match (20)Q with (£6)Q but this is not possible even though we do have the definition
segment: (td)(o\;) which defines x to be t. All this calls for the need to use these definitions.
Finally note that failure of SR in AP, means its failure in AP2, \Pw and \C'

6 Extending the Cube with definition mechanisms

As a first step in the direction of including extended reduction in the systems of the Cube,
we now investigate adding definitions to the Cube. We already defined what definitions are
like in contexts, now we shall extend the derivation rules so that we can use definitions in the
context. The rules remain unchanged except for the addition of one rule, the (def rule), and
that the use of I' b B =4.¢ B’ in the conversion rule really has an effect now, rather than
simply postulating B =g B’

39

6.1 The definition mechanisms and extended typing

Definition 6.1 (General azioms and rules of the Cube extended with definitions)
(aziom) <>rsh .o

Lt g
Td -5h subj(d) : pred(d)

(start rule)

. T b d rdrsh D . B
(weakening rule) 7
rd+sh D E
T30 F . (ATL,)B THshg: A

application rule
(/ I +sh (ad)F : Blz := a

T(AX) F3P b B T F8h (ATI,)B : S
T 30 (AN,)b : (AIL)B

(abstraction rule)

Dd -5h c:D . . .
def rule if d 1s a definition
(def / L Fsh dC : [D]g f i
rrsh 4. B FI—ShB’:S FI—ShB:defB’

conversion rule
(/ rHsha: B

Definition 6.2 (The specific rules of the Cube)

rrsha:s T(AX\) FSP B S,
I 51 (ATL)B : S,

(S1,S2) rule

Remark 6.3 Note that in the abstraction rule, it follows that (A\;) is bachelor in I'(A\;).
The reason is that we can show that if I' is legal then I' contains no bachelor main d-items.
Hence as I 5B (All;)B : S, I' has no bachelor d-items and so (A\;) cannot be matched in
I.

The (def rule) says that if C': D can be deduced from a concatenation of definitions d, then
dC will be of type D where all the sub-definitions in d have been unfolded in D. Note that the
(def rule) does global substitution in the predicate of all the occurrences of subjects in d. The
reason is that d no longer remains in the context. In the conversion rule however, substitution
is local as T" keeps all its information (see Definition 2.22). The following examples show how
this works:

Example 6.4 With this definition, let us show how the term in Example 3.3 is typed in A2
and how its ~»g-contractum of Example 5.20 is given the same type too.

(xAg)(BAy) l—ig (y'0)(80)(xAa) (Ay) (yd) () = B can be seen by using the following deriva-

40

tion steps and filling in the needed conditions:

'_§\}21 % O

(*)\5) |—§\}21 B:x:0

(¥A5) (BAy) 3B o/ B2 %2 O

(#A8) (BA) (B6) (+a) FB o/ B2 %1 O, - %

(+28) (BAy) (B8) (<)o) Filg O =get 3

(¥A8) (BA) (B0) (+2a) F3R o/ s v 4

(¥A) (BAy) (¥'8) (B8) (+ha) () FS y 2 v : ¢

($A8) (BAy) (¥'8) (B8) (+Aa) (ahy) (y6) (@Xs) F32 2 :

(+28) (BAy) SR (y/6)(88) (+ha) (@A) (48) (aXs)z : afz == y][y := ¢/][e = B] = 3

Note how much quicker we can type terms here once we have a context. Note also that the
other derivation given in Example 3.3 of this term is also valid here. Yet it is more clear and
efficient to use the definitional segments (yd) (A,) and (y'6)(30)(¥Aa)(cAy), and furthermore
we see that this derivation is even valid in the system A_,, because we don’t need the term
(*Aa)(aAy)(y6) (A)z to have a type due to the (def rule).

Now, also (xAg)(BAy) |—§\}21 (89)(xAa) (¥) (aXz)x = B as follows (needed derivation steps,
including (xAg)(BAy)(30)(¥Aa) I—f\}; y' @ a by (conversion) , are left to the reader):

(#+A3) (BAy) (B8) (X)) ('6) (ade) 3B 2 v s0 by (def rule):
($A8) (BAy) F5B (86) (+Aa) (y'8) (@) : oz := y/][a = B] =

Example 6.5 Also the term of Example 5.20 can be easily and quickly typed in AP (note
that this term cannot be typed in A_, as the term @ can’t):

($A0) (000 ((0T1,) % AQ) (£6) QAN) (V) (10) (X} (28) Q) (46) (28) QA7) FSB Z : (26)Q
(+20) (O20) ((0TLy) * AQ)(t6)QAN) R (N6) (£0) (0 X) ((28) QA) (90) (26) QA7) Z : (£0)Q

Its ~»g-contractum gets the same type as follows:

(+20) (020) ((9TLy) * AQ)((£6)QAN) (£9) (0 Ae) (NO) ((28) QA7) H3B 2+ (20)Q
(20) (@A) (0T1,) * AQ) (t6)QAN) FSE (28) (0o Xe) (NO) ((20) QA7) Z : (#0)Q

Remark 6.6 It might be asked why we need T’ -sh 4 =4et D instead of A =g B in the
conversion rule? The reason is that we want from (xA4)(Ad)(xAz) FSho 4k and y is fresh
to derive not only (xA4)(A8)(xA;)(ANy) Fshoy 4

but also (¥A4)(A8)(xAg)(ANy) FS
This is not possible if conversion is left with B =3 B":

how can we ever derive (¥A4)(Ad)(xA;)(ANy) -sh y:xasxF#z A?

If we change to the conversion rule using =4e¢, then we are fine:

()2 4) (AB) (A) (AN, I—Shy A

(¥Aa) (A0) (xAz) (ANy)

(.A4) (Ad) (xAg) (ANy) I—Sh 2 =get A and so with conversion,
(+24) (49) (=X) (AN) FSP y

41

6.2 Properties of the Cube with definitions

If we look at Section 3.2 and because we have changed - to FSh bt left —» unchanged,

we see that all the lemmas and theorems which had - in their heading get affected. In this

|_Sh

section, we will list these lemmas and theorems for and give their proofs.

Lemma 6.7 (Free variable lemma for I—Sh)
Let T be a legal context such that T’ - B . C. Then the following holds:

1. If d and d' are two different elements of I'-decl, then subj(d) # subj(d').

2. FV(B),FV(C) C dom(T).

3. For s1 a main item of I, FV(s1) C {subj(d) | d € I'-decl,d is to the left of s; in T'}.

Proof: All by induction on the derivation of T’ =shp . C. O
The following lemmas show that legal contexts behave as expected.

Lemma 6.8 (Start Lemma for I—Sh)
Let T be a legal context. Then T 5" «: 0 and Vd €' rr -sh d].

Proof: As I is legal, then AB,C € T such that I’ F$h B . C. Now use induction on the
derivation T 5" B : C. O

Lemma 6.9 (Invitation Lemma for I—Sh)
IfT'd is legal then T' F*" d.

Proof: By induction on the derivation I'd -sh 4. B. O

Lemma 6.10 (Transitivity Lemma for I—Sh)
Let T and A be legal contexts. Then: [I FShANAFST A B]=T -sh 4. B.
Proof: Induction on the derivation A 5" A : B. O

Lemma 6.11 (Definition-shuffling for I—Sh)

1. If TdA 51 O =4t D then Td(det(d)d)(pred(d)Aew;a)A " C =4et D for d a
definition.

2. If TdA 50 C' . D then ['d(def(d)d)(pred(d)Asupj(a)) A Fsh o D for d a definition.

Proof: 1. is by induction on the generation of I'(A0)s(BAz)A FSh C =4es D. 2. is by
induction on the proof of T'(Ad)s(BA;)A ~sh . D using 1. for conversion. O

Lemma 6.12 (Thinning for I—Sh)
1. If 1Ty -sh 4 =4et B, 1Ay is a legal context, then I'{ ATy -sh 4 —4et B.
2. If T and A are legal contexts such that I' C'" A and if T -sh 4 . B, then A -sh 4. B.

Proof: 1. is proved by induction on the derivation I'1I'y -sh 4 —qet B.
2. s done by showing:

42

o IfTA Fsho4 B, T RUNeE S, x is fresh, and no A-item in A s bound by a J-item
in I, then also I'(CAz)A ~sh A . B. We show this by induction on the derivation
rAFSh A B using 1. for conversion.

o If I'5A Fsho4 . B, T's Lsh ¢ . D . S, [Clz = C, x is fresh, 5 is well-balanced,
then also I'(C0)s(DAg)A FSh A : B. We show this by induction on the derivation
I'sA P A B. In the case of (start) where I'(A0)3(BA\;) FSh 2 0 A comes from
s +sh 4. B . S, [Als = A, x fresh, then [A]csys(pr,) = A because x fresh and
[(CS)3(DA,) FSM A B : S by IH.

o IfT5(AN)A F31 B 1 €, (AN,) bachelor, 5 well-balanced, TS F3" D : A, [D]s = D, then
[(DJ)s(ANz)A FSh B . C. We show this by induction on the derivation I'S(AX;)A -sh
B : C (for conversion, use 1.). O

Lemma 6.13 (Substitution lemma for I—Sh)

1. If TdA -sh 4 =get B, d a definition, A and B are I'dA-legal terms, then I'[A]g -sh
[A]d —def [B]d

2. If B is a I'd-legal term, d a definition, then I'd -sh =get |Bld

3. If T(A8)(BA)A FSh C . D then TAJw := A]F3h Oz := A] : D[z == A

4. If T(BX\;)A ~sh o D, T -sh 4 . B, (BX;) bachelor in ', then I'Alx := A] -sh Clz =
Al : D[z = A]

5. IfTdA 3R © . D, d a definition, then T[A]y F5" [C]q : [D]4

Proof:

1. Induction to the derivation rules of =gez-

Case TdA F5I d,C =4s dy (C[subj(d;) := pred(d;)]).

Then [d1Clq = ([def(d1)]ad)[d1]a([pred(di)]arsuvi(d,)

(d1C is T'dA-legal = subj(dy) ¢ dom(d))

and [d1(C[subj(dy) := pred(d1)])]a = [dila([Cla[subj(dy) := [pred(di)]d]),

hence T[A]y F5" [d1Cg =aet [di(Clsubj(dy) := pred(di)])]
2. Induction on the structure of B.

Case B = x € dom(d): use (=qet def).

Case B = x ¢ dom(d): use (=qet refl).

Case B = (C0)D: use (=ges compl).

Case B = (COg)D (O € {\11}): use (=qet comp?).

3. Induction to the derivation rules, use 1., 2. and the thinning lemma.

4. Idem.

43

5.

Corollary of 3. O

Lemma 6.14 (Generation Lemma for I—Sh)

1.

5.

If T FSh g A then for some B: (BX\;) € I, T -sh B . S, T -sh 4 =4et B and
rsha.g for some sort S'.

IfT -sh (AX;)B : C then for some D and sort S: T'(AX\;) -sh . D, T -sh (AIl,)D :
S, T -sh (A1) D =4e¢ C and if (All,)D # C then T Fsh o g for some sort S'.

IfT -sh (AIl,)B : C then for some sorts Si,So: T Fsho 4.5, T Fh B . s,
(51,52) € R, T -sh ¢ =det 92 and if So Z C then T’ Fsh o s for some sort S.

. If T -sh (A0)B : C, (Ad) bachelor in B , then for some terms D,E, variable x:

I+3h 4. D, THh B (DI,)E, T +3" Bz .= A] =4es C and if E[x := A] % C then
reshe.s for some sort S.

IfT+"54: B, then 55" A . B

Proof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the deriva-
tions (use the thinning lemma).
As to 5., we use induction on weight(s):

e weight(s) = 0: nothing to prove.

e If we have proven the hypothesis for all segments 5 that obey weight(3s) < 2n and

weight(s) = 2n + 2, 5 = 5183 (neither 51 = 0 nor 53 = 0) then by the induction
hypothesis:

I'sy -sh S2A : B, again applying the induction hypothesis gives ['s759 -sh 4. B.
If we have proven the hypothesis for all segments s for which weight(s) < 2n and

weight(5) = 2n + 2,5 = (D0)s1(E\;) where weight(51) = 2n then an easy induction
to the derivation rules shows that one of the following two cases is applicable:

—Tsksh 4. B/ T sk [B'ls =qet B and if [B']s # B then T ~$h B . S for some sort
S.

~ T+ D P, T EShosp(BEN)A ¢ (FIL)G, T HSP B =4 Gy := D] and if
Gly := D] # B then T shp. s for some sort S.

In the first case we note that FV (B)Ndom(3) = 0 and that by thinning I's -sh [B'ls =4et
B, by substitution T's -sh [B']s =4es B’ soT's Fsh B — s B and by conversion we get
rsHsh A B.

In the second case we know by the induction hypothesis that I'sy -sh (EXp)A : (FII,)G,
Now 2. tells us I's(E\) Fsh A . L, sy 13t (Plg)L =ges (FIL,)G and if (EIl,)L #
(FIL,)G then I'sy -sh (FII,)G : Sy for some sort S;.

44

This means that r =y, I'sy Fsh g =qet F, I's7 Fsh g, =get G. Out of I'sy -sh (ETL,)L :
S we get by 3. that I'sy -sh B S, for some sort Sy, thinning gives I'sy =h D F so
by conversion and thinning I's -sh 4. L.

Out of T ~sh B =4es G|z := D] we get (thinning and substitution) I's ~sh =get G,
out of I'sy Fsh g, =get G we get I's -sh g, =q4et G, hence I's -sh B =get L.

Now if Gly := D] # B then T’ Fsh B s for some sort S, and if G|y := D] = B then we
get out of I'sy -sh (EXg)A : (FIL,)G that T'sy FshG . g for some sort S, by thinning
and substitution we get that 's -sh Gly := D] : S'. In any case, we get I's ~sh g s
for some sort S and by conversion we may conlude I's -sh A B,

Theorem 6.15 (Subject Reduction for -sh and —»3)
TH5" A: B and A — A’ then T +5h A" . B.

Proof: We only need to consider A —5 A'.

Basic case: suppose I' -sh (Ad9)(BA;)C : D.

Then by the generation lemma: T'(Ad)(BA;) RUNoE D, and by the substitution lemma
we get T F3 Clz := A] : D[z := A], but as x ¢ FV(D), D[z := A] = D.

The compatibility cases are easy. O

Now here is the proof of Strong Normalisation for the Cube extended with definitions.

Theorem 6.16 (Strong Normalisation for the Cube with respect to " and —#3)
For all F*"-legal terms M, M is strongly normalising with respect to 3.

Proof: Let M be a F*"-legal term. Then either M = O or for some context T' and term
N, Hh M :N.

In the first case, clearly M is strongly normalising.

In the second case, define canonical elements ¢* € C'P'__,;h (A) for all A € ™" kinds as
follows:

C* = SN_)B
A= Nf € CPL(A).cP if AT -kinds
JAL)B . B if Ae F%Sh-types

Take 7" such that 5" (x) = ¢ whenever (A\y) € T and £ (subj(d)) = [[def(d)]]gt;h
whenever d €' T'-def and take pt:;b such that piig(subj (d)) = ([def(d)Dsth for all subdefini-
tions d of T' and ptig (x) = x otherwise.

Then poo" =" E T, hence ([M])pksh € [[N]]gt:h, where (IMDsth = [M] as mentioned in

-3

lemma 2.45. Hence [M] € [[N]]gt»sh C SN, By lemma 2.45 now also M € SN_,,. O

7 The Cube with definitions and shuffle-reduction

Now we extend the type system of section 6 by changing the reduction —g into ~» 5. As was
the case in section 77 the derivation rules stay the same as those with classical g-reduction,

45

hence almost all lemmas that have been proved for the system in section 6 are still valid.
The only properties that have to be investigated are Church-Rosser, Subject Reduction and
Strong Normalisation. We will show now that all these properties too are still valid.

Theorem 7.1 (The general Church Rosser theorem for ~»g)
If A~»g B and A ~»g C, then there exists D such that B ~»g D and C ~»g D.
Proof: see theorem 5.9. O

Theorem 7.2 (Subject Reduction for =sh and ~>3)
Ifr F3h 4. B and A~sg A then T’ Fsh 47, B.

Proof: We only need to consider A~»5 A'.

Basic case: suppose T’ Fsh 4o D.

Then by the generation lemma: I'd -sh ¢ . D. Hence by definition-shuffling (6.11, say
A = def(d), B = pred(d) and z = subj(d)): T'd(Ad)(B\y) =sh ¢ D, hence by substitution
rd +sh Clz := A] : D[z := A], and by (def rule) T’ -sh d(Clx := A]) : [D[x := Allq, which is
I 50 d(Cla = A)) : [D]y.

Now by the variable convention [D]y = D so we are done.

The compatibility cases are easy. O

Theorem 7.3 (Strong Normalisation for the Cube with respect to " and ~3)
For all F*"-legal terms M, M is strongly normalising with respect to ~g.

Proof: This is exactly as the proof of Theorem 6.16 where every occurrence of —%g is
replaced by ~» 3. O

8 Comparing the type system with definitions to the original
type system

In this section we will compare the type system generated by F*" with the one generated
by F, from two different points of view. The first is the conservativity, where we show that
in a certain sense, definitions are harmless. That is, even though we can type more terms
using F°" than using I, whenever a judgement is derivable in a theory £ using definitions
and 5" it is also derivable in the theory £ without definitions, using only F and where all
the definitions are unfolded. The second viewpoint is about the effectiveness of derivations.
More work has to be done yet but it is certain that there is a gain in using definitions.

8.1 Conservativity

As we already saw in example 6.4, in the type systems with definitions there are more legal
terms. Therefore, it has to be investigated to what extent the set of legal terms has changed.
Note first that all derivable judgements in a type system of the A-cube are derivable in the
same type system extended with definitions as we only extended, not changed, the derivation
rules.

A second remark concerns the bypassing of the formation rule by using the weakening
and definition rule instead: In A2 without definitions we can derive the following judgement
by using the formation rules (x,*) and (O, %):

T 5B (y8)(86) (+Aa)(ahs)z : 3 where ' = (*Ag)(BAy), namely:

46

FFypy:0:x:0
C(xA\g) Fag @ % (start)
LX) (@Ag) Fag x:at (start resp weakening)
['(xAq) Fa2 (odlg)a: x (formation rule (*,*))
C(#Xg) Fag (Ay)z (aHI)a (abstraction)
[g (+11,) (oIl (fromation rule (O,))
[(*)\a)(aA)T : (*Ha)(aﬂw)a (abstraction)
[Fag (B)(xAa) (A)x (1) (application, we already knew ' -y 3 : %)
[o (y0)(8)(xAa)(aNg)z = B (application, we already knew ' Fyo y : 3)

It is not possible to derive this judgement in A_, as the formation rule (O,) is needed. Now

we observe that the term (yd)(50)(xAa) (@A

)z can be seen as x with two definitions added,

and using this observation we can derive the judgement in a type system with definition
without having to use the formation rules (x,) and (O,):

I—Sh y:0 ik
NG)(*)\a) I—SE y: B, x (weakening resp. start)
L(66)(xA\a) I—ili O =get [(use the definition in the context)
['(80)(*Aa) "§ yra (conversion)
L(y) (30)(#Ac) (ahe) 32 (start)
B (40)(80)(#Xa) (@Xa)z : alz = ylla := B] = 3 (definition rule)

This example shows that in A_,4.¢ we have more legal judgements than in A_,. Now we take

a look at the judgement I' - (30)(xAq) (M A,

and I' =

I' -y ﬂ HE R

F(*Aa) Fac B:x:0

LX) (B\) Fac z: B:x: 0

L(#Aa) (BA)($Ay) Fac v 1% : O
F(*)\a)(ﬁAz) l_)\C (*H"/)* O
L(#Aa)(BA2) Fac (#Ay)y = (+ILy)*
F(*Aa)(ﬁAz) '_)\C (55)(*>"‘/)’Y Dk
F(*Aa) Fio (ﬁHZ)* 0

L'(*Aa) Fac (BA:)(80)(xAy)7 : (BIL;)+
F(*Aa) |_/\C’ M : %

LX) (M) Fac z: M« %

L (o) Fac (MII,)M : x

L(xAa) Fac (MAg)z @ (MTI)M

[Fae (+I1y) (ML) M : *

Lo (M) (MMAg)z : (xI1,) (MTI,) M
I'Fxc (80)(xAa) (M Ag)x : (ML) M

Jx : (MI1;)M where M = (y6)(BX.)(36)(x\,)y

(*Ag)(BAy). This judgement can be derived in AC' using the formation rules (O, 0),
(O,%), (x,0) and (%, *) in the following way:

(weakening)
(start resp. weakening)

(start resp. weakening)

(formation rule (0,0))

(abstraction)

(application)

(formation rule (x,3))

(abstraction)

(application, M = (y6)(BA;)(80)(xA)7)
(start resp. weakening)

(
(
(
(
(

%))
O, %))

formation rule (x,
abstraction)
formation rule (
abstraction)
application)

Note that it is impossible to derive this judgement in any other system of the cube than

47

AC as all four formation rules are needed. Analogous to the previous example we can also
derive this judgement in A_qges:

resh g4 0

L(86)(xAa) I—§}_1> Bix:0O (weakening)
T(88) (¥Aa) (0) (BA:) FSR B2 %2 O (weakening)

T(86) (+Aa) (y6) (BA.)(88) (+Ay) FSE ~ ¢ (weakening)
['(30)(xAq) I—ili (y0)(BA)(BO)(xAy)y : x[y := B][z :==y] i.e. M :* (definition rule)
D(B0)(+Xa) (MAg) F3™ 2 M : % (start resp. weakening)
L(B6)(xAa) l—il_{ (MTI,)M : x (formation rule (x,*))
T(B9)(xAa) I—ili (MAg)x : (M) M (abstraction)

I SR (88) (xXa) (MA)a : (MIL,) Mo := 8] = (MI1,)M (definition rule)

This example shows that in every system of the A-cube (except AC'), adding defini-
tions gives more derivable judgements. As was shown in example 6.4, also the judgement
(xA3)(BAy) |—§\121 (80)(xAa) (¥ 0)(aXz)x : B is derivable in Agger and hence is also derivable in
AC4et, but this judgement cannot be derived in AC' as the term y is of type § and not of type
Q.

At first sight this might cause the reader to suspect type systems with definitions of
having too much derivable judgements. However, we have a conservativity result stating that
a judgement that can be derived in Lg4er can be derived in £ when all definitions in the whole
judgement have been unfolded.

Definition 8.1 For I' F5" A : B 4 judgement we define the unfolding of T’ 51 A B to be
the judgement obtained from I’ =St A B in the following way:

e first, mark all visible §\-couples in I', A and B,
e second, contract in I, A and B all these marked d\-couples.

It is meant here when I' = --- (C9)S(DA;) - - -, then contracting (C6)(DNz) amounts to sub-
stituting all free occurrences of x in the scope of Ay by C; these free occurrences may also be
in one of the terms A and B. The result is independent of the order in which the redexes are
contracted, as one can see this unfolding as a complete development (see [Barendregt 84]) in
a certain sense.

Example 8.2 The unfolding of
(xAg) (BAy) (40)(B0) (¥ Aa) (aAz) (X)) -sh ((ady)ud)((ally)BAy) (xd)v : «v is the judgement

($A3) (BX) ((aXs) [:= gl = B]) F31 (((@d)o)[o := (@du)ul) [i= ylla == B8] : afw = y]lo =],

which is (+Ag)(BAy) (BA:) F1 (y0) (BAu)u - 5.
Note that the resulting context contains only A-items and that the resulting subject and
predicate need not be in normal form.

Theorem 8.3 Let L be one of the systems of the A-cube, I' a context with definitions and
A, B pseudoterms.

IfT v A: B then I b A’ : B', where I' b A’ : B' is the unfolding of T " A : B
according to definition 8.1

48

Proof: use induction on the derivation of I’ l—sﬁh A : B. axiom, abstraction and formation
rules are easy, we treat the other cases.

e The last rule applied is the start rule. Then I'd -5 subj(d) : pred(d) as a consequence
of T =50 d. Now if d = (AN;) then by the induction hypothesis I' =, A" : S (S a sort,
L

x fresh) so by the start rule IV(AN;) Fp x: A,

On the other hand, if d is a definition, say d = (Ad)d(BX\;), then by the induction
hypothesis (Td)' -y A" : B": S (S a sort), which is T' -y A" : B": S as d will be fully
unfolded, and the unfolding of T'd 3" subj(d) : pred(d) is I'" b, def(d)’ : pred(d)’
which isT" =, A" : B’ so we are done.

o The last rule applied is the weakening rule, say I’ l—sﬁh as a consequence of T’ l—sﬁh and
I' ¥ d. Because subj(d) is fresh we have that (I'd)' Fy D' : E' is the same as

L
(Td) ¢ D' : E' so by the induction hypothesis we are done.

o The last rule applied is the application rule. Then I' F$* (ad)F : Blx := a] as a
consequence of T F3* F . (AIl,)B and T F* a : A. By the induction hypothesis and
the application rule we get IV b, (a'0)F' : B'[x := d']. Now by subject reduction also
e ((0'0)F) : B'lx :=d']. If B'[z := d'] = (B'[z := d'])’ then we are done, otherwise,
by the Generation Corollary ' - B'[x :=d'] : S for some sort S, so by subject reduction
I"Fp (B'lx:=4d'])': S and as B'[x := da'] =g (B'[x := d'])’ by conversion we are done.

o The last rule applied is the conversion rule . Then T’ l—sﬁh A : By as a consequence of
DEMA:B, T FP By S and T F58 By =46t Ba. Now I' ' By =4es Bo implies
B =g B because if C results from D by locally unfolding a definition of T’ then C' = D',
so the result follows by the induction hypothesis.

Remark 8.4 It is not sufficient in theorem 8.3 to unfold all the definitions in the context
only, because a redex in the subject may have been used to change the type when it was still
in the context, this is illustrated by the judgement (xAg)(5Ay) l—ig (8) (xXa) (yd)(arg)x : B
which cannot be derived using) _,. It is the case however that this judgement where all
the definitions are unfolded in context, subject and predicate, is derivable using . That is,

(*A5)(BAy) FaL, y 2 B

8.2 Shorter derivations

As we already noted, derivations using the definition mechanism tend to need considerably less
derivation steps to derive a judgement that can also be derived without definitions. Without
making precise too much details about the specifc way in which a term is being typed, we
can still make some remarks on this subject.

The idea is that there exists an algorithm that determines for any given term M whether
M is well typed and if so, it gives a derivation of a type of this term M. Now for every JA-
segment in M this typing algorithm has to do all of the following steps (say the d\-segment
is (A0)(BA;) followed by the term C, and A, B and C have been type checked already, the
type of C being D):

e is the type of A -equal to B?

e add (B)\;) to the context

49

e use the formation rule to form (BII,)D

e use the abstraction rule to derive (BA;)C : (BII;)D

e use the application rule to derive (A0)(BA;)C : D[z := A].
Now by using definitions all these steps can be replaced by
e is the type of A B-equal to B?

e add (AJ)(BA,;) to the context

e use the definition rule to derive (A0)(BA;)C : D]z := A].

Hence we need two steps less for any dA-segment in the term M. For the well-balanced
segments in M, the number of steps decreases even more as we only need to use the definition
rule once for an entire segment of definitions.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy, “Explicit Substitutions”, Functional Pro-
gramming 1 (4) (1991) 375-416.

[Barendregt 84] Barendregt, H., Lambda Calculus: its Syntaz and Semantics, North-Holland, 1984.

[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.

[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction and
spine strategies for the A-calculus, Information and Computation 75 (8), 1191-231, 1987.

[Jutting 90] van Benthem Jutting, L.S., Typing in Pure Type Systems, ms., University of Nijmegen,
Department of Computing Science, 1990.

[BKN 9x] Bloo, R., Kamareddine, F., Nederpelt, R., Beyond f-reduction in Church’s A_,, Comput-
ing Science Note 94/20, Eindhoven University of Technology, Department of Mathematics and
Computing Science, 1994.

[BKN 9x] Bloo, R., Kamareddine, F., Nederpelt, R., The Barendregt Cube with definitions and gen-
eralised reduction, Computing Science Note 94/34, Eindhoven University of Technology, Depart-
ment of Mathematics and Computing Science, 1994.

[de Bruijn 93] Bruijn, N.G. de, Algorithmic definition of lambda-typed lambda calculus, in Huet, G.
and Plotkin, G. eds. Logical Environments, 131-146, Cambridge University Press, 1993.

[de Bruijn 80] Bruijn, N.G. de, A survey of the project AUTOMATH, in To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, ed. Hindley, J.R., and Seldin, J.P.,
Academic Press, 29-61, 1980.

[Church 40] Church, A., A formulation of the simple theory of types, Journal of Symbolic Logic 5,
56-68, 1940.

[CH 88] Coquand T., and Huet G., The calculus of constructions, Information and Computation 76,
95-120, 1988.

[Dow 91] Dowek, G. et al. The Coq proof assistant version 5.6, users guide, rapport de recherche 134,
INRIA, 1991.

[Gardena 94] Gardena, P., Discovering Needed Reductions Using Type Theory, to appear in TACS,
1994.

20

[Geuvers 94] Geuvers, H., A short and flexible proof of Strong Normalisation for the Calculus of
Constructions, notes of a talk given at the BRA types workshop, Bastad, Sweden, 1994.

[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (3), 197-240, 1993.

[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the A-calculus, in preparation.

[KN 9y] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and II-conversion, submitted for
publication.

[KN94b] Kamareddine, F., and Nederpelt, R.P., Refining reduction in the A-calculus, Computing
Science Note 94/18, Eindhoven University of Technology, Department of Mathematics and Com-
puting Science, 1994.

[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,
1993.

[Lévy 80] Lévy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: FEssays on
Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, Academic
Press, 1980.

[LP 92] Luo Z., and Pollack, R., LEGO proof development system: User’s manual, Technical report
ECS-LF(CS-92-211, LFCS, University of Edinburgh, 1992.

[GM 93] Gordon M.J.C. and Melham, T.F. (eds), Introduction to HOL: A Theorem Proving Environ-
ment for Higher Order Logic, Cambridge University Press, 1993.

[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda struc-
tured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and
Computer Science, 1973. ALso in Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds., Selected
Papaers on Automath, North Holland, 1994.

[Nederpelt 73] Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds., Selected Papaers on Automath,
North Holland, 1994.

[NK 94] Nederpelt, R.P., and Kamareddine, F., A unified approach to type theory through a refined
A-calculus, Proceedings of the 1992 conference on Mathematical Foundations of Programming
Semantics, ed. M. Mislove et. al., 1994.

[SP 93] Severi, P., and Poll, E., Pure Type Systems with Definitions, Computing Science Note 93/24,
Eindhoven University of Technology, Department of Mathematics and Computing Science, 1993.

o1

