Beyond (3-Reduction in Church’s A_, *

Roel Bloo
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands
email: bloo@win.tue.nl

and

Fairouz Kamareddine
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ, Scotland
email: fairouz@dcs.glasgow.ac.uk
fax + 44 41 -3304913
and

Rob Nederpelt
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands

email: wsinrpn@win.tue.nl

October 23, 1996

*We are grateful for the discussions with Tijn Borghuis, and Erik Poll and for the helpful remarks received
from them.

fKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven University
of Technology, for their financial support and hospitality from October 1991 to September 1992, and during
various short visits in 1993 and 1994.

Abstract

In this paper, we shall write A_, using a notation, item notation, which enables one
to make more redexes visible, and shall extend S-reduction to all visible redexes. We
will prove that A_, written in item notation and accommodated with extended reduc-
tion, satisfies all its original properties (such as Church Rosser, Subject Reduction and
Strong Normalisation). The notation itself is very simple: if 7 translates classical terms
to our notation, then Z(t1t2) = (Z(t2)d)Z(t1) and Z(Avp.t) = (pAy)Z(t). For exam-
ple, t = ((Aer:xy-(Aeg:Xs-Aws: X1 —Xo-T5T4)T3)T2)x1, can be written in our item notation
as Z(t) = (z10)(220)(XaAz,)(230)(X3Az) (X1 — X2)Azy)(246)x5 where the visible re-
dexes are based on all the matching dA-couples. So here, the redexes are based on
(220) (XaAz,), (30)(X3Ase) and (z10)((X1 — Xo)Az,). In classical notation however,
only the redexes based on (Ay;:x,. — —)z2 and (Ag.x,. — —)zs are immediately visi-
ble. The third redex, (Ay;:(x,—x,)- — —)Z2, only becomes visible when the first two
redexes have been contracted. We extend [-reduction so that we can contract newly vis-
ible redexes even before other redexes have been contracted. So in our example above,
(z190)((X1 — X2)Az,) can be contracted before (z20)(X4Az,) or (230)(X3Az,). This re-
finement (which cannot be done in classical notation) is achieved by generalising the axiom
B from (t10)(pAs)t2 =g t2[v := t1] to (£10)5(pAs)ta ~pg S(t2[v := t1]) for S consisting of
matching d\-couples only. Hence, as (z20)(XaAz,)(230)(X3Az) consists of matching JA-
couples, we get that Z(t) ~3 (220)(XaAz,;) (30)(X3Az6)(((z40)5)[T5 := 21]).
Furthermore, with our item notation, it is possible to refine reduction by rewriting (or
reshuffling) terms so that matching dA-couples occur adjacent to each other. For exam-
ple, we can rewrite Z(t) above as (20)(XaAz,) (30)(X3z) (210) (X1 = X2)Asy) (240)xs5.
We shall formalise term reshuffling and shall show that it is correct and preserves both
[B-reduction and typing.

Keywords: [-reduction, Church Rosser, Subject Reduction, Strong Normalisation.

Contents

1

2

Introduction

A, in item notation
2.1 The basic theory
2.2 Propertiesof A\,

Generalising reduction
3.1 Extending redexes and S-reduction
3.2 Properties of A_, with generalised reduction

Term reshuffling

4.1 Partitioning the term into bachelor and well-balanced segments

4.2 The reshuffling procedure and its properties

Conclusion

Ne)

16
17
18

22

1 Introduction

The notation of this paper, item notation, is a novel notation where the argument is given
before the function, the type is given before the A, and where the parentheses are grouped
differently than those of the classical notation. So that, if 7 translates classical terms into our
notation, then Z(tt2) is written as (Z(t2)0)Z(¢1) and Z(Ay.).t) is written as (pA,)Z(t). Both
(t0) and (pA,) are called items.

Example 1.1 Z((Ag:x, (x50 x3)-Ay:x,-7Y)2) = (20) (X1 = (X2 — X3)A)(X1Ay)(yd)z. The
items are (20), (X1 — (X2 = X3)Az), (X1Ay) and (y0).

Before we discuss the calculus and the properties of typing, let us see why we want to extend
the notion of a redex and to refine S-reduction.

In the classical A-calculus, the notions of redex, and of 3-reduction are described as follows:

Definition 1.2 (Redexes and (-reduction in classical notation)

In the classical notation of the A-calculus, a redex is of the form (A\y.,.t)t'. Moreover, one-step
B-reduction — g is the compatible relation generated out of the axiom [B: (Ay:p)t =5 tlv :=t].
Many step B-reduction —»g, is the reflexive transitive closure of —g.

With our item notation, classical redexes and 3-reduction take the following form:

Definition 1.3 (Classical redexes and [3-reduction in item notation)

In the item notation of the M-calculus, a classical redex is of the form (t'0)(pAy)t. We
call the pair (t'0)(pAy), a dA-pair, or a d\-segment. The classical S-reduction aziom is:
(t'0) (pAy)t =5 tlv :=t']. One and many step B-reduction are defined as in Definition 1.2.

Example 1.4 In the classical term ¢ = ((Ag;.x,-(Azg:Xs-Azs: X, X, -L524)T3)T2)T1, we have
the following redexes (the fact that neither x4 nor z7 appear as free variables in their respective
scopes does not matter here; this is just to keep the example simple and clear):

1' (>\CL‘6:X3 '>\:E5:X1~>X2 '1‘5564)1‘3

2. (Agrixy - (Azg:xs - Azg: X1 - X0 -L524)T3) T2

In item notation ¢ becomes (z10)(z20)(XaAz,)(230)(X3Aze) (X1 — X2)Ag,)(z40)ws. Here,
the two classical redexes correspond to dA-pairs as follows:

L. (Agg:xs-Azs:X;—X,-Z524)T3 corresponds to (230)(X3Az). (X1 — X2)Ag,)(z4d)zs is
ignored as it is easily retrievable in item notation. It is the maximal subterm of ¢ to the
right of (X3A).

2. (Azr:Xy-(Azg:Xs-AzsiXy Xy -T5T4)T3) T2 corresponds to (x20)(XaAs,).
Again (230)(X3Az,) (X1 — X2)Ag,)(z40)x5 is ignored for the same reason as above.

There is however a third redex which is not immediately visible in the classical term; namely,
(Azs:x,—x,-T5T4)1. Such a redex will only be visible after we have contracted the above two
redexes (we will not discuss the order here). In fact, assume we contract the second redex in
the first step, and the first redex in the second step. IL.e.

((>\1D7:X4'(>\:E6:X3'>\:E5:X14>X2'x51‘4)x3)$2)1‘1 _>ﬂ

((AzgiXa-AasiX, X2 T524)3)T1 3
(AQ;5;X1_)X2-§U5§U4)§U1 —)B T1T4

Now, even though all these three redexes are needed in order to get the normal form of
t, only the first two were visible in the classical term at first sight. The third could only
be seen once we had contracted the first two redexes. In item notation, the third redex
(Azs:X, > X,-T5T4)T1 18 visible as it corresponds to the matching (z16)((X1 — X2)Az,) where
(z16) and ((X1 — X2)Az,) are separated by the segment (220)(X4Az,)(230)(X3Az,). Hence,
by extending the notion of a redex from being a d-item adjacent to a A-item, to being a
matching pair of - and A-items, we can make more redexes visible. This extension furthermore
is simple, as in (£10)35(pA,), we say that (£10) and (pA,) match if 5 has the same structure
as a matching composite of opening and closing brackets, each d-item corresponding to an
opening bracket and each A-item corresponding to a closing bracket. For example, in ¢ above,
(z16) and ((X1 — X2)\gz,) match as (220)(X4Ag,)(230)(X3Az,) has the bracketing structure
[1[] (see Figure 1 which is drawn ignoring types just for the sake of argument). With this

(210) (220) (Ar) (230) (Aze) (Aas) (240) 5

Figure 1: Redexes in item notation

extension of redexes, we refine S-reduction in two different ways:

1. By changing () from (¢10)(pAy)ta =3 t2[v := t1] to (£10)5(pAy)t2 ~g S(t2[v := t1]) if
(t16) and (pA,) match.

2. By reshuffling terms so that matching 0’s and A’s occur adjacently.

We start by showing that ~»g (the reflexive transitive closure of ~»3) is a generalisation of
—5 (Lemma 3.7). We will then show that A_, with ~»g satisfies all the desirable typing
properties. In particular, we will establish that A_, extended with ~» 3 satisfies the following:

1. Church Rosser: this says that if a program is evaluated in two different ways, then the
answer stays the same (Theorem 3.10).

2. Subject Reduction: this says that if a program P is well-typed then the program ob-
tained from evaluating some steps in P is also well-typed (Theorem 3.13).

3. Unicity of Types: this says that a well-typed program has a unique type and that two
equal programs have the same type (Lemma 3.15).

4. Strong Normalisation: this says that all ways of evaluating a well-typed program ter-
minate (Theorem 3.21).

We will furthermore show that term reshuffling is correct. In particular, we shall show that
A_, accommodated with term reshuffling 7'S, satisfies the following:

1. Reshuffling a term, moves all §’s next to their matching A’s (Lemma 4.9).

2. Reshuffling terms preserves —g. That is, if t ~»5 ¢’ then there exists ¢” such that
TS(t) =g t" and TS(t') = TS(t") (Lemma 4.11).

3. Reshuffling terms preserves types. That is, if ' - ¢: p then I' F T'S(¢) : p (Lemma 4.13).

2), in item notation

In this section, we shall introduce the known A_, (which uses the ordinary g-reduction —3),
and its properties. We shall write A_, immediately in item notation. That is, we assume a
translation function Z from terms in classical notation to terms in item notation such that:

Z(v) = v if v is a variable
Z(vpt) = (pA)Z()
I(tits) = (Z(t2)0)L(t1)

2.1 The basic theory

In Church’s system A_,, types and terms are defined as follows:

Definition 2.1 (Types of A_,)
The set of types T of A_, is defined as follows:

T u= VI|(T—=T) Types
V o= {Xo,X1,--} Type variables
That is, types are either variables such as Xy, X1, X9, ... or arrow types.

Definition 2.2 (Terms of A_,)
The set of terms Ay of A_, is defined as follows:

Ar o= V| (TA)Ar | (Aro)Ar Terms

Voou= Axe,z1,-} Variables
In other words, a term is either a variable xy,x1,T2,..., or an abstraction or an application.
Notation 2.3 We let p, o', p1, p2, ... range over types, o, ', aq, as,... range over type vari-
ables. Furthermore, we take t,t',t1,t,... to range over terms and let v,v', vy, ... range over
variables.

Parentheses moreover will be omitted when no confusion occurs.
We understand p; — pg — -+ pp, to mean (p; — (p2 = -+ = (Pn—1 = pn) -**))-

Bound and free variables in A_, are defined as usual. We write BV (¢) and F'V (t) to represent
the bound and free variables of ¢ respectively. Substitution moreover, is defined in the usual
way. Furthermore, we take terms to be equivalent up to variable renaming. For example, we
take (pAz,)xo = (pAg,)z1. We assume moreover, the Barendregt variable convention which is
formally stated as follows:

Definition 2.4 (BC': Barendregt’s Convention for A_,)
Names of bound variables will always be chosen such that they differ from the free ones in a
term. Hence, we will not have (v0)(pAy)v, but (v8)(pAy)v" instead.

Definition 2.5 (Compatibility)
We say that a relation — on terms is compatible iff the following holds:

t—t t—t
(t&)tl — (t'&)tl (t15)t — (t15)t'
t—t

(PA)t = (pAy)t!

Basically compatibility means that if ¢ — ¢’ then T'[t] — T'[t'] where T[] is a “term with a
hole in it”.

Definition 2.6 (3-reduction —3 in A_,)
In _,, B-reduction —g, is the least compatible relation generated out of the following aziom:

(8) (£10)(pAo)t =5 to == 1]

We take —» 3 to be the reflexive transitive closure of —3 and =g to be the least equivalence
relation generated by —»g.

Definition 2.7 ((main) items, (main, d\-)segments, context, body, endvar, weight)

If v is a variable, p is a type and t is a term then (pA,) and (t0) are items (the first is
called \-item, the second d-item). We use s, 81,8, ... to range over items.

A concatenation of zero or more items is a segment. We use 5,51,5;,... as meta-
variables for segments. We write () for the empty segment.

Each term t is the concatenation of zero or more items and o variable: t = 5189+ - Sp0.
These items s1,82,- -, S, are called the main items of t.

Analogously, a segment 35 is a concatenation of zero or more items: 5 = $1S2...Sp;
again, these items sy, so,...,sy, (if any) are called the main items, this time of 5.

A concatenation of adjacent main items (in t or S), Sy Smik, 45 called a main
segment (int ors).

A context is a segment which consists of only A-items. We use I',T",I'1,T'y, ... to range
over contexts.

A dA-segment is o §-item immediately followed by a A-item.

Let t = 5v be a term. Then we call 5 the body of t, denoted body(t), and v the end
variable of t, or endvar(t). It follows that t = body(t) endvar(t).

The weight of a _,-segment 35, weight(3), is the number of main items that compose
the segment. Moreover, we define weight(t) = weight(body(t)).

Definition 2.8 (Statements)
A statement is of the form t: p, t and p are called the subject and the type of the statement
respectively.

Convention 2.9 In a context, we never have two occurrences of A, (for the same v). Hence,
contexts are what [Barendregt 92] calls bases.

We need the following definition over contexts:
Definition 2.10 Let I' = (p1Ay,) (p2Avs) - - - (PkAv,,) be a context. Then
1. dom(T) = {vy,vg,..., vk}

2. (p\y) € T iff (pAy) is an item of U'. If I" is a context such that all items of I' are also
items of ', we write I'" C' T".

3. Let Vy be a set of term variables. I' [V (the restriction of I' to V) is the context which
only contains the items (pAy) €' T for which v € Vyy, in the original order.

Now for the formulation of the typing rules we can use the following definitions for the
derivation of so-called judgements of the form I' F ¢ : p.

Definition 2.11 (Typing rules of A_,)
A statement t : p is derivable in the context I, notation 't : p, if t : p can be derived using
the following rules:

(Aziom) TFov:p if (pAy) €T
T I'Ht:p Pt :(p—=p)
(— —elimination) TF (@)

(— —introduction)

2.2 Properties of A_,

Here we list the properties of A, (that we will establish for extended reduction) without
proofs. The reader can refer to [Barendregt 92] for details.

Theorem 2.12 (The Church Rosser Theorem)
Ift =g t1 and t —» 5 ta then there exists t3 such that t1 —»g t3 and to —»g t3 O

Lemma 2.13 (Context lemma)
1. VrpVV, L T'ATFt:p=>T" Ft:pl
2. VeV, Ft:p= FV(t) C dom(T)]
3NV, Lt p=TIFV(t)Et:p]
Proof: All by induction on the derivation I' 1t : p. O

Lemma 2.14 (Generation lemma)
1. VeV Y[l Fu:p= (pA,) €T

2. VeV VoL E (H0)t:p=3y[CHt: () = p) AT EE :p']

3. VeV ViV D E (P X))t p= Fprlp=p" = p" AT(P'A) Ft:p"]]
Proof: By induction on the derivation of 't : p. O

Lemma 2.15 (Subterm lemma)
ViVeV Ve (Tt p At is a subterm of t) = Ip 3, [T 12 p']]
Proof: By induction on t. O

Lemma 2.16 (Substitution lemma)
1. V¥V pVaey[T Ft:p = Tla = p| F tla = p] - pla = p']]
2. V¥V p[T(pAo) Ft: p AT :p =T Fitv:=1t]:p]
Proof: 1: by induction on T =t : p. 2: by induction on T(p\,) -t :p'. O

Theorem 2.17 (Subject Reduction)

VFVtVt/‘t_»ﬂt/Vp[F Ft: p = et ,0]

Proof: By induction on —g using the Generation and Substitution lemmas for the basic
case. O

Lemma 2.18 (Unicity of Types)
1. VoV, pCEt:pATEt:p = p=)]
2. VeV VoL Et:ip AT EE Nt =5t = p=)]

Proof: 1 is by an easy induction ont. 2 1is by Church Rosser, Subject Reduction and 1. O

Definition 2.19 (Strongly Normalising terms with respect to —»g)
We say that a term t is strongly normalising with respect to —» g iff every reduction path using
—»g and starting at t terminates.

Theorem 2.20 (Strong Normalisation with respect to —»3)
If ' =t p then t is strongly normalising with respect to —» 3. O

3 Generalising reduction

In this section we shall extend the classical notions of redexes and g-reduction of A_,. We
shall show that this extension of A_, satisfies all the listed properties in Section 2.

3.1 Extending redexes and (-reduction

When one desires to start a S-reduction on the basis of a certain J-item and a A-item occurring
in one segment, the matching of the § and the X in question is the important thing, even when
the - and A-items are separated by other items. I.e., the relevant question is whether they
may together become a JA-segment after a number of G-steps. This depends solely on the
structure of the intermediate segment. If such an intermediate segment is well-balanced then
the d-item and the A-item match and (-reduction based on these two items may take place.
Here is the definition of well-balanced segments:

Definition 3.1 (well-balanced segments in A_,)

e The empty segment () is a well-balanced segment;
e If5 is a well-balanced segment, then (t'0)3(pAy) is a well-balanced segment.

e The concatenation of well-balanced segments is a well-balanced segment;

A well-balanced segment has the same structure as a matching composite of opening and
closing brackets, each 0- (or A-)item corresponding with an opening (resp. closing) bracket.

Now we can easily define what matching dA-couples are, given a segment 5. Namely, they
are a main J-item and a main \-item separated by a well-balanced segment. Such couples
are reducible couples. The J-item and A-item of the dA\-couple are said to match and each of
them is called a partner or a partnered item. The items in a segment that are not partnered
are called bachelor items. The following definition summarizes all this:

Definition 3.2 (match, 0\- or reducible couple, partner, partnered item, bachelor item, bach-
elor segment)
Let t be a A_-term. Let s = s1...s, be a segment occurring in t.

o We say that s; and s; match, when 1 <1 < j <n, s; is a 0-item, sj is a A-item, and
the sequence si11,...,5j-1 forms a well-balanced segment.

e When s; and s; match, we call s;s; a 6\-couple or reducible couple.

e When s; and s; match, we call both s; and s; the partners in the d\-couple. We also
say that s; and s; are partnered items.

o All X~ (or 6-)items sy, in t that are not partnered, are called bachelor \- (resp. §-)items.
o A segment consisting of bachelor items only, is called a bachelor segment.

o The segment s;, - - - s;, consisting of all bachelor main \- (or 0-)items of S is called the
bachelor \- (or J-)segment of 5.

Example 3.3 In 5 = (p1A0,)(220) (119) (93 h05) (0100 (£26) (£36) (£48) (9505) (06 Mug) (£56):

e (t10) matches with (p3Ay,), (£40) matches with (psA,,) and (£30) with (pgAy,). The
segments (t16)(p3Ay;) and (t40)(psAy;) are dA-segments (and dA-couples). There is
another dA-couple in 3, viz. the couple of (¢30) and (pgAy)-

t10), (p3hvs), (t30), (t40), (psAy;) and (psAy,), are the partnered main items of s.
P10, (P2A0,)s (PaAy,), (t20) and (£50), are bachelor items.
)
4

(p2Ay,) and (pay,)(t20) are bachelor segments, whereas (£30)(t40)(psA\y;) and

. 2
t46)(p5 Avs)(P6Avg) are non-bachelor, the latter also being a well-balanced segment.

(
(
(pl)\v
(t30)(t
De Bruijn uses another terminology; see e.g. [de Bruijn 93]. In his phrasing, -items are appli-
cators or A’s, and A-items are abstractors or T’s. For §\-segments he uses the word AT-pair
and for dA-couples he uses AT-couples. Void (-reduction (i.e.: the reduction (t10)(pA,)t =g t
if v € FV(t)), he calls AT-remouval.

10

Having argued above that (-reduction should not be restricted to the dA-segments but
may take into account other candidates, we can extend our notion of G-reduction in this vein.
That is to say, we may allow dA-couples to have the same “reduction rights” as dA-segments.
In order to accomplish this, we change the 3-reduction of Definition 2.6 to the following:

Definition 3.4 (General B-reduction ~g for A_,)
General one-step 3-reduction ~ g, is the least compatible relation generated out of the following
aziom:

(general (3) (t10)3(pAy)t ~ 5 5(t[v := t1]) if 5 is well-balanced

General ~»g is the reflevive and transitive closure of ~pg and ~g is the least equivalence
relation generated by ~»g.

Example 3.5 Take Example 1.4. As (220)(X4Az,)(230)(X3Az,) is a well-balanced segment,
then (z10)((X1 = X2)Az,) is a dA-couple and
t = (x15)($25)(X4)\x7)($35)(X3Ax6)((X1 — XQ))\xs)($45)$5 ~3
(220) (XA,) (£30) (X3 Aa) (((240)5) 5 := 21]) =
(220)(XaAgr) (230) (X3 e) (€40) 21

The reducible couple (x10)((X1 — X2)Az;) also has a corresponding (“generalised”) redex
in the traditional notation, which will appear after two one-step (-reductions, leading to
(Azs:X1 = Xo-T524)T1. With ~ 3, we could reduce ((Az;:x,-(Azg:Xs-Aws: X, — X, -L524)23)T2) 21 tO
(Az7:x4-(Agg:x5-T124)x3)x2. This reduction is difficult to carry out in the classical A-calculus.
The item notation enables a new and important sort of reduction which has not yet been
studied in relation to the standard A-calculus up to date. We believe that this generalised
reduction (introduced in [Nederpelt 73]) can only be obtained tidily in a system formulated
using some form of our item notation. In fact, one is to compare the bracketing structure of
the classical term t of Example 1.4, with the bracketing structure of the corresponding term
in item notation:

Example 3.6 The “bracketing structure” of ((Az,:x,.(Azg:Xs-Azs: Xy — Xy - ——)T3)T2) T is cOm-
patible with ‘[; [2 [3]2]1]3’, where ‘[;” and ‘];" match. In item notation however, it has the
bracketing structure [[][]].

We strongly believe that it is the item notation which enables us to extend reduction smoothly
beyond —#3. Because a well-balanced segment may be empty, the general (-reduction rule
presented above is really an extension of the classical g-reduction rule.

Lemma 3.7 Let t1,ty be A_,-terms. If ty — gt in the sense of Definition 2.6, then t; ~g t3
in the sense of Definition 3.4. Moreover, if t1 ~g ta comes from contracting a d\-segment
then t1 -3 to.

Proof: Obvious as a d\-segment is a d\-couple. O

3.2 Properties of A\, with generalised reduction

If we look at Section 2.2, we see that Context, Generation, Subterm, Substitution and Unicity
of Types (part 1) lemmas are not affected by our extension of Reduction. Hence, they all
still hold for A_, with ~»3. The only three (and very important) properties that get affected

11

by ~»g are: Church Rosser (Theorem 2.12), Subject Reduction (Theorem 2.17), Unicity of
Types (part 2, Lemma 2.18), and Strong Normalisation (Theorem 2.20). In this section, we
shall show that these properties are preserved for =~ 4.

The proof of the generalised Church Rosser theorem is simple. The idea is to show that
if t ~» 5 ¢’ then t =g ¢’ and to use the Church Rosser property for =g.

Lemma 3.8 Ift ~pg t' thent =3t

Proof: It suffices to consider the case t = 51(t10)5(pAy)t2 where the contracted redex is
based on (t10)(pAy), t' = 51 35(t2[v := t1]), and 5 is well-balanced (hence weight(3) is even).
We shall prove the lemma by induction on weight(3s).

o Case weight(3) = 0 then obvious as ~»3 coincides with —3 in this case.

o Assume the property holds when anig_ht(E) = 2n. Take s such that weight(3) = 2n+2.
Now, 5 = (t30)s'(p' Ay)s" where s', s" are well-balanced. Assume v Z v’ (if necessary,
use renaming).

[v' 1= t3]), we get by IH and compatibility that

t =357 8/ (s"[v" = t3]) (t2[v = t1][v" = t3]) =t.

— Moreover, t = 37(t10)(t36)8" (0" Ao)" (pAy)ta ~ 5 3T(t16) 8" (8" (pAy) t2[v" := t3]) =BC
51(t10)s' ("' := o[v' :=1t3]) =t". Hence by IH, t =g t".

— Now, t" ~g 578/ (s"[v" 1= t3])(t2[v := t3][v := t1]). But by BC, v, v' & FV(t;) U
FV(t3). Hence, by IH and substitution,
t" =5 578" (s"[v" := t3]) (tav 1= t1][v" = t3]) = 1.

\|

Therefore, t =g t",t" =5 t"" and t' =5 t", hence t =g t'. O
Corollary 3.9 Ift~»gt' thent =5t O

Theorem 3.10 (The general Church Rosser theorem,)
If t ~»5t1 and t ~»g ty, then there ewists t3 such that t1 ~»g t3 and ty ~»g t3.

Proof: Ast ~»g5 t; and t ~»3 ty then by Corollary 5.9, t =5 t; and t =g t3. Hence,
t1 =p t2 and by the Church Rosser property for the classical lambda calculus, there exists t3
such that t\ —»g t3 and to —»g t3. But, t' —»5 t" implies t' ~»5 t". Hence the Church-Rosser
theorem holds for the general B-reduction. O

For the proof of Subject Reduction, we need the following “shuffle lemma”.

Lemma 3.11 T' F 37(t10)Sate : p < ' F 37353(t10)t : p where 33 is well-balanced and the
binding variables in Sg are not free in tq.
Proof: By induction on weight(33).

e case weight(53) = 0 then nothing to prove.

e case weight(53) = 2, say 53 = (t30)(p1Ay). We use induction on weight(s7).

12

— Suppose weight(s7) = 0.
=) suppose I' = (£10)(t30) (p1Ay)t2 @ p.
Using the Generation lemma three times, we obtain:

L'E(t30)(p1A)te i p = p

CHty:p (1)

I'E(pido)ta s p1 = (0 = p)
kHits:pm (2)
C(piA) Fta:p' —p (3)
Hence L(p1Ay) F (810)t2 2 p (Context, —-elimination, (1), (3)) (4)
Now, T'F (p1Ay)(ti0)te:p1 — p (—-introduction, (4)) (5)

And so, Tt (t30)(p1Ay)(t10)t2 2 p (—-elimination, (5), (2))
<) Suppose T' F (t36)(p1\y) (t10)t2 : p

Using the Generation lemma three times we obtain:

'k (plkv)(tld)h 1pL—p

' t3 - P1 (6)

F(pl)\v) F (tl(s)tg P
C(piAy) Fta:p —p (7)
C(piAy) Ftr:p (8)
Hence, TF (p1hy)ta:p1 — () — p) (—-introduction, (7)) 9)
T F (t30)(p1d)t2 : 0 — p (—-elimination, (6), (9)) (10)
INE (context, (8), asv & FV(t1)) (11)

I'F (410)(t30)(pAo)t2 s p (—-elimination, (10), (11))

— Now suppose weight(57) =n+ 1.

x Case 5] = (t45)g then

k- (t45)8’1 (t15) (t35) (ﬂlA)t2 p <:>Generatzon ——elimination

Ik 53 (t16)(t30)(P1>\)t2 P — p ALty P <

r+ S’l(tg)(1)(tl)t2 P — p/\r Fty P o elimination;Generation
T = (t46)s) (t36) (p1A) (120t < p

* Case 31 = (p2 Ay
[(p2Ay)sy (T

[(paAy) = 81 (t
[(p2Ay) 81 (3
1(ts

Wtz i p3s Ap =po— pg ot
tlé)tQ : p3 /\P = po — p3 <:>%7introduction;Generation
9)

F|_(p2A) tQ:p.

e case weight(33) = 2(n+1),n > 1. If 53 = (t30)33(p1\y)S1 where 53,31 are well-balanced
and IH holds for them, then:
'k H(tl()‘)(tgd)%(plkv)ﬁh ip oiH
' E(tlé)ﬁ(tg(s) (pl)\v)ﬂtg p olH
'k H@(tl()‘)(tgd) (plkv)ﬁh ip o

13

[F3753(t30) (o1 \) (216)30ts : p 11
[- 31(t36)33(p1) (116)3at2 - p <11
'k 81((5)8_() (t15)t2 1 p. d

Remark 3.12 Note that in Lemma 3.11 above, we insisted on the condition that the binding
variables in 33 are not free in ¢; in order to avoid cases such as moving (vd) in (tpd)(pAy)(v9)
to the left of (¢9d)(pAy).

Now we can prove Subject Reduction for generalised -reduction.

Theorem 3.13 (Generalised Subject Reduction)
IfTFt:pandt~»gt thenT 1t :p
Proof: By induction on ~g.

* Basic Case: (110)52(p1Av)ta ~p S2(t2[v :=11]) and ' (t16)52(p1Av)t2 : p-
't (t15)82(p1)\v)t2 p :>Lemma 3.11
I F3s3(t0)(P1>\u)t2 p =>Lemma 2.17
L'k 32(t2[tl])

o The reflexivity, transitivity and compatibility cases are easy. O
For Unicity of Types, we just need the following lemma:

Lemma 3.14 Ift =g t' thent =g t'.
Proof: By induction on t =g t' using Corollary 3.9. O

Lemma 3.15 (Generalised Unicity of Types)
1. VpV¥, yTEt:pAT Ft:p = p=)]
2. ViV VoL Et:p AT HE Nt gt = p=)]

Proof: The proof of 1 is the same for Lemma 2.18. The proof of 2 is also carried from
Lemma 2.18 using Lemma 3.14 above. O

Now we come to the proof of Strong Normalisation. For this, we need the following definition:
Definition 3.16

o We say that t € A1 is strongly normalising with respect to ~»g iff every reduction
path (with respect to ~»g) starting at t, terminates.

We define SN = {t € At : t is strongly normalising with respect to ~»g}.

For A,B C A1 we define A — B ={t € Ay :Vt' € A[(t'd)t € B]}.

We define [| : T — Power Set of A1 as follows:

[o] = SN
[p =01 = Il — ¢

We call X C SN saturated iff:

14

1. VYn>0,ty,---t, € SN,v € V[(t10)--- (tpd)v € X].

2. ¥n >0,t,ty,--+,t, € SN,p € T,5 well-balanced,t' € Ay
[(£10) - - (tn0)3(H'[v :=t]) € X = (t10) - - - (£,0) ()5 (pAy)t' € X].

o We define SAT = {X C At : X saturated}

Those familiar with the proof of Strong Normalisation of A_,, will notice that we have accom-
modated ~» g in the definition of SN and that in the second condition of a saturated set, we
have accommodated extended redexes. The accommodation of saturated sets with extended
redexes is not necessary, the proof can go without it. Furthermore, the following is the crucial
lemma which highlights the difference between — 3 and ~+ 5. Once this lemma is established,
the proof of Strong Normalisation proceeds similarly to that of ordinary —g.

Lemma 3.17
1. SN € SAT.
2. A,Be SAT = A— B e SAT.
3. peT =|[p| € SAT.
Proof:

1. SN C SN and if ty,---,t, € SN,v € V then similarly (t,0)--- (t,0)v € SN.
Now, if t,t1,--,t, € SN,p € T,5 is well-balanced and t' € Ay such that
(t10) -+ - (tn0)s(t'[v :=t]) € SN then also (t19) - - (t,0)(t6)5(pAy)t' € SN:

e Reductions inside t',t,5 or one of the t; must terminate since these terms are SN
(subterms of SN-terms are themselves SN, t'[v :=t] is SN = t' is SN).

o A reduction path of (t16)--- (t,6)(t8)5(pA,)t goes to (t)68)--- (t1.8)(t"8)s' (pAy)"
with t' ~»5 t" etc. and then to (£]8)--- (th0)s'(t"'[v :=t"]); since
(t10) -+ (tn0)3(t'[v :=t]) € SN also (t,0)--- (t,0)s'(t""[v :=t"]) € SN.

2. Suppose A, B € SAT.

e Asv e A forallv eV, we see: t € A— B = (v0)t € B= (v0)t € SN =t €
SN. So A— B CSN.

o Ifty,- -, t, € SN,v €V then forallt € A, ast € SN and B € SAT, we get that
(t8)(t10) --- (tnd)v € B. Hence (t19)--- (tnd)v € A — B which proves condition
1 of saturation.

e As to condition 2, suppose t,ty,--- t, € SN,t' € Ar,3 is well-balanced, p a type
and (t10) -+ (£,0)3(t'[v :=t]) € A — B.
Let t" € A. Then (t"0)(t10) - (t,0)3(t'[v := t]) € B, by definition of A — B.
Hence (t"0)(t19) - - - (t,0)(t6)3(pAy)t' € B since B € SAT,t" € A C SN.
This means (t10) - - - (t,0)(t0)3(pAy)t' € A — B.

3. Easy induction on the generation of p using 1 and 2. O

15

Corollary 3.18 For all p € T, we have [p] # 0 and [p] C SN.
Proof: Note that no saturated set is empty (use SN # 0 and condition 1 of saturated
sets). O

Definition 3.19
e A valuation is a map g : V — At

o If g is a valuation then [|, is defined inductively as follows:

[0l = g(v
[(£6)t'], (
I[(/»‘U)t]]g = (pAv)ﬂtﬂg(v::v)

where g(v := N) is the valuation that assigns g(v') to v' # v and N to v. Note that [t],
substitutes g(v') for v’ in t for all free variables v' of t. For ezample, [(pAy)(yd)z]y =

(PAe)(g(y)0)z.
o |= is defined as follows:
g Etip iff [tyell

g ET iff for all (pA\y) €' T, we have gl=v:p
' Et:p iff for all valuations g, if g =1 theng=t:p

Lemma 3.20 (Soundness)
IfTFt:pthenT =t:p.

Proof: By a straightforward induction on the derivation of ' =1t : p. We only treat the
—-introduction.
Suppose T'F (pAy)t : p — p out of T(pAy) Ft:p'.
Suppose g =T in order to show g = (pAy)t: p — p' (i.e. for all t' € [p]: (£'0)[(pAv)tly € [¢])-
Let t' € [p]. Then g(v:=1') = T'(pAy), so by the induction hypothesis [t]yv.—r) € [0']-
Since (18)[(po)fly = (£8) (07 o(or) 5 Wo(ur—sy [0 = ¥) = [oorry, ' € [l © SN
and |p'] € SAT, also (t'6)[(pAy)t]g € [P]- O

Theorem 3.21 (Strong Normalisation with respect to ~»g)
If ' =t p then t is strongly normalising with respect to ~+g.

Proof: Suppose I' -t : p. Define g(v) =v. Then g =T (because [p] € SAT, so V C [p]).
Hence by soundness [t], € [p] € SN. But [t], =t. O

4 Term reshuffling

In this section we shall rewrite terms so that all the newly visible redexes (obtained as a
result of our item notation), can be subject to the ordinary classical B-reduction —3. We
shall show that this term rewriting is correct and preserves both reduction (be it only in a
certain sense) and typing.

Let us go back to the definition of d A\-couples. Recall that if § = s1 - - - s, for m > 1 where
$18m 18 a dA-couple then sy - - - s, is a well-balanced segment, s; = (£10) is the d-item of the
dA-couple and s, = (pA,) is its A-item. Now, we can move s in 3 so that it occurs adjacently
to s;,. That is, we may rewrite S as so - -+ Spy;—151Sm-

16

Example 4.1 The term (z16)(220)(X4Az,)(x30)(X3Az6) (X1 — X2)Az,)(240)z5 can be eas-
ily rewritten as (z20)(XaAz,)(230)(X3Aze)(210)((X1 — X2)Ag,)(240)z5 by moving the item
(210) to the right. Hence, we can rewrite (or reshuffle) a term so that all d-items stand next
to their matching A-items. This means that we can keep the old 3-axiom and we can contract
redexes in any order. Such an action of reshuffling is not easy to describe in the classical
notation. That is, it is difficult to describe how ((Az;:x,-(Azg:Xs-Azs: X, X, -T524)T3)T2) X1, 1S
rewritten as (Ag,.x,-(Azg:xs-(Azs: X, - X, -T5%4)x1)x3)x2. This is another advantage of our item
notation.

Note furthermore that the shuffling is not problematic because we use the Barendregt Con-
vention which means that no free variable will become unnecessarily bound after reshuffling
due to the fact that names of bound and free variables are distinct.

Lemma 4.2 If v° is a free occurrence of v in ss1t, then v° s free in Syst.
Proof: By BC as A\, does not occur in ssit. O

Example 4.3 Note that in Example 4.1, reshuffling does not affect the “meaning” of the
term. In fact, in ¢ = (216)(220)(XaAg;) (230)(X3Az4) (X1 = X2)Ag;)(240)xs5, the free variable
x1 cannot be captured by ;. or A,,. Moreover, ¢ is equivalent, semantically and procedurally,
to ($25)(X4)\x7)(.%‘35)(XgAx(a)(xl(S)((Xl — X2)>\x5)($45)$5.

We call this process of moving d-items of dA-couples in a term to occupy positions adjacent to
their A-partners, term reshuffling. This term reshuffling should be such that all the J-items
of well-balanced segments in a term are shifted to the right until they meet their A-partners.
To do this however, we must study the classes of partnered and bachelor items in a term.

4.1 Partitioning the term into bachelor and well-balanced segments

With Definition 3.2, we may categorize the main items of a term ¢ into different classes:

1. The “partnered” items (i.e. the - and A\-items which are partners, hence “coupled” to
a matching one).

2. The “bachelors” (i.e. the bachelor M-items and bachelor §-items).

Lemma 4.4 Let s be the body of a term t. Then the following holds:
1. Each bachelor main A-item in S precedes each bachelor main d-item in S.
2. The remowval from 5 of all bachelor main items, leaves behind a well-balanced segment.
3. The remowal from s of all main d\-couples, leaves behind a A... A0 ...J-segment, con-
S N —
n m
sisting of all bachelor main A- and d-items.

4. If s =51(t0)352(pAy)S3 where (pAy) and (t6) match, then 53 is well-balanced.

Proof: 1 is by induction on weight(s') for 3 = s'(pA,)s” and (pA,) bachelor in 5. 2 and
3 are by induction on weight(s). 4 is by induction on weight(s32). O

Note that we have assumed () well-balanced. We assume it moreover non-bachelor.

17

Corollary 4.5 For each non-empty segment s, there is a unique partitioning in segments
50,51, -+ ,50, such that

1"'%;

1.5

Il
5
[e=)

For all 0 < i < n, 5; is well-balanced in 5 for even ¢ and §; is bachelor in s for odd i.

each bachelor \-segment 5; precedes each bachelor 6-segment 5 in 5.

RN

Son Z 0 for n > 0. O

Example 4.6 5 = (1) (92M02) (118) (93 Aag) (01000) (£26) (£38) (£16) (950, (96 Aug) (£5) s the
following partitioning;:

e well-balanced segment 57 = (),

e bachelor segment 57 = (p1 Ay,) (P20,),

well-balanced segment 53 = (¢10)(p3Ays),
e bachelor segment 53 = (pgAy,) (t20),
e well-balanced segment 55 = (£30)(¢40) (05 Av5) (P6 Avg),

e bachelor segment 55 = (¢56).

4.2 The reshuffling procedure and its properties

In what follows, we use wy,ws, ... to range over {0} U{\,;v € V'}, and we shall use 4, Ag, ...
to range over both terms and types (i.e. over A+ UT).

Definition 4.7 T'S and T are defined mutually recursively such that:

TS(p) =df P

TS(sv) =q TS

TS((Arwr) - (Apwn)) =g (TS(A1)wr) - (TS(An)wn) if (Arwr) -+ (Anwy) is bachelor
TS(3) =g T(0,3) if 3 is well-balanced
TS(50--5n) =g TS(50)---TS(5,) If 50---5p, is the unique

_ . partitioning of Corollary 4.5
T(5(t9), (pAv)s') =df (t0)(pAo)T'(5,5")
)s') =y T(B(TS(t)6),s)
T(7®) =df @

Note that in this definition, we use § bachelor to mean 5 bachelor in 5.
The following lemma will be needed in the proofs:
Lemma 4.8

1. If 5 is well-balanced, then T(31,333) = TS(3)1(51,352).

2. If (t5) matches (p)y) in 8' = (t6)5(pA,)s" then TS(s') = TS(5(t6)(py)s").!

!Note here that, from BC, no binding variables of 5 are free in t.

18

3. If 5 contains no items which are partnered in t then TS(st) = TS(5)TS(t).
4. If 5 is bachelor in 5t or is well-balanced, then TS(s5t) = TS(35)T'S(t).

Proof: 1: by induction on weight(s). Case weight(s) =0 then obvious.
Case 5 = (t6)s'(pAy)s” then

T (51, (t0)s'(pAy)s" 52) = T(EUTS(1)d), s (pAo)s" 53) =
TS(s")T (51(T'S(t)d), (pAy)s" 53) = TS(s)(T ()5)(P>\U)T(S__,S’_2) =
TS(s")(TS(t)0)(pAy)TS(s ’)T(H,_z) = TS(s)T((T'S(4)9), (pAy)s")T (51,52) ="
T(T5(t)d),s'(pAv)s")T (51,52) = TS((t0)s'(pAv)s")T (51,52

2: using 1. 3: lett =3y ---S,v and § = %- -5l be partitionings. Use cases on 5y being
empty or not and on s}, being bachelor or well-balanced. 4: This is a corollary of 3 above. O

The following lemma shows that T'S(t) changes all §\-couples of ¢ to d\-segments.
Lemma 4.9 For every subterm t' of a term t, the following holds:

1. TS(t'") is well-defined.

2. If 3 = (t"6)s'(p\y) is a subsegment of t' where s' is well-balanced, then TS(3)
TS()(TS(")5) (p)-

3. If s = (Awi) -+ (Apwy) is bachelor in t', then TS(3) = (T'S(A1)wy) - -+ (T'S(Ap)wn) is
bachelor in TS(t').

4. If 5 is a subsegment of t' which is well-balanced, then T S(3) is well-balanced.
Proof: By induction on t.
o Caset =v then t is the unique subterm of t and all 1---4 hold.

o Assume t = (Aw)ty where IH holds for A if A=ty and for ty. Let t' be a subterm of t.
If t' is a subterm of t; (for A =ty) or ty then use IH. If t' =t then:

— Case (Aw) is bachelor then TS(t) =Lemma 4.8 (1) (T'S(A)w)TS(ty). Here all 1---4
hold by IH on A and to.

— Case A = t1 A (t10) matches (p\y) int. Le. t = (t10)3(pAy)ts then
TS(t) =Lemma 48(13) T§(3)(TS(t1)6)(pA,)T'S(t3). Now use IH to show 1---4. O

Lemma 4.10 For all variables v and terms t,t' we have:
TS(t) =TS(TS(t)) and TS(tv :=t']) =TS(TS(t)[v:=TSH)]).

Proof: By induction on t we show that for all subterms t" of t, TS(t") = TS(TS(t"))
and TS(t"[v:=t]) =TS(TS{H")[v:=TS(t"))). O

Note that if ¢ — ¢’ and if all the dA-couples in ¢ are d\-segments, then it is not necessary that
all the d\-couples of ¢’ are dA-segments. In other words, we can have T'S(t1) —4 t2 where ty #

TS5(tz). For example, (216)(220)(pAc;) (0" Aey)40) (0" Aas)25 =5 (210)(220) (pA2s) (P Acy) s
Following this remark, we show that in a sense, term reshuffling preserves S-reduction.

Lemma 4.11 If t,t' € A, and t ~p t' then (")[(TS(t) —p t") NTS(t") = TS(t')]. In
other words, the following diagram commutes:

19

3 t,
Ts
T

-

0

e — — ——s5 4"
(t) gt TS

TS(t") = TS(H)

Proof: By induction on the general ~g.

o Caset =5 (t16)3(pAy)ts ~p t' =8’ 3(ts[v :=t1]), we use induction on the number n of
bachelor §-items of s' that are partnered in t3. Recall that 5 is well-balanced.

— Case n =0 then

TS(S_(t15)§(p>\U)t3) —Lemma 4.8 (3,4)
TS(5)TS((116)3(pA))TS(t3) —Lemma 4.8 (2,4)
TS(sHTSE)TS(0)0)(pA)TS(ts) —g
TS(5)TSE)(TS(ts)[v = TS(H)]) =t

TS(t") —Lemmas 4.9, 4.10, 4.8 (3,4)
TS(s"TS(B)TS(TS(t3)[v :=TS(t)]) =lemma 210
TS(s"TS(3)TS(t3[v := t1]) =

— Assume the property holds for n and let us show it for the case where s' contains
n+ 1 d-items which match A-items of t3. Let (t"0) be the leftmost such d-item
of s'. Take s' = sl(t”é) s and t3 = sh(p'\y)ta where (t"5) matches (p'Ay). By
Lemma 4.4, (t"0)sY(t 5) (p)\)sh(p' Ay is well-balanced. Moreover, no item of s
has a partner in (t”é) 1(t10)3(pAy)ts.

As sT(t10)5(pAy)sz(t"(S)(p Aot)tz ~g STE(sL(H"0)(p' Ay)ta[v = t1]), we find by IH,
t"" such that

TS (S (118)5(0M)F5(178) (9 Aur)t2) =55 70

TS (") = TS(S(5(8) (9 A)ialo 1= 1))

Now, TS(s))t" is the wanted term because:
TS() _Lemma 4.8 (4) TS()TS((t"5) (5) ()\U)SIQ(P’)\U')t2) —Lemma 4.8 (2)
TS(51)TS (57 (16)5(pAw) S(2"0) (4 Mot Yt) =3 TS(ST)E"
and TS(TS()t"') —Lemma 4.10
TS(s)TS(s75(sh(t"0) (p' A)talv = t1])) =hermme 482, BE
TS(SI)TS((t"5) (82[1) _ tl])(P Ay)(t2[v .= tl])) —Lemma 4.8 (4),s]3 s}, well—balanced

TS(54 (178)s5(s (0 A ol = 11])) = TS(F).

o The proof of compatibility is technical. The difficult case is: t = (t10)to and ty ~p t).
Distinguish the cases: (t10) is bachelor or non-bachelor in t. O

Corollary 4.12 If t ~»5 t' then there exist to,t1,---t, such that
[(t =to) A (T'S(to) =p t1) AN (TS(t1) = t2) Ao A(TS(tn—1) =5 tn) A(TS(ty) =TS(t))]
Proof: By induction on —»g.

o Case t~gt' use Lemma 4.11.

20

o Caset~»gt then obvious (n=1Nty =t ANty =TS(t)).

o Caset' ~»gt" Nt"" ~»5t", then by IH, there exist to,t1,- -, tn,t, th,- -1, such that
(" = to)AN(T'S(to) = t1)A(TS(t1) =5 t2)A-- -/\(TS(n-1) =g) N(TS(t,) = TS("))A
(t" = to) AN (TS(ty) —p t1) A(TS(HL) —p ty) Ao ATS(t,-1) —p ty) A (TS(ty,) =
TS(t")). Hence, (t' = to) A (TS(to) =p t1) A+ A(TS(tn—1) —p tn) AN(TS(tn) —p
)N AN(TS(t, 1) —=p t,) AN(TS(t,) =TS(H")).

Note that for the basic and reflexive cases, n = 1 for sure. For the transitive case, this
may not be so. For example, t = (pAz,)((p'Aey) (P Azy)210) (0" Apy) (210) (210) x4 ~>p5 t' =
(pAz,) (@10)(p' Agy) w1 yet t ~»5 t' does not imply there exists t" such that TS(t) —»g t" A
TS(t") =TS(t'). There is however t1 = (pAg,)(10)(218)(p' Az,) (0" Azg)x1 and to = t' such
that TS(t) —B t1 A TS(tl) —B ty and TS(tg) = TS(t’) O

Finally, we show that term reshuffling preserves typing;:

Lemma 4.13 IfT'Ht : pthen ' FTS(t) : p
Proof: By induction on t.

e (Case t = v, then nothing to prove.

o Caset = (p'\,)t' then

= (p,)\v)t, D p :>Generation

F(ﬂ,)\v) E o p"/\pEp' —>P” =TI

F(P,Au) = TS(t') . pn Ap= p/ N pll —,——introduction, Lemma, 4.8 (3)
LETS((P'A)E) = p

o Caset = (t'6)t" then

— Case (t'0) is bachelor in t then

'+ (t’&)t” 1P — Generation
CHY AT p—p = IH

'k TS(tl) : p, AT TS(t”) : p’ —=p — ——elimination
CH(TS{)o)TS(H") : p — Lemma 4.8 (3)

CETS((H0)t") : p

— Case (t'0) is partnered in t, then t = (t'0)5(p'A\,)t1 where 5 is well-balanced, and
no binding variables of 5 are free in t'.

I+ (t'5)§(p')\v)t1 Dp — Generation
r+t¢ : p’/\FI—E(p’/\v)tl : p’—)p :>IH

'k TS(t’) : p’ AL+ TS(_(p’)\U)tl) . p’ —p :>—>—8limination
LH (TS@)NTSEEAN) ¢ o . Lemma 45 (1)
rk+ (TS(t'))T'S(3) (P A\o)TS(t1) : — Lemma 3.11
DTSS0I)) . emma 45 (1)
'+ TS((t’d)(v)tl) . :>Lemma 4.8 (2)

I ETS((#0)5(p'A0)ta) =TFTS(t) : p

21

5 Conclusion

In this paper, we observed that if we change slightly the classical A-notation, then we can
make more redexes visible. This is useful and is in line with current research on the needed
redexes (for normal forms) as in [BKKS 87]. Making more redexes visible will work to our
advantage if we could also contract these redexes before other ones. For example, in lazy
evaluation ([Launchbury 93]), some redexes get frozen while other ones are being contracted.
Now, if we had the ability of choosing which redex to contract out of all visible redexes, rather
than waiting for some redex to be evaluated before we can proceed with the rest, then we can
say that we have achieved a flexible system where we have control over what to contract rather
than letting reductions force themselves in some order. This may lead to some advantages
concerning optimal reductions as in [Lévy 80].

With our notation, and our new [-reduction, we achieve this flexibility and freedom of
choice. Moreover, we do not lose any of the original properties. We have shown in fact that
what we provide is a more general S-reduction where more redexes are visible and where all
the original properties (using ordinary classical reduction) still hold for our general reduction.
We believe this to be an important breakthrough which may lead to new reduction strategies
that may explain various programming principles (such as lazy evaluation) in an elegant way.

We have shown further that, using item notation (which makes more redexes visible), one
is able to stick to the old B-reduction and just do a simple reshuffling so that these newly
visible redexes can be contracted before other redexes. We have shown that this reshuffling
(which is very simple and can only be enabled in our notation), is correct. In fact, reshuffling
does really make all redexes subject to immediate contraction and preserves typing. So, if
t has type p then the reshuffled version of t also has type p. It is moreover the case that
if t ~»3 ¢’ using our extended reduction, then T'S(¢) can be transformed into T'S(t') using
classical reduction and intermediate term reshuffling.

The work carried out in this paper will have many applications. We mentioned the
semantics of lazy evaluation and the new reduction strategies which may lead to further
optimal results. These points are under investigation. The new notation moreover deserves
attention. [KN 93] and [NK 94] have shown many of its advantages for formulating and
generalising type theory and for rendering substitution explicit in the A-calculus. Further
advantages are also studied in [KN 9z].

References

[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.

[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction and
spine strategies for the A-calculus, Information and Computation 75 (8), 1191-231, 1987.

[de Bruijn 93] Bruijn, N.G. de, Algorithmic definition of lambda-typed lambda calculus, in Huet, G.
and Plotkin, G. eds. Logical Environments, 131-146, Cambridge University Press, 1993.

[KN 93] Kamareddine, F., and Nederpelt, R.P.,; On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (8), 197-240, 1993.

[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the A-calculus, in preparation.

22

[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,
1993.

[Lévy 80] Lévy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, Academic
Press, 1980.

[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda struc-
tured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and
Computer Science, 1973. To appear in Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds.,
Selected Papaers on Automath, North Holland, 1994.

[NK 94] Nederpelt, R.P., and Kamareddine, F., A unified approach to type theory through a refined
A-calculus, Proceedings of the 1992 conference on Mathematical Foundations of Programming
Semantics, ed. M. Mislove et. al., 1994.

23

