The Barendregt Cube with Definitions and Generalised
Reduction®

Roel Bloo |
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands
email: bloo@win.tue.nl

and

Fairouz Kamareddine ¥
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ), Scotland
email: fairouz@dcs.glasgow.ac.uk
fax + 44 41 -3304913

and

Rob Nederpelt
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands
email: wsinrpn@win.tue.nl

April 8, 1997

“We would like to thank Herman Geuvers, Stefan Khars and Tom Melham for their useful discussions and
remarks.

fThe first author is supported by the Netherlands Computer Science Research Foundation (SION) with
financial support from the Netherlands Organisation for Scientific Research (NWO). He is also grateful to the
Department of Computing Science, Glasgow University, for their financial support and hospitality during the
work on this paper.

#Kamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven University
of Technology, for their financial support and hospitality from October 1991 to September 1992, and during
various short visits in 1993 and 1994. She is also grateful to the Netherlands Organisation (NWO) for Scientific
Research for its financial support.

Abstract

In this paper, we propose to extend the Barendregt Cube by generalising reduction
and by adding definition mechanisms. We show that this extension satisfies all the original
properties of the Cube including Church Rosser, Subject Reduction and Strong Normali-

sation.

Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject
Reduction, Strong Normalisation.

Contents

1

Introduction

1.1 Why generalised reduction L oL
1.2 Why definition mechanisms oL oL
1.3 The item notation for definitions and generalised reduction

The item notation

The ordinary typing relation and its properties

3.1 The typing relation L
3.2 Properties of the ordinary typing relation

Generalising reduction in the Cube

4.1 The generalised reduction L oL
4.2 Properties of ordinary typing with generalised reduction

Extending the Cube with definition mechanisms

5.1 The definition mechanisms and extended typing
5.2 Properties of the Cube with definitions

The Cube with definitions and generalised reduction

6.1 Strong Normalisation L L

Comparing the type system with definitions to other type systems

7.1 Comservativity e
7.2 Shorter derivations L e
7.3 Comparison with the systems of the Barendregt cube
7.4 Comparison with the type systems of Poll and Severi

W w W

10
11
13

15
15
16

20
20
21

24
25

32
33
35
35
36

1 Introduction

In this paper, we introduce and motivate definition mechanisms and generalised reduction,
and we study their interrelationship. Most importantly, we show that the Barendregt Cube
of [Barendregt 92], extended with these two concepts preserves all its old properties including
Church Rosser, Subject Reduction and Strong Normalisation.

1.1 Why generalised reduction

In the classical A-calculus, the notions of redex and of 3-reduction are described as follows:

Definition 1.1 (Redexes and (-reduction in classical notation)

A redex is of the form (Az.p.A)C. One-step B-reduction — g is the compatible relation gen-
erated out of the aziom (: (A\p:p.A)C —p5 Alx := C]|. Many step (B-reduction —»3, is the
reflexive transitive closure of —g.

These notions are not as general as one might desire, as the following example shows.

Example 1.2 In the classical term A = ((Az:p.(Ay:@-Az:r-2a)b)c)d, we have for redexes:
(Ay:@-Az:r-2a)b and (Ag:p.(Ay:@-Az:r-2a)b)c (the fact that neither x nor y appear as free vari-
ables in their respective scopes does not matter here; this is just to keep the example simple
and clear). There is however a third redex which is not immediately visible in the classical
term; namely, (\,.g.za)d. Such a redex will only be visible after we have contracted the above
two redexes (we will not discuss the order here). For example:

((Ag:p-(Ay:@-Azir-za)b)e)d =g (A\y:@-Az:r-2a)b)d =g (Xy:g.2a)d =5 da

In classical notation, only the first two redexes are visible at first sight, yet all the three are
needed to reach the normal form of A. The third could only be seen once we had contracted the
first two redexes. There is however a need to make as many needed redexes as possible visible
and even though the notion of a needed redex is undecidable, much work has been carried
out in order to study some classes of needed redexes (as in [BKKS 87] and [Gardner 94]).
Our proposal, is not only to make as many redexes as possible visible, but also to give newly
visible redexes the possibility to be contracted before other ones.

Example 1.3 In example 1.2, we may want to contract the redex based on (\,.z.—)d before
we have contracted any of the redexes (A;.p.—)c and (Ay.q.—)b.

Firstly, this view on reduction gives an appropriate tool for the study of some programming
languages. For example, in lazy evaluation ([Launchbury 93]), some redexes get frozen while
other ones are being contracted. Now, if we had the ability of choosing which redex to
contract out of all visible redexes, rather than waiting for some redex to be evaluated first,
then we can say that we have achieved a flexible system where we have control over what to
contract rather than letting reductions force themselves in some order. Secondly, we think
that an investigation concerning the complete class of visible redexes in a term gives a better
understanding of reduction strategies, e.g. the optimal reductions as in [Lévy 80].

1.2 Why definition mechanisms

In many type theories and lambda calculi, there is no possibility to introduce definitions which
are abbreviations for large expressions and which can be used several times in a program or

a proof. This possibility is essential for practical use, and indeed implementations of Pure
Type Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide this
possibility. But what are definitions and why are they attractive? Definitions are name
abbreviating expressions and occur in contexts where we reason about terms.

Example 1.4 Let id = (Apa.2) : A = Ain (M\pa-a.id)id defines id to be (Az:4.2) in a
more complex expression in which id occurs two times.

The intended meaning of a definition is that the definiendum = can be substituted by the
definiens a in the expression b. In a sense, an expression let x : A be ¢ in b is similar to
(Az:4.b)a. It is not intended however to substitute all the occurrences of in b by a. Nor is
it intended that such a definition is a part of our term. Rather, the definition will live in the
environment (or context) in which we evaluate or reason about the expression.

One of the advantages of the definition let = : A be a in b over (Ag.4.b)a is that it is
convenient to have the freedom of substituting only some of the occurrences of an expression
in a given formula. Another advantage is efficiency; one evaluates ¢ in let z : Abe ¢ in b
only once, even in lazy languages. A further advantage is that defining x to be a in b can be
used to type b efficiently, since the type A of a has to be calculated only once. A disadvantage
is that the definition may hide information, as is shown in the following example.

Example 1.5 Without definitions, it is not possible to type Ay.;.Af.q—q.fy even when we
somehow know that x is an abbreviation for . This is because f expects an argument of type
a, and y is of type . Once we make use of the fact that x is defined to be a in our context,
then y will have type a and the term will be typable.

Practical experiences with type systems show, however, that definitions are absolutely indis-
pensable for any realistic application. Without defnitions, terms soon become forbiddingly
complicated. By using definitions one can avoid such an explosion in complexity. This is, by
the way, a very natural thing to do: the apparatus of mathematics, for instance, is unimag-
inable without definitions.

Introducing definitions in Pure Type Systems is an interesting subject of research at the
moment. For example, [SP 93] extended PTS’s with definitions. Our approach enables such
extension in an elegant way. In fact, the generated type derivations for terms in the Cube with
definitions become much shorter than those in the absence of definitions (see Section 7.2).
Moreover, we do not have to use complex relations to introduce definitions as in [SP 93].
Rather, the extension will be a natural way to how our terms are written. Basic for our
proposed extensions is a new notation: the item notation.

1.3 The item notation for definitions and generalised reduction

The item notation is a simple variant of the usual notation where the argument is given before
the function, the type is given before the abstraction operator, and where the parentheses
are grouped differently than those of the classical notation. So that, if Z translates classical
terms into our notation, then Z(AB) is written as (Z(B)J)Z(A) (here is 0 a special symbol
used for application) and Z(Oy.4.B) is written as (Z(A)Oy)Z(B) where O = X or II. Both
(t0) and (tO,), t being a term in item notation, are called items. For reasons explaining the
usefulness of such a notation, the reader is referred to [KN 93] and [KN 9z]. For this paper
however, the reader is to notice that redexes and definitions can be easily generalised and

introduced with item notation. A traditional redex is a term that starts with a d-item next
to a A\-item. A definition is itself a certain form of a J-item next to a A-item.

Example 1.6 Z((A:a—(B—o)-Ay:a-2y)t) = (10)(A — (B — C)Ay)(AN)(yd)x. The items
are (t9), (A = (B — C)Az), (AX\y) and (yd). The definition is (t5)(A — (B — C)A;) and
the redex is the whole term.

Definition 1.7 (Classical redexes and [(-reduction in item notation)

In the item notation of the \-calculus, a classical redex is of the form (C6)(BA;)A. We
call the pair (C6)(B\;), a d\-pair, or a d\-segment. The classical 3-reduction aziom is:
(CO)(BAy)A — 5 Alx := C]. One and many step B-reduction are defined as in Definition 1.1.

In item notation, term A of Example 1.2 becomes (dd)(cd)(PA;)(b0)(QAy)(RA;)(ad)z. Here,
the two classical redexes correspond to dA-pairs as follows:

L. (Ay:Q-Az:r-za)b corresponds to (b0)(QA,). The remainder of the redex, (RA;)(ad)z, is
the maximal subterm of A to the right of (Q\).

2. (Az:P-(Ay:-Az:r-2a)b)c corresponds to (cd)(PA;), the rest being (bd)(QAy)(RA;)(ad)z.

Looking closely at A written in item notation, one sees that the third redex described in Exam-
ple 1.2 is obtained by just matching ¢ and A\-items. (\,.g.za)d is visible as it corresponds to the
matching (dd)(RA;) where (dd) and (RX,) are separated by the segment (cd)(PX;)(b0)(QNy).
Hence, by extending the notion of a redex from being a -item adjacent to a A-item, to being
a matching pair of - and A-items, we can make more redexes visible. Such an extension
is simple, as in (C0)5(BAz), we say that (C¢) and (BA;) match if 5 has the same struc-
ture as a matching composite of opening and closing brackets, each J-item corresponding
to an opening bracket and each A-item corresponding to a closing bracket. For example,
in A above, (dd) and (RA;) match as (c0)(PA;)(b0)(QNy) has the bracketing structure [][]
(see Figure 1). We refine 3-reduction by changing () from (C6)(BA;)A =5 Az := C] to

ds) (cd) (PAz) (b6) (QAy)(

Figure 1: Extended redexes in item notation

(RX,) (ad) =

(CO)35(BAy)A — 35 5(Alx == () if (C9) and (BA;) match. It is this generalised reduction
that we will put on the top of the Cube and we will investigate its properties.

Now, what about definitions? The first step is to define definitions as matching d \-couples
and to include them in contexts with the condition that if a definition occurs in a context
then it can be used anywhere in the term we are reasoning about in that context. Hence, if
we look at Example 1.5, then we can type the term now that we allow definitions to occur in
contexts and we extend I slightly so that it can see what is in its context.

Example 1.8 We use as context the segment (ad)((AX;)(xzAy)(a = aXf), establishing that
x of type A is defined as a, that y has type « and that f has type ¢ — a. Then, making use

C(CR, SN, SR)

/N

Oy, (CR, SN) Cyes(CR, SN, SR)

N

Cespies (CR, SN, SR)

Figure 2: Properties of the Cube with various extensions

of this deﬁnition, we have

(ad) (A

(a0)(AAz)
(a0)(AXs)
(a0)(AAs)
(a0)(AXs)

)(:c)\ Ja—=aXp)Efra—a
(xXy)(@ = arf)Fy:z=a
(oA (@ — adg) F (30)f : @
(A) (@ = aXp)(yd)f: (a—=a) —a

2) (@A) (@ = arp)(yo)f 2z = (a —a) 2a =a—(a—a)—>a

Based on the above discussion, we divide the paper into the following sections:

In Section 2, we introduce the item notation.
In Section 3, we recall the Cube as in [Barendregt 92|, and all its properties.

In Section 4, we add to the Cube as in [Barendregt 92], generalised reduction <3 and
show that < g (the reflexive transitive closure of < 3) generalises — 3 (Lemma 4.3) such
that =g and ~g are the same (Lemma 4.5). This means that almost all the original
properties still hold for < 3. However, Church Rosser (CR) , Subject Reduction (SR)
and Strong Normalisation (SN) deserve special attention. CR and SN are shown to hold
(without the need for SR in the case of SN). SR holds in Aw and A_,, but fails in the
remaining systems. This problem is solved in Section 6 by adding definitions.

In Section 5 we add definitions to the Cube of [Barendregt 92] and show that all the
properties of [Barendregt 92] (including SR) hold with definitions. CR is not touched
with the addition of definitions, contrary to the account of [SP 93], where a reduction
relation was introduced to capture definitions and hence CR had to be shown.

In Section 6, we extend the Cube with both generalised reduction and definitions.
We show that the Cube extended with definitions and generalised reduction, preserves
all its important properties. We present in particular, the general proof of Strong
Normalisation which applies to all earlier systems.

In Section 7, we discuss the conservativity of the Cube with definitions, with respect to
the Cube without definitions. We show that more terms are typable using definitions.
However, when a judgment is derivable in a system of the Cube with definitions, the
judgment itself where all the definitions are unfolded is derivable without definitions
(Theorem 7.3). We also compare our system of definitions with that of [SP 93].

Figure 2 summarizes our results, showing that one can safely use the Cube with definitions

only,

or with both definitions and generalised reduction. When using generalised reduction

without definitions, one must remain in the A, and Aw as the other systems lose their SR.

2 The item notation

Let Z translate terms in classical notation to terms in item notation such that:

Z(A) = A if A is a variable or a constant
Z(Oy:a.B) = (Z(A)OR)I(B) ifO=MXorll
Z(AB) = (Z(B)d)Z(A)

Notation 2.1 Throughout the whole paper, we take O to range over {\,I1}.

The systems of the Cube are based on a set of pseudo-expressions T defined by:
T=V|C|(TO)T |(TOV)T

where V' and C are infinite collections of variables and constants respectively. We assume
that z,y, z,... range over V and we take two special constants * and O. These constants
are called sorts and the meta-variables S, S51,.59,... are used to range over the set of sorts
S = {x,0}. We take A, B,C,a,b... to range over pseudo-expressions. Parentheses will be
omitted when no confusion occurs. For convenience sake, we divide V' in two disjoint sets V*
and V", the sets of object respectively constructor variables. We take z*,y*, z*, ... to range
over V* and 2", y", 2", ... to range over V".

Bound and free variables and substitution are defined as usual. We write BV (A) and
FV(A) to represent the bound and free variables of A respectively. We write A[z := B] to
denote the term where all the free occurrences of x in A have been replaced by B. Furthermore,
we take terms to be equivalent up to variable renaming. For example, we take (A\;)z =
(AXy)y where = is used to denote syntactical equality of terms. We assume moreover, the
Barendregt variable convention which is formally stated as follows:

Convention 2.2 (BC': Barendregt’s Convention)
Names of bound variables will always be chosen such that they differ from the free ones in a
term. Moreover, different \’s have different variables as subscript. Hence, we will not have

(@0) ((AXg)xzAg)z, but (x6)((AXy)yA,)z instead.
Definition 2.3 (Compatibility)
Let we {6} U{O, | x € V'}. A relation — on terms is compatible iff the following holds:

A1 — A2 Bl — BQ
(Alw)B — (AQCL))B (Aw)Bl — (Aw)BQ

Definition 2.4 (3-reduction —3 for the Cube)
In the Cube, B-reduction —g, is the least compatible relation generated out of:

(8) (C0)(BAL)A —p Alz == (]

We take —»g to be the reflexive transitive closure of — 5 and we take =g to be conversion, i.e.
the least equivalence relation generated by —»g.

Note that 3 is not assumed for IT-expressions, i.e. (C0)(BIl;)A /45 Alz := C] (see [KN 9y]
for such an extension). Now, some needed machinery for item notation follows.

Definition 2.5 ((main) items, (main, 00-)segments, end variable, weight)

o [f x is a variable, and A is a pseudo-expression then (AN;), (All;) and (Ad) are items
(called X-item, Il-item and 6-item respectively). We use s, s1, s, ... to range over items.

e A concatenation of zero or more items is a segment. We use 5,51,5;,... as meta-
variables for segments. We write () for the empty segment.

e FEach pseudo-expression A is the concatenation of zero or more items and a variable or
constant: A = s1S9---spx. These items s1,82,...,5y are called the main items of A,
x is called the end variable of A, notation endvar(A).

e Analogously, a segment 3 is a concatenation of zero or more items: S = S$189- - Sp;
again, these items si,So,...,8y (if any) are called the main items, this time of 3.

e A concatenation of adjacent main items (in A or 3), Sm - Smik, S colled a main
segment (in A ors).

e A)O-segment is a 0-item immediately followed by an O-item.

e The weight of a segment s, weight(3), is the number of main items that compose the
segment. Moreover, we define weight(sx) = weight(3).

When one desires to start a S-reduction on the basis of a certain J-item and a A-item occurring
in one segment (recall, no reductions are based on §- and Il-items), the matching of the o
and the A in question is the important thing, even when the 0- and A-items are separated by
other items. IL.e., the relevant question is whether they may together become a JA-segment
after a number of 3-steps. This depends solely on the structure of the intermediate segment.
If such an intermediate segment has a certain form (to be called: well-balanced), then the
0-item and the A-item match and [-reduction based on these two items may take place.
Some well-balanced segments play another important role. They may act as a definition. For
example, (A9)(BA;)C may mean: we define z of type B to be A in C. Sometimes, definitions
are interleaved as in (A10)(B10)(B2Az)(A2Ay)D where the definition “x becomes B;” is used
inside the definition “y becomes A;”. We will assume definitions not to contain II-items in
this paper. Extending this work to the case where for example (A0)(BII;) is a definition has
yet to be investigated. In what follows we define well-balanced segments.

Definition 2.6 (well-balanced segments)
e The empty segment () is a well-balanced segment.
e If 3 is well-balanced, then (A§)S(BO,) is well-balanced.
e The concatenation of well-balanced segments is a well-balanced segment.

A well-balanced segment has the same structure as a matching composite of opening and
closing brackets, each 0- (or O-)item corresponding with an opening (resp. closing) bracket.
In a definition, the first [matches the last | and no Il-items are allowed. A §O-couple is
a main J-item and a main O-item separated by a well-balanced segment. Such a couple is
reducible in case O = A. The é-item and O-item of the §O-couple are said to match and each
of them is called a partner or a partnered item. The non-partnered items in a segment are
called bachelor. The following definition summarizes all this:

Definition 2.7 (match, §O- (reducible) couple, partner, partnered item, bachelor item)
Let A€ T. Let 3= s1--- s, be a segment occurring in A.

o We say that s; and s; match, when 1 <i < j < n, s; is a 0-item, s is a O-item, and
the sequence Si11,...,5j-1 forms a well-balanced segment.

e If s; and s; match, s;s; is a 60-couple. If O = X then s;s; is a reducible couple.

o When s; and s; match, we call both s; and s;j the partners in the 6O-couple. We also
say that s; and s; are partnered items.

e All non-partnered O- (or -)items sy in A, are called bachelor O- (resp. §-)items.

Example 2.8 In 5 = (a)y)(bAy)(c8)(dA)(eAa) (£8)(0) (h8) (iAo (jAw) (kO):

e (cd) matches with (dA,), (hd) matches with (i)\,) and (gd) with (j\,). The segments
(¢d)(dX,) and (hd)(i\,) are d\-segments (and dA-couples). There is another d\-couple
in 3, viz. the couple of (gd) and (jAy).

o (cd), (dA;), (99), (hd), (iXy) and (jAy), are the partnered main items of 5. (aX;), (bAy),
(eAy), (fd) and (kd) are bachelor items.

e (g0)(ho)(iXy)(jAw) is a well-balanced segment.

Definition 2.9 (definitions, definition application)

e If 5 is well-balanced and does not contain main -items, then a segment (A0)S(B\;)
occurring in a context is called a definition.

o Let 5 be a well-balanced segment, occurring in a context, which consists of definitions
and A € T. We define the application of the definitions of 5 in A, [A]s inductively as
follows: [Aly = A, [A](Bsyst(cr.) = [Alz := Bllsy and [Alsz5 = [[Alszlst. Note that
substitution takes place from right to left and that when none of the binding variables of
S are free in A, then [A]lz = A.

Remark 2.10 The definitions of well-balanced segments and definitions together are equiv-
alent to the following definition (which we use sometimes in proofs by induction):

1. 0 is well-balanced.
2. If 57,53 are well-balanced, then (Ad)s7(BQO,)s3 is well-balanced.

3. If 5 is well-balanced and does not contain main II-items, then (AJ)s(BA;) is a definition.

Remark 2.11 We maintain the same liberal attitude for definitions, as we did for generalised
redexes. That is, not only (AJ)(BA,) may act as a definition in a context, but also (A0)5(BA)
for any well-balanced segment § without main Il-items.

Note that we speak of definitions when such an (Ad§)s(BA,) occurs in a context; otherwise,
when (Ad)S(BA;) occurs in a term, we speak of a (-redex.

3 The ordinary typing relation and its properties

We now introduce some general notions concerning typing rules which are the same as the
usual ones when we do not allow definitions in the context (as is the case in the A-cube of
[Barendregt 92]). When definitions are present however, the notions are more general.

Definition 3.1 (declarations, pseudocontexts, C')

1. A declaration is a A-item. In a declaration d = (A)\;), we define subj(d), pred(d) and
d to be x, A and | respectively.

2. For a definition d = (B0)3(A\;) we define subj(d), pred(d), d and def(d) to be x, A,
5 and B respectively.

3. We use d,dy,do, ... to range over declarations and definitions.

4. A pseudocontezt is a concatenation of declarations and definitions such that if (AX;)
and (BXy) are two different main items of the pseudocontext, then x # y. We use
[,A, I, T,Dg,... to range over pseudocontexts.

5. For I' a pseudocontext we define
dom(I') ={z € V | (AXz) is a main X-item in I" for some A},
[-decl = {s | s is a bachelor main \-item of I'},
[-def = {5|35 = (AJ)351(BX\;) is a main segment of I' where 51 is well-balanced },
Note that dom(I") = {subj(d) | d € I'-dec1 UI'-def}.

6. Define C' between pseudocontexts as the least reflexive transitive relation satisfying:

e A C'T(CA)A if no X-item in A matches a d-item in T
e I'dA C'I'dA if d is a definition
o I'S(AN)A C'T(DO)S(AN)A if (ANy) is bachelor in TS(AN,)A, 5 is well-balanced

Example 3.2 If I' = (a)A;)(bAy)(co)(dA;)(eAy)(f6)(gd)(iAy)(jAy) then T-decl = {(a)y),
(bAy), (eAy)} and I'-def = {(cd)(dA), (f6)(90)(iNy)(jAw), (g0)(iAy)}. Furthermore I' C’

(g
v)

(¥Ar) (aAz) (DAy) (h0) (c0) (A2) (kA) (16) (eu) ()(0)(ixo) (J Aw)-
I

Note that I’ €' IV % I'-decl C I'-decl, but I' €' I = I'-def C I"'-def.

Definition 3.3 (statements, judgements, <)

1. A statement is of the form A : B, A and B are called the subject and the predicate of
the statement respectively.

2. When I is a pseudocontext and A : B is a statement, we call ' = A : B a judgement,
and write ' A:B:C to meanT'FA: BATFB:C.

3. For T be a pseudocontext and d € I'-def U'-decl, I' invites d, notation I' < d, iff

o I'd is a pseudocontext

e I' - pred(d) : S for some sort S and subj(d) € V5.

10

e if d is a definition then I' - def(d) : pred(d)

Definition 3.4 (Definitional 3-equality) For all legal contexts T we define the binary relation
' - =q4ez - to be the equivalence relation generated by

® zfA:gBthenFI—A:defB

o ifd € I'-def and A,B € T such that B arises from A by substituting one particular
occurrence of subj(d) in A by def(d), then I' - A =4 B.

Remark 3.5 If no definitions are present in I' then I' - A =4.¢ B is the same as A =3 B.

Definition 3.6 Let I' be a pseudocontext and A be a pseudo-expression.

1. Let d,dy,...,d, be declarations and definitions. We define ' F d and T' + dy---d,
simultaneously as follows:
e Ifd is a declaration: T'F d iff I' - subj(d) : pred(d).

o Ifd is a definition: I' = d iff I' - subj(d) : pred(d) AT I def(d) : pred(d) AT
d AT F subj(d) =ges def(d).
e 'dy---dyiff T Fd; for all1 <i<n.

2. T s called legal if AP, Q € T such that U'F P : Q.

3. A€ T iscalled a U-term if IBe TI'FA: B or I' - B : A].
We take T'-terms ={A €T |dBe T['FA: BVI + B: A]}.

4. We take I'-kinds = {A|T'F A: O} and U-types={A €T |'F A: x}.

5. AeT is called a I'-element if 3B € T3S € S’ A: B and I' - B : S]. We have two
categories of elements: constructors and objects. We take I'-constructors = {A € T |
dBeT[I'FA:B:0]} and I'-objects={A €T |IBeT[['F A: B :x|}.

6. A €T is called legal if IT[A € T'-terms]. Moreover, A is an X, if AU[A € I'-Xs| for
X € {type, term, kind, object, constructor}.

In the Cube as presented in [Barendregt 92], the only declarations allowed are of the form
(AXz). Hence there are no definitions. Therefore, I' < d is of the form I' < (4A\;) and means
that T'F A : S for some S and that z is fresh in I'; A. Moreover, for any d = (A\;), remember
that d = (), subj(d) = x and pred(d) = A. Hence, in this section, d is a meta-variable
for declarations only and =4 is the same as =3 (which is independent of).

3.1 The typing relation

Definition 3.7 (Azioms and rules of the Cube: d is a declaration, =qes is =3)

(aziom) <>F=x*:0
['<d
(start rule) I'd F subj(d) : pred(d)
, r<d Td-D:E
(weakening rule) TdFD: E

11

'+ F:(All,)B F'Fa:A

(application rule) TF () F : Bz = d]

. F(AX;)-b: B 'k (All,)B: S
(abstraction rule) (AX) TF (A5 (AHQ;()B)

. 'A:B r-B:S ' B =4e¢ B
(conversion rule) Ao

if (S1,52) is a rule

(formation rule) TF (AL)B : S,
Each of the eight systems of the Cube is obtained by taking the (S, 52) rules allowed from a
subset of {(x, %), (x,0), (O, %), (d,0)}. The basic system is the one where (S, S2) = (*, %) is
the only possible choice. All other systems have this version of the formation rules, plus one
or more other combinations of (x,0), (O,%) and (d,0) for (S;,S52). Here is the table which
presents the eight systems of the Cube:

System Set of specific rules

A (*, %)

A2 (x,%) | (O, %)

AP (*,*) (*7 D)

AP2 (,%) | (d,%) | (%,0)

Aw (%,) (0,0)
Aw (%, %) | (O,x%) (O,0)
APw (%, %) (x,0) | (O,0)
APw = XC | (x,%) | (O,%) | (x,0) | (3,0)

Figure 3: The Cube

Here are examples of typable terms in some systems of the Cube that we use further on.

Example 3.8

1. g (+IIy)(ally)a : « as we have the rule (O, %), but .z (+IIy) (oL,) : 7 for any 7 where
L e {25, w, AP, \Pw}.

2. (A (@A) ((0T1,) + AQ)((E)QAN) Far (NO)(t8)(0A) (#8)QA) (yd) (20)QA2)Z = (t)Q
but this derivation could not be obtained in A_,, Aw or A2 as we need the (,0) rule in order
to derive that (oll;)+ : O and hence that ((oll,) * Ag) is allowed in the context.

3. 16L € (A, Aw), then (+Ag)(BAy) Ve (5'6)(38)(x)e) (ay) (40) (ae) : 3 because the term

12

of part 1 of this example is not typable in £ (note that with definitions, the last 9 steps above
are replaced by a single one in Example 5.2). Here is how this judgement if derivable in A\2.

0 (axiom)

(*Ag) Faz B x: O (start resp. weakening rule)
($Xg)(BAy) Fa2 9/ = B:%: DO (start resp. weakening rule)
(xA3) (BAy) ($Aa) Faz v : x (start)

(xA8) (BAy) ($Aa) (@Ay) Frz y vt (start resp. weakening rule)
($Ag) (BAy) (xAa) (@dy) (@A) Faz 2zt vt % (start resp. weakening rule)
($Ag) (BAy) (xAa) (@Ay) Faz (allg)or - formation rule (x, %))
($28) (BAy) ($Xa) (@A) Faz (adg)z @ (ol : * (abstraction)

(xA5) (BAy) (¥ Aa) (@y) Fa2 (y6) (adg)z @ « (application)
(xAg) (BAy) (¥Aa) Faz (ally)or @ x formation rule (x, %))

(xA5) (BAy) (¥ Aa) Faz (@)y) (yd) (adg)z : (ally)or = * (abstraction rule)

(xAg) (BAy) Faz (+I1a) (ally)or : formation rule (O, %))
(xAg) (BAy) Faz (¥Aa) () (yd) (adz)z : (xllo)(ally)a (abstraction rule)

(:A3) (BAy) Faz (B9) (xAa) (@) (y0) (arg)z : (BIL,)3 (application rule)

(:X3) (BAy) Faz (1'0)(80) (xAa) (hy) (y0) (adz)x = B (application rule)

3.2 Properties of the ordinary typing relation

Here we list the properties of the Cube (see [Barendregt 92]). These properties will be estab-
lished for the Cube extended with generalised reduction and definition mechanisms.

Theorem 3.9 (The Church Rosser Theorem for —3)
If A—»5 B and A —»g C then there exists D such that B —g D and C —%g D O

Lemma 3.10 (Free variable lemma for F)
Let T be a legal context such that '+ B : C. Then the following holds:

1. If d and d' are two different elements of T'-decl, then subj(d) # subj(d').

2. FV(B),FV(C) C dom(T).

3. For s1 a main item of I', FV (s1) C {subj(d) | d € I'-decl,d is to the left of s; in I'}.
Proof: All by induction on the derivation of '+ B : C. O

Lemma 3.11 (Start Lemma for)
Let T be a legal context. Then T'F % : 0O and Vd €' T[T | d].

Proof: As I is legal, then dA, B € T such that I' - A : B. Now use induction on the
derivation I' - A : B. O

Note that this and the following lemmas state the same thing as the corresponding lemmas
from [Barendregt 92] as I' consists of declarations only.

Lemma 3.12 (Transitivity Lemma for)
Let T' and A be legal contexts. Then: 'FAANAFA:B=TFA:B.
Proof: Induction on the derivation rules. O

13

Lemma 3.13 (Substitution Lemma for F)
Assume I'(AXNG)AF B :C and I' = D : A then I'(Alx := D)) F Bz := D] : C[x := D].
Proof: By induction on the derivation rules. O

Lemma 3.14 (Thinning Lemma for)
Let T and A be legal contexts such that T C' A. ThenTHA:B= A+ A:B
Proof: By induction on the length of the derivation of ' A : B. O

Lemma 3.15 (Generation Lemma for)
1.TFz:C=35,5%¢cSIB=3CI'FB:S5 AN(BX\;) € TATFEC:S).

2. ' (Ally)B : C = 3(51,52 € S)[I' = A: S1AT(ANy) E B : Son(S1,52) is a ruleNC =g
SQ/\[C%SQ#HS[F"C:S”]

3. TF (AA)b: C = 3(S,B)[T F (All,)B : SAT(AN,) F b: BAC =5 (ATL,)BAC #
(AIL,)B = 3S € S[T+ C : S]).

4. I'F(ad)F :C = 3A,B,z[l' - F: (All,)BAT'Fa: ANC =g Blx:=a] A\ (Blx :=a| #
C=35eSTkFC:9))

Proof: By induction on the derivation rules, using thinning lemma. O
Corollary 3.16 (Generation Corollary for)

1.TFA:B=3S[B=SorI'+-B:J5]

2.TFA:(B1l;)By = 3S[I' + (B111;)By : 5]

3. If A is a U'-term, then A is O, a I'-kind or a I'-element.

4. If A is legal and B is a subexpression of A then B is legal. O

Theorem 3.17 (Subject Reduction for = and —3)

PHA:BAA—sA'=>TFA:B

Proof: TFA:BANA =g A =>THA :Band'-FA:BAT =3IV =1"F A: B, where
I' =5 " means T' = T'1(AX;)To, TV = T1(A'A;)2 and A —5 A', are proved simultaneously
by induction on the derivation rules. O
Corollary 3.18 (SR Corollary for = and —»g)

1. IfTFA:B and B —3 B' then T - A: B'.

2. If Ais a T-term and A —3 A’ then A’ is a T'-term. |
Lemma 3.19 (Unicity of Types for - and —3)

1.TFA:BiANI'FA:By= By =3 B>

2. Fl—A:B/\Fl—A':B'AA:5A':>B:gB'

3. T+B:S,B=3BT+A":B then T+ B': 8.

Proof: 1. by induction on the structure of A, 2. by Church Rosser, Subject Reduction and
1, and 3. by Corollary 3.16, Subject Reduction and 1. O

Theorem 3.20 (Strong Normalisation with respect to = and —»g)
For all &=-legal terms M, M is strongly normalising with respect to —»g.
Proof: see section 6. O

14

4 Generalising reduction in the Cube

In this section we extend the classical notions of redexes and (-reduction of the Cube and
show that all the properties of Section 3.2 except SR are preserved. We show moreover that
for Aw and A_,, SR holds yet for the remaining systems it fails.

4.1 The generalised reduction

We allow dA-couples to have the same “reduction rights” as d\-segments as follows:

Definition 4.1 (General B-reduction —g for the Cube)
General one-step 3-reduction — g, is the least compatible relation generated out of:

(general (3) (BO)5(CAp)A —5 5(Alx := B]) if 5 is well-balanced

General < is the reflexive and transitive closure of <3 and =g is the least equivalence
relation generated by —g.

Example 4.2 Take Example 1.2. As (¢0)(PA;)(b0)(QAy) is a well-balanced segment, then:

A = (d6)(c8)(PAg) (8)(QA) (RA:)(ad)z g
(€0) (PAg)(b6)(QAy)(((ad)2)[2 := d]) =
(c0) (PAz)(b6)(QAy)(ad)d

(dd)(R\,) also has a corresponding (“generalised”) redex in the traditional notation, which
will appear after two one-step (-reductions, leading to (A;.z.za)d. With <5, we could reduce
((Az:p-(Ay:@-Az:r-za)b)c)d to (Ag:p.(Ay:q-da)b)c. This is difficult to carry out in the classical A-
calculus. We strongly believe that it is the item notation which enables us to extend reduction
smoothly beyond —# 3. Moreover, — 5 extends — .

Lemma 4.3 If A =3 B in the sense of Definition 2.4, then A <5 B in the sense of Defini-
tion 4.1. Moreover, if A — 5 B comes from contracting a d\-segment then A —5 B.
Proof: Obvious as a dA-segment is a definition. |

Lemma 4.4 If A —43 B then A =3 B.

Proof: It suffices to consider the case A = 57(C)S(DA,)E where the contracted redex is
based on (C)(DA;), B =515(E[x := C]), and 5 is well-balanced (hence weight(s) is even).
We prove the lemma by induction on weight(3). Case weight(5) = 0 then obvious as —p
coincides with — g in this case. Assume the property holds when weight(3) = 2n. Take 3 such
that weight(3) = 2n + 2. Now, 5 = (C'0)s'(D'\,)s"” where s, s" are well-balanced. Assume
x Zy (if necessary, use renaming).

o ;From 3(Elx = C]) < s
I (Ba = Oy o=) =3

o Moreover, A = 57(C0)(C'8)s'(D'\)s" (DAy)E 5 57(C0)s'(s"(DA;)Ely = C']) =8¢
51(C0)s'(s"y := C'))(Dly »= C"[Ae)(Ely := C']) = B'. So by IH A =5 B".

s"(Elx = C))[y := C")), IH and compatibility, B =g
515 (s"[y := C"))(E[x := Cl[y := C"]) = B".

o By 5T9(Fy = O (Ely = Ol o= O, 2, y & FV(C)UFV(C") (by BC). Henee,
by IH and substitution B' =5 515'(s"[y := C"))(E[z := C][y := C'"]) = B".

15

Therefore, A =3 B', B =g B" and B =3 B", hence A =3 B. O
The following shows that conversion does not change the typing relation of Section 3.1.

Corollary 4.5
If A =g B then A =g B. Moreover, A ~g B iff A =3 B. O

4.2 Properties of ordinary typing with generalised reduction

Because =g and ~g are equivalent, the only lemmas/theorems of Section 3.2 affected by our
extension of reductions are those which have —#g in their heading. These are CR (Theo-
rem 3.9), SR (Theorem 3.17) and its Corollary 3.18, Unicity of Types (Lemma 3.19) and SN
(Theorem 3.20). In this section, we show that CR and SN hold for the Cube with <3 and
that SR holds for A\w and A_, but fails for the other six systems. Unicity of typing depends
on SR and on the fact that =4 is the same as <. Hence, we ignore it here as once we prove
SR, its proof will be exactly that of Lemma 3.19.

Theorem 4.6 (The general Church Rosser theorem for —g)
If A=»g B and A <3 C, then there exists D such that B <5 D and C <5 D.

Proof: As A —»g B and A <5 C then by Corollary 4.5, A =g B and A = C. Hence,
B =5 C and by CR for —g, there exists D such that B —g D and C' —3 D. But, A —3 B
implies A <3 B. Hence CR holds for —g. O

Theorem 4.7 (Strong Normalisation with respect to - and —3)
For all &-legal terms M, M is strongly normalising with respect to —g.
Proof: This is a special case of the proof of Theorem 6.27. O

In the following, £ ranges over \w and A_,. Here we show that SR holds for L.

Lemma 4.8 IfI'F; A: O then A € {x, (xI1;)*, (+IL;) (+I1y)%, ((xII;) * ITy)*, .. .}.
Proof: By induction on the derivation rules. O

Lemma 4.9 If B is a legal L-term, B’ is a L-kind and B =g B' then B is a kind.

Proof: First show by induction on the derivations: If x is a subterm of A and A is legal
then A is a kind or x is type-information in A (as in (x\;)y). Now, as B' is a kind, B’ is in
normal form, hence B —3 B' and by the former result B must be a kind too. O

Lemma 4.10 IfI'Fg (All;)B : S, then 'tz A: S, I'(AX;) bz B : S and x ¢ FV(B).
Proof: Show by induction on the derivation of ' =z A : B that if B a kind, then for all
(CAg+) € I-decl, x* ¢ FV(A). We only treat two cases:

o application rule: T by (ad)F : Blx := a] out of I' b F : (All)B and T’ ¢ a : A.
Suppose Bz = a] is a kind and (CA\y) €' T, T'tp C : x. Ifx ¢ FV(B) then B is a
kind, so A and (All;)B are kinds too, hence y ¢ FV (a), FV(F') by the IH.

If x € FV(B) then a is a kind (as Blx := a] is a kind) and hence A = O which is
impossible as I' b F : (All,)B.

o conversion rule: 'z A: B out of ' A: B, T'Fx B': S, B=g B'. Suppose B is a
kind, then by lemma 4.9: B is o kind, hence by induction hypothesis we are done. O

16

Lemma 4.11
1.TF(A0)B:C=THFC:S for some sort S.
2. If 't A: S, 'z B: Sy and A =g B then Sy = Ss.
Proof:

1. Generation gives ' = A: D, '+ B: (DII,)E, Elz := A] =g C and Ejlz :== A]# C =
L'+C:S. So suppose E[x := A] = C, then I' - B : (DIl,)E implies by Corollary 3.16
that T' = (DII,)E : S. Hence, by generation T' = D : S1, T'(D)A,) b E : So. Now, use
I'F A: D and substitution to get I' - E[z := A] : Ss.

2. Note that Sy =0 or So = 0, hence by Lemma 4.9, S1 = Ss. O
The crucial step in the proof of Subject Reduction in Aw and A_, is proved in the following:

Lemma 4.12 (Shuffle Lemma for Aw and A_)
I ke 51(A0)59B @ C <= T b 5152(A0)B : C where 5y is well-balanced and the binding
variables in So are not free in A.

Proof: By induction on weight(s2). Case weight(S2) = 0 then nothing to prove.
Case weight(3s) = 2, say 32 = (D0)(E);), use induction on weight(31). Suppose first,
weight(s;) = 0.

=) suppose I' = (A0)(DO)(EN,)B : C. Using generation three times, we obtain:

TheA:F (1)
'z (DO)(EX)B : (FII,)G (2)
G =Gly:=A)=3C (Lemma 4.10,Corollary 3.16) (3)
TbeD:H (4)
Tbp (EA)B : (HIL)I
I =1I[z:= D] =5 (FII,)G (Lemma 4.10,Corollary 3.16) (5)
T be (ETL)J : S
D(EX) Fz B:J (6)
(HIL,)I =5 (ETL,)J (7)
Out of (7) and Lemma 4.10 we see that v = z, H =g E, I = J, y ¢ FV(G),z ¢ FV(I) U
FV(J), TreF,G HIE:S (8)
and out of (7) and (5): J =5 (FI1,)G. Hence (9)
I'(EXg) F¢ B : (FII,)G (conversion, (6), (9), (8) implies (10)

by the generation and thinning
lemmas: I'(EA;) e (FI1L,)G : S1)

D(EX;) Fp A F (thinning lemma, (1)) (11)

I(EXg) e (A0)B : G ((10), (11), application, Gy = Al =G) (12)

't (HIL,)G, (ElL,)G : Sy (formation, thinning, I'-¢ H,G,E : S}) (13)
I'Fe (EX;)(AS)B = (HII,)G ((12), (13), abstraction, conversion, (14)

(8) = (ETL;)G =5 (HII;)G)

17

I'Fz (DO)(EX;)(A0)B : G ((14), application, (4), G|z := D] =G) (15)

ke, C: S (Lemma 4.11, hypothesis) (16)
Tz (DO)(EX)(AS)B : C (conversion, (15), (16), (3)) (17)
<) Suppose ' 1 (D0)(EN,)(A0)B : C
Then CHC: 5 (Lemma 4.11) (18)
and by generation three times we get:
by D:F (19)
L'k (EXy)(Ad)B : (FII,)G
G=Gly:=D]=3C (Lemma 4.10, Corollary 3.16) (20)
[ty (BIL)H : S, (21)

D(EX,) bz (A6)B: H

(EIL,)H =5 (FIL)G (22)
D(EX) Fr AT (23)
T(EX,) bz B : (ITL)J (24)
J=Jz:=Al=3 H (Lemma 4.10, Corollary 3.16) (25)

Now (24) and Corollary 3.16 imply that for some Ss, ['(EX;) b (IT1,)J : Ss. Hence, by
Lemma 4.10, z ¢ FV(J),L(EX;) Fe J 2 S3. Also, by Lemma 4.10, we get out of (21) that
ke E:Sy,T(EXg) Fg H: Sy and o ¢ FV(H). Now, J =3 H from (25), hence « & FV (J).
Moreover, by Lemma 4.11, we see Sy = S3. Hence,

I'Fr (B)(I11,)J = Sy formation (26)
I'Fe (EX)B @ (Ell,)(I11,)J ((26), (24), abstraction) (27)

Cbe (DO)(EN)B : (IT,)J (application, (27), x & FV(I,J)
[tz D : E because (22) (28)

implies £ =g F
and we use conversion, (19), Uy E:S3)
T (A0)(D8)(EA;)B :J (out of D(ENg) e A:T and D : E (29)
we find by substitution (x ¢ FV(A,I)),
'tz A:I. Now, use application)
I'Fr (A0)(DO)(EX)B : C ((29), (conversion; C =g J
follows from (25),
(22) and (20))
Now suppose weight(s1) = n+ 1. Using the generation lemma we obtain I -, 5 (A0)32B :
C', where weight(s)) = n, hence the induction hypothesis says I 1 $152(A0)B : C" and by
applying the appropriate derivation rule we obtain I' -z 5152(A0)B : C.
Case weight(Sg) = 2(n + 1),n > 1, then Sy = (DJ)s3(EN,)S4 for some C,D, = and well-
balanced segments 33,54. Then, weight(33),weight(54) < 2n and we see:
T Fr51(A6)(D6)S3(EN)5aB : C £ T k1 5, (A6)53(D0) (BN,)54B : C £
T b 5155(A0)(D6)(EXg)5uB : C £ T, 5155(D6) (BN (A6)54B : € &
T bz 51(D6)53(EAg)(A0)54B : C 5 T k4 51(D68)53(EN,)54(A8)B : C O

18

Theorem 4.13 (Generalised Subject Reduction for A\w and A_, for - and —»g)
IfT'F A:B and A —g A" then T o A" : B.
Proof: We prove by simultaneous induction on the generation of I't-y A : B that

Fl—gA:B/\A;)ﬁAI = Fl—gAI:B (’L)
TheA:BAT 4T = T'hpA:B (i)

where T — g T" means T = T1(AX;)T2, TV =T (A'A;)T2 and A — 5 A’ for some Ty, T9, A, A, x.
The cases in which the last rule applied is aziom, start, weakening or conversion are easy (for
start: use conversion). We treat the three other cases.

Formation: T g (A11l;)By : S1 is a direct consequence of ' g Ay + S1 and (A1) b By :
Sy, then (i) comes from IH(i) and IH(it); (ii) comes from IH(ii). Abstraction: similar to for-
mation. Application: T bz (ad)F : Bi|x := a] is a direct consequence of T'Fp F : (A1) By
and I'Fz a: Ay. Now (ii) comes from IH(ii). We consider various cases:

o Subcase 1: (ad)F < (ad)F' because F —g F'. Then (i) follows from IH(i).

o Subcase 2: (ad)F —g (a’'0)F because a —g a'. From IH(i) and application, T = (a’0)F :
B[z := d']. Also, from Corollary 3.16, for some S1: T b (A1ll;)By : S1 and hence
by generation: T'(AN;) kg By : S1 and thus by substitution I' -z Bylz :=a] : S1. Now
conversion gives I' br (a'0)F : By[x := a] which proves (i).

o Subcase 3: F =5(A'\y)F', 5 well-balanced and (ad)F — 3 SF'[y := a]. Now, by Lemma
4.12, T F£ 5(ad)(A'\y)F' : Bi[z := a] and 5(ad)(A'\y)F' =3 5F'[y := a] so by SR for
—»g, I' ¢ SF'[y := a] : Bi[z := a] which proves (i). O

SR however is not valid for the other systems of the Cube as the following examples show:

Example 4.14 (SR does not hold in A2 using —+3)

(:X8) (BAy) Fag (Fr for £ € {A5, Aw}) (¥/0)(89) (xAa) (ary) (yd) (ahy)z : 3 (see Example 3.8).
Moreover, (y'0)(80)(*Aa)(ady)(yd)(ads)z =5 (85)(+Aa)(y'0) (@As)

Yet, (xAg)(BAy) a2 (89)(xAa)(y'6) (adg)z = B.

Even, (*Ag)(BAy) a2 (80)(xAa)(y'0)(aXg)z : 7 for any 7.

This is because (a\;)x : (ally)a and y : § yet o and [are unrelated and hence we fail in
firing the application rule to find the type of (y'0)(aA;)z. Looking closer however, one finds
that (9)(xAq) is defining « to be 3, yet no such information can be used to combine (all;)a
with 8. We will redefine the rules of the Cube so that such information can be taken into
account. Finally note that failure of SR in A2, means its failure in AP2, Aw and A\C.

Example 4.15 (SR does not hold in AP using —3)

(A0 (20 (0T $AQ) ()QAw) Fap (N8)(16) (0,) (20) Q2) (96) (28)QA2)Z : (t8)Q. Note
here that this cannot be derived in A_,, A2 or \w (see Example 3.8).

And (N8)(16)(0Ae) (10) Q) (98) (£0)QA2)Z =55 (19)(0ha) (NO)(20)QA2)Z

Now, N : (t0)Q,t : o,y : (x0)Q,x : 0, (t0)Q # (20)Q.

(A0 (02 (0T1y) A0) (F)QAN) Vap (88) (0A0) (N3) (28) QA7) Z : 7 for amy 7.

Here again the reason of failure is similar to the above example. At one stage, we need
to match (z0)Q with (£6)Q but this is not possible even though we do have the definition
segment: (t0)(o\;) which defines x to be t. All this calls for the need to use these definitions.
Finally note that failure of SR in AP, means its failure in AP2, A\Pw and A\C.

19

5 Extending the Cube with definition mechanisms

As a first step in the direction of including extended reduction in the systems of the Cube, we
now investigate adding definitions to the Cube. We shall extend the derivation rules so that
we can use definitions in the context. The rules remain unchanged except for the addition of
one rule, the (def rule), and that the use of ' H B =g4¢¢ B’ in the conversion rule really has
an effect now, rather than simply postulating B =3 B'.

5.1 The definition mechanisms and extended typing

Definition 5.1 (Azioms and rules of the Cube extended with definitions: d ranges over dec-
larations and definitions)

(aziom) <>Fex: O

(start rule) T subIj'j a)d: ored(d)

(weakening rule) I'=<d e ll;c_l |_E8 D:FE

(application rule) LFe FFI—(f(IZTS))}B; Bl :i Z]e a:A

(abstraction rule) L(AN) '_; fie (BA)\w)b : (Ijllllj[i)(gHI)B)

(def rule) % if d is a definition

(conversion rule) I'FA:B L 'EBFB;,A ?B' [B =ges B’
(formation rule) LreA4:5 [(AA;) F° B : S If (S1, S2) is a rule

T Fe (AlL,)B : 5

Note that in the abstraction rule, it follows that (A\;) is bachelor in I'(A);). The reason
is that we can show that if I' is legal then I' contains no bachelor main J-items. Hence as
'€ (AIl,)B : S, T has no bachelor d-items and so (A);) cannot be matched in T

By I'd ¢ def(d) : pred(d) in the (start rule) and (weakening rule), abbreviating O (as
in (O6)(AAz)) is not allowed. Also by I'd F¢ pred(d) : S, abbreviating kinds is not allowed.
One might argue that this last condition could be omitted but it doesn’t seem urgent to do
so. The (def rule) says that if C': D can be deduced from a concatenation of definitions d,
then dC' will be of type D where all the sub-definitions in d have been unfolded in D. We
do not get type dD in order to avoid things like dO. Note that the (def rule) does global
substitution in the predicate of all the occurrences of subjects in d. The reason is that d no
longer remains in the context. In the conversion rule however, substitution is local as I' keeps
all its information (see Definition 3.4). The following examples show how this works:

Example 5.2 Here is how the term in Example 3.8 and its < g-contractum is typed in A2.
(Note how quicker we can type terms once we have definitions. Note also that the derivation

20

given in Example 3.8 is also valid here, yet it is more clear and efficient to use the definitional
segments (yd)(a\,) and (y'0)(30)(¥Aa)(cMy). The present derivation is even valid in A_,,
because we don’t need (x¥Ay)(a)y)(yd)(aA;)z to have a type due to the (def rule).)

e *: 0 (axiom)
(¥Ag) Fip B 1 x: O (start resp. weakening)
($Ag) (BAy) FSo ¢’ : B %2 O (start resp. weakening)
(:X3) (BAy) (B0) (:Aa) FSo vt B % 1 O, v s % (start resp. weakening)
(#A5) (BAy) (B0) (¥ Aa) FSo @ =der B (definition of =4e¢)
(xAg) (BAy) (B6) (*xAa) FSo ¥/ vt (conversion)
($X5) (BAy) (' 6) (BO) (Ao) (@Ny) FSo y s v - % (start resp. weakening)
($X8) (BAY) (' 6) (B9) (xAa) (aXy) (y0) (ade) FSy 2 - @ (start resp. weakening)
[0 (5)(85) (s YAy (wO)(ae) = 2 := Y[y := y][ev:=] = 3
(xA5) (BAy) FSa (4/6)(80) (+Aa) (Ay) (y0) (adz)x : B (def rule)
Also (¥Ag)(BAy) FSo (89)(¥Aa)(y'0)(arz)x : B as follows (needed derivation steps, including
(xA3)(BAy)(B0) (xAa) FSe y' : a by (conversion) , are left to the reader):
(xA5) (BAy) (86) (xAa) (4 0) (eAg) FS, @ @ s0 by (def Tule)
(xA3) (BAy) FSs (B0)(+Aa) (¥'0) (@Ag)z @ afz :=y'][a:= B] =

Example 5.3 Also the term of Example 4.14 can be easily and quickly typed in AP (note
that this term cannot be typed in A_, as the term () can’t):

(¥Ag) (0Ae) ((011g) *+ AQ) ((£0) QAN) (N) (0) (0 A2) ((20) QA) (y0) (20)QAz) Fip Z : (26)Q
(#A0) (M) ((oTly) + AQ) (1) QAN) 5, (N0)(£6)(0Ax) ((20)QAy) (40) ((20)QAZ) Z : (80)Q

Its < g-contractum gets the same type as follows:

(¥A0) (M) ((011y) * AQ) ((£0) QAN) (6) (0 Aa) (NO) ((20)QAz) F5p Z = (20)Q
($A0) () ((01lg) * AQ)((20)QAN) 5, (#9)(0As) (NO)((20)QAZ)Z = (16)Q

Remark 5.4 We need I' ¢ A =4.¢ B instead of A =g B in the conversion rule because we
want from (xAq)(A6)(xA;) F¢ A @ * and y is fresh to derive not only (¥A4)(Ad)(xAz)(ANy) F©
y : A but also (xA4)(A0)(xAy)(ANy) F¢ y - . This is not possible if conversion is left with
B =3 B': how can we ever derive (xAq)(A0)(xA\;)(ANy) F€ y: x as & #g A? If we change to
the conversion rule using =g4.¢, then we are fine:

(AN AN 7y 4

'_8

5.2 Properties of the Cube with definitions

If we look at Section 3.2 and because we have changed I to ¢ but left — 5 unchanged, we see
that all the lemmas and theorems which had F in their heading get affected. In this section,
we will list these lemmas and theorems for -¢ and give their proofs.

Lemma 5.5 (Free variable lemma for F¢)
Let T be a legal context such that T' +¢ B : C'. Then the following holds:

21

1. If d and d' are two different elements of I'-decl U'-def, then subj(d) # subj(d').
2. FV(B),FV(C) C dom(T).
3. For sy a main item of I', FV (s1) C {subj(d) | d € I'-dec1UI'-def,d is to the left of s1 in I'}.

Proof: All by induction on the derivation of I' F¢ B : C. O

Lemma 5.6 (Start Lemma for)
Let T be a legal context. Then T' ¢« : 0 and Vd € T[Tl F¢ d].

Proof: I legal = 3B, C[I' ¢ B : C]; now use induction on the derivation I'F¢ B : C. O

Lemma 5.7 (Transitivity Lemma for)
Let I" and A be legal contexts. Then: [FC ANAFA:B]=TF A:B.

Proof: Induction on the derivation A +¢ A : B. O

Lemma 5.8 (Definition-shuffling for =¢) Let d be a definition.

1. If TdA ¢ C =qet D then I'd(def(d)d)(pred(d)Asupj(a)) A F¢ C =qes D.
2. If TdA ¢ C: D then I'd(def(d)d)(pred(d)Asuj(q))A F¢ C: D.

Proof: 1. is by induction on the generation of I'(Ad)S(BAz)A F¢ C =qge¢ D. 2. is by
induction on the proof of T'(Ad)S(BA;)A F¢ C : D using 1. for conversion. O

Lemma 5.9 (Thinning for)

1. If Iy F° A =40t B, I'NAD'y is a legal context, then I'|/Al's F¢ A =40¢ B.
2. If T and A are legal contexts such that T C' A and if T'F¢ A: B, then A ¢ A : B.
Proof: 1. is by induction on the derivation I''\I'o F¢ A =4es B. 2. is as follows:

o [fTAFCA:B, T'FC: S, x is fresh, and no A-item in A is bound by a d-item in T,
then also I'(CAz)A ¢ A: B. We show this by induction on the derivation 'A ¢ A: B
using 1. for conversion.

o [fITSAF¢A:B, IsF¢C:D:S, |[Clz=C, xis fresh, 5 is well-balanced, then also
[(CHs(DA)A FC A: B. We show this by induction on the derivation TSA F¢ A : B.
In the case of (start) where I'(A0)S(BA;) F¢ x : A comes from'sF¢ A: B : S, [Als = A,
x fresh, then [A](coys(pr,) = A because x fresh and T(C0)5(DA;) F¢ A: B : S by IH.

o IfT'S(AN;)A F€ B : C,(A)N;) bachelor, 5 well-balanced, I's F¢ D : A,[D]s = D, then
['(DJ)s(ANz)A ¢ B : C is shown by induction on the derivation I's(AX;)A F¢ B : C
(for conversion, use 1.). O

Lemma 5.10 (Substitution lemma for ¢) Let d be a definition.

1. If TdA F°¢ A =4es B, A and B are I'dA-legal terms, then I'[A]g F¢ [Alg =dez [Bla
2. If B is a I'd-legal term, then I'd F¢ B =ge¢ [Bl4
3. If T(A0)(BAz)A F¢ C : D then T'Afz := A F¢ Clz := A] : D[z := A]

22

/.

5.

IfT(BA\)A ¢ C: D, ' ¢ A: B, (BX\;) bachelor in ', then I'Alz := A F¢ Clz := A] :
Dz := A]

If TdA R C : D, then I'|A]g F¢ [Cla : [D]a

Proof:

1.

3.

Induction on the derivation rules of =gez.

Case I'dA ¢ d)C =ges di(C[subj(d) := def(d;)]).

Then [d1Clq = ([def(d1)]ad)[d1]a([pred(di)]iAsubi(dr))[Cla

(d1C is I'dA-legal = subj(dy) ¢ dom(d))

and [d1(C[subj(dy) := def(d1)])]g = [di]a([Cla[subj(d1) := [def(d1)]d]),
hence T'[Alg ¢ [d1C]g =qet [d1(Clsubj(di) := def(d1)])]a

Induction on the structure of B.

Case B = x € dom(d): use (=qet def).

Case B = x ¢ dom(d): use (=qez Tefl).

Case B = (C0)D: use (=ges compl).

Case B = (COg)D (O € {\11}): use (=qet comp?).

Induction on the derivation rules, using 1., 2. and thinning, 4. Idem and 5. use 3. O

Lemma 5.11 (Generation Lemma for)

1.

5.

If T F¢x: A then for some B: (BA\,) € T, TF*B:S, I'F¢ A =4t Band 'F* A: S
for some sort S'.

If T'F¢ (AXg)B : C then for some D and sort S: T'(AN;) F¢ B : D, I' +¢ (AIl,)D : S,
e (All,)D =4e¢ C and if (All,)D # C then T'F¢ C : S’ for some sort S'.

If T +¢ (All,)B : C then for some sorts S1,Se: ' F¢ A: S, ' F¢ B : Sy, (51,52) € R,
['Fé C =4et S2 and if S #Z C then I' ¢ C : S for some sort S.

. IfT € (A0)B : C, (Ad) bachelor in B, then for some D,E, z: T'F¢ A: D, I' ¢ B :

(DII)E, I' F¢ E[x := A] =4et C and if E[x := A] £ C then ' ¢ C : S for some S.
IfTF*SA: B, then'sH° A: B

Proof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the
derivations (use the thinning lemma). As to 5., we use induction on weight(3). Case
weight(s) = 0: nothing to prove. If we have proven the hypothesis for all segments 5 that
obey weight(3s) < 2n and weight(s) = 2n + 2, 5 = S182 (neither s = () nor 33 = 0) then
by the IH: I'sy ¢ 53A : B, again applying the induction hypothesis gives I'sys3 F¢ A : B. If
we have proven the hypothesis for all segments 3 for which weight(3) < 2n and weight(3) =
2n + 2,5 = (Dd)s1(EN,) where weight(37) = 2n then an easy induction to the derivation
rules shows that one of the following two cases is applicable:

e I'st® A: B, T ¢ [B'|s =qes B and if [B']ls 2 B then T ¢ B : S for some sort S.

23

e 'FD:F, I Fe351(EN)A : (FIIy)G, I' F¢ B =4es Gly := D] and if Gy :== D] # B
then I' ¢ B : S for some sort S.

In the first case note that FV(B) Ndom(3) = 0 and by thinning I's F¢ [B'ls =q4et B, by
substitution ['s F¢ [B'ls =get B'. So I's F¢ B' =4¢¢ B and by conversion I's ¢ A : B. In the
second case we know by the induction hypothesis that I'sy ¢ (EX;)A : (FII,)G,

Now 2. tells us I'sy(E);) F¢ A : L, I'sy ¢ (Elly)L =4z (FI1,)G and if (E1l,)L #
(FII,)G then I'sy ¢ (FII,)G : Si for some S;.

This means that x =y, ['s7 F¢ E =g F, I's7 F¢ L =4e¢ G. Out of T'sy ¢ (EIL,)L : S we
get by 3. that I'sy ¢ E : Sy for some sort So, thinning gives I'sy ¢ D : F' so by conversion
and thinning I's ¢ A : L.

Out of I' F¢ B =4e¢ Gz := D] we get (thinning and substitution) I's ¢ B =4 G, out of
I'STF® L =40t G we get I'SH® L =40¢ G, hence I's F¢ B =g4o¢ L.

Now if Gly := D] # B then I' ¢ B : S for some sort S, and if G|y := D] = B then we
get out of I'sy F¢ (EX;)A : (FIL,)G that T'sy H¢ G = S" for some sort S', by thinning and
substitution we get that I's - Gy := D] : S'. In any case, we get I's F¢ B : S for some sort
S and by conversion we may conlude I's ¢ A: B. O

Theorem 5.12 (Subject Reduction for ¢ and —»3)
'FeA:Band A— A" then T H¢ A" : B.

Proof: We only need to consider A =g A'. Suppose ' F¢ (Ad)(BA,;)C : D. Then by
generation, ['(Ad)(BAy) F¢ C : D, and by substitution we get I' -¢ Clz := A] : D[z := A], but
as © ¢ FV(D), D]z := A] = D. The compatibility cases are easy. O

Theorem 5.13 (Strong Normalisation for the Cube with respect to = and —»g)
For all =°-legal terms M, M is strongly normalising with respect to —g.
Proof: This is a special case of the proof of Theorem 6.27. O

6 The Cube with definitions and generalised reduction

Now we extend the type system of section 5 by changing the reduction —#g into < 5. As was
the case in section 4 the derivation rules stay the same as those with classical g-reduction,
hence almost all lemmas that have been proved for the system in section 5 are still valid.
The only properties that have to be investigated are Church-Rosser, Subject Reduction and
Strong Normalisation. We will show now that all these properties too are still valid.

Theorem 6.1 (The general Church Rosser theorem for —g)
If A=»g B and A —»g C, then there exists D such that B <3 D and C <5 D.
Proof: see Theorem 4.6. U

Theorem 6.2 (Subject Reduction for F¢ and —3)
IfTH*A:B and A —»g A" thenT ¢ A" : B.

Proof: We only need to consider A —g A’. Suppose I' =¢ dC : D. Then by generation,
I'd +¢ C : D. Hence by definition-shuffling (5.8, say A = def(d), B = pred(d) and z =
subj(d)), I'd(Ad)(BA;) F¢ C : D. Hence by substitution I'd F¢ C[z := A] : D[z := A], and by
(def rule) I' ¢ d(Clx := A]) : [D[z := Al]g, which is I' F¢ d(Clz := A]) : [D]q. Now by the

variable convention [D]g = D so we are done. The compatibility cases are easy. O

Now we present the proof of SN for the Cube extended with definitions and < g.

24

6.1 Strong Normalisation

In [BKN 9x], we used the technique of [Barendregt 92] to show Strong Normalisation for
A, with extended reduction. However, here we use the proof of [Geuvers 94] due to its
flexibility and the possibility of its generalisation to systems beyond the Cube, which we may
be investigating in the future. Here is the terminology that will be needed. Let —» be a
reduction relation which contains —# g, is Church Rosser and for which the least equivalence
relation closed under it, denoted =_, is the same as =g. Let I be a typing relation which
ranges over - of Section 3 and over ¢ of Section 5.

Definition 6.3 Define a map # : T — {0,1,2,3} by #(0) = 3, #(x) = 2, #(z7) = 1,
#(x*) =0, #(A) = #(endvar(A)). For A€ T, #(A) is called the degree of A. Call a state-
ment A : B OK iff #(A) + 1 = #(B), call a definition d OK iff #(def(d)) = #(subj(d)) =
#(pred(d)) —1, and call a judgement ' - A : B OK iff A: B is OK, all definitions d € I'-def
are OK and for all items (CO,) € ' A, B (O € {\,1I}): z: C is OK.

We shall use # to prove that the classes of kinds, constructors and objects are mutually
exclusive. First we collect some basic facts about O and * in the type systems:

Lemma 6.4
1. If T A: B then A # 0.
If I is a legal context, then O does not occur in L.
If A is a legal term, then A =0 or O does not occur in A.

Suppose I' = A : B, then endvar(A) =+ < B = 0.

v e

If (A0) is an item in a legal context then endvar(A) # .

6. If (A0) is an item in a legal term then endvar(A) Z *.

Proof:

1. induction on the derivation rules.

2. simultaneous induction with 3. on the derivation rules using 1.

4. induction on the derivation rules; for = use 1. and 3. We treat the case in which
' A: B is a consequence of ' W A: B, ' B : S and ' -V B = B'. From the
induction hypothesis it follows that B = O. Then substituting and reducing introduce
no O in B as by 1. O¢ 7T, so O€ B'. But then by 3.: B' = 0.

5. induction on the derivation rules; use 4. and 2.

6. induction on the derivation rules; use 5., 4. and 5. O

Now we can prove that whenever I' - A : B then #(A) + 1 = #(B).

Lemma 6.5 For all contexts I' and terms A,B: if T A:B then ' A: B is OK.
Proof: We use induction on the derivation rules, we treat three cases.

25

o ' (ad)F : Blx := a] as a consequence of I' = F : (All,)B, I' - a : A, then by the
induction hypothesis #(x) = #(A) — 1 = #(a) and it can easily be seen that #(x) =
#(a) = #(Blx := a]) = #(B).

o 'dC : [D]g out of 'd = C : D, then by the induction hypothesis: for all subdefinitions
d' of d, #(def(d')) = #(subj(d')) so by repeatedly applying #(x) = #(a) = #(B[z :=
a)) = #(B) we get #([D]a) = #(D).

eI'FA:B outof TFA:B, T'+-B":5, T'+B= B, then by the generation corollary
3.16 B=0O orI'F B : S for some sort S.
If B=0O then T+ B = B’ implies B' = O as in the proof of lemma 6.4.

If B# O then S #2 OA B' # O implies S = S’'; suppose now S = 0, then ' - B : O
so by lemma 6.4 endvar(B) = x so again by lemma 6.4 also endvar(B') = x, hence

#(B') = #(B) = 2. If S’ = O then similar #(B) = #(B') = 2. g
Corollary 6.6 If I' is a legal context, then
1. T-kinds N T-constructors = 0,
[-kinds N T'-objects = (),

[-constructors N I'-objects = 0,

O ¢ I'-kinds U I'-constructors U I'-objects.
2. If (All;)B is a T-term then A and B are both a T'-kind or a T-type.

3. If (AX;)B is a I'-term then A is a I'-kind or a I'-type and B is a I'-constructor or a
I'-object.

4. If (A0)B is a I'-term then A and B are both a I'-constructor or a I'-object.

Proof: 1. is a direct consequence of lemma 6.5. 2., 8. and 4. are an easy corollary of
the relevant Generation Lemma and Generation Corollary. O

Lemma 6.7 (Soundness of —) If A, B € T are legal terms such that A =, B then there is
a path of one-step reductions and expansions via legal terms between A and B.

Proof: By Church-Rosser there exists a term C such that A —3 C and B —%g C. By
Subject Reduction for ordinary B-reduction all terms on the path A---C--- B are legal. O

Definition 6.8
e Define the set of untyped A-terms by A=V | C | (AO)A | (Av)A

o We say that a term M € A is strongly normalising with respect to — iff every —»-
reduction path starting at M, terminates. Note that a priori it isn’t clear whether M
is strongly normalising with respect to —»g implies that M is strongly normalising with
respect to <5 and that the reverse is trivial.

o We define SN, = {M € A : M is strongly normalising with respect to —»}.
e For A,B C A we define A— B ={M € A|VN € A[(N0)M € B]}.

26

Definition 6.9 Define the key redex of a term M as follows:
1. (A6)(BA;)C has key redex (Ad)(B;)C.
2. If M has key redex N, then (Pd)M has key redex N.

Define redi (M) to be the term obtained from M by contracting its key redex. Note that not
all terms have a key redex and that if a term has a key redex then it is unique.

Definition 6.10

e Define the set of base terms B, C A by V C B, and if M € B_,, N € SN_, then also
(NO)M € B.,.

e Call X C A saturated., iff: X C SN, B, C X and for all M € A: if M € SN_, and
red (M) € X then also M € X.

e Define SAT, = {X C A: X is saturated,}
Lemma 6.11

1. SN, € SAT.,.
2. VX € SAT., : X # 0.

3. If N e SN, M € X € SAT., and x ¢ FV (M) then (N§)(Ay)M € X. (Note here that
[Geuvers 94] takes (NS)(M6)(Ay)(Ae)y instead of (NO)(Az)M. The first however, will
not fit our purposes as is explained in Remark 6.25)

4. A,Be SAT , = A— B e SAT,,.

5. If I is a set and X; € SAT., for all i € I, then (;c; X; € SAT.,.

Proof: 1. SN, C SN, B, C SN_,. Furthermore, if M € SN, and redx(M) € SN,
then also M € SN_y as —»gC—». 2. and 3. by the definition of saturated sets. 5. is easy. Here
we treat 4. Suppose A, B € SAT.,.

e Asve A forallveV, wesee: t€ A— B = (v0)t € B= (v)t € SN, =t € SN,

o [fMeB,N¢ecAthen Nec SNso MNeBCB,soBCA— B.

o If M € SN, redy(M) € A — B then for all N € A: (Nd)redx(M) € B hence
(NO)M € B, hence also M € A — B. O

We define three maps, first } of I'-kinds to the function space of SAT.,, then []¢ of I'-terms\I'-objects
to elements of the function space of SAT.,, and third (), of I'-terms to A, such that when
certain conditions are met we have:

I'FA:B:0O=[A]¢ € V(B),[B]c € SAT,and ' A: B = (A), € [B]e.

Remark 6.12 It can easily be seen using lemma 6.5 that all kinds look like * with some
[T-applications and definitions in front of it, and have no bachelor - or §-items.

27

Definition 6.13 Define for all kinds A the set-theoretical interpretation of A as follows:
e V(x) = SAT,,
e V((All;0)B) = V(A) — V(B), the function space of V(A) to V(B)
e V((All,-)B) = V(B)
e V(dA) =V(A) if d a definition

Now define U = J{V(A) | A is a F-kind }.

Lemma 6.14

1. If A is a legal kind, B o legal constructor and C is a legal object, then
V(A) = V(A[z" := B)) and V(A) = V(A[z* := O)).

2. If dA is a legal kind (remember Remark 6.12), d is a definition, then V([A]q) = V(A).

Proof: 1. is by induction on the structure of A (note: A has no bachelor §- or A-items),
2. is by 1. (note: all definienda in a definition are either constructors or objects). O

Definition 6.15 Let I' be a F-legal context.

e A I-constructor valuation, notation £ E" T, is a map £ : V2 — U such that for
all (AX\;) € T with A a T-kind (i.e. x € V7): £(x) € U(A).

o If & is a constructor valuation, then []¢ : T-terms\I-objects — U is defined inductively

as follows:
o] = SN,
[<]e = SN,
[=7T¢ = ¢(z")
. [BlelAle if A € I-constructors
[(40)B]: = { [[B]]Z ‘ if A € I'-objects
L Af e V(A)[[B]] (z:=f) if A€ T'-kinds
[(AA)Ble = { e fop FAET i

[Ale = Nyeyou [Blew—p) i A € D-kinds,z € V°

[(Allz)B]e == { [A]e — [Ble if A€ -types,z € V*

where £(x := N) is the valuation that assigns (y) to y Zx and N to x. Furthermore,
with [A]¢[B]e we mean application of the function [A]e onto its argument [B]e and by
A we mean function-abstraction.

Before we verify that []¢ is well defined, here are some helpful facts about [].
Lemma 6.16 Let A, A" € I'-terms\I'-objects, B € I'-constructors, C' € T'-objects,z” a con-

structor variable and x* an object variable. Then

28

1. [A[2" = Ble = [Aleeo=(81)
2. [Alz* := C]]e = [Ale
3. A=5 A' = [A]e = [A']

Proof: 1. and 2. are by induction on the structure of A. 3. is by induction on the length
of the path from A to A’ through the legal terms (use Lemma 6.7). O

Remark 6.17 Note that =5 and =_, are the same equality relations.

Lemma 6.18 (Soundness of []¢) If 'F A: B : O then for all such that £ |=° T, we have:
[Al¢ and [B]e are well-defined and [A]e € V(B), [B]¢ € SAT.,.

Proof: By induction on the derivation rules. We treat two cases:

o '+ (ad)F : Blx := A] as a consequence of ' = F : (All,)B and I' - a : A. It is not
difficult to see that [Blx := A]]¢ € SAT., if [Blx := A]]¢ is a kind, because by Lemma
6.5, then also B is a kind. Furthermore, by the induction hypothesis [F]¢ € V((All;)B)
and if A is a kind then also [a]¢ € V(A). If A is not a kind, then [(ad)F]¢ = [F]¢ €
V((All;)B) = V(B). If A is a kind, then [F]¢ € V((All;)B) = V(A) — V(B) and
hence [(ad)Fle = [Fle[a]e € V(B) ™2 " V(B[z := a).

o I' - dC : [D]g as a consequence of I'd = C : D. Then by the induction hypothesis
[Cle € V(D) for all € E° I'd and if D is a kind, then [D]¢ € SAT-,. Now let £ E° T,
then [dC]¢ "™ ="' [[Cla]e = [Cler where €'(27) = (x7) if 27 is not the subject of a
subdefinition in d, and &'(z7) = [def(d')]¢ if 27 is the subject of a d' a subdefinition of
d. But £ |=° T'd, so [C]er € V(D) "™ 2" V([D]g). m

Definition 6.19 If £ =7 T, then we call £ cute with respect to U if for all d € I'-def such
that subj(d) € V7, £(subj(d)) = [def(d)].

Lemma 6.20

1. If ¢ E7 T and A is D-legal, then [A]e depends only on the values of & on the free
constructor variables of A.

2. If £ E7 T then there is a cute & such that & E" T and & = £ on the non-definitional
constructor variables of dom(T).

8. If € =" T and & is cute with respect to T then T'F A =4e¢ B = [A]¢ = [B]e.

Proof: 1. is easy, 2. is a consequence of 1. and 3. 1is proved by induction on the
generation of =qer using Lemma 6.16.

Definition 6.21

o Let £ EU T such that £ is cute with respect to T'. An object valuation of T with respect
to &, notation p,§ =T, is a map p: V — A such that for all (AN;) €' T': p(x) € [A]e
(regardless of whether A € T'-kinds or A € I'-types).

29

o For p,§ =T (note: this implies & is cute, define (), : I'-terms — A as follows:

(=)o = pl2)

(x), = *

@), = O
((No)M), = ((N)p0) (M),
((AX2)B), = ((A)p0)(Ay)(A2)(B)p(zi=sy (where y & FV(B))
((AlL;)B)p = (Ag)(B) p(ai=y)0) ([(ADpd)x (where y & FV(B))

Note that we need BC to ensure that no unwanted bindings occur in the case (All;)B.
The use of the endvariable x in this case is not essential, we also could reserve one
special variable w that should not be used otherwise and define ((All,)B)), to be the

term () (B) ae)0) ((A) 00

e We define another map [| : T'-terms — A by

[x] = =z

[%*] = =x

o] = 0O
[(NO)MT = ([N16)[M]
[(AX)B] = ([A]6)(Ay)(Ae)[B] (where y & FV(B))
[(All;)B] := ((Ay)[B(z :=y)10)([A16)x (where y ¢ FV(B))

Definition 6.22 Let I' be a context, A, B € I'-terms. T satisfies that A is of type B with
respect to = and —», notation I' EL, A« B, iff V€, plp, € E T = (A), € [Bl¢).

Lemma 6.23

1. If T(A0)d(BAz)A is a legal context and p,§ |= T'(A0)d(BA;)A then (A), € [B]e and
(B), € SAT,,.

2.TdEA:B=T|=dA:[Blq

Proof: 1. is by induction on the derivation rules. 2. is by induction on weight(d).
If d = 0 then nothing to prove, suppose now d = (C§)s1(DA;)se. Then by the induction
hypothesis I'(C9)s1(DAg) =524 : [Bls,-

o Suppose v € V*. Let p,{ = I's;. Then for all E € [D]¢ we have p(x := E),§ |
[(C0)51(DA;). Hence (52A)pz=r) € [[Bls.le, hence (Ag)(52A) pzi=e) € [D]e —
[[Bls,] and also (D) ,5)(g) () (52 A)eeo) € [Pl = [Blle (b 1. (D), € SAT,
use Lemma 6.11). This means I's; |= (DA;)S2A : (DII,)[Bls,, so by the induction
hypothesis I' = 51(DA;)52A : ([D]s, ;) [Blsys,- If p,& ET then by 1. (C), € [D]¢ and
(1(DA)524), € [Dlsyle — [Blsys,le. hence ((C),0)ELDA)52A), € [Blsys,le =
[[Bl(cs)s1(Das)s:les s0 T (C6)51(DA)S2A = [Bl(cs)s, (DA)52 -

30

o Suppose x € V7. Let p,& = T5. Then p(x := E),&(z := f) | T(C8)31(DA;) for all
f eUD) and E € [D]g, so (524) p(z:=r) € [[Blsle€(z := f), hence (A)(524) p(z:=2) €
[Dle = Nycrapyl[Blsalew=r)- But then also ((D),6)(Ay)(Ae)(524) p(zims) € [D]e —
ﬂfEU(D)[[[B]§2]]§($5:f) (use 1. and Lemma 6.11). Hence we see: I's) |= (DAg)3524 :
(DI1,)[Bls,, so by IHT |=351(DA;)352A : ([D]s,11;)[Blsys, -

Now let p,§ |=T. Then (51(DA;)524), € [([D]5,11z)[Bls,s,]¢ and (C), € [[D]s,]¢ by
1'7 50 (qcbppa)(qgl(DAa:)EZA])pp) € ﬂer/{(D

This means ((C9)51(DAs)524) pp € [[Blsisoletw—icle = [[Blsis.lz = Cll¢ &
[[Bl(coys,(prn)s:les hence T = (C)51(DAz)324 : [B](cs)s, (DA,)se - O

Lemma 6.24 ((), versus [])

Bl 5, le@:=r)"

1. VM € I'-terms, Vp: (M), = [M][Z := p(?c)] where T are the free variables of M.

2. If s is a well-balanced segment then [SA] = [S|[A] and [3] is also well-balanced. More-
over, FV([A]) = FV(A).

3. For all M € I'-terms: [M] is strongly normalising = M is strongly normalising.

Proof: The first statement is easy to verify. The second statement is also easy. The
third statement can be proved as follows: we prove by induction on the structure of M, that
whenever M — N, then [M] — [N]. We show the only non-trivial case (note that when —»
is —»g, thens=0). If M = (A0)s(BX;)C — 5(Clz := A]) = N, then

[M] = ([A]19)[5(BA:)C] = ([A]0)[S]([B10)(Ay) (X)) [C]

— ([A10)[5](A2) [C] (note that y & FV((A x)[CW
= [s][C][x := [A]] = [5][Clz := A]] = [5(Clz := A])] = [N]. O

Remark 6.25 With this Lemma, it becomes clear why we depart from [Geuvers 94] by using
[(AXg) B] to be ([A]6)(Ay)(Az)[B] instead of ([A]6)((Az)[B]0)(Au)(Av)u.

Counsider for example P = (Ad)(BJ)(CAy)(DAy)E and Q = (B6)(CA)Ely := A]. It is
obvious that P <5 @ and that [P] = ([A]0)([B19)([C16)(Ap)(A2)([D1)8)(Ag) (M) [ET =5
[Q] = (IB19)([C18)(Ap)(Az)[Ely := [A]]. Yet, if we use the translation of [Geuvers 94],
then we get [P] = ([A10)([B16)([C6)((Ae)[(D/\)ET6) (Aw) (Av)u
#rp [Q = ([BIO)([CT0)((Ae)[ET[y == [A]]6)(As)(A)s.

Lemma 6.26 'FA:B=TEFA:B
Proof: Use induction on the structure of A to prove that if p,& =T then (A), € [B]e:

e A =ux. Then by generation for some B': T' - B’ =4¢¢ B and (B')\;) € I'-decl U '-def,
so by p,& = T,(B'\;) € I'-decl U I'-def, and Lemma 6.16, we get (A), = p(x) €

[B']e = [Ble-
o A= (PX;)Q, with P € I'-kinds.

Then by the generation lemma for some R, T'(P\;) F Q : R with T' + (PII;)R =g4e¢ B,
't P: 0. By IH we find that (Q)p(z:=p) € [Rl¢@:=y) for all p € [Ple, f € V(P), so
(@ p=p) € Npeyp)[Ble@=r)- By IH also (P), € [O]¢ = SN, so by Lemma 6.11

(A)p = (P)Q])p— ((P)o0)(Ay) M) (@) pa:=a) € [Ple = Nyeyp)[Ble(i=r) = [Ble-

31

A= (P)\;)Q with P € I'-types. Then similar to the previous case.

o If - is ordinary typing and A = (P0)Q with P € I'-objects. Then I' - @ : (RIL,)T,
I' = P: R for some R,T with I' - T[x := P| =4es B (again generation lemma). Now
by IH and lemma 6.11 we see that (Q), € [R]e — [T]¢ and (P), € [R]¢,

so (A), = (PO)Q), = ((P),0)(Q)) € [T]¢ = [T[x := Plle = [Ble-

o A = dP where d is a definition. Then by the Generation Lemma I'd ¢ P : B. By the
induction hypothesis we then know that I'd |= P : B, hence by Lemma 6.23.2 we get
that T = dP : [Blg, but [Blg =B, soI' =dP : B.

e A= (P6)Q with P € T'-constructors where (P9) is bachelor in (P§)Q then also similar.

o A= (PIL,)Q. Then by generation I' = P : S1, I'(PA;) - Q : Se, So =3 B.
If P € T-kinds, then IH says (P), € [O¢, (Q)pw:=p) € [S2le(a:=p) for all p € [Ple, f €
V(P), hence [Pl € SNo, (A2)(Q) p(z:=z) € SN.
But this means (A), = (A)(Q) p(z:=2)0) ((P)p0)x € SN = [S2]¢ = [Ble-
If P € I'-types, then similar. O

Theorem 6.27 (Strong Normalisation for the Cube with respect to ¢ and —=g)
For all =°-legal terms M, M is strongly normalising with respect to —g.

Proof: Let M be a F°-legal term. Then either M = O or for some context I' and term N,
I'H¢ M : N. In the first case, clearly M is strongly normalising. In the second case, define
canonical elements ¢ € V(A) for all A € T-kinds as follows:

C* = SN(_»B
(AlLL)B Af € V(A).CB if A € I-kinds,z € V5
cAllz)B . B if A € D-types,xz € V*

Take & such that £(z) = ¢ whenever (A);) € T and &(subj(d)) = [def(d)]¢ whenever
d € I'-def and take p such that p(subj(d)) = (def(d)), for all subdefinitions d of T’ and
p(x) = = otherwise. Then p,& |= T, hence (M), € [N]¢, where (M), = [M] as mentioned
in lemma 6.24. Hence [M] € [N]¢ € SNe,,. By lemma 6.24 now also M € SNe, ,. O

This Theorem proves also SN for the other Cubes in this paper (the Cube extended with
nothing, definitions or <) as the legal terms of those Cubes are also legal in the Cube of
this section, and SN with respect to <3 implies SN with respect to — 4.

7 Comparing the type system with definitions to other type
systems

In this section we will compare the type systems generated by ¢ with the one generated by
F, from two different points of view. The first is the conservativity, where we show that in a
certain sense, definitions are harmless. That is, even though we can type more terms using ¢
than using F, whenever a judgement is derivable in a theory £ using definitions and ¢, it is
also derivable in the theory £ without definitions, using only F and where all the definitions
are unfolded. The second viewpoint is about the effectiveness of derivations. More work has
to be done yet but it is certain that there is a gain in using definitions.

32

7.1 Conservativity

As we saw in example 5.2, in the type systems with definitions there are more legal terms.
Therefore, it has to be investigated to what extent the set of legal terms has changed. Note
first that all derivable judgements in a type system of the A-cube are derivable in the same
type system extended with definitions as we only extended, not changed, the derivation rules.
A second remark concerns the bypassing of the formation rule by using the weakening and
definition rule instead: In A2 without definitions we can derive the following by using the
formation rules (*,*) and (O,) (take I' = (*Ag)(BAy)):

FFypy:08:x:0

*)I—)\z ok start)

L (A (
L(#Aa) (@A) Fa2 ot * (start resp weakening)
L(*Aa) Fa2 (odlg)a (formation rule (x,x))
['(xAq) Fa2 (@Ag)T : (aHI)a (abstraction)
I'xo (#11a) (ol) - (fromation rule (O, %))
[Fyo (xAa)(a)g)x @ (I1,)(all,)a (abstraction)
[g (80)(xAa)(aAg)x : (BI;)B (application, we already knew ' Fyg 51 %)
((

[Fao (90)(B)(xAa) (aXg)x : B application, we already knew ' o y : 3)

It is not possible to derive this judgement in A_, as the formation rule (O,) is needed. Now
we observe that the term (yd)(59)(xAq)(aAz)z can be seen as z with two definitions added,
and using this observation we can derive the judgement in a type system with definition
without having to use the formation rules (x,*) and (O, *):

S,y B O

(65)(*)\ JESL ¥y B« (weakening resp. start)
L(B6)(xAa) FS_, @ =det B (use the definition in the context)
['(B9)(*Aa) I—i TRRe (conversion)
D(36)(88)(<Aa)(0he) 5, 7 (start)

LS (90)(80)(%Aa) (@Ag)z : afz :=y][a:=] = B (definition rule)

This example shows that in A_,4.¢ we have more legal judgements than in A_,. Now we take
a look at the judgement I' = (36)(*Ao) (M Ay)x : (MI1,)M where M = (yd)(BX.)(86)(xAy)y
and I' = (*A3)(BAy). This judgement can be derived in AC using the formation rules (O, 0),
(O,%), (x,0) and (*,*) in the following way:

Iy B:x: 0

L(#Aq) Fac Brx: 0 (weakening)

LX) (B\) Fac z: B:x: O (start resp. weakening)
C(#Aa)(BA2)(¥Ay) Fac v - % : O (start resp. weakening)
L(*Aa)(BAz) Fac (1)) : O (formation rule (0,0))
L(+Aa)(BA2) Fac (xAy)y : (*I01,) * (abstraction)
L(xAa)(BA2) Fac (B0)(xAy)y : * (application)

L(*Aa) Fac (B,)* : O (formation rule (x,3))
I'(*Aa) Fac (BA2)(B)(xAy)y : (BII;)* (abstraction)

33

Fleha) bac M ¢ (application, M = (y6)(B:) (55) (<A,)7)
LX) (M) Fac z: M : % (start resp. weakening)
[(#Aa) Fac (M) M = % (formation rule (x,*))
L(xAa) Fac (MAg)z @ (MIIL,) M (abstraction)
[Fxe (#a) (MTL) M : * (formation rule (O, %))
I Fac (#Aa) (MXg)z : (+I1,)(MIL,)M (abstraction)
I'Fac (80) (X)) (MAg)x : (MII;)M (application)

It is impossible to derive this judgement in any other system of the cube than A\C' as all four
formation rules are needed. We can however derive this judgement in A_,ges:

TH B:x:
INEGS)(*)\a) i_} B:x:0 (weakening)
L(B6)(xAa)(y0)(BA;) S, B:+:0 (weakening)
L(B86) (¥ Aa) (Y0) (BA) (B0) (xAy) S v+ % (weakening)
INGIHIERW) i (y0)(BA)(BI)(xAy)y = *[y := B][z :==y]| i.e. M :* (definition rule)
F(ﬁé)(*ka)(Ag) FS, ® M :x (start resp. weakening)
L(B6)(xAa) FS_, (M) M : x (formation rule (x,x*))
L(66)(xA\a) I—f{_} (MMg)x : (M,)M (abstraction)
LS (B0)($Aa) (M Ag)z + (MIL)Mo :=] = (M) M (definition rule)

This example shows that in every system of the A-cube (except AC'), adding definitions gives
more derivable judgements. As was shown in Eample 5.2, (xAg)(8Ay) FSo (89) (¥Aa)(y'6) (aXz)x
[is derivable in Aoger and hence is also derivable in ACy4e¢, but this judgement cannot be
derived in AC' as y is of type [and not of type a. At first sight this might cause the reader
to suspect type systems with definitions of having too much derivable judgements. However,
we have a conservativity result stating that a judgement that can be derived in Lg4o¢ can be
derived in £ when all definitions in the whole judgement have been unfolded.

Definition 7.1 For I' ¢ A: B a judgement we define the unfolding of ' =¢ A: B, [['F¢ A :
BJ* to be the judgement obtained from I' F¢ A : B in the following way:

e first, mark all visible §\-couples in ', A and B,
e second, contract in I';, A and B all these marked §\-couples.

When T’ = --- (C6)S(DAy) - -+, contracting (CO)(DN,) amounts to substituting all free occur-
rences of x in the scope of Ay by C; these free occurrences may also be in one of the terms
A and B. The result is independent of the order in which the redezes are contracted, as one
can see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.

Example 7.2 [(xAg)(BXAy)(y0)(BI) (xAa)(adz)(aA;) F¢ ((ary)ud)((all,) BAy) (xd)v @ af* is
(:A8) (B2 (A = gl 1= A]) ¢ (((2)0)[o i= (ada)u])[z := ylla =] : ol == ylla := 6],
which is (xAg)(BAy)(BAz) F¢ (y0)(BAy)u : B. Note that the resulting context contains only
A-items and that the resulting subject and predicate need not be in normal form.

Theorem 7.3 Let L be one of the systems of the Cube, I' a context with definitions and A, B
pseudoterms. IfT'F% A: B then I -y A" : B, where I" -y A" : B' is [F% A : B]“.

Proof: use induction on the derivation of I' F7 A : B. axiom, abstraction and formation
rules are easy, we treat the other cases.

34

o The last rule applied is the start rule. Then I'd % subj(d) : pred(d) as a consequence
of ' < d. Now if d= (AX;) then by IHT' F, A" S (S a sort, x fresh) so by the start
rule I'(A'\;) bz xz : A", On the other hand, if d is a definition, say d = (Ad)d(B)\,),
then by IH (I'd) Fp A" : B": S (S a sort), which is " Fp A" : B' : S as d will be
fully unfolded, and the unfolding of T'd % subj(d) : pred(d) is I -, def(d)’ : pred(d)’
which is T" =, A" : B' so we are done.

o The last rule applied is the weakening rule, say 'd F7 D : E as a consequence of I' < d
and T'd +% D : E. Because subj(d) is fresh we have that (U'd)' -z D' : E' is the same
as (Id)' Fz D' : E' so by IH we are done.

e The last rule applied is the application rule. Then I' % (ad)F : Blx := a] as a
consequence of ' =% F : (All)B and I' % a : A. By IH and the application rule we get
I'Fp (d'0)F' . B'[x := d']. Now by subject reduction also I b, ((a/0)F")' : B'[z := d].
If B'[z := d'] = (B'[x := d'])’ then we are done, otherwise, by the Generation Corollary
I'"Fr Bz :=d'] : S for some sort S, so by subject reduction I" b, (B'[x :=d'])' : S
and as B'[x := d'] =3 (B'[x := d'])’ by conversion we are done.

e The last rule applied is the conversion rule. Then I' 7 A : B as a consequence
of ' ¢ A: By, 'R By i S and I' B By =get Be. Now I' FG By =qe¢ By implies
B =g B because if C results from D by locally unfolding a definition of T’ then C' = D',
so the result follows by IH.

o The last rule applied is the definition rule. Then I' F% dc : [D]gq as a consequence of
IdtC:D. By IH, I" b [C']4 : [D']q which is the unfolding of T +% dc : [D]g4.

Remark 7.4 It is not sufficient in theorem 7.3 to unfold all the definitions in the context
only, because a redex in the subject may have been used to change the type when it was still
in the context, this is illustrated by (xAg)(BAy) FS_ (80)(¥Aa)(yd)(a)z)z : B which cannot be
derived using - _,. However, this judgement where all the definitions are unfolded in context,
subject and predicate, is derivable using . That is, (xAg)(8Ay) Fa_ v : 5.

7.2 Shorter derivations

As we already noted, derivations using the definition mechanism seem to need considerably
less derivation steps to derive a judgement that can also be derived without definitions. As
to the type-checking of terms, we do not think that type-checking in the extended systems
will be more difficult than in the A-cube of Barendregt, nor do we think it will become less.

7.3 Comparison with the systems of the Barendregt cube

Here we discuss the (dis)advantages of our extended typing systems to the typing systems of
the A-cube.

In the extended typing systems we can reason with definitions in the context (which is
very natural to do): we can add definitions to the context in which we reason (the start rule
and weakening rule), we can eliminate definitions in the context (the def rule) and we can
unfold a definition in the context locally in the type (the conversion rule).

Furthermore, in the terms, there are more visible redexes and all these redexes are subject
to contraction.

35

If one considers one of the seven lower systems in the A-cube, some abstractions are
forbidden, for instance in APw the abstraction of a term over a type is not allowed (this
abstraction corresponds to universal quantification in logic). Intuitively such a quantification
need not be forbidden if it is immediately being instantiated by an application, as is the
case in the term (Ag.x.(Ag:q-2)3. However, in the system APw this term is untypable as the
subterm Ag.s.(Ag:q.x) should have type Il,...(II;.q.2), which is forbidden as the formation
rule (O,) is not allowed.

Now in our extended typing system APw, we can type the term (Ay:.x.(Az:a-z))3 by
using the def rule: from (xAg)(86)(xAg) F¢ (aAg)z : (ally)z we may conclude (xAg) F°
(86)(xAa)(Az)z = (BIl;)x. Note that the use of the formation rule (O, %) is avoided.

By this property, the extended type systems are closer to the intuition than the systems
of the A-cube of Barendregt as there are more (intuitively correct) derivable inhabitants of
certain types.

7.4 Comparison with the type systems of Poll and Severi

When we compare the extended type systems to those of Poll and Severi (see [SP 93]), we
observe the following differences.

1. In the systems of [SP 93], the definition of pseudoterms has been adapted, not only
the usual variables, abstractions and applications are pseudoterms, but definitions, i.e.
terms of the form * = a : A in B are added. A new reduction relation has to be
introduced to be able to unfold these definitions (locally).

In our approach, we treat definitions like (G-redexes, hence the syntax of pseudoterms
remains the same. We only need to change the syntax of contexts and extend the notion
of B-equality in a natural way to be able to use the definitions in the context.

2. [SP 93] have a rule that takes a definition out of the context and puts it in front of the
term and type. In our extended system however, we only put the definition in front
of the term and unfold it in the type. By the conversion rule, now also the type with
the definition in front of it instead of the unfolded type can be derived (due to the
generation corollary).

3. [SP 93] do not demand the predicate of a definition to have some sort as type. This only
leads to being able to abbreviate kinds, which is impossible in our extended systems.
We consider this to be a minor disadvantage which might very well be easily overcome
by leaving the demand of the type of the predicate.

References

[Barendregt 84] Barendregt, H., Lambda Calculus: its Syntaz and Semantics, North-Holland, 1984.

[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.

[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction and
spine strategies for the A-calculus, Information and Computation 75 (8), 1191-231, 1987.

[BKN 9x] Bloo, R., Kamareddine, F., Nederpelt, R., Beyond f-reduction in Church’s A_,, Comput-
ing Science Note 94/20, Eindhoven University of Technology, Department of Mathematics and
Computing Science, 1994.

36

[Dow 91] Dowek, G. et al. The Coq proof assistant version 5.6, users guide, rapport de recherche 134,
INRIA, 1991.

[Gardner 94] Gardner, P., Discovering Needed Reductions Using Type Theory, to appear in TACS,
1994.

[Geuvers 94] Geuvers, H., A short and flexible proof of Strong Normalisation for the Calculus of
Constructions, notes of a talk given at the BRA types workshop, Bastad, Sweden, 1994.

[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (3), 197-240, 1993.

[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the A-calculus, in preparation.

[KN 9y] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and II-conversion in the Barendregt
Cube, to appear in the Journal of Functional Programming.

[KN94b] Kamareddine, F., and Nederpelt, R.P., Refining reduction in the A-calculus, Computing
Science Note 94/18, Eindhoven University of Technology, Department of Mathematics and Com-
puting Science, 1994.

[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,
1993.

[Lévy 80] Lévy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: FEssays on
Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, Academic
Press, 1980.

[LP 92] Luo Z., and Pollack, R., LEGO proof development system: User’s manual, Technical report
ECS-LF(CS-92-211, LFCS, University of Edinburgh, 1992.

[GM 93] Gordon M.J.C. and Melham, T.F. (eds), Introduction to HOL: A Theorem Proving Environ-
ment for Higher Order Logic, Cambridge University Press, 1993.

[NK 94] Nederpelt, R.P., and Kamareddine, F., A unified approach to type theory through a refined
A-calculus, in A-calculus and domain theory, Proceedings of the 1992 conference on Mathemati-
cal Foundations of Programming Semantics, ed. M. Mislove et. al., 1994, Theoretical Computer
Science, Springer.

[SP 93] Severi, P., and Poll, E., Pure Type Systems with Definitions, Computing Science Note 93/24,
Eindhoven University of Technology, Department of Mathematics and Computing Science, 1993.

37

