
The Barendregt Cube with De�nitions and GeneralisedReduction�Roel Bloo yDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: bloo@win.tue.nlandFairouz Kamareddine zDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukfax + 44 41 -3304913andRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlApril 8, 1997
�We would like to thank Herman Geuvers, Stefan Khars and Tom Melham for their useful discussions andremarks.yThe �rst author is supported by the Netherlands Computer Science Research Foundation (SION) with�nancial support from the Netherlands Organisation for Scienti�c Research (NWO). He is also grateful to theDepartment of Computing Science, Glasgow University, for their �nancial support and hospitality during thework on this paper.zKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven Universityof Technology, for their �nancial support and hospitality from October 1991 to September 1992, and duringvarious short visits in 1993 and 1994. She is also grateful to the Netherlands Organisation (NWO) for Scienti�cResearch for its �nancial support. 1

AbstractIn this paper, we propose to extend the Barendregt Cube by generalising reductionand by adding de�nition mechanisms. We show that this extension satis�es all the originalproperties of the Cube including Church Rosser, Subject Reduction and Strong Normali-sation.Keywords: Generalised Reduction, De�nitions, Barendregt Cube, Church Rosser, SubjectReduction, Strong Normalisation.Contents1 Introduction 31.1 Why generalised reduction . 31.2 Why de�nition mechanisms . 31.3 The item notation for de�nitions and generalised reduction 42 The item notation 73 The ordinary typing relation and its properties 103.1 The typing relation . 113.2 Properties of the ordinary typing relation . 134 Generalising reduction in the Cube 154.1 The generalised reduction . 154.2 Properties of ordinary typing with generalised reduction 165 Extending the Cube with de�nition mechanisms 205.1 The de�nition mechanisms and extended typing 205.2 Properties of the Cube with de�nitions . 216 The Cube with de�nitions and generalised reduction 246.1 Strong Normalisation . 257 Comparing the type system with de�nitions to other type systems 327.1 Conservativity . 337.2 Shorter derivations . 357.3 Comparison with the systems of the Barendregt cube 357.4 Comparison with the type systems of Poll and Severi 36

2

1 IntroductionIn this paper, we introduce and motivate de�nition mechanisms and generalised reduction,and we study their interrelationship. Most importantly, we show that the Barendregt Cubeof [Barendregt 92], extended with these two concepts preserves all its old properties includingChurch Rosser, Subject Reduction and Strong Normalisation.1.1 Why generalised reductionIn the classical �-calculus, the notions of redex and of �-reduction are described as follows:De�nition 1.1 (Redexes and �-reduction in classical notation)A redex is of the form (�x:B:A)C. One-step �-reduction !� is the compatible relation gen-erated out of the axiom �: (�x:B :A)C !� A[x := C]. Many step �-reduction !!�, is there
exive transitive closure of !�.These notions are not as general as one might desire, as the following example shows.Example 1.2 In the classical term A � ((�x:P :(�y:Q:�z:R:za)b)c)d, we have for redexes:(�y:Q:�z:R:za)b and (�x:P :(�y:Q:�z:R:za)b)c (the fact that neither x nor y appear as free vari-ables in their respective scopes does not matter here; this is just to keep the example simpleand clear). There is however a third redex which is not immediately visible in the classicalterm; namely, (�z:R:za)d. Such a redex will only be visible after we have contracted the abovetwo redexes (we will not discuss the order here). For example:((�x:P :(�y:Q:�z:R:za)b)c)d !� ((�y:Q:�z:R:za)b)d!� (�z:R:za)d!� daIn classical notation, only the �rst two redexes are visible at �rst sight, yet all the three areneeded to reach the normal form of A. The third could only be seen once we had contracted the�rst two redexes. There is however a need to make as many needed redexes as possible visibleand even though the notion of a needed redex is undecidable, much work has been carriedout in order to study some classes of needed redexes (as in [BKKS 87] and [Gardner 94]).Our proposal, is not only to make as many redexes as possible visible, but also to give newlyvisible redexes the possibility to be contracted before other ones.Example 1.3 In example 1.2, we may want to contract the redex based on (�z:R:�)d beforewe have contracted any of the redexes (�x:P :�)c and (�y:Q:�)b.Firstly, this view on reduction gives an appropriate tool for the study of some programminglanguages. For example, in lazy evaluation ([Launchbury 93]), some redexes get frozen whileother ones are being contracted. Now, if we had the ability of choosing which redex tocontract out of all visible redexes, rather than waiting for some redex to be evaluated �rst,then we can say that we have achieved a
exible system where we have control over what tocontract rather than letting reductions force themselves in some order. Secondly, we thinkthat an investigation concerning the complete class of visible redexes in a term gives a betterunderstanding of reduction strategies, e.g. the optimal reductions as in [L�evy 80].1.2 Why de�nition mechanismsIn many type theories and lambda calculi, there is no possibility to introduce de�nitions whichare abbreviations for large expressions and which can be used several times in a program or3

a proof. This possibility is essential for practical use, and indeed implementations of PureType Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide thispossibility. But what are de�nitions and why are they attractive? De�nitions are nameabbreviating expressions and occur in contexts where we reason about terms.Example 1.4 Let id = (�x:A:x) : A ! A in (�y:A!A:id)id de�nes id to be (�x:A:x) in amore complex expression in which id occurs two times.The intended meaning of a de�nition is that the de�niendum x can be substituted by thede�niens a in the expression b. In a sense, an expression let x : A be a in b is similar to(�x:A:b)a. It is not intended however to substitute all the occurrences of x in b by a. Nor isit intended that such a de�nition is a part of our term. Rather, the de�nition will live in theenvironment (or context) in which we evaluate or reason about the expression.One of the advantages of the de�nition let x : A be a in b over (�x:A:b)a is that it isconvenient to have the freedom of substituting only some of the occurrences of an expressionin a given formula. Another advantage is e�ciency; one evaluates a in let x : A be a in bonly once, even in lazy languages. A further advantage is that de�ning x to be a in b can beused to type b e�ciently, since the type A of a has to be calculated only once. A disadvantageis that the de�nition may hide information, as is shown in the following example.Example 1.5 Without de�nitions, it is not possible to type �y:x:�f :a!a:fy even when wesomehow know that x is an abbreviation for a. This is because f expects an argument of typea, and y is of type x. Once we make use of the fact that x is de�ned to be a in our context,then y will have type a and the term will be typable.Practical experiences with type systems show, however, that de�nitions are absolutely indis-pensable for any realistic application. Without defnitions, terms soon become forbiddinglycomplicated. By using de�nitions one can avoid such an explosion in complexity. This is, bythe way, a very natural thing to do: the apparatus of mathematics, for instance, is unimag-inable without de�nitions.Introducing de�nitions in Pure Type Systems is an interesting subject of research at themoment. For example, [SP 93] extended PTS's with de�nitions. Our approach enables suchextension in an elegant way. In fact, the generated type derivations for terms in the Cube withde�nitions become much shorter than those in the absence of de�nitions (see Section 7.2).Moreover, we do not have to use complex relations to introduce de�nitions as in [SP 93].Rather, the extension will be a natural way to how our terms are written. Basic for ourproposed extensions is a new notation: the item notation.1.3 The item notation for de�nitions and generalised reductionThe item notation is a simple variant of the usual notation where the argument is given beforethe function, the type is given before the abstraction operator, and where the parenthesesare grouped di�erently than those of the classical notation. So that, if I translates classicalterms into our notation, then I(AB) is written as (I(B)�)I(A) (here is � a special symbolused for application) and I(Ox:A:B) is written as (I(A)Ox)I(B) where O = � or �. Both(t�) and (tOx), t being a term in item notation, are called items. For reasons explaining theusefulness of such a notation, the reader is referred to [KN 93] and [KN 9z]. For this paperhowever, the reader is to notice that redexes and de�nitions can be easily generalised and4

introduced with item notation. A traditional redex is a term that starts with a �-item nextto a �-item. A de�nition is itself a certain form of a �-item next to a �-item.Example 1.6 I((�x:A!(B!C):�y:A:xy)t) � (t�)(A ! (B ! C)�x)(A�y)(y�)x. The itemsare (t�), (A ! (B ! C)�x), (A�y) and (y�). The de�nition is (t�)(A ! (B ! C)�x) andthe redex is the whole term.De�nition 1.7 (Classical redexes and �-reduction in item notation)In the item notation of the �-calculus, a classical redex is of the form (C�)(B�x)A. Wecall the pair (C�)(B�x), a ��-pair, or a ��-segment. The classical �-reduction axiom is:(C�)(B�x)A!� A[x := C]. One and many step �-reduction are de�ned as in De�nition 1.1.In item notation, term A of Example 1.2 becomes (d�)(c�)(P�x)(b�)(Q�y)(R�z)(a�)z. Here,the two classical redexes correspond to ��-pairs as follows:1. (�y:Q:�z:R:za)b corresponds to (b�)(Q�y). The remainder of the redex, (R�z)(a�)z, isthe maximal subterm of A to the right of (Q�y).2. (�x:P :(�y:Q:�z:R:za)b)c corresponds to (c�)(P�x), the rest being (b�)(Q�y)(R�z)(a�)z.Looking closely at A written in item notation, one sees that the third redex described in Exam-ple 1.2 is obtained by just matching � and �-items. (�z:R:za)d is visible as it corresponds to thematching (d�)(R�z) where (d�) and (R�z) are separated by the segment (c�)(P�x)(b�)(Q�y).Hence, by extending the notion of a redex from being a �-item adjacent to a �-item, to beinga matching pair of �- and �-items, we can make more redexes visible. Such an extensionis simple, as in (C�)s(B�x), we say that (C�) and (B�x) match if s has the same struc-ture as a matching composite of opening and closing brackets, each �-item correspondingto an opening bracket and each �-item corresponding to a closing bracket. For example,in A above, (d�) and (R�z) match as (c�)(P�x)(b�)(Q�y) has the bracketing structure [][](see Figure 1). We re�ne �-reduction by changing (�) from (C�)(B�x)A !� A[x := C] to
(d�) (c�) (P�x) (b�) (Q�y)(R�z) (a�) zFigure 1: Extended redexes in item notation(C�)s(B�x)A ,!� s(A[x := C]) if (C�) and (B�x) match. It is this generalised reductionthat we will put on the top of the Cube and we will investigate its properties.Now, what about de�nitions? The �rst step is to de�ne de�nitions as matching ��-couplesand to include them in contexts with the condition that if a de�nition occurs in a contextthen it can be used anywhere in the term we are reasoning about in that context. Hence, ifwe look at Example 1.5, then we can type the term now that we allow de�nitions to occur incontexts and we extend ` slightly so that it can see what is in its context.Example 1.8 We use as context the segment (a�)((A�x)(x�y)(a ! a�f), establishing thatx of type A is de�ned as a, that y has type x and that f has type a! a. Then, making use5

C,!!�(CR, SN) Cdef (CR, SN, SR)C(CR, SN, SR)
@@@@R ����	C,!!�def (CR, SN, SR)

@@@@R����	
Figure 2: Properties of the Cube with various extensionsof this de�nition, we have(a�)(A�x)(x�y)(a! a�f) ` f : a! a(a�)(A�x)(x�y)(a! a�f) ` y : x = a(a�)(A�x)(x�y)(a! a�f) ` (y�)f : a(a�)(A�x)(x�y) ` (a! a�f)(y�)f : (a! a)! a(a�)(A�x) ` (x�y)(a! a�f)(y�)f : x! (a! a)! a = a! (a! a)! aBased on the above discussion, we divide the paper into the following sections:� In Section 2, we introduce the item notation.� In Section 3, we recall the Cube as in [Barendregt 92], and all its properties.� In Section 4, we add to the Cube as in [Barendregt 92], generalised reduction ,!� andshow that ,!!� (the re
exive transitive closure of ,!�) generalises!!� (Lemma 4.3) suchthat =� and �� are the same (Lemma 4.5). This means that almost all the originalproperties still hold for ,!!�. However, Church Rosser (CR) , Subject Reduction (SR)and Strong Normalisation (SN) deserve special attention. CR and SN are shown to hold(without the need for SR in the case of SN). SR holds in �! and �!, but fails in theremaining systems. This problem is solved in Section 6 by adding de�nitions.� In Section 5 we add de�nitions to the Cube of [Barendregt 92] and show that all theproperties of [Barendregt 92] (including SR) hold with de�nitions. CR is not touchedwith the addition of de�nitions, contrary to the account of [SP 93], where a reductionrelation was introduced to capture de�nitions and hence CR had to be shown.� In Section 6, we extend the Cube with both generalised reduction and de�nitions.We show that the Cube extended with de�nitions and generalised reduction, preservesall its important properties. We present in particular, the general proof of StrongNormalisation which applies to all earlier systems.� In Section 7, we discuss the conservativity of the Cube with de�nitions, with respect tothe Cube without de�nitions. We show that more terms are typable using de�nitions.However, when a judgment is derivable in a system of the Cube with de�nitions, thejudgment itself where all the de�nitions are unfolded is derivable without de�nitions(Theorem 7.3). We also compare our system of de�nitions with that of [SP 93].Figure 2 summarizes our results, showing that one can safely use the Cube with de�nitionsonly, or with both de�nitions and generalised reduction. When using generalised reductionwithout de�nitions, one must remain in the �! and �! as the other systems lose their SR.6

2 The item notationLet I translate terms in classical notation to terms in item notation such that:I(A) = A if A is a variable or a constantI(Ox:A:B) = (I(A)Ox)I(B) ifO = � or �I(AB) = (I(B)�)I(A)Notation 2.1 Throughout the whole paper, we take O to range over f�;�g.The systems of the Cube are based on a set of pseudo-expressions T de�ned by:T = V j C j (T �)T j (T OV)Twhere V and C are in�nite collections of variables and constants respectively. We assumethat x; y; z; : : : range over V and we take two special constants � and 2. These constantsare called sorts and the meta-variables S; S1; S2; : : : are used to range over the set of sortsS = f�;2g. We take A;B;C; a; b : : : to range over pseudo-expressions. Parentheses will beomitted when no confusion occurs. For convenience sake, we divide V in two disjoint sets V �and V 2, the sets of object respectively constructor variables. We take x�; y�; z�; : : : to rangeover V � and x2; y2; z2; : : : to range over V 2.Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respectively. We write A[x := B] todenote the term where all the free occurrences of x inA have been replaced byB. Furthermore,we take terms to be equivalent up to variable renaming. For example, we take (A�x)x �(A�y)y where � is used to denote syntactical equality of terms. We assume moreover, theBarendregt variable convention which is formally stated as follows:Convention 2.2 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent �'s have di�erent variables as subscript. Hence, we will not have(x�)((A�x)x�x)x, but (x�)((A�y)y�z)z instead.De�nition 2.3 (Compatibility)Let ! 2 f�g [fOx j x 2 V g. A relation ! on terms is compatible i� the following holds:A1 ! A2(A1!)B ! (A2!)B B1 ! B2(A!)B1 ! (A!)B2De�nition 2.4 (�-reduction !� for the Cube)In the Cube, �-reduction !�, is the least compatible relation generated out of:(�) (C�)(B�x)A!� A[x := C]We take !!� to be the re
exive transitive closure of !� and we take =� to be conversion, i.e.the least equivalence relation generated by !!�.Note that � is not assumed for �-expressions, i.e. (C�)(B�x)A 6!� A[x := C] (see [KN 9y]for such an extension). Now, some needed machinery for item notation follows.De�nition 2.5 ((main) items, (main, �O-)segments, end variable, weight)7

� If x is a variable, and A is a pseudo-expression then (A�x); (A�x) and (A�) are items(called �-item, �-item and �-item respectively). We use s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.� Each pseudo-expression A is the concatenation of zero or more items and a variable orconstant: A � s1s2 � � � snx. These items s1; s2; : : : ; sn are called the main items of A,x is called the end variable of A, notation endvar(A).� Analogously, a segment s is a concatenation of zero or more items: s � s1s2 � � � sn;again, these items s1; s2; : : : ; sn (if any) are called the main items, this time of s.� A concatenation of adjacent main items (in A or s), sm � � � sm+k, is called a mainsegment (in A or s).� A �O-segment is a �-item immediately followed by an O-item.� The weight of a segment s, weight(s), is the number of main items that compose thesegment. Moreover, we de�ne weight(sx) = weight(s).When one desires to start a �-reduction on the basis of a certain �-item and a �-item occurringin one segment (recall, no reductions are based on �- and �-items), the matching of the �and the � in question is the important thing, even when the �- and �-items are separated byother items. I.e., the relevant question is whether they may together become a ��-segmentafter a number of �-steps. This depends solely on the structure of the intermediate segment.If such an intermediate segment has a certain form (to be called: well-balanced), then the�-item and the �-item match and �-reduction based on these two items may take place.Some well-balanced segments play another important role. They may act as a de�nition. Forexample, (A�)(B�x)C may mean: we de�ne x of type B to be A in C. Sometimes, de�nitionsare interleaved as in (A1�)(B1�)(B2�x)(A2�y)D where the de�nition \x becomes B1" is usedinside the de�nition \y becomes A1". We will assume de�nitions not to contain �-items inthis paper. Extending this work to the case where for example (A�)(B�x) is a de�nition hasyet to be investigated. In what follows we de�ne well-balanced segments.De�nition 2.6 (well-balanced segments)� The empty segment ; is a well-balanced segment.� If s is well-balanced, then (A�)s(BOx) is well-balanced.� The concatenation of well-balanced segments is a well-balanced segment.A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each �- (or O-)item corresponding with an opening (resp. closing) bracket.In a de�nition, the �rst [matches the last] and no �-items are allowed. A �O-couple isa main �-item and a main O-item separated by a well-balanced segment. Such a couple isreducible in case O = �. The �-item and O-item of the �O-couple are said to match and eachof them is called a partner or a partnered item. The non-partnered items in a segment arecalled bachelor. The following de�nition summarizes all this:8

De�nition 2.7 (match, �O- (reducible) couple, partner, partnered item, bachelor item)Let A 2 T . Let s � s1 � � � sn be a segment occurring in A.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is a O-item, andthe sequence si+1; : : : ; sj�1 forms a well-balanced segment.� If si and sj match, sisj is a �O-couple. If O = � then sisj is a reducible couple.� When si and sj match, we call both si and sj the partners in the �O-couple. We alsosay that si and sj are partnered items.� All non-partnered O- (or �-)items sk in A, are called bachelor O- (resp. �-)items.Example 2.8 In s � (a�x)(b�y)(c�)(d�z)(e�u)(f�)(g�)(h�)(i�v)(j�w)(k�):� (c�) matches with (d�z), (h�) matches with (i�v) and (g�) with (j�w). The segments(c�)(d�z) and (h�)(i�v) are ��-segments (and ��-couples). There is another ��-couplein s, viz. the couple of (g�) and (j�w).� (c�), (d�z), (g�), (h�), (i�v) and (j�w), are the partnered main items of s. (a�x), (b�y),(e�u), (f�) and (k�) are bachelor items.� (g�)(h�)(i�v)(j�w) is a well-balanced segment.De�nition 2.9 (de�nitions, de�nition application)� If s is well-balanced and does not contain main �-items, then a segment (A�)s(B�x)occurring in a context is called a de�nition.� Let s be a well-balanced segment, occurring in a context, which consists of de�nitionsand A 2 T . We de�ne the application of the de�nitions of s in A, [A]s inductively asfollows: [A]; � A, [A](B�)s1(C�x) � [A[x := B]]s1 and [A]s1 s2 � [[A]s2]s1. Note thatsubstitution takes place from right to left and that when none of the binding variables ofs are free in A, then [A]s � A.Remark 2.10 The de�nitions of well-balanced segments and de�nitions together are equiv-alent to the following de�nition (which we use sometimes in proofs by induction):1. ; is well-balanced.2. If s1; s2 are well-balanced, then (A�)s1(BOx)s2 is well-balanced.3. If s is well-balanced and does not contain main �-items, then (A�)s(B�x) is a de�nition.Remark 2.11 We maintain the same liberal attitude for de�nitions, as we did for generalisedredexes. That is, not only (A�)(B�x) may act as a de�nition in a context, but also (A�)s(B�x)for any well-balanced segment s without main �-items.Note that we speak of de�nitions when such an (A�)s(B�x) occurs in a context; otherwise,when (A�)s(B�x) occurs in a term, we speak of a �-redex.
9

3 The ordinary typing relation and its propertiesWe now introduce some general notions concerning typing rules which are the same as theusual ones when we do not allow de�nitions in the context (as is the case in the �-cube of[Barendregt 92]). When de�nitions are present however, the notions are more general.De�nition 3.1 (declarations, pseudocontexts, �0)1. A declaration is a �-item. In a declaration d � (A�x), we de�ne subj(d), pred(d) andd to be x, A and ; respectively.2. For a de�nition d � (B�)s(A�x) we de�ne subj(d), pred(d), d and def(d) to be x, A,s and B respectively.3. We use d; d1; d2; : : : to range over declarations and de�nitions.4. A pseudocontext is a concatenation of declarations and de�nitions such that if (A�x)and (B�y) are two di�erent main items of the pseudocontext, then x 6� y. We use�;�;�0;�1;�2; : : : to range over pseudocontexts.5. For � a pseudocontext we de�nedom(�) = fx 2 V j (A�x) is a main �-item in � for some Ag,�-decl = fs j s is a bachelor main �-item of �g,�-def = fs j s � (A�)s1(B�x) is a main segment of � where s1 is well-balanced g,Note that dom(�) = fsubj(d) j d 2 �-decl [�-defg.6. De�ne �0 between pseudocontexts as the least re
exive transitive relation satisfying:� �� �0 �(C�x)� if no �-item in � matches a �-item in �� �d� �0 �d� if d is a de�nition� �s(A�x)� �0 �(D�)s(A�x)� if (A�x) is bachelor in �s(A�x)�, s is well-balancedExample 3.2 If � � (a�x)(b�y)(c�)(d�z)(e�u)(f�)(g�)(i�v)(j�w) then �-decl = f(a�x);(b�y); (e�u)g and �-def = f(c�)(d�z); (f�)(g�)(i�v)(j�w); (g�)(i�v)g. Furthermore � �0(��r)(a�x)(b�y)(h�)(c�)(d�z)(k�r0)(l�)(e�u)(f�)(g�)(i�v)(j�w).Note that � �0 �0 6) �-decl � �0-decl, but � �0 �0) �-def � �0-def.De�nition 3.3 (statements, judgements, �)1. A statement is of the form A : B, A and B are called the subject and the predicate ofthe statement respectively.2. When � is a pseudocontext and A : B is a statement, we call � ` A : B a judgement,and write � ` A : B : C to mean � ` A : B ^ � ` B : C.3. For � be a pseudocontext and d 2 �-def [�-decl, � invites d, notation � � d, i�� �d is a pseudocontext� � ` pred(d) : S for some sort S and subj(d) 2 V S.10

� if d is a de�nition then � ` def(d) : pred(d)De�nition 3.4 (De�nitional �-equality) For all legal contexts � we de�ne the binary relation� ` � =def � to be the equivalence relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T such that B arises from A by substituting one particularoccurrence of subj(d) in A by def(d), then � ` A =def B.Remark 3.5 If no de�nitions are present in � then � ` A =def B is the same as A =� B.De�nition 3.6 Let � be a pseudocontext and A be a pseudo-expression.1. Let d; d1; : : : ; dn be declarations and de�nitions. We de�ne � ` d and � ` d1 � � � dnsimultaneously as follows:� If d is a declaration: � ` d i� � ` subj(d) : pred(d).� If d is a de�nition: � ` d i� � ` subj(d) : pred(d) ^ � ` def(d) : pred(d) ^ � `d ^ � ` subj(d) =def def(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.2. � is called legal if 9P;Q 2 T such that � ` P : Q.3. A 2 T is called a �-term if 9B 2 T [� ` A : B or � ` B : A].We take �-terms = fA 2 T j 9B 2 T [� ` A : B _ � ` B : A]g.4. We take �-kinds = fA j � ` A : 2g and �-types = fA 2 T j � ` A : �g.5. A 2 T is called a �-element if 9B 2 T 9S 2 S[� ` A : B and � ` B : S]. We have twocategories of elements: constructors and objects. We take �-constructors = fA 2 T j9B 2 T [� ` A : B : 2]g and �-objects = fA 2 T j 9B 2 T [� ` A : B : �]g.6. A 2 T is called legal if 9�[A 2 �-terms]. Moreover, A is an X, if 9�[A 2 �-Xs] forX 2 ftype, term, kind, object, constructorg.In the Cube as presented in [Barendregt 92], the only declarations allowed are of the form(A�x). Hence there are no de�nitions. Therefore, � � d is of the form � � (A�x) and meansthat � ` A : S for some S and that x is fresh in �; A. Moreover, for any d � (A�x), rememberthat d � ;, subj(d) � x and pred(d) � A. Hence, in this section, d is a meta-variablefor declarations only and =def is the same as =� (which is independent of `).3.1 The typing relationDe�nition 3.7 (Axioms and rules of the Cube: d is a declaration, =def is =�)(axiom) <> ` � : 2(start rule) � � d�d ` subj(d) : pred(d)(weakening rule) � � d �d ` D : E�d ` D : E 11

(application rule) � ` F : (A�x)B � ` a : A� ` (a�)F : B[x := a](abstraction rule) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(conversion rule) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(formation rule) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a ruleEach of the eight systems of the Cube is obtained by taking the (S1; S2) rules allowed from asubset of f(�; �); (�;2); (2; �); (2;2)g. The basic system is the one where (S1; S2) = (�; �) isthe only possible choice. All other systems have this version of the formation rules, plus oneor more other combinations of (�;2), (2; �) and (2;2) for (S1; S2). Here is the table whichpresents the eight systems of the Cube:System Set of speci�c rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)

t t
t t

-
-6 6t t

t t
-
-6 6

�����
�����

�����
�����

�!
�2

�P
�P2�! �P!

�! �C
Figure 3: The CubeHere are examples of typable terms in some systems of the Cube that we use further on.Example 3.81. `�2 (���)(��y)� : � as we have the rule (2; �), but 6`L (���)(��y)� : � for any � whereL 2 f�!; �!; �P; �P!g.2. (���)(��t)((��q) � �Q)((t�)Q�N) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)Qbut this derivation could not be obtained in �!, �! or �2 as we need the (�;2) rule in orderto derive that (��q)� : 2 and hence that ((��q) � �Q) is allowed in the context.3. If L 2 f�!; �!g, then (���)(��y0) 6`L (y0�)(��)(���)(��y)(y�)(��x)x : � because the term12

of part 1 of this example is not typable in L (note that with de�nitions, the last 9 steps aboveare replaced by a single one in Example 5.2). Here is how this judgement if derivable in �2.` � : 2 (axiom)(���) `�2 � : � : 2 (start resp. weakening rule)(���)(��y0) `�2 y0 : � : � : 2 (start resp. weakening rule)(���)(��y0)(���) `�2 � : � (start)(���)(��y0)(���)(��y) `�2 y : � : � (start resp. weakening rule)(���)(��y0)(���)(��y)(��x) `�2 x : � : � (start resp. weakening rule)(���)(��y0)(���)(��y) `�2 (��x)� : � formation rule (�; �))(���)(��y0)(���)(��y) `�2 (��x)x : (��x)� : � (abstraction)(���)(��y0)(���)(��y) `�2 (y�)(��x)x : � (application)(���)(��y0)(���) `�2 (��y)� : � formation rule (�; �))(���)(��y0)(���) `�2 (��y)(y�)(��x)x : (��y)� : � (abstraction rule)(���)(��y0) `�2 (���)(��y)� : � formation rule (2; �))(���)(��y0) `�2 (���)(��y)(y�)(��x)x : (���)(��y)� (abstraction rule)(���)(��y0) `�2 (��)(���)(��y)(y�)(��x)x : (��y)� (application rule)(���)(��y0) `�2 (y0�)(��)(���)(��y)(y�)(��x)x : � (application rule)3.2 Properties of the ordinary typing relationHere we list the properties of the Cube (see [Barendregt 92]). These properties will be estab-lished for the Cube extended with generalised reduction and de�nition mechanisms.Theorem 3.9 (The Church Rosser Theorem for !!�)If A!!� B and A!!� C then there exists D such that B !!� D and C !!� D 2Lemma 3.10 (Free variable lemma for `)Let � be a legal context such that � ` B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. For s1 a main item of �, FV (s1) � fsubj(d) j d 2 �-decl; d is to the left of s1 in �g.Proof: All by induction on the derivation of � ` B : C. 2Lemma 3.11 (Start Lemma for `)Let � be a legal context. Then � ` � : 2 and 8d 20 �[� ` d].Proof: As � is legal, then 9A;B 2 T such that � ` A : B. Now use induction on thederivation � ` A : B. 2Note that this and the following lemmas state the same thing as the corresponding lemmasfrom [Barendregt 92] as � consists of declarations only.Lemma 3.12 (Transitivity Lemma for `)Let � and � be legal contexts. Then: [� ` � ^� ` A : B]) � ` A : B.Proof: Induction on the derivation rules. 213

Lemma 3.13 (Substitution Lemma for `)Assume �(A�x)� ` B : C and � ` D : A then �(�[x := D]) ` B[x := D] : C[x := D].Proof: By induction on the derivation rules. 2Lemma 3.14 (Thinning Lemma for `)Let � and � be legal contexts such that � �0 �. Then � ` A : B) � ` A : BProof: By induction on the length of the derivation of � ` A : B. 2Lemma 3.15 (Generation Lemma for `)1. � ` x : C) 9S1; S2 2 S9B =� C[� ` B : S1 ^ (B�x) 20 � ^ � ` C : S2].2. � ` (A�x)B : C) 9(S1; S2 2 S)[� ` A : S1^�(A�x) ` B : S2^(S1; S2) is a rule^C =�S2 ^ [C 6� S2) 9S[� ` C : S]]]3. � ` (A�x)b : C) 9(S;B)[� ` (A�x)B : S ^ �(A�x) ` b : B ^ C =� (A�x)B ^ C 6�(A�x)B) 9S 2 S[� ` C : S]].4. � ` (a�)F : C) 9A;B; x[� ` F : (A�x)B ^ � ` a : A ^ C =� B[x := a] ^ (B[x := a] 6�C) 9S 2 S[� ` C : S])].Proof: By induction on the derivation rules, using thinning lemma. 2Corollary 3.16 (Generation Corollary for `)1. � ` A : B) 9S[B � S or � ` B : S]2. � ` A : (B1�x)B2) 9S[� ` (B1�x)B2 : S]3. If A is a �-term, then A is 2, a �-kind or a �-element.4. If A is legal and B is a subexpression of A then B is legal. 2Theorem 3.17 (Subject Reduction for ` and !!�)� ` A : B ^A!!� A0) � ` A0 : BProof: � ` A : B ^A!� A0) � ` A0 : B and � ` A : B ^ �!� �0) �0 ` A : B, where� !� �0 means � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !� A0, are proved simultaneouslyby induction on the derivation rules. 2Corollary 3.18 (SR Corollary for ` and !!�)1. If � ` A : B and B !!� B0 then � ` A : B0.2. If A is a �-term and A!!� A0 then A0 is a �-term. 2Lemma 3.19 (Unicity of Types for ` and !!�)1. � ` A : B1 ^ � ` A : B2) B1 =� B22. � ` A : B ^ � ` A0 : B0 ^A =� A0) B =� B03. � ` B : S;B =� B0;� ` A0 : B0 then � ` B0 : S.Proof: 1. by induction on the structure of A, 2. by Church Rosser, Subject Reduction and1, and 3. by Corollary 3.16, Subject Reduction and 1. 2Theorem 3.20 (Strong Normalisation with respect to ` and !!�)For all `-legal terms M , M is strongly normalising with respect to !!�.Proof: see section 6. 214

4 Generalising reduction in the CubeIn this section we extend the classical notions of redexes and �-reduction of the Cube andshow that all the properties of Section 3.2 except SR are preserved. We show moreover thatfor �! and �!, SR holds yet for the remaining systems it fails.4.1 The generalised reductionWe allow ��-couples to have the same \reduction rights" as ��-segments as follows:De�nition 4.1 (General �-reduction ,!� for the Cube)General one-step �-reduction ,!�, is the least compatible relation generated out of:(general �) (B�)s(C�x)A ,!� s(A[x := B]) if s is well-balancedGeneral ,!!� is the re
exive and transitive closure of ,!� and �� is the least equivalencerelation generated by ,!!�.Example 4.2 Take Example 1.2. As (c�)(P�x)(b�)(Q�y) is a well-balanced segment, then:A � (d�)(c�)(P�x)(b�)(Q�y)(R�z)(a�)z ,!�(c�)(P�x)(b�)(Q�y)(((a�)z)[z := d]) �(c�)(P�x)(b�)(Q�y)(a�)d(d�)(R�z) also has a corresponding (\generalised") redex in the traditional notation, whichwill appear after two one-step �-reductions, leading to (�z:R:za)d. With ,!�, we could reduce((�x:P :(�y:Q:�z:R:za)b)c)d to (�x:P :(�y:Q:da)b)c. This is di�cult to carry out in the classical �-calculus. We strongly believe that it is the item notation which enables us to extend reductionsmoothly beyond !!�. Moreover, ,!� extends !�.Lemma 4.3 If A!� B in the sense of De�nition 2.4, then A ,!� B in the sense of De�ni-tion 4.1. Moreover, if A ,!� B comes from contracting a ��-segment then A!� B.Proof: Obvious as a ��-segment is a de�nition. 2Lemma 4.4 If A ,!� B then A =� B.Proof: It su�ces to consider the case A � s1(C�)s(D�x)E where the contracted redex isbased on (C�)(D�x), B � s1 s(E[x := C]), and s is well-balanced (hence weight(s) is even).We prove the lemma by induction on weight(s). Case weight(s) = 0 then obvious as ,!�coincides with !� in this case. Assume the property holds when weight(s) = 2n. Take s suchthat weight(s) = 2n + 2. Now, s � (C 0�)s0(D0�y)s00 where s0, s00 are well-balanced. Assumex 6� y (if necessary, use renaming).� >From s(E[x := C]) ,!� s0(s00(E[x := C])[y := C 0]), IH and compatibility, B =�s1 s0(s00(E[x := C])[y := C 0]) � s1 s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.� Moreover, A � s1(C�)(C 0�)s0(D0�y)s00(D�x)E ,!� s1(C�)s0(s00(D�x)E[y := C 0]) �BCs1(C�)s0(s00[y := C 0])(D[y := C 0]�x)(E[y := C 0]) � B0. So by IH A =� B0.� B0 ,!� s1s0(s00[y := C 0])(E[y := C 0][x := C]), x, y 62 FV (C)[FV (C 0) (by BC). Hence,by IH and substitution B0 =� s1s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.15

Therefore, A =� B0; B0 =� B00 and B =� B00, hence A =� B. 2The following shows that conversion does not change the typing relation of Section 3.1.Corollary 4.5If A ,!!� B then A =� B. Moreover, A �� B i� A =� B. 24.2 Properties of ordinary typing with generalised reductionBecause =� and �� are equivalent, the only lemmas/theorems of Section 3.2 a�ected by ourextension of reductions are those which have !!� in their heading. These are CR (Theo-rem 3.9), SR (Theorem 3.17) and its Corollary 3.18, Unicity of Types (Lemma 3.19) and SN(Theorem 3.20). In this section, we show that CR and SN hold for the Cube with ,!!� andthat SR holds for �! and �! but fails for the other six systems. Unicity of typing dependson SR and on the fact that =� is the same as ,!!�. Hence, we ignore it here as once we proveSR, its proof will be exactly that of Lemma 3.19.Theorem 4.6 (The general Church Rosser theorem for ,!!�)If A ,!!� B and A ,!!� C, then there exists D such that B ,!!� D and C ,!!� D.Proof: As A ,!!� B and A ,!!� C then by Corollary 4.5, A =� B and A =� C. Hence,B =� C and by CR for !!�, there exists D such that B !!� D and C !!� D. But, A!!� Bimplies A ,!!� B. Hence CR holds for ,!!�. 2Theorem 4.7 (Strong Normalisation with respect to ` and ,!!�)For all `-legal terms M , M is strongly normalising with respect to ,!!�.Proof: This is a special case of the proof of Theorem 6.27. 2In the following, L ranges over �! and �!. Here we show that SR holds for L.Lemma 4.8 If � `L A : 2 then A 2 f�; (��x)�; (��x)(��y)�; ((��x) ��y)�; : : :g.Proof: By induction on the derivation rules. 2Lemma 4.9 If B is a legal L-term, B0 is a L-kind and B =� B0 then B is a kind.Proof: First show by induction on the derivations: If � is a subterm of A and A is legalthen A is a kind or � is type-information in A (as in (��x)y). Now, as B0 is a kind, B0 is innormal form, hence B !!� B0 and by the former result B must be a kind too. 2Lemma 4.10 If � `L (A�x)B : S, then � `L A : S, �(A�x) `L B : S and x 62 FV (B).Proof: Show by induction on the derivation of � `L A : B that if B a kind, then for all(C�x�) 2 �-decl, x� =2 FV (A). We only treat two cases:� application rule: � `L (a�)F : B[x := a] out of � `L F : (A�x)B and � `L a : A.Suppose B[x := a] is a kind and (C�y) 20 �, � `L C : �. If x =2 FV (B) then B is akind, so A and (A�x)B are kinds too, hence y =2 FV (a); FV (F) by the IH.If x 2 FV (B) then a is a kind (as B[x := a] is a kind) and hence A � 2 which isimpossible as � `L F : (A�x)B.� conversion rule: � `L A : B0 out of � `L A : B, � `L B0 : S, B =� B0. Suppose B0 is akind, then by lemma 4.9: B is a kind, hence by induction hypothesis we are done. 216

Lemma 4.111. � ` (A�)B : C) � ` C : S for some sort S.2. If � `L A : S1;� `L B : S2 and A =� B then S1 � S2.Proof:1. Generation gives � ` A : D, � ` B : (D�x)E, E[x := A] =� C and E[x := A] 6� C)� ` C : S. So suppose E[x := A] � C, then � ` B : (D�x)E implies by Corollary 3.16that � ` (D�x)E : S. Hence, by generation � ` D : S1, �(D�x) ` E : S2. Now, use� ` A : D and substitution to get � ` E[x := A] : S2.2. Note that S1 � 2 or S2 � 2, hence by Lemma 4.9, S1 � S2. 2The crucial step in the proof of Subject Reduction in �! and �! is proved in the following:Lemma 4.12 (Shu�e Lemma for �! and �!)� `L s1(A�)s2B : C () � `L s1s2(A�)B : C where s2 is well-balanced and the bindingvariables in s2 are not free in A.Proof: By induction on weight(s2). Case weight(s2) = 0 then nothing to prove.Case weight(s2) = 2, say s2 � (D�)(E�x), use induction on weight(s1). Suppose �rst,weight(s1) = 0.)) suppose � `L (A�)(D�)(E�x)B : C. Using generation three times, we obtain:� `L A : F (1)� `L (D�)(E�x)B : (F�y)G (2)G � G[y := A] =� C (Lemma 4:10; Corollary 3:16) (3)� `L D : H (4)� `L (E�x)B : (H�z)II � I[z := D] =� (F�y)G (Lemma 4:10; Corollary 3:16) (5)� `L (E�x)J : S1�(E�x) `L B : J (6)(H�z)I =� (E�x)J (7)Out of (7) and Lemma 4.10 we see that x � z, H =� E, I =� J , y =2 FV (G); x =2 FV (I) [FV (J); � `L F;G;H; I; E : S1 (8)and out of (7) and (5): J =� (F�y)G. Hence (9)�(E�x) `L B : (F�y)G (conversion, (6), (9), (8) implies (10)by the generation and thinninglemmas: �(E�x) `L (F�y)G : S1)�(E�x) `L A : F (thinning lemma, (1)) (11)�(E�x) `L (A�)B : G ((10), (11), application, G[y := A] � G) (12)� `L (H�x)G; (E�x)G : S1 (formation, thinning, � `L H;G;E : S1) (13)� `L (E�x)(A�)B : (H�x)G ((12), (13), abstraction, conversion, (14)(8)) (E�x)G =� (H�x)G)17

� `L (D�)(E�x)(A�)B : G ((14), application, (4), G[x := D] � G) (15)� `L C : S (Lemma 4.11, hypothesis) (16)� `L (D�)(E�x)(A�)B : C (conversion, (15), (16), (3)) (17)() Suppose � `L (D�)(E�x)(A�)B : CThen � `L C : S1 (Lemma 4.11) (18)and by generation three times we get:� `L D : F (19)� `L (E�x)(A�)B : (F�y)GG � G[y := D] =� C (Lemma 4:10; Corollary 3:16) (20)� `L (E�x)H : S2 (21)�(E�x) `L (A�)B : H(E�x)H =� (F�y)G (22)�(E�x) `L A : I (23)�(E�x) `L B : (I�z)J (24)J � J [z := A] =� H (Lemma 4:10; Corollary 3:16) (25)Now (24) and Corollary 3.16 imply that for some S3, �(E�x) `L (I�z)J : S3. Hence, byLemma 4.10, z 62 FV (J);�(E�x) `L J : S3. Also, by Lemma 4.10, we get out of (21) that� `L E : S2;�(E�x) `L H : S2 and x 62 FV (H). Now, J =� H from (25), hence x 62 FV (J).Moreover, by Lemma 4.11, we see S2 � S3. Hence,� `L (E�x)(I�z)J : S2 formation (26)� `L (E�x)B : (E�x)(I�z)J ((26), (24), abstraction) (27)� `L (D�)(E�x)B : (I�z)J (application, (27), x 62 FV (I; J)� `L D : E because (22) (28)implies E =� Fand we use conversion, (19), � `L E : S2)� `L (A�)(D�)(E�x)B : J (out of �(E�x) `L A : I and � ` D : E (29)we �nd by substitution (x 62 FV (A; I)),� `L A : I. Now, use application)� `L (A�)(D�)(E�x)B : C ((29), (conversion; C =� Jfollows from (25),(22) and (20))Now suppose weight(s1) = n+ 1. Using the generation lemma we obtain �0 `L s01(A�)s2B :C 0, where weight(s01) = n, hence the induction hypothesis says �0 `L s01s2(A�)B : C 0 and byapplying the appropriate derivation rule we obtain � `L s1s2(A�)B : C.Case weight(s2) = 2(n + 1); n � 1, then s2 � (D�)s3(E�x)s4 for some C;D, x and well-balanced segments s3; s4. Then, weight(s3); weight(s4) � 2n and we see:� `L s1(A�)(D�)s3(E�x)s4B : C I:H:() � `L s1(A�)s3(D�)(E�x)s4B : C I:H:()� `L s1s3(A�)(D�)(E�x)s4B : C I:H:() � `L s1s3(D�)(E�x)(A�)s4B : C I:H:()� `L s1(D�)s3(E�x)(A�)s4B : C I:H:() � `L s1(D�)s3(E�x)s4(A�)B : C 218

Theorem 4.13 (Generalised Subject Reduction for �! and �! for ` and ,!!�)If � `L A : B and A ,!� A0 then � `L A0 : B.Proof: We prove by simultaneous induction on the generation of � `L A : B that� `L A : B ^A ,!� A0) � `L A0 : B (i)� `L A : B ^ � ,!� �0) �0 `L A : B (ii)where � ,!� �0 means � � �1(A�x)�2;�0 � �1(A0�x)�2 and A ,!� A0 for some �1;�2; A;A0; x.The cases in which the last rule applied is axiom, start, weakening or conversion are easy (forstart: use conversion). We treat the three other cases.Formation: � `L (A1�x)B1 : S1 is a direct consequence of � `L A1 : S1 and �(A1�x) `L B1 :S1, then (i) comes from IH(i) and IH(ii); (ii) comes from IH(ii). Abstraction: similar to for-mation. Application: � `L (a�)F : B1[x := a] is a direct consequence of � `L F : (A1�x)B1and � `L a : A1. Now (ii) comes from IH(ii). We consider various cases:� Subcase 1: (a�)F ,!� (a�)F 0 because F ,!� F 0. Then (i) follows from IH(i).� Subcase 2: (a�)F ,!� (a0�)F because a ,!� a0. From IH(i) and application, � ` (a0�)F :B1[x := a0]. Also, from Corollary 3.16, for some S1: � `L (A1�x)B1 : S1 and henceby generation: �(A�x) `L B1 : S1 and thus by substitution � `L B1[x := a] : S1. Nowconversion gives � `L (a0�)F : B1[x := a] which proves (i).� Subcase 3: F � s(A0�y)F 0, s well-balanced and (a�)F ,!� sF 0[y := a]. Now, by Lemma4.12, � `L s(a�)(A0�y)F 0 : B1[x := a] and s(a�)(A0�y)F 0 !� sF 0[y := a] so by SR for!!�, � `L sF 0[y := a] : B1[x := a] which proves (i). 2SR however is not valid for the other systems of the Cube as the following examples show:Example 4.14 (SR does not hold in �2 using ,!!�)(���)(��y0) `�2 (6`L for L 2 f�!; �!g) (y0�)(��)(���)(��y)(y�)(��x)x : � (see Example 3.8).Moreover, (y0�)(��)(���)(��y)(y�)(��x)x ,!� (��)(���)(y0�)(��x)x.Yet, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : �.Even, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : � for any � .This is because (��x)x : (��x)� and y : � yet � and � are unrelated and hence we fail in�ring the application rule to �nd the type of (y0�)(��x)x. Looking closer however, one �ndsthat (��)(���) is de�ning � to be �, yet no such information can be used to combine (��x)�with �. We will rede�ne the rules of the Cube so that such information can be taken intoaccount. Finally note that failure of SR in �2, means its failure in �P2; �! and �C.Example 4.15 (SR does not hold in �P using ,!!�)(���)(��t)((��q)��Q)((t�)Q�N) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)Q. Notehere that this cannot be derived in �!, �2 or �! (see Example 3.8).And (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z ,!� (t�)(��x)(N�)((x�)Q�Z)ZNow, N : (t�)Q; t : �; y : (x�)Q;x : �; (t�)Q 6= (x�)Q.(���)(��t)((��q) � �Q)((t�)Q�N) 6`�P (t�)(��x)(N�)((x�)Q�Z)Z : � for any � .Here again the reason of failure is similar to the above example. At one stage, we needto match (x�)Q with (t�)Q but this is not possible even though we do have the de�nitionsegment: (t�)(��x) which de�nes x to be t. All this calls for the need to use these de�nitions.Finally note that failure of SR in �P , means its failure in �P2; �P! and �C.19

5 Extending the Cube with de�nition mechanismsAs a �rst step in the direction of including extended reduction in the systems of the Cube, wenow investigate adding de�nitions to the Cube. We shall extend the derivation rules so thatwe can use de�nitions in the context. The rules remain unchanged except for the addition ofone rule, the (def rule), and that the use of � ` B =def B0 in the conversion rule really hasan e�ect now, rather than simply postulating B =� B0.5.1 The de�nition mechanisms and extended typingDe�nition 5.1 (Axioms and rules of the Cube extended with de�nitions: d ranges over dec-larations and de�nitions)(axiom) <> `e � : 2(start rule) � � d�d `e subj(d) : pred(d)(weakening rule) � � d �d `e D : E�d `e D : E(application rule) � `e F : (A�x)B � `e a : A� `e (a�)F : B[x := a](abstraction rule) �(A�x) `e b : B � `e (A�x)B : S� `e (A�x)b : (A�x)B(def rule) �d `e C : D� `e dC : [D]d if d is a de�nition(conversion rule) � `e A : B � `e B0 : S � `e B =def B0� `e A : B0(formation rule) � `e A : S1 �(A�x) `e B : S2� `e (A�x)B : S2 If (S1; S2) is a ruleNote that in the abstraction rule, it follows that (A�x) is bachelor in �(A�x). The reasonis that we can show that if � is legal then � contains no bachelor main �-items. Hence as� `e (A�x)B : S, � has no bachelor �-items and so (A�x) cannot be matched in �.By �d `e def(d) : pred(d) in the (start rule) and (weakening rule), abbreviating 2 (asin (2�)(A�x)) is not allowed. Also by �d `e pred(d) : S, abbreviating kinds is not allowed.One might argue that this last condition could be omitted but it doesn't seem urgent to doso. The (def rule) says that if C : D can be deduced from a concatenation of de�nitions d,then dC will be of type D where all the sub-de�nitions in d have been unfolded in D. Wedo not get type dD in order to avoid things like d2. Note that the (def rule) does globalsubstitution in the predicate of all the occurrences of subjects in d. The reason is that d nolonger remains in the context. In the conversion rule however, substitution is local as � keepsall its information (see De�nition 3.4). The following examples show how this works:Example 5.2 Here is how the term in Example 3.8 and its ,!�-contractum is typed in �2.(Note how quicker we can type terms once we have de�nitions. Note also that the derivation20

given in Example 3.8 is also valid here, yet it is more clear and e�cient to use the de�nitionalsegments (y�)(��x) and (y0�)(��)(���)(��y). The present derivation is even valid in �!,because we don't need (���)(��y)(y�)(��x)x to have a type due to the (def rule).)`e�2 � : 2 (axiom)(���) `e�2 � : � : 2 (start resp. weakening)(���)(��y0) `e�2 y0 : � : � : 2 (start resp. weakening)(���)(��y0)(��)(���) `e�2 y0 : � : � : 2; � : � (start resp. weakening)(���)(��y0)(��)(���) `e�2 � =def � (de�nition of =def)(���)(��y0)(��)(���) `e�2 y0 : � : � (conversion)(���)(��y0)(y0�)(��)(���)(��y) `e�2 y : � : � (start resp. weakening)(���)(��y0)(y0�)(��)(���)(��y)(y�)(��x) `e�2 x : � (start resp. weakening)[�](y0�)(��)(���)(��y)(y�)(��x) � �[x := y][y := y0][� := �] � �(���)(��y0) `e�2 (y0�)(��)(���)(��y)(y�)(��x)x : � (def rule)Also (���)(��y0) `e�2 (��)(���)(y0�)(��x)x : � as follows (needed derivation steps, including(���)(��y0)(��)(���) `e�2 y0 : � by (conversion) , are left to the reader):(���)(��y0)(��)(���)(y0�)(��x) `e�2 x : � so by (def rule):(���)(��y0) `e�2 (��)(���)(y0�)(��x)x : �[x := y0][� := �] � �Example 5.3 Also the term of Example 4.14 can be easily and quickly typed in �P (notethat this term cannot be typed in �! as the term Q can't):(���)(��t)((��q) � �Q)((t�)Q�N)(N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z) `e�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N) `e�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)QIts ,!�-contractum gets the same type as follows:(���)(��t)((��q) � �Q)((t�)Q�N)(t�)(��x)(N�)((x�)Q�Z) `e�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N) `e�P (t�)(��x)(N�)((x�)Q�Z)Z : (t�)QRemark 5.4 We need � `e A =def B instead of A =� B in the conversion rule because wewant from (��A)(A�)(��x) `e A : � and y is fresh to derive not only (��A)(A�)(��x)(A�y) `ey : A but also (��A)(A�)(��x)(A�y) `e y : x. This is not possible if conversion is left withB =� B0: how can we ever derive (��A)(A�)(��x)(A�y) `e y : x as x 6=� A? If we change tothe conversion rule using =def, then we are �ne:(��A)(A�)(��x)(A�y) `e y : A(��A)(A�)(��x)(A�y) `e x : �(��A)(A�)(��x)(A�y) `e x =def A and so with conversion,(��A)(A�)(��x)(A�y) `e y : x5.2 Properties of the Cube with de�nitionsIf we look at Section 3.2 and because we have changed ` to `e but left!!� unchanged, we seethat all the lemmas and theorems which had ` in their heading get a�ected. In this section,we will list these lemmas and theorems for `e and give their proofs.Lemma 5.5 (Free variable lemma for `e)Let � be a legal context such that � `e B : C. Then the following holds:21

1. If d and d0 are two di�erent elements of �-decl[�-def, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. For s1 a main item of �, FV (s1) � fsubj(d) j d 2 �-decl[�-def; d is to the left of s1 in �g.Proof: All by induction on the derivation of � `e B : C. 2Lemma 5.6 (Start Lemma for `e)Let � be a legal context. Then � `e � : 2 and 8d 20 �[� `e d].Proof: � legal) 9B;C[� `e B : C]; now use induction on the derivation � `e B : C. 2Lemma 5.7 (Transitivity Lemma for `e)Let � and � be legal contexts. Then: [� `e � ^� `e A : B]) � `e A : B.Proof: Induction on the derivation � `e A : B. 2Lemma 5.8 (De�nition-shu�ing for `e) Let d be a de�nition.1. If �d� `e C =def D then �d(def(d)�)(pred(d)�subj(d))� `e C =def D.2. If �d� `e C : D then �d(def(d)�)(pred(d)�subj(d))� `e C : D.Proof: 1. is by induction on the generation of �(A�)s(B�x)� `e C =def D. 2. is byinduction on the proof of �(A�)s(B�x)� `e C : D using 1. for conversion. 2Lemma 5.9 (Thinning for `e)1. If �1�2 `e A =def B, �1��2 is a legal context, then �1��2 `e A =def B.2. If � and � are legal contexts such that � �0 � and if � `e A : B, then � `e A : B.Proof: 1. is by induction on the derivation �1�2 `e A =def B. 2. is as follows:� If �� `e A : B, � `e C : S, x is fresh, and no �-item in � is bound by a �-item in �,then also �(C�x)� `e A : B. We show this by induction on the derivation �� `e A : Busing 1. for conversion.� If �s� `e A : B, �s `e C : D : S, [C]s � C, x is fresh, s is well-balanced, then also�(C�)s(D�x)� `e A : B. We show this by induction on the derivation �s� `e A : B.In the case of (start) where �(A�)s(B�x) `e x : A comes from �s `e A : B : S, [A]s � A,x fresh, then [A](C�)s(D�x) � A because x fresh and �(C�)s(D�x) `e A : B : S by IH.� If �s(A�x)� `e B : C; (A�x) bachelor, s well-balanced, �s `e D : A; [D]s � D, then�(D�)s(A�x)� `e B : C is shown by induction on the derivation �s(A�x)� `e B : C(for conversion, use 1.). 2Lemma 5.10 (Substitution lemma for `e) Let d be a de�nition.1. If �d� `e A =def B, A and B are �d�-legal terms, then �[�]d `e [A]d =def [B]d2. If B is a �d-legal term, then �d `e B =def [B]d3. If �(A�)(B�x)� `e C : D then ��[x := A] `e C[x := A] : D[x := A]22

4. If �(B�x)� `e C : D, � `e A : B, (B�x) bachelor in �, then ��[x := A] `e C[x := A] :D[x := A]5. If �d� `e C : D, then �[�]d `e [C]d : [D]dProof:1. Induction on the derivation rules of =def.Case �d� `e d1C =def d1(C[subj(d1) := def(d1)]).Then [d1C]d � ([def(d1)]d�)[d1]d([pred(d1)]d�subj(d1))[C]d(d1C is �d�-legal) subj(d1) =2 dom(d))and [d1(C[subj(d1) := def(d1)])]d � [d1]d([C]d[subj(d1) := [def(d1)]d]),hence �[�]d `e [d1C]d =def [d1(C[subj(d1) := def(d1)])]d2. Induction on the structure of B.Case B � x 2 dom(d): use (=def def).Case B � x =2 dom(d): use (=def re
).Case B � (C�)D: use (=def comp1).Case B � (COx)D (O 2 f�;�g): use (=def comp2).3. Induction on the derivation rules, using 1., 2. and thinning, 4. Idem and 5. use 3. 2Lemma 5.11 (Generation Lemma for `e)1. If � `e x : A then for some B: (B�x) 20 �, � `e B : S, � `e A =def B and � `e A : S0for some sort S0.2. If � `e (A�x)B : C then for some D and sort S: �(A�x) `e B : D, � `e (A�x)D : S,� `e (A�x)D =def C and if (A�x)D 6� C then � `e C : S0 for some sort S0.3. If � `e (A�x)B : C then for some sorts S1; S2: � `e A : S1, � `e B : S2, (S1; S2) 2 R,� `e C =def S2 and if S2 6� C then � `e C : S for some sort S.4. If � `e (A�)B : C, (A�) bachelor in B , then for some D;E, x: � `e A : D, � `e B :(D�x)E, � `e E[x := A] =def C and if E[x := A] 6� C then � `e C : S for some S.5. If � `e sA : B, then �s `e A : BProof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on thederivations (use the thinning lemma). As to 5., we use induction on weight(s). Caseweight(s) = 0: nothing to prove. If we have proven the hypothesis for all segments s thatobey weight(s) � 2n and weight(s) = 2n + 2, s � s1s2 (neither s1 � ; nor s2 � ;) thenby the IH: �s1 `e s2A : B, again applying the induction hypothesis gives �s1s2 `e A : B. Ifwe have proven the hypothesis for all segments s for which weight(s) � 2n and weight(s) =2n + 2; s � (D�)s1(E�x) where weight(s1) = 2n then an easy induction to the derivationrules shows that one of the following two cases is applicable:� �s `e A : B0, � `e [B0]s =def B and if [B0]s 6� B then � `e B : S for some sort S.23

� � `e D : F , � `e s1(E�x)A : (F�y)G, � `e B =def G[y := D] and if G[y := D] 6� Bthen � `e B : S for some sort S.In the �rst case note that FV (B) \ dom(s) = ; and by thinning �s `e [B0]s =def B, bysubstitution �s `e [B0]s =def B0. So �s `e B0 =def B and by conversion �s `e A : B. In thesecond case we know by the induction hypothesis that �s1 `e (E�x)A : (F�y)G,Now 2. tells us �s1(E�x) `e A : L, �s1 `e (E�x)L =def (F�y)G and if (E�x)L 6�(F�y)G then �s1 `e (F�y)G : S1 for some S1.This means that x � y, �s1 `e E =def F , �s1 `e L =def G. Out of �s1 `e (E�x)L : S weget by 3. that �s1 `e E : S2 for some sort S2, thinning gives �s1 `e D : F so by conversionand thinning �s `e A : L.Out of � `e B =def G[x := D] we get (thinning and substitution) �s `e B =def G, out of�s1 `e L =def G we get �s `e L =def G, hence �s `e B =def L.Now if G[y := D] 6� B then � `e B : S for some sort S, and if G[y := D] � B then weget out of �s1 `e (E�x)A : (F�y)G that �s1 `e G : S0 for some sort S0, by thinning andsubstitution we get that �s `e G[y := D] : S0. In any case, we get �s `e B : S for some sortS and by conversion we may conlude �s `e A : B. 2Theorem 5.12 (Subject Reduction for `e and !!�)� `e A : B and A!! A0 then � `e A0 : B.Proof: We only need to consider A !� A0. Suppose � `e (A�)(B�x)C : D. Then bygeneration, �(A�)(B�x) `e C : D, and by substitution we get � `e C[x := A] : D[x := A], butas x =2 FV (D), D[x := A] � D. The compatibility cases are easy. 2Theorem 5.13 (Strong Normalisation for the Cube with respect to `e and !!�)For all `e-legal terms M , M is strongly normalising with respect to !!�.Proof: This is a special case of the proof of Theorem 6.27. 26 The Cube with de�nitions and generalised reductionNow we extend the type system of section 5 by changing the reduction!!� into ,!!�. As wasthe case in section 4 the derivation rules stay the same as those with classical �-reduction,hence almost all lemmas that have been proved for the system in section 5 are still valid.The only properties that have to be investigated are Church-Rosser, Subject Reduction andStrong Normalisation. We will show now that all these properties too are still valid.Theorem 6.1 (The general Church Rosser theorem for ,!!�)If A ,!!� B and A ,!!� C, then there exists D such that B ,!!� D and C ,!!� D.Proof: see Theorem 4.6. 2Theorem 6.2 (Subject Reduction for `e and ,!!�)If � `e A : B and A ,!!� A0 then � `e A0 : B.Proof: We only need to consider A ,!� A0. Suppose � `e dC : D. Then by generation,�d `e C : D. Hence by de�nition-shu�ing (5.8, say A � def(d), B � pred(d) and x �subj(d)), �d(A�)(B�x) `e C : D. Hence by substitution �d `e C[x := A] : D[x := A], and by(def rule) � `e d(C[x := A]) : [D[x := A]]d, which is � `e d(C[x := A]) : [D]d. Now by thevariable convention [D]d � D so we are done. The compatibility cases are easy. 2Now we present the proof of SN for the Cube extended with de�nitions and ,!!�.24

6.1 Strong NormalisationIn [BKN 9x], we used the technique of [Barendregt 92] to show Strong Normalisation for�! with extended reduction. However, here we use the proof of [Geuvers 94] due to its
exibility and the possibility of its generalisation to systems beyond the Cube, which we maybe investigating in the future. Here is the terminology that will be needed. Let !! be areduction relation which contains !!�, is Church Rosser and for which the least equivalencerelation closed under it, denoted =!! is the same as =�. Let ` be a typing relation whichranges over ` of Section 3 and over `e of Section 5.De�nition 6.3 De�ne a map # : T �! f0; 1; 2; 3g by #(2) = 3, #(�) = 2, #(x2) = 1,#(x�) = 0, #(A) = #(endvar(A)). For A 2 T , #(A) is called the degree of A. Call a state-ment A : B OK i� #(A) + 1 = #(B), call a de�nition d OK i� #(def(d)) = #(subj(d)) =#(pred(d))�1, and call a judgement � ` A : B OK i� A : B is OK, all de�nitions d 2 �-defare OK and for all items (COx) 2 �; A;B (O 2 f�;�g): x : C is OK.We shall use # to prove that the classes of kinds, constructors and objects are mutuallyexclusive. First we collect some basic facts about 2 and � in the type systems:Lemma 6.41. If � ` A : B then A 6� 2.2. If � is a legal context, then 2 does not occur in �.3. If A is a legal term, then A � 2 or 2 does not occur in A.4. Suppose � ` A : B, then endvar(A) � � () B � 2.5. If (A�) is an item in a legal context then endvar(A) 6� �.6. If (A�) is an item in a legal term then endvar(A) 6� �.Proof:1. induction on the derivation rules.2. simultaneous induction with 3. on the derivation rules using 1.4. induction on the derivation rules; for) use 1. and 3. We treat the case in which� ` A : B0 is a consequence of � ` A : B, � ` B0 : S and � ` B = B0. From theinduction hypothesis it follows that B � 2. Then substituting and reducing introduceno 2 in B0 as by 1. 2 =2 �, so 2 2 B0. But then by 3.: B0 � 2.5. induction on the derivation rules; use 4. and 2.6. induction on the derivation rules; use 5., 4. and 3. 2Now we can prove that whenever � ` A : B then #(A) + 1 = #(B).Lemma 6.5 For all contexts � and terms A;B: if � ` A : B then � ` A : B is OK.Proof: We use induction on the derivation rules, we treat three cases.25

� � ` (a�)F : B[x := a] as a consequence of � ` F : (A�x)B, � ` a : A, then by theinduction hypothesis #(x) = #(A) � 1 = #(a) and it can easily be seen that #(x) =#(a)) #(B[x := a]) = #(B).� � ` dC : [D]d out of �d ` C : D, then by the induction hypothesis: for all subde�nitionsd0 of d, #(def(d0)) = #(subj(d0)) so by repeatedly applying #(x) = #(a)) #(B[x :=a]) = #(B) we get #([D]d) = #(D).� � ` A : B0 out of � ` A : B, � ` B0 : S0, � ` B = B0, then by the generation corollary3.16 B � 2 or � ` B : S for some sort S.If B � 2 then � ` B = B0 implies B0 � 2 as in the proof of lemma 6.4.If B 6� 2 then S 6� 2 ^ B0 6� 2 implies S � S0; suppose now S � 2, then � ` B : 2so by lemma 6.4 endvar(B) � � so again by lemma 6.4 also endvar(B0) � �, hence#(B0) = #(B) = 2. If S0 � 2 then similar #(B) = #(B0) = 2. 2Corollary 6.6 If � is a legal context, then1. �-kinds \ �-constructors = ;,�-kinds \ �-objects = ;,�-constructors \ �-objects = ;,2 =2 �-kinds [�-constructors [�-objects.2. If (A�x)B is a �-term then A and B are both a �-kind or a �-type.3. If (A�x)B is a �-term then A is a �-kind or a �-type and B is a �-constructor or a�-object.4. If (A�)B is a �-term then A and B are both a �-constructor or a �-object.Proof: 1. is a direct consequence of lemma 6.5. 2., 3. and 4. are an easy corollary ofthe relevant Generation Lemma and Generation Corollary. 2Lemma 6.7 (Soundness of !!) If A;B 2 T are legal terms such that A =!! B then there isa path of one-step reductions and expansions via legal terms between A and B.Proof: By Church-Rosser there exists a term C such that A !!� C and B !!� C. BySubject Reduction for ordinary �-reduction all terms on the path A � � �C � � �B are legal. 2De�nition 6.8� De�ne the set of untyped �-terms by � = V j C j (��)� j (�V)�� We say that a term M 2 � is strongly normalising with respect to !! i� every !!-reduction path starting at M , terminates. Note that a priori it isn't clear whether Mis strongly normalising with respect to !!� implies that M is strongly normalising withrespect to ,!!� and that the reverse is trivial.� We de�ne SN!! = fM 2 � :M is strongly normalising with respect to!!g.� For A;B � � we de�ne A �! B = fM 2 � j 8N 2 A[(N�)M 2 B]g.26

De�nition 6.9 De�ne the key redex of a term M as follows:1. (A�)(B�x)C has key redex (A�)(B�x)C.2. If M has key redex N , then (P�)M has key redex N .De�ne redk(M) to be the term obtained from M by contracting its key redex. Note that notall terms have a key redex and that if a term has a key redex then it is unique.De�nition 6.10� De�ne the set of base terms B!! � � by V � B!!, and if M 2 B!!; N 2 SN!! then also(N�)M 2 B!!.� Call X � � saturated!! i�: X � SN!!, B!! � X and for all M 2 �: if M 2 SN!! andredk(M) 2 X then also M 2 X.� De�ne SAT!! = fX � � : X is saturated!!gLemma 6.111. SN!! 2 SAT!!.2. 8X 2 SAT!! : X 6= ;:3. If N 2 SN!!;M 2 X 2 SAT!! and x =2 FV (M) then (N�)(�x)M 2 X. (Note here that[Geuvers 94] takes (N�)(M�)(�y)(�x)y instead of (N�)(�x)M . The �rst however, willnot �t our purposes as is explained in Remark 6.25)4. A;B 2 SAT!!) A �! B 2 SAT!!.5. If I is a set and Xi 2 SAT!! for all i 2 I, then Ti2I Xi 2 SAT!!.Proof: 1. SN!! � SN!!, B!! � SN!!. Furthermore, if M 2 SN!! and redk(M) 2 SN!!then also M 2 SN!! as !!��!!. 2. and 3. by the de�nition of saturated sets. 5. is easy. Herewe treat 4. Suppose A;B 2 SAT!!.� As v 2 A for all v 2 V , we see: t 2 A �! B) (v�)t 2 B) (v�)t 2 SN!!) t 2 SN!!.So A �! B � SN!!.� If M 2 B; N 2 A then N 2 SN so MN 2 B � B, so B � A �! B.� If M 2 SN!!, redk(M) 2 A �! B then for all N 2 A: (N�)redk(M) 2 B hence(N�)M 2 B, hence also M 2 A �! B. 2We de�ne three maps, �rst V of �-kinds to the function space of SAT!!, then [[]]� of �-termsn�-objectsto elements of the function space of SAT!!, and third ([])� of �-terms to �, such that whencertain conditions are met we have:� ` A : B : 2) [[A]]� 2 V(B); [[B]]� 2 SAT!! and � ` A : B) ([A])� 2 [[B]]� .Remark 6.12 It can easily be seen using lemma 6.5 that all kinds look like � with some�-applications and de�nitions in front of it, and have no bachelor �- or �-items.27

De�nition 6.13 De�ne for all kinds A the set-theoretical interpretation of A as follows:� V(�) = SAT!!,� V((A�x2)B) = V(A)! V(B), the function space of V(A) to V(B)� V((A�x�)B) = V(B)� V(dA) = V(A) if d a de�nitionNow de�ne U = SfV(A) j A is a `-kind g.Lemma 6.141. If A is a legal kind, B a legal constructor and C is a legal object, thenV(A) = V(A[x2 := B]) and V(A) = V(A[x� := C]).2. If dA is a legal kind (remember Remark 6.12), d is a de�nition, then V([A]d) = V(A).Proof: 1. is by induction on the structure of A (note: A has no bachelor �- or �-items),2. is by 1. (note: all de�nienda in a de�nition are either constructors or objects). 2De�nition 6.15 Let � be a `-legal context.� A �-constructor valuation, notation � j=2 �, is a map � : V 2 �! U such that forall (A�x) 20 � with A a �-kind (i.e. x 2 V 2): �(x) 2 U(A).� If � is a constructor valuation, then [[]]� : �-termsn�-objects ! U is de�ned inductivelyas follows:[[2]]� := SN!![[�]]� := SN!![[x2]]� := �(x2)[[(A�)B]]� := ([[B]]�[[A]]� if A 2 �-constructors[[B]]� if A 2 �-objects[[(A�x)B]]� := (�f 2 V(A):[[B]]�(x:=f) if A 2 �-kinds[[B]]� if A 2 �-types[[(A�x)B]]� := ([[A]]� ! Tf2V(A)[[B]]�(x:=f) if A 2 �-kinds; x 2 V 2[[A]]� ! [[B]]� if A 2 �-types; x 2 V �where �(x := N) is the valuation that assigns �(y) to y 6� x and N to x. Furthermore,with [[A]]� [[B]]� we mean application of the function [[A]]� onto its argument [[B]]� and by� we mean function-abstraction.Before we verify that [[]]� is well de�ned, here are some helpful facts about [[]]�.Lemma 6.16 Let A;A0 2 �-termsn�-objects; B 2 �-constructors; C 2 �-objects; x2 a con-structor variable and x� an object variable. Then28

1. [[A[x2 := B]]]� = [[A]]�(x2:=[[B]]�)2. [[A[x� := C]]]� = [[A]]�3. A =� A0) [[A]]� = [[A0]]�Proof: 1. and 2. are by induction on the structure of A. 3. is by induction on the lengthof the path from A to A0 through the legal terms (use Lemma 6.7). 2Remark 6.17 Note that =� and =!! are the same equality relations.Lemma 6.18 (Soundness of [[]]�) If � ` A : B : 2 then for all � such that � j=2 �, we have:[[A]]� and [[B]]� are well-de�ned and [[A]]� 2 V(B), [[B]]� 2 SAT!!.Proof: By induction on the derivation rules. We treat two cases:� � ` (a�)F : B[x := A] as a consequence of � ` F : (A�x)B and � ` a : A. It is notdi�cult to see that [[B[x := A]]]� 2 SAT!! if [[B[x := A]]]� is a kind, because by Lemma6.5, then also B is a kind. Furthermore, by the induction hypothesis [[F]]� 2 V((A�x)B)and if A is a kind then also [[a]]� 2 V(A). If A is not a kind, then [[(a�)F]]� = [[F]]� 2V((A�x)B) = V(B). If A is a kind, then [[F]]� 2 V((A�x)B) = V(A) ! V(B) andhence [[(a�)F]]� = [[F]]� [[a]]� 2 V(B) Lemma 6.14= V(B[x := a]).� � ` dC : [D]d as a consequence of �d ` C : D. Then by the induction hypothesis[[C]]� 2 V(D) for all � j=2 �d and if D is a kind, then [[D]]� 2 SAT!!. Now let � j=2 �,then [[dC]]� Lemma 6.16.3= [[[C]d]]� = [[C]]�0 where �0(x2) = �(x2) if x2 is not the subject of asubde�nition in d, and �0(x2) = [[def(d0)]]� if x2 is the subject of a d0 a subde�nition ofd. But �0 j=2 �d, so [[C]]�0 2 V(D) Lemma 6.14= V([D]d). 2De�nition 6.19 If � j=2 �, then we call � cute with respect to � if for all d 2 �-def suchthat subj(d) 2 V 2, �(subj(d)) = [[def(d)]]�.Lemma 6.201. If � j=2 � and A is �-legal, then [[A]]� depends only on the values of � on the freeconstructor variables of A.2. If � j=2 � then there is a cute �0 such that �0 j=2 � and �0 = � on the non-de�nitionalconstructor variables of dom(�).3. If � j=2 � and � is cute with respect to � then � ` A =def B =) [[A]]� = [[B]]�.Proof: 1. is easy, 2. is a consequence of 1. and 3. is proved by induction on thegeneration of =def using Lemma 6.16.De�nition 6.21� Let � j=2 � such that � is cute with respect to �. An object valuation of � with respectto �, notation �; � j= �, is a map � : V ! � such that for all (A�x) 20 �: �(x) 2 [[A]]�(regardless of whether A 2 �-kinds or A 2 �-types).29

� For �; � j= � (note: this implies � is cute, de�ne ([])� : �-terms �! � as follows:([x])� := �(x)([�])� := �([2])� := 2([(N�)M])� := (([N])��)([M])�([(A�x)B])� := (([A])��)(�y)(�x)([B])�(x:=x) (where y =2 FV (B))([(A�x)B])� := ((�y)([B])�(x:=y)�)(([A])��)x (where y =2 FV (B))Note that we need BC to ensure that no unwanted bindings occur in the case (A�x)B.The use of the endvariable x in this case is not essential, we also could reserve onespecial variable w that should not be used otherwise and de�ne ([(A�x)B])� to be theterm ((�x)([B])�(x:=x)�)(([A])��)w.� We de�ne another map d e : �-terms �! � bydxe := xd�e := �d2e := 2d(N�)Me := (dNe�)dMed(A�x)Be := (dAe�)(�y)(�x)dBe (where y =2 FV (B))d(A�x)Be := ((�y)dB(x := y)e�)(dAe�)x (where y =2 FV (B))De�nition 6.22 Let � be a context, A;B 2 �-terms. � satis�es that A is of type B withrespect to ` and !!, notation � j=!̀! A : B, i� 8�; �[�; � j= �) ([A])� 2 [[B]]�].Lemma 6.231. If �(A�)d(B�x)� is a legal context and �; � j= �(A�)d(B�x)� then ([A])� 2 [[B]]� and([B])� 2 SAT!!.2. �d j= A : B =) � j= dA : [B]dProof: 1. is by induction on the derivation rules. 2. is by induction on weight(d).If d � ; then nothing to prove, suppose now d � (C�)s1(D�x)s2. Then by the inductionhypothesis �(C�)s1(D�x) j= s2A : [B]s2 .� Suppose x 2 V �. Let �; � j= �s1. Then for all E 2 [[D]]� we have �(x := E); � j=�(C�)s1(D�x). Hence ([s2A])�(x:=E) 2 [[[B]s2]]�, hence (�x)([s2A])�(x:=x) 2 [[D]]� ![[[B]s2]]� and also (([D])��)(�y)(�x)([s2A])�(x:=x) 2 [[D]]� ! [[[B]s2]]� (by 1. ([D])� 2 SAT!!,use Lemma 6.11). This means �s1 j= (D�x)s2A : (D�x)[B]s2 , so by the inductionhypothesis � j= s1(D�x)s2A : ([D]s1�x)[B]s1s2. If �; � j= � then by 1. ([C])� 2 [[D]]� and([s1(D�x)s2A])� 2 [[[D]s1]]� ! [[[B]s1s2]]�, hence (([C])��)([s1(D�x)s2A])� 2 [[[B]s1s2]]� =[[[B](C�)s1(D�x)s2]]�, so � j= (C�)s1(D�x)s2A : [B](C�)s1(D�x)s2.30

� Suppose x 2 V 2. Let �; � j= �s1. Then �(x := E); �(x := f) j= �(C�)s1(D�x) for allf 2 U(D) and E 2 [[D]]�, so ([s2A])�(x:=E) 2 [[[B]s2]]��(x := f), hence (�x)([s2A])�(x:=x) 2[[D]]� ! Tf2U (D)[[[B]s2]]�(x:=f). But then also (([D])��)(�y)(�x)([s2A])�(x:=x) 2 [[D]]� !Tf2U (D)[[[B]s2]]�(x:=f) (use 1. and Lemma 6.11). Hence we see: �s1 j= (D�x)s2A :(D�x)[B]s2 , so by IH � j= s1(D�x)s2A : ([D]s1�x)[B]s1s2 .Now let �; � j= �. Then ([s1(D�x)s2A])� 2 [[([D]s1�x)[B]s1s2]]� and ([C])� 2 [[[D]s1]]� by1., so (([C])���)(([s1(D�x)s2A])��) 2 Tf2U (D)[[[B]s1s2]]�(x:=f).This means ([(C�)s1(D�x)s2A])�� 2 [[[B]s1s2]]�(x:=[[C]]� = [[[B]s1s2 [x := C]]]� BC=[[[B](C�)s1(D�x)s2]]�, hence � j= (C�)s1(D�x)s2A : [B](C�)s1(D�x)s2 . 2Lemma 6.24 (([])� versus d e)1. 8M 2 �-terms, 8�: ([M])� � dMe[~x := ~�(x)] where ~x are the free variables of M .2. If s is a well-balanced segment then dsAe � dsedAe and dse is also well-balanced. More-over, FV (dAe) = FV (A).3. For all M 2 �-terms: dMe is strongly normalising)M is strongly normalising.Proof: The �rst statement is easy to verify. The second statement is also easy. Thethird statement can be proved as follows: we prove by induction on the structure of M , thatwhenever M !! N , then dMe !! dNe. We show the only non-trivial case (note that when !!is !!�, then s � ;). If M � (A�)s(B�x)C !! s(C[x := A]) � N , thendMe � (dAe�)ds(B�x)Ce � (dAe�)dse(dBe�)(�y)(�x)dCe!! (dAe�)dse(�x)dCe (note that y 62 FV ((�x)dCe))!! dsedCe[x := dAe] � dsedC[x := A]e � ds(C[x := A])e � dNe. 2Remark 6.25 With this Lemma, it becomes clear why we depart from [Geuvers 94] by usingd(A�x)Be to be (dAe�)(�y)(�x)dBe instead of (dAe�)((�x)dBe�)(�u)(�v)u.Consider for example P � (A�)(B�)(C�x)(D�y)E and Q � (B�)(C�x)E[y := A]. It isobvious that P ,!� Q and that dP e � (dAe�)(dBe�)(dCe�)(�p)(�x)(dDe)�)(�q)(�y)dEe ,!!�dQe � (dBe�)(dCe�)(�p)(�x)dEe[y := dAe]. Yet, if we use the translation of [Geuvers 94],then we get dP e � (dAe�)(dBe�)(dCe�)((�x)d(D�y)Ee�)(�u)(�v)u6,!!� dQe � (dBe�)(dCe�)((�x)dEe[y := dAe]�)(�s)(�t)s.Lemma 6.26 � ` A : B) � j= A : BProof: Use induction on the structure of A to prove that if �; � j= � then ([A])� 2 [[B]]�:� A � x. Then by generation for some B0: � ` B0 =def B and (B0�x) 2 �-decl [�-def,so by �; � j= �; (B0�x) 2 �-decl [�-def, and Lemma 6.16, we get ([A])� = �(x) 2[[B0]]� = [[B]]�.� A � (P�x)Q, with P 2 �-kinds.Then by the generation lemma for some R, �(P�x) ` Q : R with � ` (P�x)R =def B,� ` P : 2. By IH we �nd that ([Q])�(x:=p) 2 [[R]]�(x:=f) for all p 2 [[P]]� ; f 2 V(P), so([Q])�(x:=p) 2 Tf2V(P)[[R]]�(x:=f). By IH also ([P])� 2 [[2]]� = SN!! so by Lemma 6.11([A])� = ([(P�x)Q])� = (([P])��)(�y)(�x)([Q])�(x:=x) 2 [[P]]� ! Tf2V(P)[[R]]�(x:=f) = [[B]]�.31

� A � (P�x)Q with P 2 �-types. Then similar to the previous case.� If ` is ordinary typing and A � (P�)Q with P 2 �-objects. Then � ` Q : (R�x)T ,� ` P : R for some R;T with � ` T [x := P] =def B (again generation lemma). Nowby IH and lemma 6.11 we see that ([Q])� 2 [[R]]� �! [[T]]� and ([P])� 2 [[R]]�,so ([A])� = ([(P�)Q])� = (([P])��)([Q])� 2 [[T]]� = [[T [x := P]]]� = [[B]]�.� A � dP where d is a de�nition. Then by the Generation Lemma �d `e P : B. By theinduction hypothesis we then know that �d j= P : B, hence by Lemma 6.23.2 we getthat � j= dP : [B]d, but [B]d � B, so � j= dP : B.� A � (P�)Q with P 2 �-constructors where (P�) is bachelor in (P�)Q then also similar.� A � (P�x)Q. Then by generation � ` P : S1, �(P�x) ` Q : S2, S2 =� B.If P 2 �-kinds, then IH says ([P])� 2 [[2]]�, ([Q])�(x:=p) 2 [[S2]]�(x:=f) for all p 2 [[P]]�; f 2V(P), hence [[P]]� 2 SN!!, (�x)([Q])�(x:=x) 2 SN.But this means ([A])� = ((�x)([Q])�(x:=x)�)(([P])��)x 2 SN = [[S2]]� = [[B]]�.If P 2 �-types, then similar. 2Theorem 6.27 (Strong Normalisation for the Cube with respect to `e and ,!!�)For all `e-legal terms M , M is strongly normalising with respect to ,!!�.Proof: Let M be a `e-legal term. Then either M � 2 or for some context � and term N ,� `e M : N . In the �rst case, clearly M is strongly normalising. In the second case, de�necanonical elements cA 2 V(A) for all A 2 �-kinds as follows:c� := SN,!!�c(A�x)B := �f 2 V(A):cB if A 2 �-kinds; x 2 V 2c(A�x)B := cB if A 2 �-types; x 2 V �Take � such that �(x) = cA whenever (A�x) 20 � and �(subj(d)) = [[def(d)]]� wheneverd 20 �-def and take � such that �(subj(d)) = ([def(d)])� for all subde�nitions d of � and�(x) = x otherwise. Then �; � j= �, hence ([M])� 2 [[N]]�, where ([M])� = dMe as mentionedin lemma 6.24. Hence dMe 2 [[N]]� � SN,!!� . By lemma 6.24 now also M 2 SN,!!� . 2This Theorem proves also SN for the other Cubes in this paper (the Cube extended withnothing, de�nitions or ,!!�) as the legal terms of those Cubes are also legal in the Cube ofthis section, and SN with respect to ,!!� implies SN with respect to !!�.7 Comparing the type system with de�nitions to other typesystemsIn this section we will compare the type systems generated by `e with the one generated by`, from two di�erent points of view. The �rst is the conservativity, where we show that in acertain sense, de�nitions are harmless. That is, even though we can type more terms using `ethan using `, whenever a judgement is derivable in a theory L using de�nitions and `e, it isalso derivable in the theory L without de�nitions, using only ` and where all the de�nitionsare unfolded. The second viewpoint is about the e�ectiveness of derivations. More work hasto be done yet but it is certain that there is a gain in using de�nitions.32

7.1 ConservativityAs we saw in example 5.2, in the type systems with de�nitions there are more legal terms.Therefore, it has to be investigated to what extent the set of legal terms has changed. Note�rst that all derivable judgements in a type system of the �-cube are derivable in the sametype system extended with de�nitions as we only extended, not changed, the derivation rules.A second remark concerns the bypassing of the formation rule by using the weakening andde�nition rule instead: In �2 without de�nitions we can derive the following by using theformation rules (�; �) and (2; �) (take � � (���)(��y)):� `�2 y : � : � : 2�(���) `�2 � : � (start)�(���)(��x) `�2 x : � : � (start resp weakening)�(���) `�2 (��x)� : � (formation rule (�; �))�(���) `�2 (��x)x : (��x)� (abstraction)� `�2 (���)(��x)� : � (fromation rule (2; �))� `�2 (���)(��x)x : (���)(��x)� (abstraction)� `�2 (��)(���)(��x)x : (��x)� (application, we already knew � `�2 � : �)� `�2 (y�)(��)(���)(��x)x : � (application, we already knew � `�2 y : �)It is not possible to derive this judgement in �! as the formation rule (2; �) is needed. Nowwe observe that the term (y�)(��)(���)(��x)x can be seen as x with two de�nitions added,and using this observation we can derive the judgement in a type system with de�nitionwithout having to use the formation rules (�; �) and (2; �):� `e�! y : � : � : 2�(��)(���) `e�! y : �; � : � (weakening resp. start)�(��)(���) `e�! � =def � (use the de�nition in the context)�(��)(���) `e�! y : � (conversion)�(y�)(��)(���)(��x) `e�! x : � (start)� `e�! (y�)(��)(���)(��x)x : �[x := y][� := �] � � (de�nition rule)This example shows that in �!def we have more legal judgements than in �!. Now we takea look at the judgement � ` (��)(���)(M�x)x : (M�x)M where M � (y�)(��z)(��)(��
)
and � � (���)(��y). This judgement can be derived in �C using the formation rules (2;2),(2; �), (�;2) and (�; �) in the following way:� `�C � : � : 2�(���) `�C � : � : 2 (weakening)�(���)(��z) `�C z : � : � : 2 (start resp. weakening)�(���)(��z)(��
) `�C
 : � : 2 (start resp. weakening)�(���)(��z) `�C (��
)� : 2 (formation rule (2;2))�(���)(��z) `�C (��
)
 : (��
)� (abstraction)�(���)(��z) `�C (��)(��
)
 : � (application)�(���) `�C (��z)� : 2 (formation rule (�;2))�(���) `�C (��z)(��)(��
)
 : (��z)� (abstraction)33

�(���) `�C M : � (application, M � (y�)(��z)(��)(��
)
)�(���)(M�x) `�C x :M : � (start resp. weakening)�(���) `�C (M�x)M : � (formation rule (�; �))�(���) `�C (M�x)x : (M�x)M (abstraction)� `�C (���)(M�x)M : � (formation rule (2; �))� `�C (���)(M�x)x : (���)(M�x)M (abstraction)� `�C (��)(���)(M�x)x : (M�x)M (application)It is impossible to derive this judgement in any other system of the cube than �C as all fourformation rules are needed. We can however derive this judgement in �!def:� `e�! � : � : 2�(��)(���) `e�! � : � : 2 (weakening)�(��)(���)(y�)(��z) `e�! � : � : 2 (weakening)�(��)(���)(y�)(��z)(��)(��
) `e�!
 : � (weakening)�(��)(���) `e�! (y�)(��z)(��)(��
)
 : �[
 := �][z := y] i.e. M : � (de�nition rule)�(��)(���)(M�x) `e�! x : M : � (start resp. weakening)�(��)(���) `e�! (M�x)M : � (formation rule (�; �))�(��)(���) `e�! (M�x)x : (M�x)M (abstraction)� `e�! (��)(���)(M�x)x : (M�x)M [� := �] � (M�x)M (de�nition rule)This example shows that in every system of the �-cube (except �C), adding de�nitions givesmore derivable judgements. As was shown in Eample 5.2, (���)(��y0) `e�2 (��)(���)(y0�)(��x)x :� is derivable in �2def and hence is also derivable in �Cdef, but this judgement cannot bederived in �C as y is of type � and not of type �. At �rst sight this might cause the readerto suspect type systems with de�nitions of having too much derivable judgements. However,we have a conservativity result stating that a judgement that can be derived in Ldef can bederived in L when all de�nitions in the whole judgement have been unfolded.De�nition 7.1 For � `e A : B a judgement we de�ne the unfolding of � `e A : B, [� `e A :B]u to be the judgement obtained from � `e A : B in the following way:� �rst, mark all visible ��-couples in �, A and B,� second, contract in �, A and B all these marked ��-couples.When � � � � � (C�)s(D�x) � � �, contracting (C�)(D�x) amounts to substituting all free occur-rences of x in the scope of �x by C; these free occurrences may also be in one of the termsA and B. The result is independent of the order in which the redexes are contracted, as onecan see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.Example 7.2 [(���)(��y)(y�)(��)(���)(��x)(��z) `e ((��u)u�)((��u)��v)(x�)v : �]u is(���)(��y)((��z)[x := y][� := �]) `e (((x�)v)[v := (��u)u])[x := y][� := �] : �[x := y][� := �],which is (���)(��y)(��z) `e (y�)(��u)u : �. Note that the resulting context contains only�-items and that the resulting subject and predicate need not be in normal form.Theorem 7.3 Let L be one of the systems of the Cube, � a context with de�nitions and A;Bpseudoterms. If � `eL A : B then �0 `L A0 : B0, where �0 `L A0 : B0 is [� `eL A : B]u.Proof: use induction on the derivation of � `eL A : B. axiom, abstraction and formationrules are easy, we treat the other cases. 34

� The last rule applied is the start rule. Then �d `eL subj(d) : pred(d) as a consequenceof � � d. Now if d � (A�x) then by IH �0 `L A0 : S (S a sort, x fresh) so by the startrule �0(A0�x) `L x : A0. On the other hand, if d is a de�nition, say d � (A�)d(B�x),then by IH (�d)0 `L A0 : B0 : S (S a sort), which is �0 `L A0 : B0 : S as d will befully unfolded, and the unfolding of �d `eL subj(d) : pred(d) is �0 `L def(d)0 : pred(d)0which is �0 `L A0 : B0 so we are done.� The last rule applied is the weakening rule, say �d `eL D : E as a consequence of � � dand �d `eL D : E. Because subj(d) is fresh we have that (�d)0 `L D0 : E0 is the sameas (�d)0 `L D0 : E0 so by IH we are done.� The last rule applied is the application rule. Then � `eL (a�)F : B[x := a] as aconsequence of � `eL F : (A�x)B and � `eL a : A. By IH and the application rule we get�0 `L (a0�)F 0 : B0[x := a0]. Now by subject reduction also �0 `L ((a0�)F 0)0 : B0[x := a0].If B0[x := a0] � (B0[x := a0])0 then we are done, otherwise, by the Generation Corollary�0 `L B0[x := a0] : S for some sort S, so by subject reduction �0 `L (B0[x := a0])0 : Sand as B0[x := a0] =� (B0[x := a0])0 by conversion we are done.� The last rule applied is the conversion rule. Then � `eL A : B2 as a consequenceof � `eL A : B1, � `eL B2 : S and � `eL B1 =def B2. Now � `eL B1 =def B2 impliesB01 =� B02 because if C results from D by locally unfolding a de�nition of � then C 0 � D0,so the result follows by IH.� The last rule applied is the de�nition rule. Then � `eL dc : [D]d as a consequence of�d ` C : D. By IH, �0 `L [C 0]d : [D0]d which is the unfolding of � `eL dc : [D]d.Remark 7.4 It is not su�cient in theorem 7.3 to unfold all the de�nitions in the contextonly, because a redex in the subject may have been used to change the type when it was stillin the context, this is illustrated by (���)(��y) `e�! (��)(���)(y�)(��x)x : � which cannot bederived using `�!. However, this judgement where all the de�nitions are unfolded in context,subject and predicate, is derivable using `. That is, (���)(��y) `�! y : �.7.2 Shorter derivationsAs we already noted, derivations using the de�nition mechanism seem to need considerablyless derivation steps to derive a judgement that can also be derived without de�nitions. Asto the type-checking of terms, we do not think that type-checking in the extended systemswill be more di�cult than in the �-cube of Barendregt, nor do we think it will become less.7.3 Comparison with the systems of the Barendregt cubeHere we discuss the (dis)advantages of our extended typing systems to the typing systems ofthe �-cube.In the extended typing systems we can reason with de�nitions in the context (which isvery natural to do): we can add de�nitions to the context in which we reason (the start ruleand weakening rule), we can eliminate de�nitions in the context (the def rule) and we canunfold a de�nition in the context locally in the type (the conversion rule).Furthermore, in the terms, there are more visible redexes and all these redexes are subjectto contraction. 35

If one considers one of the seven lower systems in the �-cube, some abstractions areforbidden, for instance in �P! the abstraction of a term over a type is not allowed (thisabstraction corresponds to universal quanti�cation in logic). Intuitively such a quanti�cationneed not be forbidden if it is immediately being instantiated by an application, as is thecase in the term (��:�:(�x:�:x)�. However, in the system �P! this term is untypable as thesubterm ��:�:(�x:�:x) should have type ��:�:(�x:�:x), which is forbidden as the formationrule (2; �) is not allowed.Now in our extended typing system �P!e we can type the term (��:�:(�x:�:x))� byusing the def rule: from (���)(��)(���) `e (��x)x : (��x)x we may conclude (���) `e(��)(���)(��x)x : (��x)x. Note that the use of the formation rule (2; �) is avoided.By this property, the extended type systems are closer to the intuition than the systemsof the �-cube of Barendregt as there are more (intuitively correct) derivable inhabitants ofcertain types.7.4 Comparison with the type systems of Poll and SeveriWhen we compare the extended type systems to those of Poll and Severi (see [SP 93]), weobserve the following di�erences.1. In the systems of [SP 93], the de�nition of pseudoterms has been adapted, not onlythe usual variables, abstractions and applications are pseudoterms, but de�nitions, i.e.terms of the form x = a : A in B are added. A new reduction relation has to beintroduced to be able to unfold these de�nitions (locally).In our approach, we treat de�nitions like �-redexes, hence the syntax of pseudotermsremains the same. We only need to change the syntax of contexts and extend the notionof �-equality in a natural way to be able to use the de�nitions in the context.2. [SP 93] have a rule that takes a de�nition out of the context and puts it in front of theterm and type. In our extended system however, we only put the de�nition in frontof the term and unfold it in the type. By the conversion rule, now also the type withthe de�nition in front of it instead of the unfolded type can be derived (due to thegeneration corollary).3. [SP 93] do not demand the predicate of a de�nition to have some sort as type. This onlyleads to being able to abbreviate kinds, which is impossible in our extended systems.We consider this to be a minor disadvantage which might very well be easily overcomeby leaving the demand of the type of the predicate.References[Barendregt 84] Barendregt, H., Lambda Calculus: its Syntax and Semantics, North-Holland, 1984.[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction andspine strategies for the �-calculus, Information and Computation 75 (3), 1191-231, 1987.[BKN 9x] Bloo, R., Kamareddine, F., Nederpelt, R., Beyond �-reduction in Church's �!, Comput-ing Science Note 94/20, Eindhoven University of Technology, Department of Mathematics andComputing Science, 1994. 36

[Dow 91] Dowek, G. et al. The Coq proof assistant version 5.6, users guide, rapport de recherche 134,INRIA, 1991.[Gardner 94] Gardner, P., Discovering Needed Reductions Using Type Theory, to appear in TACS,1994.[Geuvers 94] Geuvers, H., A short and
exible proof of Strong Normalisation for the Calculus ofConstructions, notes of a talk given at the BRA types workshop, Bastad, Sweden, 1994.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-nal of Foundations of Computer Science 4 (3), 197-240, 1993.[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the �-calculus, in preparation.[KN 9y] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and �{conversion in the BarendregtCube, to appear in the Journal of Functional Programming.[KN94b] Kamareddine, F., and Nederpelt, R.P., Re�ning reduction in the �-calculus, ComputingScience Note 94/18, Eindhoven University of Technology, Department of Mathematics and Com-puting Science, 1994.[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,1993.[L�evy 80] L�evy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: Essays onCombinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, AcademicPress, 1980.[LP 92] Luo Z., and Pollack, R., LEGO proof development system: User's manual, Technical reportECS-LFCS-92-211, LFCS, University of Edinburgh, 1992.[GM 93] Gordon M.J.C. and Melham, T.F. (eds), Introduction to HOL: A Theorem Proving Environ-ment for Higher Order Logic, Cambridge University Press, 1993.[NK 94] Nederpelt, R.P., and Kamareddine, F., A uni�ed approach to type theory through a re�ned�-calculus, in �-calculus and domain theory, Proceedings of the 1992 conference on Mathemati-cal Foundations of Programming Semantics, ed. M. Mislove et. al., 1994, Theoretical ComputerScience, Springer.[SP 93] Severi, P., and Poll, E., Pure Type Systems with De�nitions, Computing Science Note 93/24,Eindhoven University of Technology, Department of Mathematics and Computing Science, 1993.

37

