A Semantics for a fine A-calculus with de Bruijn indices *

Fairouz Kamareddine
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ), Scotland

email: fairouz@dcs.glasgow.ac.uk
and

Rob Nederpelt
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands
email: wsinrpn@win.tue.nl

April 13, 1997

*We are grateful for the discussions with Jos Baeten, Henk Barendregt, Erik Barendsen, Inge Bethke, Tijn
Borghuis, Herman Geuvers, Jeroen Krabbendam, Erik Poll and Peter Rodenburgh and for the helpful remarks
received from them.

fKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven University
of Technology, for their financial support and hospitality from October 1991 to September 1992, and during
the summer of 1993. Furthermore, Kamareddine is grateful to the Department of Mathematics and Computer
Science, University of Amsterdam, and in particluar to Jan Bergstra and Inge Bethke for their hospitality
during the preparation of this article.

Name and mailing address of author to whom proofs should be sent:

Fairouz Kamareddine

Department of Computing Science
17 Lilybank Gardens

University of Glasgow

Glasgow G12 8QQ, Scotland

email: fairouz@dcs.glasgow.ac.uk

Contents
1 Introduction
2 The syntax of the calculi

7

8

2.1 The calculus A
2.2 De Bruijn’s indices
2.3 Thesyntax of Q=

Axioms of Qg

3.1 ¢-reduction
3.2 o-reduction
3.3 [B-reduction

3.3.1 Making i negative in (7))
3.3.2 B-reduction using (u) . .

Translating A in Qz

Translating Q= in A

5.1 The inverse functione
5.2 Variables and lists
5.3 The semantics of Q=-terms: an initial account
5.4 Extending the initial account . . .
5.5 The semantics of o- and ¢-terms .

The soundness of - and p-reduction

The meaning and soundness of 3-reduction

Comparison and conclusions

A An alternative semantics

22

24
26
27
30
31
35

38

42

44

46

Abstract

Most of us who have worked with named variables in the A-calculus must have noticed
how sticky such variables can be. The problem is, that named variables play a very
demanding role in the most basic operations of the A-calculus, namely: B-reduction and
substitution. This has lead to using implicit substitution rather than the explicit one
in most theories of the A-calculus. Variable names however, have one advantage that
should not be underestimated; that is: they facilitate the readability of terms. Now, it
would be very nice if we could write the basic operations of the A-calculus in a precise
way which avoids the messiness of variables. It would be very nice moreover, if we could
sometimes keep the variable names, without having to pay the price usually associated
with them. Our first task in this paper is to get rid of the problematic variable names
and to establish what we believe is the most precise and fine A-calculus, 2=. In such
a calculus, de Bruijn’s indices are used instead of variable names and substitution and
reduction are defined in a step-wise fashion which can be directly implemented without
having to carry out a lot of book-keeping as is usually the case in the classical A-calculus.
Most importantly, the substitution in {2z is no longer the implicit substitution but rather
it is the explicit one which is long needed in many applications of the A-calculus. Such an
explicit substitution has been facilitated as a result of the fine structure of A\-terms that we
propose in this paper and where item notation plays a dominant role. Furthermore, the
species of variable names is cultivated and ordered so that a fine inter-marriage between de
Bruijn’s indices and variable names takes place. Such a relationship between de Bruijn’s
indices and variable names will be used to show the consistency of our fine reduction and
explicit substitution in terms of the classical A-calculus. We shall also reflect on the use
and necessity of a-conversion.

Keywords: De Bruijn’s indices, variable updating, substitution, reduction, soundness.

1 Introduction

We shall start in this paper by discussing a typed A-calculus A which has the following
features:

e There is no distinction between types and terms. This will make the calculus more
general. See for example [Barendregt 91] and [Barendregt 92] where instead of terms
and types, the notion of pseudo-terms is used. See furthermore [de Bruijn 70] where the
Automath system provided is the most abstract formulation of type systems and where
no distinction is made between types and terms. The selected papers in [NGdV 94]
elaborate further on the Automath systems.

e The argument comes before the function so that instead of (t1t2) we write (t20t1). This
convention has a practical advantage which we will see below. In particular, it helps to
show clearly which are the (-redexes.

e The type comes before the typed variable so that instead of (A, .t2) we write (t1Ayt2).
This convention is of less importance than the above convention but will play a role in
providing a modular way of representing terms. That is, every non variable term can be
looked at as an w-item followed by a term, where the notion of w-items for w € {\,, d},
is explained below.

e The bracketing of the operators A and d are changed so that we write (1),)ty instead
of (t1Ayt2) and (t10)ty instead of (t1dts).

These conventions together, give rise to items like the A-item (#;\,) and the d-item (¢16).
Moreover, the -item and the A-item involved in a S-reduction occur adjacently in the term;
they are not separated by the “body” of the term, that can be extremely long! This fashion
of writing terms is close to the mathematical definitions and theorems as is elaborated in
[Nederpelt 87]. In the system A, the usual implicit substitution of the A-calculus is used.

The item notation enables us to add substitution items (or o-items) which will have the
same status as the A- and J-items hence making substitution an object level process and
giving substitution items the right to be first-class citizens. In fact, thanks to the item
notation we can provide the fine structure of the A-calculus with various refined forms of
reduction, substitution and term manipulation.

After presenting A, the calculus with item notation but where variable names and implicit
substitution are used, we shall introduce a calculus based on A but where de Bruijn’s indices
and explicit substitution are used. For this, we start by introducing de Bruijn’s indices.
Such indices have the practical advantages that they avoid all the need to deal with variable
renaming in terms (see [de Bruijn 72], [Abadi et al. 91|, [CH 88] and [KN 93]). The calculus
based on A and on de Bruijn’s indices will be called 2= for = being the set of variables
which are de Bruijn’s indices together with € a special variable. In the first instance, Q is
taken to be {\,d}. In order to accommodate substitution explicitly and in order to discuss
variable updating and term reduction, € is increased to {X, d, o, ¢, u}. We add the o-items for
substitution, the (-items for variable updating and the p-items for g-reduction. The @-items
are written as (¢*%) for i > 1 and k > 0. The superscript k decides which variables are
to be updated. The superscript ¢ decides how much a variable must be updated; namely by
increasing it by 7. The o-items are written as (to(?) for i > 1. (to())t' means: in ' substitute

t for i. The p-items are written as (u(9) for i > 1. (u()t means, decrease all the variables in
t that are > ¢ by 1.

We provide the -, o-, u- and g-reduction rules in Q= which are all explicit and step-wise.
Furthermore, these rules may be used to get local and global forms of reduction.

Q= is the calculus of explicit substitution, which is based on what we call item notation
and on the use of de Bruijn’s indices. We provide a method which can take any term of A
into Q= such that all a-equivalent terms in A are mapped into a unique element of 2=. The
other direction however, of mapping elements of 2= into elements of A is more difficult. This
is because in Q=, the \’s do not have variable names as subscripts and so we have to look
for such subscripts in a way that no free variables in the term get bound. Now, the question
that might be asked is why should we be interested in mapping elements of Q2= into A. After
all, variable names in the A-calculus are messy and the idea of the de Bruijn indices is to
be precise and to avoid the clumsiness of variables. Moreover, a term in 2= represents a
whole class of terms in A; namely all those a-equivalent terms. So, in taking the term of
Q= back to A, which of these a-equivalent terms are we going to choose? Are we going to
consider terms of A modulo a-conversion and then choose any term in the equivalence class?
If so, then our work is pointless. In other words, what is the point of going from de Bruijn’s
indices to a-equivalence classes when de Bruijn indices actually represent the a-equivalence
classes? Hence the first conclusion is that, in translating the terms from = to A, we must
avoid a-conversion in A and we must associate to each term of Q= a unique term of A. This
will also have advantages for implementation. For then, we know exactly which term we are
working with. Now, having such a translation [-] from Q= to A, our task is to show that the
variable updating, the substitution and the reduction rules in Q= are sound. We do this by
showing that if ¢ — ' where — is either o-, or ¢- or p-reduction (excluding the o- or the
p-generation and the o-transition rules, see below), then [f] = [¢/]. That is, we show that
all the rules which accommodate variable updating and substitution result in syntactically
equal terms. We shall moreover, show that if ¢ — ¢’ where the reduction includes o- or
p-generation, then [t] = 7 [t']. That is, the rules which actually reduce S-redexes in Q= are
nothing more than the 3 rule in A. Finally if — is o-transition then [t] =g [¢']. These results
are of course desirable, otherwise how can we check the correctness of our reduction rules.
Furthermore, it should be noted that the semantics that we provide is a flat semantics. That
is, the reduction steps in the fine A-calculus are mapped to syntactical equality (except in the
cases mentioned above), and not to a corresponding reduction. We provide the fine structure
of the A-calculus which has advantages that range over all areas and disciplines of A-calculi
and type theory, and we give a semantics which shows that our reduction and substitution
rules are a refinement of those of the classical calculus.

We believe that our approach is the first to be so precise about variable manipulation,
substitution and reduction in the A-calculus. There is never a confusion of which variable
is the one manipulated and hence a machine can easily carry out our reduction strategies
and translate the terms using variables in a straightforward manner. We believe that the
approach of this paper should be considered in implementations of functional languages and
of theorem provers. Our work here might look too involved, but we have actually carried
out the hard part of manipulating variables once and for all. No further work is needed
afterwards on book-keeping of what happens to variables, terms or reductions either in proofs
or in implementations. We are persuaded that this is the first precise formulation of \-terms,
variables and reductions. Furthermore, we believe that this formulation not only enables

explicit and local substitution as we show in this paper, but also enables a generalisation over
all branches of A-calculus and type theory (see [KN 93], [NK 94] and [KN 9x]).

To sum up, we provide A, a calculus which uses item notation, variable names and explicit
substitution. We extend A to Q2= where item notation is used with de Bruijn indices instead
of variable names and explicit rather than implicit substitution. We provide the translation
between both systems and in both directions. The translation from Q= to A aims to show
that our explicit and step-wise reduction and substitution rules are sound and are a refinment
of the implicit rules of the A-calculus. Furthermore, such a translation aims at furthering our
understanding of when a-reduction is needed in the A-calculus. In fact, we try to do completely
without a-reduction until we are forced to use it. Moreover, this translation gives to every
term with de Bruijn indices a unique term of A (with no mention of a-conversion).

2 The syntax of the calculi

2.1 The calculus A

We let V', the set of variables of A, be {¢} U F, where F = {x;,2z2,...} and we take
v,v', 0" v1,v9,... to range over F. The variables x1,xs,... will be ordered as in Defini-
tion 2.16.

Notation 2.1 We take IV to be the set of natural numbers, i.e. > 0, IP to be the set of
positive natural numbers, i.e. > 0 and Z to be the set of integers.

Definition 2.2 (A)
We define A as follows:
A==V | (AXgA) | (ASA)

We let t,t1,... denote terms in A, and use w,w’,wy,... to range over the so-called operators
{6} U{Ay;v € F}. Moreover, ¢ is never used as a subscript for A. The symbol € can be looked
at as a special variable or as a constant. It is added because it enables us to generalise the
calculus. In fact, by taking all types of variables after A to be ¢, we obtain the type free
A-calculus. ¢ has further uses such as the O in [Barendregt 91] (see [KN 93] and [NK 94]).

The term (t; Ayt2) is to be understood as the classical A-calculus term (A, .t2). The term
(t10t2) is to be understood as the classical A-calculus term (tot1).

Notation 2.3 (Item Notation)

We shall place parentheses in A in an unorthodox manner: we write (t;w)te instead of
(tiwtz). The reason for using this format is, that both abstraction and application can be
seen as the process of fixing a certain part (an “item”) to a term:

e the abstraction \,.p.t is obtained by prefixing the abstraction-item A,.; to the term f.
Hence, (t'A,t) is obtained by prefixing ¢'A, to t.

e the application ¢’ (in “classical” notation) is obtained by postfixing the argument-item
t' to the term ¢. Now (t'dt) is obtained by prefixing /¢ to t.

In item-notation we write in these cases (t'A,)t and (¢'0)¢, respectively. Here both (¢'\,) and
(t'6) are prefized to the term t. Moreover, in (fw), if ¢ = ¢ then it may be dropped. That is,
we write (\,) instead of (gA,).

Definition 2.4 (Items)
If t is a term in item notation and w is an operator, then (tw) is an item. We use
S, 81, Si, ... as meta-variables for items.

Definition 2.5 (Segments)
A concatenation of zero or more items is a segment.

Notation 2.6 (parentheses)

Note the intended parsing convention:

In the term (s182...s,0w)s)sh ... s),v', the operator w combines the full term s152... s,
with the full term s\ s ... s '

Example 2.7 The term (vwi(v'w2v”)) becomes in item-notation: (vwi)(v'ws)v”. Analo-
gously, the term ((vwov')w1v”) becomes ((vws)v'wr)v”.

Lemma 2.8 Every term has the form (tywi)(taws) . .. (tpwn)v forty, to, ... t, terms, wi,we, ... ,wy
operators, n > 0 and v a variable.
Proof: FEasy. O

Based on this lemma, we shall draw the tree of each term (¢;wq)(tow2) . .. (tnwp)v for n > 1 as
follows: We position the root of the tree w; in the lower left hand corner. We have chosen this
manner of depicting a tree in order to maintain a close resemblance with the item notation of
terms. This has also advantages in the sections to come. In fact, the item-notation suggests a
partitioning of the term trees in vertical layers. For (v'w1)(v"”wo)v™, these layers are: the parts
of the tree corresponding with (v'w), (v"wy) and v” (connected in the tree with two edges).
For ((v'we)v"wr)v" these layers are: the part of the tree corresponding with ((v'ws)v”wi) and
the one corresponding with v"”. Figure 1 is self explanatory.

/

v
o o Wy y
w1 w9 w1
m m
(v'wy (0" wav™)) (v wav™)wr 0™
(v'wy) (0" ws) "™ (v ws) " wy o™

Figure 1: Layered trees, with normal layered notation and item-notation

Remark 2.9 Note that every term which is not a variable, has the form (tw)t’, from Def-
inition 2.2 and Notation 2.3. Such a term is moreover, from Lemma 2.8, of the form
(tiw1)(tows) - . . (tnwy)v. Hence, t = t1,w = wy and t' = (taws) . .. (tpwp)v.

Definition 2.10 (FV (t), fort € A)

FV(e) =0

FV(v) = {v} if vEe
FV((tid)t2) = FV(t1) U(FV(t2) \ {v})
FV((ti0)ts) = FV(t1)UFV(t9)

Remark 2.11 Notice here that this definition might cause some confusion. For example take
the term ¢ to be (vA,)v, then FV(t) = {v}. In fact, (v\,)v will be a-reducible to (v,)0’
(see axiom («) below). Such confusion will be avoided using de Bruijn’s indices.

Definition 2.12 (BV(t) fort € A)

BV (v) =0
BV ((t1Ay)ta) = BV(t1)UBV(t2) U{v}
BV ((t16)t2) = BV(t1) U BV (ta)

Note that ¢ is neither free nor bound.

Substitution in the A-calculus is usually defined (up to some variation) as follows (see
[Barendregt 84]):

Definition 2.13 (Substitution in A)

If t,t' are terms in A and v is a variable in V, we define the result of substituting t' for
all the free occurrences of v in t as follows:

(t ift=v
v ift=v"#wv
(tQ[U = t’])tl[v = t’] ift = (t25)t1
(tg[v = t])tl ’Lf t= (tg)\v)tl
to =t =g ¢ (t2lv:=t|A\y)t1[v = 1] if t = (tady)t v £,
(v € FV(ty) or v & FV(t'))
(to[v := A)t1[v) = 0" |[v =] if t = (t2A\p)t1, 0 20,0 € FV (1),
v € FV (t'),v"is the first variable
L in F which does not occur in (td)t'

The fundamental axioms of the A-calculus are (o) and (). Other axioms such as (n)
(which is needed together with another axiom to derive extensionality) are optional. For this,
we shall only concentrate on («) and ().

() (tA)t = (EAy)t [v :=v'] where o' & FV (t')
(B) (t"8) (tA)t —p t'[v == t"]

Note that a so-called d\-pair of items: (t"0)(t\,), is a signal for a possible -reduction.
This d\-pair precedes the term to which it applies.

We say that t —, t' (respectively ¢ — t') just in case (a) (respectively (3)) takes ¢ to t'.
Moreover, we assume that —, and —4 are compatible where compatibility over T) is given
by the following definition:

Definition 2.14 (Compatibility over T})
We say that —, where r € {«, 8} on T is compatible if whenever t —, t' we get:
tt1 —, t,tl, i1t —, tlt,, Apitt1 =5 Ayt and Av:tl-t —r >\v:t1 1.

We call the reflexive transitive closure of —,, —#,. Similarly — 4 is the reflexive transitive
closure of —3. We let =, (respectively =3) be the least equivalence relation closed under —,
(respectively —»3). Finally, = is the least equivalence relation closed under —, and —3.
As obvious from our definition of substitution, we use = to be syntactic identity which
accounts also for the parenthetes conventions. When ¢ = #' in A, we write 5 t = ¢'.

2.2 De Bruijn’s indices

De Bruijn in [de Bruijn 72] noted that due to the fact that terms as Az, .z and A;,.x2 are the
“same” modulo a-conversion, one can find a A-notation which expresses that similarity. That
is, following de Bruijn, we can abandon variables and use indices instead. Examples 2.15, 2.17
below show how lambda terms can be denoted using de Bruijn’s indices and example 2.18
illustrates how (-conversion works using such indices.

Example 2.15 Consider the type free lambda term (\;,.z1). In this term, the z; following
Az, 1s a variable bound by this A. In de Bruijn’s notation, A, .x; and all its a-equivalent
expressions can be written as A\.1. The bond between the bound variable z; and the operator
A is expressed by the number 1; the position of this number in the term is that of the bound
variable z1, and the value of the number (“one”) tells us how many lambda’s we have to
count, going leftwards in the term, starting from the mentioned position, to find the binding
place (in this case: the first A to the left is the binding place).

De Bruijn’s notation moreover, can be used for the typed A-calculus. We illustrate here
how the two terms (Agy:z,-23)21 and A4.Az,.4.21 can be represented using de Bruijn’s indices.
First, however, we need to account for the free variables x; and x9. For this, we assume a
free variable list:

Definition 2.16 (Free variable list F)

For all terms, the free variable list is the same arbitrary but fixed, left-infinite list of \js with
all © different variable names. Such a free variable list is called F and is given in Figure 2.
Of course, for each term, having a finite number of free variables, a finite segment of this list

suffices.

Example 2.17 The term (Ay;.0,.23)21 is written as (A2.1)1. The free variables z; and z9
in the typed lambda term are translated into the number 1 occurring after the term in
parentheses, and the number 2: they refer to the “invisible” lambda’s that are not present
in the term, but may be thought of to preceed the term in the free variable list F. In this
example, the z3 is bound, hence different from the free x3 in F. The bound z3 is represented
by the first number 1.

The term A4.\z,.4.21 can be represented by A.A;.1.

Some type theories insist on distinguishing A and II. The A being used for the function
and II for the function ¢ype. Then the typed term A4.Il; .4.7; can be written as A.II;.1
where the 1 adjacent to II, says that A is the binding operator for the type (viz. A) and the
final 1 replaces the variable bound by II.

Figure 2: The free variable list F

The described way of omitting binding variables, and rendering bound and free variables by
means of so-called reference numbers, is precisely how de Bruijn’s notation works. Next
we see how [-reduction works in this notation.

Example 2.18 In ordinary lambda calculus, all the terms (Ag,.5,.(x;x3))x2, for i # 3, (-
reduce to zoxs, i.e. the result of substituting “argument” x, for z; in x;x3. In de Bruijn’s
notation this becomes — under the assumption that the free variable list is A;;, Ay, Ayt
(A1.14)2 reduces to 2 3. Here the contents of the subterm 1 4 changes: 4 becomes 3. This
is due to the fact that a A-item, viz. (A1), disappeared (together with the argument 1).
Furthermore, 1 changed to 2.

2.3 The syntax of (=

Now we shall take A but where de Bruijn’s indices are used instead of variable names. That
is, we will get rid of the variables in A and replace them by de Bruijn’s indices. This would
mean of course that we no longer would need each A to carry the subscript z; for ¢ € IP or so
on with it, but rather, the number would point to which A binds which occurrence. The best
way here is to start with an example.

Example 2.19 We take the term ¢ = (210)(z2)z,)(230)x4 whose tree is drawn in Figure 3.
We need to remove x4, x3, 22,21 and to replace them by numbers. For this, as we see that
x1,T9,rs are free variables, we need to use the free variable list (see Figure 2). We append
dashed lines to our tree in Figure 3 to show that A’s on the dashed lines are imaginary and
not a part of the term (see Figure 4). Now for each variable, we draw thin lines ending in
arrows, pointing at the A binding the variable. These lines follow the path which leads from
the variable to the root following the left side of the branches of the tree. In order to find the
indez replacing the variable name, we count the A’s on this path (not the §’s). For example,
we draw the thin line going from x4 following the path which leads from x4 to the root, until
we reach Az, , the A binding x4. We end the arrow there and as we have only passed one), the
x4 should be replaced by 1. This is the only x4 we have in the tree, and as there are no more

10

x4’s bound by this A;,, we can safely remove the subscript z4 from)\;,. For x3, in drawing
the thin line going from x3 following the path which leads from x3 to the root, keeping to
the left side of the branches until we reach \;,, we see that we pass four A\s. Hence, the z3
should be replaced by 4. Now replacing x; and xz9 will be left as exercises. Figure 4 is now
self explanatory.

As in Example 2.17, the bound variable z4 in ¢ should not be confused with the free x4
in the list F.

Figure 3: The tree of (z19)(x2Az,)(230)z4

(>\$4:$2-x4x3)x1
(216)(z2Az,) (236) 24
(16)(27) (46)1

Figure 4: A tree with de Bruijn’s indices

Note that we get the same de Bruijn trees for all terms (z10)(z2Ay,)(x36)x; for i # 3,4 € IP.
This is due to the fact that de Bruijn’s indices give the terms modulo a-conversion. In the
case ¢ = 1, or ¢+ = 2, we have here that = occurs both bound and free. These occurrences
should be separated, as is actually the case in the version with de Bruijn’s indices. In order
to translate (x10)(z2Az,)(z30)z; for the case where ¢ = 1 or ¢ = 2, we have to rename z; to
xj for j > 3.

11

Definition 2.20 (Variables)

As we decided to use indices instead of variables, we take = the set of variables to be
= ={g1,2,...}. Sometimes we will need to use actual variables, but this is not a part of
our syntax. It is only a matter of simplifying the conversation. We use ¢, j, m,n,... to denote
elements of {1,2,...}.

Using Q = {J§,\} and = we define our terms to be those symbol strings obtained in the
usual manner on the basis of =, the operators in {2 and parentheses. That is: 2= is the free
Q-structure generated by Z.

Definition 2.21 (Qz)
We define Q= as follows:

QE == | (QEAQE) | (95595)

Asin A, we take t,t1,... to denote terms in Q=. We call the terms of Qz in case Q@ = {\, d},
Q)s-terms or simply terms. Later on we will increase €2 by adding o, ¢ and p. p-terms will
only be used with €)s-terms. An important class of terms however is the €2)s5,-terms.

Now we take the same notational conventions as those for A given in Notations 2.3 and 2.6,
and we define items and segments similarly. We take w,w’,wi,ws ... to range over . In the
rest of this paper, we write terms of A and Q= using the item notation.

Simple examples of terms are: ¢, 3, (20)(e¢A)1. Example 2.22 shows terms represented in
A and Q=. The translation function between A and Q= will be given in the following section.

Example 2.22

e Consider the typed lambda term (z10)(z2Az;)s5. In Qz, it is denoted as (1)(2A\)1. The
typed lambda term (z10)(z2Az,)23 has the same denotation in Q=. Note however, that
(x10)(w2Ag;) w5 Z (210)(x2Ag,)xs for example, unless («) is assumed in A.

e The typed lambda term ((z2Az;)z5d)z1 in A is written as ((2X)1d)1 in Q=.

e The de Bruijn trees of these lambda terms are given in Figure 5.

Finally, we define a number of concepts connected with terms, items and segments. These
will be used in the rest of the paper.

Definition 2.23 (main items, main segments, w-items, wi . . . wyp-segments, body, weight)

e FEach term t is the concatenation of zero or more items and o variable: t = s189...5,0.
These items s1,582,...,S, are called the main items of t.

e Analogously, a segment 3 is a concatenation of zero or more items: S = S$182...Sp;
again, these items si,So,...,8y (if any) are called the main items, this time of 3.

e A concatenation of adjacent main items (in t or 5), Spy...Smik, 1S called a main
segment (int ors).

12

1 2 A 1
A AJL ‘ Ao A ——X 5
—_ —— —— — 1 —_— —— —o— —o—]
(18)(2M\)1 (201 6)1
($15)(5€2)\$5)JJ5 ((563>\I5)CC5 5)561
(AWS:-TZ . .%‘5).%‘1 .%‘1()\935;3;3 . .%‘5)

Figure 5: de Bruijn trees with explicit free variable lists and reference numbers

o An item (t w) is called an w-item. Hence, we may speak about A\-items, J-items (and
later on about o-items and p-items).

o If a segment consists of a concatenation of an wi-item up to an wy-item, this segment
may be referred to as being an wy ...wy,-segment.

e An important case of a segment is that of a dA-segment, being a 6-item immediately
followed by a \-item.

o Ift =3v, then S is called the body of t.

e The weight of a segment is the number of its main items.

Example 2.24 Let the term ¢ be defined as (eA)((16)(eA)16)(2A)1 and let the segment 5 be
(eA)((10)(£A)16)(2A). Then the main items of both ¢ and 5 are (e)), ((16)(cA)10) and (2)\),
being a A-item, a d-item, and another A-item. Moreover, ((10)(eA)10)(2A) is an example of a
main segment of both ¢ and s, which is a d\-segment. Also, § is a AdA-segment, which is a
main segment of ¢.

Now we define nl which counts the number of \’s in a term.
Definition 2.25 (nl)

nl(e) =aq 0
nl((t15)t2 =df nl(tl) + nl(tg)
nl((tl)\)tQ) =df nl(tl) +1+ nl(t;g)

Note that weight(t) is not necessarily the same as ni(t). For example, weight(((1X)2))3) =1
whereas nl(((1\)2))3) = 2.

3 Axioms of ()=

a-reduction is not needed for Q=, precisely because we no longer have variables (de Bruijn’s
indices got rid of them). So now, we no longer have different ways of writing the same term

13

as we have taken the equivalence classes so that Ay .p,.%1, Agyias -T2, . .. all are represented by
(3M\)1. For f-reduction, this is a bit more complicated. Let us start by an informal example,
but the mechanical procedure will be given below:

Example 3.1 Now for S-reduction, the term (z19)(z2Az,)(z30)zs reduces to (z30)zy (see
Example 2.18 and Figure 6). Note that the presence of a so-called dA-segment (i.e. a d-item
immediately followed by a A-item), in this example: (x160)(z2)z,), is the signal for a possible
B-reduction. Using de Bruijn’s indices, this becomes (remember that the free variable list
ends in Agg, Agy, Azy): (10)(2X)(46)1 reduces to (30)1. In fact, if you look at Figure 6, you
see that what is happening is that the JA-segment (10)(2)A) has been cut off the tree, and
the remaining term to the right of this segment has shifted to the left so that its root (i.e.
the root of its tree) will occupy the place where the ¢ of (16)(2A) used to be. That is not all
of course. The 4 has to be decreased to 3 as we have lost one A\. The 1 in (46)1 has to be
replaced by the 1 of (1). The result is hence (36)1.

The process could hence be summarised by saying that when contracting the redex (£19)(t2\)
in (t10)(t2A)t, all free variables in ¢ must be decreased by 1 and all variables in ¢ that are
bound by the A of (t2\) must be replaced by ¢;. This might be tricky however, for assume
we write

(tl(s)(tg)\)t —3 t[l =1,2:=1,3:=2,..]

where ¢[1 := 1,2 := 1,3 := 2,...] stands for the term ¢ with 1 replaced by ¢;, 2 replaced by
1 and so on. This substitution is moreover simultaneous. Now, assume furthermore that ¢ is
of the form (eX)t’. Then for the substitution ¢[1 := #1,2 := 1,3 := 2,...] we must perform
(eNV)1 :=1,2:=1,3:=2,...].

Now, replacing ((eA)t')[1 := ¢1,2 := 1,3 := 2,...] by (eNt[1 := 1,2 := 1,3 := 2,..]
would not work. Rather it should be:

(eMNt[1:=1,2:=t[1:=2,2:=3,...],3:=2,...]

Based on this observation, we need to increment variables correctly in a term. Therefore
we introduce an updating procedure which we call p-reduction.

(Ami:azg-mil‘?))xl 173
(z10)(22As,) (z30) i (230)x1
(10)(2X)(40)1 (30)1

Figure 6: B-reduction in our notation

14

3.1 ¢-reduction

Updating variables in a term will take place for example when a term t' is to be substituted
for one or many occurrences of a variable v in a term ¢#. What will then happen is that #'
cannot be just thrown in ¢ at the targeted occurrences of v, because t may have many \’s
to the left of the targeted occurrence of v. This means that ¢ must be updated to take into
account these \’s. The following example illustrates the point.

Example 3.2 Let t = (2)\)2 and let ' = 3. Now, if we want to replace the second occurrence
of 2 in t by t, we cannot just remove 2 and replace it by 3. If we do so, we would obtain
(2X)3 which is not at all the result of the substitution. The result of the substitution should
be (2A\)4. The idea is that, in replacing the second 2 in (2X)2 by 3, the 3 has to be increased
by 1, as it is now in the scope of one extra .

In order to update variables in a term, we add a new kind of items, p-items. Let us for now
assume that we write (¢)t to increase the variables of ¢ by 1. So in the above example, when
replacing the second 2 in (2))2 by 3, we really want to obtain (2\)()3. The process however
is not that simple. Assume we want to replace 2° (where ° points to the particular occurrence
of 2) in (2X)2° by (e\)(16)2. Then, what is the result of (2)\)(p)(£A)(16)27 Which variables
in (¢A)(10)2 have to be increased? Of course € remains untouched. 1 moreover must remain
untouched, as it is connected to the A in (eA). Hence it is only the 2 of (£)(1)2 which should
be increased to 3. So how do we (in a step-wise fashion) decide which variables in a term are
to be increased and which are not?

Note that all those variables of (¢X)(16)2 that have to be updated are free variables. Let
us hence index . That is, we use ¢ as a (unary prefix) function symbol o) with two
parameters k > 0 and i > 1. The intention of the superscripts when (o) travels through
t; is the following:

e Superscript ¢ preserves the increment desired for the free variables in ¢;. This super-
script does not increase when passing other \’s.

e Superscript k& counts the \’s that are internally passed by in ¢; (k = ‘threshold’).
This Superscript increases when passing another A. The idea is that only the variables
greater than k have to be increased, as those variables < k are bound and hence should
not be increased.

The effect of the updating must be that all free variables in #; increase with an amount of i;
the k£ is meant to identify the free variables in ¢;.

Note that the body of a ¢-item is always the empty term.

Now of course updating variables by looking at the tree is an easy process. Just check
how many A’s you have gone through before a free variable and increase the free variable by
the number of \’s passed. This should happen for all variables in a term. This is achieved
by letting the ¢-items propagate upwards and to the right of the tree scanned. The following
example illustrates the point:

Example 3.3 Assume you want to replace in (eA)(2A)3, the 2 and the 3 by (¢A)2. Then
the result should be (eA)((eA)3A)(eA)4. Le. the 2 has been replaced by (¢A)3 (due to the one
extra \ that is now before (¢)\)2) and the 3 has been replaced by (¢A)4 (due to the two extra
A’s that are now before (¢))2). Figure 7 is self explanatory.

15

€ 2 € 3 ¢
9 I ® I
A A A A 3 A A A A A 4
— —— —¢— ——o— — —— —¢— —eo ® ®
>\x2:e-Ax3:x1-x1 >\I2:€'>\I35()\z4:6-$1)'>\$4:€'x1
(Ssz)(xlAws)xl (5>‘5132)((6>‘I4)x1>‘ws)(6>‘w4)1‘1
(£N)(2))3 (EN)((EA)3X) (2))4

Figure 7: Substitution in our notation

The definition below formalises the updating process.

Definition 3.4 (p-reduction)
For k€ IN,i € IP,v € = and t an Q)s-term, we have:
(p-transition rules:)

(k-l—l,i))

—
€A
>
-
—
~
>
~—
AS)
—
—
€A
>
-
~
>
N
—
©

(p-destruction rules:)

(PN —, v+i ifo>k
(pF) =, v ifv<korv=e

The following details about these rules are to be noted.

e A term of the form (o))t will be either such that ¢ is a variable or a M-item or a
d-item. In the case t is a variable, we use the -destruction rule. In the case of a J-item
or a A-item, we have to update all the variables so that we keep the right references.

e The case where (%)) is to the left of a variable, we use one of two ¢-destruction rules,
the first for the case that v is free in the original ¢; (then a real update occurs), the

second for the case that v is bound in ¢ or v = £ (then nothing happens with v).

Remark 3.5 Note that we introduce —, as a relation between segments, although it is
meant to be a relation between terms. The rules must be read as follows: rule s —, s' states
that ¢ —, ¢’ when a segment of the form S occurs in ¢, where ¢ is the result of the replacement
of this 5 by s’ in t. In other words, we implicitly assume compatibility (see [Barendregt 92]).

We denote the reflexive and transitive closure of —, by —»,.

16

Example 3.6 In substituting (¢A)2 for 2 in (eA)(2))3, we have to compensate for one extra
A: the one preceding the 2 in (¢))(2\)3. This can be done by substituting (o(®")(eX)2 for
this 2. Then:

(N ((POD) (1203 -,

(EN (D)) (H)20)3 =,

(eX)((eX)3N)3
Similarly, in the substitution of (¢X)2 for 3 in (¢X)(2A)3, we have to compensate for two extra
As:

(NN (PO ()2 =y (1) (2A) (N4

Note that ¢ can be used to increase certain reference numbers. There is a case, however, when
we wish to decrease a reference number: when we remove the jA-segment in a S-reduction, the
variables in the remaining part of the term in which S-reduction took place, must be decreased
by 1, because one A has disappeared. We will come back to this matter in Definition 3.14.

For convenience sake, we may drop the first superscript or both superscripts of the ¢,
according to the following definition:

Definition 3.7 (p-abbreviation)
For all i > 1, ¢ denotes ©%) . Moreover, o denotes p(!) (hence = 90(0’1)).

3.2 o-reduction

In order to be able to push substitutions ahead, step by step, we shall introduce a new kind
of items, called substitution items (or o-items). These o-items can move through the
branches of the term, step-wise, from one node to an adjacent one, until they reach a leaf of
the tree. At the leaf, if appropriate, a o-item can cause the desired substitution effect.

In this manner these substitution items can bring about different kinds of S-reductions.
Note that we have chosen to make substitution a part of the formal language for the terms;
we do not treat it as a meta-operation, as is usually done.

We use o as an indezed operator, numbered with superscripts: o) o0 ... Hence, a
o-item has the form: (#'c(?).

The notions: term, item, segment etc. take the extended = {\, §, 0, ¢} into account.

Our terms now are {2)s54,-terms.

The intended meaning of a o-item (#'o()) is: term t' is a candidate to be substituted
for one or more occurrences of a certain variable; the superscript ¢ selects the appropriate
occurrences.

Now we can give the rules for one-step o-reduction. This relation is denoted by the symbol
— 4. The relation o-reduction is the reflexive and transitive closure of one-step substitution.
It is denoted by —»,. Similarly to our remark about ¢ in Remark 3.5, we introduce —, as
a relation between segments, although it is meant to be a relation between terms. The rules
must be read as follows: rule 5 —, s’ states that ¢ —, ¢’ when a segment of the form s occurs
in ¢, where ¢’ is the result of the replacement of this 5 by s’ in t.

We keep to the same meta-level notation as before, but let w,w,ws, ... range over A, 4,
@ and o.

Now, in order to keep the references inside a o-item correct during the process of o-
transition, a @-item () with & = 0 and 7 = 1 is added inside the o-item, as follows:
((p)to?)). Here are the o-reduction rules:

17

Definition 3.8 (one-step o-reduction)
Fori € IP,v € =,11,t3 Qys-terms, we have:
(o-generation rule:)

(£10)(t2X) =4 (£10)(t22) (()t10™D)
(o-transition rules:)

(t10D)(t2)) =0 (10D N)()t100HD)
(o) (t28) =5 ((t10@)t8) (810

(o-destruction rules:)

(tld(i))’i —s U
(tioo =, vifv#i

Note that in the o-transition rules, when a o-item jumps over a A-item, then the superscript
of the ¢ increases by one. This is because that superscript counts the number of A’s actually
passed, in order to find the right (occurrence of the) variable involved.

The o-destruction rules apply when the o-item has reached a leaf of the tree. When
the superscript ¢ of the o is in accordance with the value of the variable, then we have met
an intended occurrence of the variable; the substitution of ¢; for ¢ takes place. When the
superscript of ¢ and the variable in question do not match, then nothing happens to the
variable, and the o-item vanishes without effect.

Finally, we note that our transition rules as given here do not allow for o-items to
other o-items.

“pass”

Compare the o-generation rule with () as defined in Section 2. Our rule does not get
rid of (¢10)(t2A) but keeps it because we may allow for local -reduction by changing the
o-transition rules so some variables will still be bound by the X in (t2A). We shall see in
Definition 3.14 how we can dispose of a reducible segment when there are no more customers
for the X involved, i.e. when there is no variable bound by this X in the term.

The following lemma shows that o-reduction reaches eventually all occurrences to be
substituted. IL.e., there is a path for global S-reduction.

Lemma 3.9 In (t10)(to\)ts, o-reduction substitutes t1 for all occurrences of the variables
bound by the \ of (ta\) in ts3.
Proof: The proof is by an easy induction on t3 in (t10)(ta\)((p)t10M)ts. O

Lemma 3.10 In (tla(i))tg, o-reduction substitutes t1 for all occurrences of variables in to
which are bound by the same X being the i-th entry (from the right) in the free variable list of
te. Moreover, the (¢)’s look after the updating of to.

Proof: By induction on ta, noting that during propagation, everytime the o-item passes
a A, the superscript at the top of o is increased by 1. Hence keeping track of the variable to
be substituted for. O

The example below demonstrates how o-reduction works.

18

Example 3.11

L (20M)(46)1 =4 ((201)48)(20D)1 —», (40)2.
2. ((30)20M) (1M1 =4 (((30)20M)1N) ((0)(36)20)1 =5, ((36)20)((46)30P))1 =4 ((38)2X)1.
3. ((30)20™) (1M1 =4 (((36)20M) 1N ((¢)(36)20))1 =40 (1N)((46)30®))1 —, (N1,
4. (15)(2>\)(3>\)2 %
(16)(2A) ((0)1)(3A)2 —o
(15)(2/\)(((s0) WA ((#)(#)1 0@)2 =4,
(15) 2N (((p)1 e 1)30)3 =,
(15)(2>\)(3>\)3

Now the following lemma shows that the right bond between variables and their binding \’s
are maintained.

Lemma 3.12 If 5(t10)(t2\)t =4 5(t10) (LX) ((@)tieM)t then in 5(t16)(t20) (()tioM)t, all
variable occurrences are bound by the same \’s which bound them in 5(t10)(ta\)t.

Proof: We will only show how some cases can be carried out. The rest will be an easy
exercise left to the reader. Let = be a variable in (£,0)(t2))((p)ti0™M). There are only two
cases to consider.

e case v occurs in (t10)(teN), then nothing to prove, as mothing has changed for that
occurrence.

e case v occurs in (0Ot 6M), in particular in t; then a bound variable in t, clearly
remains bound by the same X in t1. A free variable v in t1 becomes updated by 1 by
the @(0,1)_ This s exactly what is intended, since there is one extra A that v has to go
through on its way to its X\. That is, the X of (ta\).

Finally, we shall not discuss local substitution (the reader is referred to [KN 93]). We shall
however just mention that by adding the o-destruction rule:

(Lot =, ¢

to Definition 3.8, local substitution becomes available in the system. The reader is invited to
check this.

3.3 [(-reduction

Now let us consider -reduction. Recall that in o-generation, we generated o-items. This will
be repeated below:

Definition 3.13 (o-generation repeated)
(£10)(t22) =4 (£10)(E22) ((9)t10 D).

19

Recall that the (¢) is meant to compensate for the “extra” A being passed. Recall moreover
that the d\-pair (£10)(t2\) is not omitted. This is because we may want [ocal substitution
only.

Now, the reducible segment may be “without customers”. Then o-generation is unde-
sirable since this leads to useless efforts. Hence it seems a wise policy to restrict the use of
the o-generation rule to those cases where the main A of the reducible segment does actually
bind at least one variable. When this is not the case, we shall speak of a void d\-segment.
Such a segment may be removed. One may compare this case to the application of a constant
function to some argument; the result is always the (unchanged) body of the function in
question. In this section, we shall present two ways of removing void JA-segments.

3.3.1 Making 7 negative in (ap(k’i))

Up to now, the i-superscript in (go(k’i)) has been considered an element of IP. If however, we
allow in (%), i to be negative, we could include the following rule:

Definition 3.14 (d\-destruction rule)

For all ty,to Qyg-terms, we have: (t10)(taX) —¢ (0% V) provided that the X in (to\) does not
bind any variable in the term following (t10)(t2), i.e. provided that (t10)(t2\) is void.
Sometimes we denote —y by void [B-reduction.

It is clear that the provision in this definition is necessary: otherwise, bound variables would
become, unintentionally, free. The updating (w(o’*l))—item is meant to compensate for the
disappearing A\. Now, even though the superscript —1 is negative; this does not cause prob-
lems, precisely since the X\ of (t2A) does not bind any variable in the term following it. In
fact, negative superscripts can have the effect that different variables become identified:

() (20)1 =, (16)1
Hence, updating is no longer an injection, which can be highly undesirable.

We note, however, that the mentioned unpleasant effects do not occur in the setting
presented above: a @-item with a negative exponent only occurs after the clean-up of a void
dA-segment, hence with a A that does not bind any variable. Therefore, the injective property
of updating is not threatened.

Now the o-rules together with the dA-destruction rule, enable us to accomplish (the usual)
[B-reduction as a combination of o-steps and @-steps:

Definition 3.15 (one-step (3-reduction —p)

One-step (-reduction of an Qys-term is the combination of one o-generation from a d\-
segment S, the transition of the generated o-item through the appropriate subterm in a global
manner, followed by a number of o-destructions, and updated by p-items until again an Qys-
term is obtained. Finally, there follows one void (B-reduction (i.e. a dA-destruction) for the
disposal of 5, and we use the p-rules to dispose completely of the p-items.

Notation 3.16 We denote one-step (-reduction using negative superscripts for ¢ by t = t/,
and (ordinary) f-reduction — its reflexive and transitive closure — by ¢t —»4 t'. We write
=g for the equivalence relation generated by —#4. Again we use = for syntactic identity.
Note that there are no 3'-items.

20

Example 3.17
(16)(2X)(40)1 =4 (30)1 as follows:

(16)(2N)(46)1 =, (16)(2N) () 10V (46)1
—op (18)(2N)((20(1)40) (201
—o (10)(2)1)(46)2
0

Example 3.18
(16)(2A)(3X)2 — 4 (2X)2 as follows:

(18)(2N)(BN)2 —»4p (16)(2M)(3M)3 (see Example 3.11, 4)
= (POD)BN)3
= (P3N (D)3
>, (2X)2.

We shall not however in this paper use negative superscripts for ¢ in order to make a clear
distinction between the harmless positive updating and the potentially dangerous negative
updating (see our remark after Definition 3.14). Rather, we shall introduce a new kind of
items (u(*)) for i € IP with the same effect as (¢(»~1) for void reductions. To be precise:
(119) is equivalent to (¢~1~1): but in the case of void reductions, (¢*~1~1) has the same
effect as (1)), as the reader may easily see.

3.3.2 (-reduction using (u(*)

First we replace the void segment by (u(")). Then we let the (1)) scan the term to its right
doing the following:

o If (1) scans a A then i increases by 1.
o If (1) scans a 0 then nothing happens.

o If (1)) reaches a superscript m then if m < i nothing happens and if m > i then m is
decreased by 1.

Now the meaning of (11(")t is: decrease all variables in ¢ that are greater than i by an amount
of 1. Those variables that are smaller or equal to ¢ in ¢ are bound by some As in ¢ and hence
should not be decreased. Now the y rules are defined as follows (recall that (1)) occurs only
in an Qys-term):

Definition 3.19 (u-reduction)
For all t1,ta,t Qyrs-terms, v € = and i € IP we have:
(u-generation rule:)

(t10) (t2 Nt = (Ot if (£10)(t2\) ds void in t

(u-transition rules:)

21

(p-destruction rules:)

() v ifv=eorv<i
Y =, v—1 ifi<wv

Note in the second p-destruction rule that v > 1 as ¢ > 1. Note moreover that we never reach
the case where we get (u())i (see Lemma 3.22).

Similarly to o- and ¢-reduction, we implicitly assume the compatibility rules (see Re-
mark 3.5) and we denote the reflexive and transitive closure of —,, by —,.

The one-step [-reduction that we assume in this paper hence will be based on this (,u(i))
and is defined as follows:

Definition 3.20 (One-step B-reduction —gr)

One-step (-reduction of an Qys-term is the combination of one o-generation from a dA-
segment §, the transition of the generated o-item through the appropriate subterm in a global
manner, followed by a number of o-destructions, and updated by p-items until again an Qy5-
term s obtained. Finally, we replace the now void segment S by (u(l))t and we use the
p-reduction rules to dispose completely of p in (u(l))t.

Finally we use the same notation as in Notation 3.16 except that we change 3’ to 3".

)

(40)(NANAN3 =5 (40)(A)((¢
o (40)(A)(5A ()
—=u (WM)BENANT
=u ()30 () (AN7
—u @Y7
= (4NN ()7
—u (4N (1N)6

The following lemma is needed when discussing the semantics of p-reduction:

Lemma 3.22 If t is an Qys-term and t —»,, t' then for all (N subterm of t' with t" an
Qps-term, we have that © does not refer to any free variable of t". In particular, if t —», t
then we never find in t', (u)i as a subterm.

Proof: By induction on —»,. O

4 Translating A in Q=

Recall that we assume a free variable list F, which is drawn in Figure 2. Let us enumerate
this list in the order in which the variables appear from right to left. We call this enumeration
function f, so that:

Tml = 1,1’%’2 = 2,]L.%‘3 =3

We define moreover, for v € F, A, to be A, 16 to be § and fe to be ¢.

Now, let us take each term of A into a term of Q=. For this we define the following notions:

22

Definition 4.1 (term;)
We define term; to be a partial function which takes non empty segments of A and returns
terms of A as follows:

terml((tlwl)g) =df t1,

term;((tiw1)3) =g term;—1(3), for i > 2,5 # 0

Definition 4.2 (lam;)

We define lam; to be a function which tokes a segment 5 of A and returns the segment
(A1) (Avy) - -+ (Ay,) obtained by removing all the main §-items from the first (i —1) main-items
of 3 and by removing all the t’s from the main A-items (t\,) of these (i —1) main-items. lam;
15 defined as follows:

lam;(3) =g 0
lam;i((tAy)3) =g (Ao)lam;—1(3) for i > 2 and weight(3) > i — 2
lam((t0)s) =g lam(3) for i > 2 and weight(3) > i —2

We take Seq!=1(t;w;) to stand for: (tjw;)(taws) ... (tpwn), n > 0.
Now we deﬁne the translation as follows:

Definition 4.3 (b)
For t,t1,ty € A,v, 0" € F,5 segment of A, we define b, the translation function from A into
Q= as follows:

b(t) =df bl(t, @)

b(3) =4 body(b(s¢))

b’(E,E) =df €

b (v, 0) =df Tv (note v #)
V(v,3(M0)) =g

b'(v,5(Ayr)) =aqf 1 +b'(v,3) if v £
V((tid)t2,3) =qr (V'(t1,3)A)V' (2,3(\0))
V' ((t10)t2,5) =aqr (V' (t1,5)0)b'(t2,5)

Here b'(v,3) finds the de Bruijn number corresponding to v whithin context 5 (see Exam-
ple 4.5). V' ((t1A\y)t2,3) finds the translation of ¢; with respect to 5 and the translation of ¢,
with respect to 5(\y). b'((t10)t2,35) is now obvious.

Lemma 4.4

If 51,52 are segments of A,v € F U{e}, then

V' (51v,32) = Seq' = (V (term;(s1), S2lam;(51)) Topi(31))V (v, S3lamy+1(31)), for n = weight (7).
Proof: By mductzon on the length of 51. O

Essentially, what this lemma is saying is that, given a term ¢ of the form (t;wy)(tow2) . .. (thwp)v =
s1v of A, then V'(¢,53) = (] T w1)(th T w2) ... (¢, T wp)v' where t; = b'(¢;, 5zlam;(57))
and v' = b (v, 53lamy, 11 (body(t))).

Hence, t and ¥'(t,s3) will have the same trees, except that all X’s lose their subscripts and
all variables are replaced by the correct indices. These correct indices are found by tracing
the X’s. That is why, in ¢}, we had to attach all the s preceding t!.

Now the following example illustrates how some terms of A can be translated in Q=.

23

Example 4.5

L b((21A0,) (2A05)24) = (V' (21, D)A) (U (w2, A2y)MV (24, (Aay) (Aay)) = (F212)(3X)2 = (1) (3A)2.
2. b((216) (2 A,) (230)24) = (16)(21)(46)1.
3. b(((z3Aa,)zad)w1) = U/ ((23A0) 24, 0)0)V (21, 0) = (V' (23,)MV (24, (Ae,))0)1 = ((3A)16)1

Lemma 4.6 For any t in A, b(t) is well defined.
Proof: By induction on t € A.

O

Note that the translation function b is not injective. This is because b((x1Az,)T2)
b((z1Ags)z3) but (z1Az,)x2 Z (T1Ag5)z3. b however is surjective but we will see this in
Section 5 (see Lemma 5.9). For now the following lemma is informative about b.

Lemma 4.7 Ift,t' are terms in A such that t =, t' then b(t) = b(t').
Proof: By induction ont =, t'. O

5 Translating ()= in A

Our first step in providing a semantics of substitution is to provide a translation of Q= to A.
In carrying out the translation we have to associate to each de Bruijn index a variable, which
will be either free or bound in the term. We need to make sure of course that if a variable is
free, then it will not become unintentionally bound by our choice of the name of a binding
variable.

Example 5.1 In interpreting (A)2, we may choose any of (A;,)z; for ¢ # 1 to be the corre-
sponding A-term. We cannot however take (A,)z;.

So as an x for the A, we must choose x; for ¢ € IP, but we must make sure that no free variable
will have the same name as the chosen z;. There is another case where we have to be careful.
This is given in the following example:

Example 5.2 In interpreting the 2=-subterms as A-terms, one should extend the free vari-
able list in an obvious manner. For example, the term ¢ = ((16)2A)(1A)3 has for any 4,5 # 1,
((z10)T22s;)(TiAe;)T1 as a corresponding A-term. Now the subterm (1M)3 of ¢ should be
considered relative to a free variable list extended with Ag;: ..., Az, Agss Aagy Azyy Az, and
hence corresponds with (z;);;)z for j # 1.

Now all this need to check whether the variable we choose now as the name of a bound
variable will actually occur free in the term at some stage, pushes us to choose a less clumsy
approach. The idea is to start from the list F which is given in Figure 2 and to work at a
level between Q= and A. In this mid-level A, we always take the subscripts of A’s to be in
a list $ = 2/,2",... which is disjoint with F. Now, there will be no danger that we might
choose subscripts of A’s to be any x; which will eventually occur in the term, as F N = 0.

24

Definition 5.3 (A) The terms of A are defined similarly to those of A except that all bound
variables are indexed by elements from I instead of elements from F as in A. Terms of A are
written in the item notation, similarly to the terms of Q= and A.

Examples of terms of A are ¢, (x1\,)2’ and (21)(2'0)2".
The notions of bound and free variables, substitution, - and (3-conversion or reduction,

and = defined for A can be easily extended to A. For example here’s how substitution is
extended.

Definition 5.4 (Substitution in A) If t,t' are terms in A (i.e. all bound variables are in I,
and all free variables are in F UJ), and if v € F U, then tfv := '] is ezactly defined as in
Definition 2.13 except that, [v := t'] is replaced everywhere by [v :=t']', [v' := v"] is replaced
by [v' :="]" and in the last clause, F is replaced by J.

Notation 5.5 Similarly to A, we use F'V(¢) and BV (?) to find the free and bound variables
of t in A, even though this is an extension of FV and BV in A. We use @, 3 for the extended
a and SB-conversion /reduction, and as we saw above, we use t[f := t']’ for substitution in A.

When all de Bruijn’s indices in an Q)s-term ¢ have been replaced by names from F and J
obtaining a term #' in A, we can easily map the term #' to A by replacing all the variables in
1 by variables in F which do not occur in the term. Now in order to assure the uniqueness of
the translation (between Q=, A and A), and in order to avoid binding free variables, we take
the following conventions:

1. We assume that J is ordered and that the order is 2/, 2",

2. We assume that any two elements of] are distinct exactly as all variables in F are
distinct.

3. We always take the first fresh variable X; in] as a subscript to the A in hand.
Now, we define the translation from a subclass of A to A as follows:

Definition 5.6 (Translating A in A via 7) If t is a term in A such that FV(t) C F and
BV (t) C 1 then we translate t to t' by first looking for the biggest free variable in t (recall F
is ordered). Say this free variable is x; for i € IP. Now we take the smallest bound variable in
t (recall T is ordered). We replace all the occurrences of this bound variable by x;y1. Then we
replace the second smallest bound variable by x;+o and so on until no variables from I appear
in t. We call the translation of the A-term t in A, 7(t).

Note that this definition only translates ¢ if FV (¢) C F and BV (¢) C {. But not every term
of A satisfies this property. All terms of A however which are translations of terms in Qé‘sg‘p“
satisfy this property (see Lemma 5.54).

Example 5.7 The translation of (1\)2 in the mid-level A is (A\y)21

The translation of ((16)2X)(1A)3 in the mid-level A is ((z10)xoAy) (2 A)21

Finally these terms in the mid-level are transformed into terms of A in a unique way as follows:
The greatest variable of F in (Ay)x; is 1, hence 2’ gets replaced by g, giving (Az,).
The greatest variable of F in ((210)z2Ay) (2’ A)21 is 22, hence all occurrences of 2/, 2" get
replaced by 3, x4 respectively giving ((x10)z2Ags)(23Az,)T1-

25

Now, as A and A are very similar, we shall avoid the trivial step of translating between A
and A and shall show the soundness in A. The reader can see however that this simplification
does not affect any of the results of this paper.

But, how do we provide this translation which takes)s,,,-terms to the mid-level? This
we may start as follows:

5.1 The inverse function e

We may give the definition of the function e which takes elements of Qé‘s to the mid-level
mentioned above as follows:

Definition 5.8 (e)

Let t,t1,t9 € Qé‘s,g be a segment of A consisting of items of the form (\x) for X € §,1 €
L(1),7 € IP,v € 2, X € 1. The function e which takes Qys-terms into terms in A (which
use variables in F UJ) is defined as follows:

e(t =q ¢(t,0,7)

C(U,E, l) =df d(U, §)

c((t10)t2,5,1) =g (c(t1,5,1)8)c(t2,5, tIME)(1))

C((t1>\)t2,§, l) =df (C(tl,g, l))\hd1+nz(tl)(l))c(t2,3()\hd1+nz(tl)(l))7tll-i-nl(tl)(l))
d(j,0) =i Tj

d(E, §) =df €

d(1,5(A\x)) =q¢ X

d(n,3(\x)) =¢ dn—-13)ifn>1

Here L£(7) is the set of those sublists of J which are equal to { with an initial segment
removed (see Definition 5.16). Moreover, we take hd’ and tI’, for i > 1, to be functions
which take lists and return the i** element of the list, respectively the list without its first i
elements (see Section 5.2). Recall moreover that nl(t) is defined to be the number of A’s in ¢
(see Definition 2.25).

Note that d associates with each de Bruijn’s index, the right variable in FUZJ which should
replace it.

Lemma 5.9 e is well defined and bo 7o e(t) =t for any t € QY
Proof: Easy. O

Example 5.10

e(((2A)20)1) = ¢(((2A)2))1,0,7) ,
= (c((2X)2,0, DAz)e(1, (M), {2, 2%, ... })
= ((c(2,0,DAw)e(2, (A), {2, 2", ..} Az)d(L, (Agr))
= ((d(2,0) A)d(2, (Azr) Agrr) 2"
= ((x2>\x/)d 1,(1))%;::):6"
= (w2 g)21 Aprr) 2"

(Note that the first A to be be named becomes A, and not A/, due to the fact that there is
one A in (2X)2; Le. nl((24)2) = 1, hence Apginin2 () = Anaz() = Agr.) This A-term may
be replaced by the term ((x2Ag,)T1Az,)za in A.

26

Example 5.11

e((M(IA)(16)3) = c((V)(1X)(16)3,0,7)
= (c(e, 0, DA)e((IN)(10)3, (A), {2", 2™, . })
= (d(e, 0) Az) (c(L, (Agr), {2, 2™, .. })Agr)e((16)3, (Ag) (Agr), {2, ... })
= (eAe)(d(1, (A) A) (e(1, (A) (Aar), {2, .. . })0)e(3, (A) (Agrr), {2
= (Ekx’)(mlkx”)((17 Aa:’)(Aa:”))(s)d(?’u (Ax’)(Ax”))
= (Aw) (2 A) (2"6)d(2, (Aar)
= (M) (2" Agr) (2"0)d(1,0)
= (M) (2" Agr) (2" 0) 1

Finally, we get rid of the variables of in (A)(2' Ay) (2")21 by replacing every z’ by zo and
every x' by 3 obtaining (Ag,)(z2Az,)(230)21

This e however does not take into account -, o- and p-items. In fact, it is difficult to provide
the translation of p-items without watching what happens in the lists F and J. Look at the
following example:

Example 5.12 Take the term in Q= to be (¢(1:2))(16)(2))3. Now, the translation of this term
should be: (x16)(x4 Ay)rs and will finally be transformed into the A-term (z10)(z4Az;)T4.
What this really mean is that due to the presence of (¢(1?)), we translate (16)(2\)3 not in
terms of F and § as we have done so far, but in terms of 7' and { where 7' = ... x5++z4++2;.
Le. the x5 and x3 disappear from F. (For lists notation, see the following section.)

This process of removing elements from F must also be extended to sublists of 7 UZJ in order
to translate subterms of terms. Moreover, we need, in order to show the correctness of our
tranlation and the soundness of our reduction rules, to have some basic formulation of lists.
We start therefore by setting the ground for these lists.

5.2 Variables and lists

Definition 5.13 (©)

We define the set of variables © to be JUF. We let 0,601,05,0,--- range over ©. Note that
e € ©. Recall moreover that v,v',vi,vs,... range over F, that F has x1,xs,... for elements
and that § = a',2",.... Furthermore, we take X, X', X1, Xo,... to range over J. We refer
sometimes to elements of F as free variables and to elements of T as bound variables.

Now, we will use lists as an important part of our semantic function. We assume the usual
basic list operations such as concatenation +4 and head and tail, hd and tl. For i € IP, we
take hd' =g4r hd and hd**1 =4t hd o hd', and we define tI° similarly. Moreover, the set of
operators \, C,C and € are also applicable for lists and we will mix sets and lists at will. We
take T, v’, 7,73, . . . to range over (finite and infinite) lists.

As we have seen in Example 5.12, we need to add/remove variables from F due to the
updating function (¢*"). Hence we define the following notions related to lists:

Definition 5.14 (reversed list of variables, left part, right part)

27

-}

o FEuvery list is written as the sum of its ordered elements from right to left In particular,
we write F as ...+ 4+xo ++x1 and as ...+ +a" + +2'.

o If T =...4++0 + 40y, then for m > 1, we define T>p, to be ...+ +0p41 + +0pm. T>m
is also called the left part of U starting at m. Note that V>, = H™=1(®). In particular,
we define F>p to be ... 2y 1 + 4+ for m > 1.

o Ifv=...4++0:++0y, then for m > 1, we define Ty, to be Oy 1 ++0, o++...++67.
Note that Ty is the empty list and Do = hd(V). U<y, is also called the right part of ©
ending before m. In particular, we define Fep to be xm—1 + +Tm—2 + +... + +x1 for
m > 1.

Definition 5.15 (L) If A is a set, then we define L(A) to be the set of all finite lists generated
by A. We assume that all elements a € A occur at most once, in each of these finite lists.
Obviously, the empty list) € L(A) for every set A.

Note that £ only generates finite lists. In particular, J ¢ £(J).

Definition 5.16 (L (7))
We define Loo(T) to be {U>4;9 € IP}. Le. elements of Loo(T) are ,t(T) and so on.

Lists that we will be using often are those for whom a right part is a finite list of elements of
© U {¢} (where 9 is a special symbol ¢ © whose meaning for lists will become clear below),
and a left part is 7>, for some m € IP. For this reason, we define the following:

Definition 5.17 (L)
Lpiit s defined to be: {F>p ++0;m € IP,T € LOU {¢})}

Hence, if U € Lyp;; then ¥ can be split up in two lists: v = F>, + +'.
1. The left sublist, is an infinite left part of F.

2. The right sublist is an element of £(© U {¢}). That is, a finite list of elements from
o U {y}.

Definition 5.18 (£71(©))
We define L71(O) to be: {0;0 € Lyt A is -free}. Le. elements of L71(O) are those

elements of Lyt which do not contain 1.

Definition 5.19 (L)
We define Ly to be Lgpiie U L(O U {9}).

Now the following function intends to measure the length of finite lists in which v appears.
From this function, the reader can guess that 1) removes an element from the set.

Definition 5.20 The function || - || : L(O U{¢}) —> Z is defined as follows:
For allt € LIOU{¢}),0 € O:

110]] =0
I[o++y|| =
o+ +6] =

| —1

gl
ol +1

28

We write |7 for the length of ¥ (i.e. the number of all its elements including).

Lemma 5.21 For allT € L(© U {¢}), |[7|| < [T]. Moreover, if v € L(O) then |[v]| = |7].
Proof: Obuvious. O

Moreover, we define the following partial function:
Definition 5.22 (comp) For allT € Ly,0 € ©O,n € IP:

compy (U + +0) =q 0
compra(@++0) =y compn(®)
compy, (T + +6 + +pt 1) =q comp,(T++¢'), i€IN

Here 9" stands for ¢ + +... 4+ + for n € IN.
N——— — —

n
The idea of comp is to select the appropriate named variable, given a list of (different) named
variables. We write comp,, () 1, when comp,, (7) is defined.

Lemma 5.23 For allv € L(OU{¢}),n € IP, if n < ||[7]| then comp, (V) T Acomp,(T) € T.
Proof: By induction on || noting that if |[T|| > 1 then 30 € © such that 0 € T. O

Corollary 5.24 For allT € L(©),n € IP, if n < [0| then compy (V) T Acompy, (V) € T.
Proof: Obvious, using Lemmas 5.21 and 5.23. O

Lemma 5.25 For all T € Lgpi,n € IP, compy,(T) T Acompy(T) € T.
Proof: By induction on n. O

Note that the only case where comp,,(v) is undefined is when n > |[7]|.

Lemma 5.26 For all T € Ly, n € IP,i € IN,compy, (T + +¢°) = compp (7).
Proof: FEasy. O

Lemma 5.27 For all v' € Lgpit, v € LOU{¢}),0 € O,n € IP, and i € IN, we have:
1. If n.> [[0]| > 0 then compy, (V" + 47) = comp,,_ |7 (v').
2. If n > ||5]| > 0 then comp, (V' + +¢* + +7) = comppi (v + +7).
8. If n < ||9|] then comp, (v + +7) = comp, (V).
4. compp (V' + +6 + +¢ + 40) = comp,, (v + 7).
Proof:
1. By induction on [v] using Lemma 5.26.

2. Using Lemma 5.26 and 1 abowve.

29

3. By induction on |v| using Lemma 5.26.

4. e Casen <|[T|]| or n > |[T]| >0, then use the definition of comp and cases 1 and 3
above.

e Case n > ||v]| and ||v]| <0 then by induction on |o|.

Finally, the following definition takes a segment to the list of variables which are indices of
the As occurring in the main items of the segment.

Definition 5.28
If 5 is a segment, then we define the list based on s to be as follows: sl(0) = 0, sl((t10)s') =
sl(s') and sl((t\g)s') = 0 + +sl(s').

5.3 The semantics of (2=-terms: an initial account

The method here is to provide the semantics of the terms using lists of variables 7 and v’ so
that [7;v';¢'] where ¢ is a subterm of t searches for the translation of # € Q= using T to give
names to the free variables in ¢’ and v’ to give names to the bound variables in #'. Moreover,
TN is taken to be () in order to avoid binding any free variable.

Now, if we were to determine the semantics of the A- and J-terms only, then it is sufficient
to consider 7 € L(]) as we have done in the definition of e in Definition 5.8. The list T then
may be considered as the list of named variables to be used for free variables in ¢’ which are
bound in the original term ¢; variables free in ¢ obtain their names relative to the fixed list

T3 + +x2 + +x1. With variable updating however, we will consider v to be denumerably
infinite and in Lgp;. We start first with only finite lists of elements of § and we provide the
semantics of the A\- and J-terms as follows:

Definition 5.29 (- and 0-semantics)
For all t1,ty € Q.5 € L(1),V' € Loo(]), TNV =0,n € IP U {e},

050" (1 \)ta] =g ([530st1Ax) [0+ + X507 55005 t2] for @ = ni(t) + 1, X = hd' (V)
[5; v’ (t15)t2]| =df ([5; vl t1]](5)|[@; U,Zi; tQHfOT 1= nl(tl) +1

compn(®) if n < [7]
[5;0"; n] =i § Tn-po| n > [7|

€ ifn=c¢

That is, we save in v all those variables which are now free in the term we are calculating,
but which were bound originally. Note that the condition ¥ N v’ = () is necessary; otherwise
we would bind variables that are meant to be free.

Example 5.30 (see Example 5.10)

335 ((2>\)2/\)1]

[0 Mg)23 T35 1]

(I iv 2]>\ [95';$2232]>\w”)00mp1(55")
(Zo— 19| At) T2 jar Agrr)"

(.%‘2 x’)xlkx”)x”

[0
(
(
(
(

w
()

Example 5.31 (see Example 5.11)

0; 35 (M) (1A) (10)3]
| ia])\ Mz’ T>2; (IN)(16)3]

€A 1>2, 1]>\m”) , ” i>3, 1(5 3]
EAx')(Compl(Do) ([2'2"; 1555 100) [2" 2" T35 3]
eyt) (@' Agrr) (compy (22) Er——

eAg) (@' Agr) (2" 0) 21

If however we calculate [2';3; (A)(1A)(16)3], then we would get (eAy)(z'Ay)(2”0)2" which
is not the intended meaning for (A)(1A)(10)3. Note that the list v" is superfluous when we
always start with [();J;¢'], since then v' = {>},41 and remains so.

Lemma 5.32 For any v € L(}),v" € Loo(]),5 N0V = 0,t € QX FV ([5;0';1]) CTU F.
Proof: By induction on t, recalling that € is neither free nor bound. O

Lemma 5.33 [-;-;-] as defined in Definition 5.29 is well defined. That is for allv € L(]),v" €
Loo(), 7NV = 0,t € QX [5;0';1] is a unique term of A.
Proof: By induction on t € Qé‘s using Corollary 5.24. O

Now we will prove that e and [(; ;] return the same A-terms.

Lemma 5.34 For all t € QX5 segment from the mid-level and T € L(1),c(t,5,7)

[s1(3); w3).

Proof: By induction on t. o

Corollary 5.35 For all t € QY e(t) = [0;1;1].
Proof: Obvious. U

Example 5.36 Let ¢ = (¢\)((1A)((16)(2X)3X)(2X)2X)3. Now, the reader can check that:
t) = ﬂ@;i;tﬂ = (6)\93/)((1‘,)\93//)((56”5) (:C,)\IIH)CCIAQCW)(l‘”)\x////)l‘m}\xu)xl

Furthermore, 7(e(t)) = (eAz,)((z2A25)((230) (w2 Az,) T2 Az,) (X325)TaAg,)21 and the tree of
7(e(t)) is given in Figure 8. We leave it to the reader to fill in the tree of ¢.

5.4 Extending the initial account

We have not so far, in either the translation using e or that of [-;-;-], defined the meaning
of o-items and ¢-items. The meaning of the first is straightforward. In fact, for i € IP,
t1,t2 € QX T € L(}) and v/ € L(]),T NV =), we shall define:

[0 0; (t10D)ta] =4p [0 0% 02][[05 075 4] := [0 5 14)

31

A 4
T2 >\:1:3
—————o U]

£ = (Aea) (22200 (@30) (@2)J7920,) (T30)04 dag)21 = (D) (LA)(16)(20)30) (20)20)3

Figure 8: The tree of 7(e(t))

where t1[v := t)' is the substitution in the mid-level A (which uses F UJ) given in Defini-
tion 5.4.

When it comes to the meaning of [7;v'; (*"))#], then things may not be obvious. In
fact, the intended meaning of (cp(k’i))t is: add ¢ to all free variables greater than k, occurring
within term ¢. Let us moreover summarize what our semantic function does. In [7;v';], the
term ¢ is written exactly as it is (i.e. A’s and §’s stay at their original positions in ¢). The free
variables in ¢t however (which are indices of course) are replaced by variables from 7 U F (see
Lemma 5.32). The index itself decides which variable from 7UF is to replace it. For example

(@02 5 0; (10)(20)3] = (48) (a"8)"
[z 2" 2" T>4; (16)(2X)1] (2'6) (" Apr)
[>2; 2

8
i

Now, when we come to look for the meaning of [7;v'; (¢%9#], then all those variables in ¢
which are smaller than or equal to k, take the same value as if we were only calculating
[;v';¢]. Those variables bigger than k must not take the original values they would have
taken in [;v';t]. Rather, looking for their corresponding variables in T, we have to shift still
i positions to the left. L.e. if the index is n, where n > k then the variable corresponding to
n is not the n'® variable from right to left in . Rather, it is the (n 4)® variable from the
right. For example:

[x""x"'x"x'; 125; (90(1’2))(15)2] = (.%‘,(5)1}""
Hence to calculate, let us say, [7;0"; (¢*9)t], we have to consider several cases:

e Case [U| > k +¢. Then the trailing k elements of list ¥ are to be kept but the next i
elements are to be erased resulting in a list o7 = left(7, [v| — k — i) + +right(v, k) where
left and right have the obvious meaning. lLe. left(v,m) = T>m, right(T,m) = Up.
Hence,

[5; 0" (0")t] = [o1; 03 1]

For example: [z a"2'; > 5; (pb2)2] = [2" 2" 3555 2] = 2.

e Case [U] < k where v € L(J). Each free variable n in ¢, greater than & has to be increased
by i. Now because [0| < k+i < n+i, such a free variable will be associated with x,, _z|4;-
For example, [z';]>2; (©3)3] = 25 and [(;7; (0%))3] = 26. For a free variable n in t
with n < k, nothing changes: take z, 3. For example. ("5 T>2; 90(2’3)2] =

e Case k < |[0| < k 4 ¢. This is a mixture of the above two cases. For example

2"a'; 3535 (012)(16)2] = (/0) a2

In all these cases, the list ¥ has to be updated, when calculating ¢-items. There are essentially
two ways to update the list so that the above three cases are accommodated. The first
alternative will be called eager erasing and conceptually consists in immediately erasing the
superfluous elements in T. The second alternative is a stepwise approach and will be named
lazy erasing.

Eager erasing just deletes the elements. So, if [7] > k + 4, then some function like
[7;07; (0®Nt] = [(left(D, [T] — k — i) + +right(T, k); v";] would do the job.

Now for lazy erasing, the trick is to allow a special symbol ¢ to become an element of .
The operational meaning of 1 is: on going left, delete the first named variable. We will use
lazy erasing in this paper. Moreover, as is traditional with our approach, we will use v» with
superscripts. We write ¢! as 1 and ¢° as the empty string (). ™ will be ¢ + +--- 4+ +1.

n
Such a v, will not only be used to erase variables but will also say which free variable in F
correponds to the variable in hand.

Example 5.37 The idea is that:

1. To calculate [7;v'; (cp (kD)¢] where 7] > k + 4,7 = o7 + +73 and |v_2| = k, we calculate
[o7 + +¢% + +73;0; t]. Hence when calculating [¢"" 2" 2" 2'; 555 (¢ 2))2]|, we calculate
[22" + 4+1p? + +2';7>5;2]. Now, this evaluates to [2""z"” ” + +¢%7>5;1]. The

presence of 1)? means ignore z"’z"”. Therefore the result reduces to [2"";>5; 1] which is

nn
xr .

2. For every n € IN,m € IP,[v + +¢";v';m] = [7;0";n + m] and [¢";0";m] = 2pym-

Looking at the first part of Example 5.37, we see that we need to have T = 77 + +73 where
|vz] = k. Now, we are interested in a stepwise fashion. Moreover, the length of 73 has to be
calculated somehow. In other words, we have to go through the list T from right to left until
we pass the k' element. In order to accommodate such a stepwise fashion, we introduce an
extra argument in the semantic meaning of p-terms. We will give an example which explains
the point even though it is ahead of its time in the section. We believe however, that the
reader can still follow it, once point 2 of Example 5.37 is remembered.

Example 5.38 Notice how we save z’ to use it later on:

[2"2"; 3235 (1) (16)2]

[« 25 3555 (9112)(10)2]

[l‘" + +1/)2 + +CCI; izg; (15)2]

(2" + +¢2 + +a'; 535 10) 2" + +4% + +2'5753; 2]
(z'0)[z" + —H/)Z T>3:1]

(x’é [QJ $>3,

(@'8)z2

33

For reasons that will become clear below, we extend our lists from being elements of £(]) (as in
Definition 5.29) to being elements of L. So not only we accommodate bound variables and
¥’s in our lists, but also we include free variables. Those lists moreover become denumerably
infinite.

Now, here is [-;+; ‘e, the extended definition of the semantics of A\- and J-items.

Definition 5.39 (Eztended \- and 0-semantics)
We define |5+ -|e : Lsprit X Loo(]) X Qé‘smﬂ — A, such that:
For all t1,t2 € Qé‘s,ﬁ € Espm,U € [,oo(i),@ Nv' = 0,ne P,

[0;07; (1 M)tale =ap ([T 073 t1)eAX) [0 + +X50 50415 tole for @ = nl(ty) + 1, X = hd' (V)
[5;0"; (t10)tale =ap (|75 075 11]e0)[T; 0" 545 tole for @ = nl(t) +1

[T /s e =g compn(7)

[7;0; €]e =qf €

The meaning of the remaining Qszo,-terms will be given below.
The following lemmas will be used in what follows:

Lemma 5.40 For all U € Ly, 0" € Loo(1), @+ +0)N0v' =0,0 € O,n,m € IP and k € IN,

we have:
L [0+ +6;0";1] = 0
2. [7;0";n + Kle = [T+ +¢F; v n)e
3. [t++6;vin+1e = [5;05n)
4 [Fom+ +pFsvlin), = Tntktm—1
5. [7;0";n)e € v B
6. Ifn#m then [v;v";n)e # [U;v";m)e
Proof: Easy, using Lemma 5.26 and the definition of comp. O

Lemma 5.41 For all v/ € Ly, € L(OU{Y}),0" € Loo(D), W ++D) N0" = 0,0 € O and
n,t € IP, we have:

1. If n > ||9|| > 0 then [v' + 4750750 = [0 — |[7]]]e

2. If n > ||v]| > 0 then [v' + +¢" + +0;0";nfe = [V + 47,075 0+ i
8. If n < ||9|] then [V + 40;0";n]e = compy, (D)

4o [+ 40+ +¢ + 4707 e = [V + 473073 n)e

Proof: This is an obvious corollary of Lemma 5.27. O

Corollary 5.42 For all v € Ly, v" € Loo(1), (W' + +0) Nv" =0, and n,i € IP, we have
forv e L(O):

1. If n > [v] then [v' 4+ 4+0;0"; 1), = [v/;0";n — [0]]e

2. If n > [0] then [v' + +¢' + +7;0"; 0] = [v/ + +7;0"; 1 + i,

34

3. If n < |v] then [v' + 4+5;0"; n]e = comp, ()

Proof: Obvious by Lemmas 5.21 and 5.41. O

Remark 5.43 Note that if U € Loy, v' € LOU{¢}),0" € Loo(D), (V" +4+0) N0 = B,n,i €
IP,||v"|| < 0, then even though n > ||v/||, it is not necessarily the case that:

L [v+ +v50"n)e = 05070 — ||V]]]e
2. [0+ +¢' + +0507n)e = [0+ +050"5 0+ 1]
This can be seen as follows:
[F+ —I—w%’;izg; 1]e = o' whereas [F;]>2;1 — [P ||l = [F; 1>2:5]e = ws.
Now the following lemma is needed to show that [-; ;-] is an extension of [;-;].

Lemma 5.44 For allT € L(}),v" € Loo(]),7N0" = 0,n € IPU{e}, [7;v";n] = [F++7; v'; n)e.
Proof: Left as an exercise. O

Finally, here we show that [-;-;] is an extension of [;-;-].

Lemma 5.45 For all T € L(}),v' € Loo(]), TNV =0, € QY [1;0; 1] = [F + +7;0; t]e.-
Proof: By induction on t, using Lemma 5.44. O

5.5 The semantics of o- and p-terms

Definition 5.46 (o-semantics)
For all ty,ty € Qé‘sw,@ € Lpiits V' € Loo(1), N0 =0, € IP we define

[0'; (tio")152]]6 =g [U;V"; tole[[T; 03 e = [U50"> >14ni(ta); tle]

where t1[v := to] is the substitution in the mid-level given in Definition 5.4.

Definition 5.47 (p-semantics)
For all t € QX% % € Lypip, ' € L(O),0" € Loo(D), @+ +0)N0" = 0,0 € ©,i € P,k € IN,
we have:

[7; 0" (™)tﬂ =g [7; 0;0"; (B0

[7; 073 07; ()] =qr [0+ 44"+ +05 07 1],
[0+ +9, T (P =g [0+ 07507 (9B)]
[0+ +0 + +*M 500l =g [0+ +9F; 007]

Note here that v does not play a role because we do not have bound variables that we are
trying to replace by variable names. What the v’ does however is to save the first k variables
of ¥ which are actually the variables in ¢ which should not be updated because they are < k.
Once the first k variables of T have been saved in v/, we remove the first i variables from the
resulting T. Hence in the end, we get the correct list from which we find the meaning of .

35

Example 5.48

Lo [F+ 4253505 (02Nl = [F + +2"50;352; (939)3)]
= [Fia'; 100 ()3
= [Fooszr + +a2'5 505 ((©)3]
= [Foo + 4¢3 + a1 + +25152;3)e

= :(;5
2. [F4+ai 10 (01 = o
3. [Fils2 (@) (O] = a4

Now the following lemma is basic about ¢-items.

Lemma 5.49 For allt € Qé&w, T € Loplit,v' € L(0),0" € Loo(D), @+ +0") N0" =0 and
i € IP, we have:

[© + +07 07; (@7 10)t, =[5+ +4 + +07; 07 e

Proof: Easy. First prove by induction on |[v'| that if T € Csplit,v,v_l € L(O) such that
(T+ +v' + +o1) N0" =0 then

[7 -+ +075 70 (7101 = (357 + 47307 (609

The following lemma opens the road to working with lists which do not contain .

Lemma 5.50 For all v' € Ly, 7 € LOU{Y}), 17 € Loo(D), ' ++0++0)NT7 = 0,0 € ©
and n € IP, we have:

[0 + 40 + +¢ + +7; 015 t]e = [V + +7;701; t]e
Proof: By nested induction. We prove by induction on t that IH,(t) holds where IH,(t) is:

[v' + +0 + +¢ + +7; 013 t)e = [V + +7;07; 1)e

e (Case t =n, use case 4 of lemma 5.41.

o Case (t10)ty or (b1 \)ta or (tyo®)ty where IH,(t1) and THy(t2) hold, easy.

o Case (p"))t where IH,(t) holds, prove by induction on k that I1Hy(k) holds where
IHy(k), for all v" € L(O) is:

[0+ +0 + 4 + +7; 07733 (0P e = [V + 45307713 () e

— case k =0, use TH,(t).

— Assume IHy(k). Now, prove by induction on 0| that IH3(T) holds where 1H3 ()
18:

[0+ +0 + +4 + 475075073 (F)t = [0 + 43507 57 (D)),

* case [0] =0, use Definition 5.47.

36

* Case U+ +6 where 0 € © and IH3(v) holds, use Definition 5.47 and IHy(k).

x Case T+ +0 + +¢J where § € ©,5 € IP and IH3(T + +¢771) holds, use
Definition 5.47 and TH3(T + 4p7~1),

x Case 1) where j € IP, use Definition 5.47.

Now this lemma is very important. It says that all the ¢’s can be removed from lists.

Lemma 5.51 For all v € Esplit,EIU € Lgpiit which is free for v such that for all t €
QQ‘”’“’,W € Loo(l) such that v N V" = 0, [0;0"; e = [v/;0"; te.

Proof: We can write T as U7 + +60 + +03 such that 6 € ©,T7 € Ly, T2 € L(O U {1p}),
01 is free of ¥ and U3 has 1 as its leftmost element. Now, the proof is by induction on |v3]
using Lemma 5.50. Note moreover, that v' is independent of t. Hence, we may assume from
now on that our start lists do not contain . O

Finally, we give the translation of any term ¢ of Qé&w:

Definition 5.52 (The semantic function)
We define []: Q2% s X such that for all t in QX% [t] =4 [F; 35 e

Lemma 5.53 [is well defined. That is, for allt € Qé&w, [t] is a unique term in A.
Proof: By induction ont € Qé&w. O

Now this is our first lemma towards the correctness of our semantics:

Lemma 5.54 For allt € Qé&w, we have:
1. BV([5;0';#]) C o' for every T € Lgpiiy and v' € Loo(T) such that TN = 0.
2. FV([t;v';t]) C O for every U € Loyt and v' € Loo(]) such that vNv = 0.
3. BV([t])) € T and FV ([t]) C F.

Proof: 1 and 2 are by induction on t. 3 is a corollary of 1 and 2. O

What this lemma means is that the term [t] in A can be translated using Definition 5.6 to a
term in A.
Let us give now a few examples:

Example 5.55 (Note that we sometimes combine many steps in one.)

[(eZN)(16)2N)3] = [FiLi (e (15)(2>\) Je
= |5 @i)(A3
= [Foos2; $7 (1)(2>\) I
= |[7:>3,$2++$1ai,(o) (1)()3]|
= |[.7'-23 + 4+ + 9 + +x1; i,)\)3]]8
= (216) (w2)24

37

[(23)) (1) (16)(26)3] [F33; (0 (so(2))(16)(26)3]e
|[f>2,x1 $7 D) (e (12))()(d)3]
[F>3520 + —HChi)(1,2))(§)(26)3]
[Fo3 + +¢% + +a2 + +x1,1, ((1.2))(16)(26)3]e
[Fss + +92 + +ao; 21335 (0)(16) (20)3]
[F>5 + +9° + 422 + +¢2 + 41575 (10)(26)3]e
(216)([F>3 + +9% + a2 + +¢? + +21; 15 2] 6
[
(
(
(

Fog 4+ 419 + a0 + +10% + +:c1 1 3]e

1A ﬂ}}ﬂi; 1]]85)|[}-Z73$; 2],
z16)(z76) 28

6 The soundness of o- and p-reduction

In this section we will show that if ¢ — ¢’ where — is the result of a ¢-transition or destruction
rule, or of a o-destruction rule, then [f] = [¢/]. That is, we will show that both ¢ and o are
sound in what concerns variable updating and substitution. We will show moreover, that if
t =, t' where — is the firing of the o-generation rule, then [¢t] = [¢/]. That is, o-generation
is a form of (-conversion in our system. Furthermore, o-transition accommodates in it a-
conversion. That is, if t —, ¢/ where —, is a o-transition rule, then [f] =g [t]. For this, let
us group all the definitions of the meaning of the different terms together:

Definition 6.1 (Semantics of Qé&w) For all t,t1,ty € Qé‘sw,@ € Lypit,v' € L(O),0" €
Loo@), @++0)N0" =0,0 € O,i,n € IP and k € IN, we define:

M1 [t =g [F:3;Ye

M2. [7;0";¢]e =4 €

M3. [7;v";n)e =af compy (V)

M4. [0;07; (A tale =g (0307 taleAx) [0+ +X;0" 55415 to]e for i = nl(t) + 1, X = hd'(
M5, [5;07; (L) tale =g ([7;0"; 11)e0) [0 0" 55 tole for @ = nl(ty) +1

M6. [5;07; (1o Dtale =g [0;07; tale[[[T; 075 dle == [T;07 54 tale)! for i = nl(t2) + 1

M7 [507; (*0) e =g [7;0;07; (p*0)]

M8, [m5 050" (9Ot =g [0+ +P + v” t]le
M9, [o++0; 0507 (PFTEN] =g [0 + +05 07 (0RD)]
M10. [0+ +0 4+ holut] =4 [0+ +9F0 0"]

Let us furthermore recall here that 2 = {\, d, 0, ¢} and that Q= is defined in Definition 2.21.
Finally, the ¢-rules are given in Definition 3.4 and the o-rules are given in Definition 3.8. (We
leave the discussion of y till the next section.)

Now, the following lemmas inform us about the place of («) in our system.

Lemma 6.2 Ifn € P,V € Lsplit, V', 0" € Loo(l) and TNV =0 N0 =0, then [v;0;n] =
[7; "5 1]
Proof: Obvious. o

38

o)(ﬂf23 ++0° + 5 5 1e0)[Fog + +0° + +4i 152

)

Lemma 6.3 If t € Qé&w,ﬁ € Lopiit, V' € Loo(l) and vNV = 0, then for all v" € Lo (V'),
[v; t]e == [T 0" e
Proof: By induction on t. o

Now we define the notions of (a-, 3-) soundness:

Definition 6.4

We say that a reduction rule — is sound if: (Vt,t',0,0)[t — t' = [7;V'; t]e = [7;0'; t']¢]-

We say that a reduction rule — is a-sound if:

(Vt, ¢, 5,0t =t = [0;0; e =7 [T;0';1']e].

We say that a reduction rule — is B-sound if:

(Vt, ¢, 0,0t = t' = [5;0";t]e =5 [0;0";).

We say that a reduction rule — is af3-sound if:
(Vt,t",0,0")[t = t' = [7;05t]e = [7;0;¢'].).

Lemma 6.5 p-transition through a d-item is sound. That is, for all t1,to € Qé&w,vl €
Lspiit, V" € Loo(), 71 N0 = 0,4 € IP, and k € IN, we have:
[o1; 05 (95 D) (t18)tale = [1507; ((FD)110) (D)),
Proof: According to Lemma 5.51, we may assume that U1 is ¥-free. Assume moreover
that o7 =0 + +v' such that |v'| = k.
([7 + +0"507; (% D)116) (D) 5], =J=lnin)
(17 + 407507 ()1 d) [0+ +075 07 (8D)], Shemma 549
([7+ " + +0"; 0" 1] 0) [0+ +¢' + 07507555 0] =
[E-I-—H/)Z + -I—U';U”; (t15)t2]|e —=Lemma 5.49
[0+ +0% 07 (D) (t10) e

Lemma 6.6 p-transition through a A-item is sound. That is, for all ti,t5 € Qé&w,ﬁ €

Lplit, V" € Loo(3), 01 NV" =0,i € IP, and k € IN, we have:

[o7; 0" (B D) (1 M) tale = [o1;07; (%) 01 0) (9 * 1)),

Proof: Similarly to the above lemma, we may assume that U1 is -free. Assume moreover
that o7 =0 + +v' such that |v'| = k.

(I ++05 07 (PE NN (Dl R T
(I[E_'_ +’U,;’U"; (@(k,l))tlﬂeAX)[E_i_ +’Ul + +X;’U">j+1; (So(k—i—l,l))tZ]]e Lemma 5.49

(7 + +9" + +0 07 tale Ax) [0 + 97 + +0" + + X307 55113 ol
[V ++¢" + +075 0" (B A)to]e

[T 4 +0; 0™ (®D) (£, A) Lo,

Lemma 5.49

39

Lemma 6.7 @-destruction is sound. That is, for all o7 € Ly, U2 € Loo(]),71NT2 = 0, 0,0 €
P,k € IN, we have:

1. If n > k then [v1;73; (¢*)n]. = [o1; 035m0 + .
2. If n < k then [o7;77; (¢*\n), = [o7;72;1)e.
Proof: Assume U7 is t-free and U7 =T + +v' such that |v'| = k.
1. [4++0";73; (*D)n), =Lemme 549 (54 4qpt 4407, Tg; nf, =C0ONrY 542 [T 107, Tg; n+i),

2. [5 + +U; V2; (%D(k’i))nﬂe —Lemma 5.49 I[@_i_ +¢l + +F; T3, n]le —Corollary 5.42
compy, (U’) EC’orollary 5.42 [E + -i-U’;U_Q; n]]e

Lemma 6.8 o-destruction is sound. That is, for allt € Qé‘sw,ﬁ € Lspiit, V' € Loo(]), N0 =
0,i,5 € IP, we have:

1. [5;0; (te®)il. = [0;; te.
3. [0;0"; (to)e]e

e.
Proof:
1. [5;0"; (teW)il, = [0 il [[7; 0 i) = [05 03 8] = [0 He.

2. [0, (toD)jle = [0 jlel[ms s ile == [0 4] = [0, as [0] # [0:0; e
from Lemma 5.40.

3. [7;0"; (to el = [7;0'; lo[[T; 073) := [7; 03 8]e] = ¢, as e €T, for every T.

Lemma 6.9 o-transition is a-sound. That is, for all T € Esplit,U € Loo(]), 7NV =0,i €
Pty by, t € Q2% we have:

1. [5;0"; (t10D) (kM) te =7 [T;0"; (E16)t X) (@)t 0CTD)],
2. |v; P (tla(i))(t25)t]]e =z [7; P ((tla(i))tg)\)(tla(i))t]]e

Proof: Left to the reader. O

Theorem 6.10 For all t,t' € Qé&w, if t =, t' where r is any o- or p-transition rule, or any
o- or @-destruction rule, then [t] = [t].
Proof: This is a corollary of Lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 above. O

40

The transition and destruction rules of o and ¢ work like substitution and variable updating.
Therefore, they should return equivalent terms. o-generation on the other hand, accommo-
dates in it S-reduction.

Example 6.11

(7535 (20) BN e = (IF; 35 2e0) (175 33 3le Ao) [F + +2'5 3505 U = (220) (w3002

Moreover,

[F53; (26) 3M) ()20 M) 1] =
(17535 20 0) (13 35 Ble Ao) IF + +2'5 303 ((9)201) 1] =
(755) ([F3 3 3le Aar) ([F + +2"3 325 e [[F + +2" 505 e := [F + 4233525 (0)2]] =
([75 35 2e0) ([33 3le Ao) (2"[2" := w2]') =
([75 35 21) (175 5 Ble Aar)22 =
(z20) (307)2

Of course (z20)(z3A)z’ and (220) (23,)x2 are not a-equivalent but are (-equivalent. In

fact,

(w26)(z3 00)2’ =7 T2 and (220)(x3 Ay)22 —5

Hence, our task is to show that if ¢ —, t' where —, is o-generation, then [¢t] = [¢/]. This is
done in the following lemma:

Lemma 6.12 o-generation is afB-sound. That is, for all t,t1,t2 € Qi&w for all T €

Csplit,? € L(3), such that v N o' =0, [T;0; (116) (b2 \) e = [T;0; (116) (L2)\)((cp)tla(l))t]]e.
Proof: Let i =1+nl(t1),j = 1+ nl(tz), X = hd’ (V). k = 1 + nl(t).

o (110) (1) () 0o)i B
5 alB) (1735 e A (7 4 5 05 ()t10M)te)

;7
(v
([7;0; t1)e0) (I7; "> 5 tZHe/\X)(ﬂ@ + X0 55455 e [X = [0+ +X50 504544 (©)t1]e]) :35'49’ >50
([0 + +X;0 51455 el X = [0 5105403 tale] [X = [75 075 ta]e]') =Lemma 6.3
([v ++X;0 >itjs te[X = [v; F; t1)e)'[X := [7; o' it1]e]’) —Lemma 5.54
[+ 4.5 Tyt X o [1: 5)

Moreover,
[T;0'; (£16) (t2 M) e =
([750"; 11]ed) ([7; 0565 e AX) [T + + X350 50455t =5
[T+ +X50" 5055 t)e[X := [T5 05 t1]e)

Od

41

7 The meaning and soundness of J-reduction

Recall from Definition 3.20 how we defined S-reduction. There S-reduction was defined as a
combination of o-, ¢- and p-reduction. Hence, as we have proved the soundness of o- and
p-reduction, all we have left to show here is that u-reduction is sound, where p-reduction
has been defined in Definition 3.19. In fact, this is what we will show in this section. More
precisely, we will show that u-generation is «3-sound and that p-destruction and transition
are sound. Let us first define the meaning of terms with p-leading items.

Definition 7.1 (u-semantics)
If t is an Qys-term, © € L7H(O),v" € L(O),0 € ©,0" € Loo(]), 7N = 0,5 € IP and i does
not refer to any free variable of t, we define:

[7; 07 ()] (70507 ()]

[; 07 0 (uM)] |[6++hd(_’) + +0'5 0" 593 t]e

[0+ +05075 07 ()] =[50+ 0707 (D))

Note here that the provision “¢ does not refer to a free variable of t” can be assumed due to
Lemma 3.22. In fact, this is the only case we need to define the semantics for. Note moreover
that it is enough to take 7 € £ 1(©) (see Definition 5.18), because ¢ is an Qys-term, so we
never generate 1’s in the list 0.

Example 7.2

(1)()]
[75 35 (u ())1]e

[F 0; 1 20)1]

[f + 4+x 7$>27 2)\ 1]8

(IF + +2"5 3525 2eAar) [F + +275 3535 1e
(w1 Agr)"

2. [(uf)()1]
[F5 35 (6@) (A1),
[F; 0; i @))(1/\)1]
[f227$17$7 (1>‘)1]I
[F>o + +2' + 4215752, (AN 1]e
(IFs2 + +2" + +w1;T505 Ue) o) [Fo2 + +2" + +21 + +2"; 1535 1e
(w1 A)"

Note that [(2(1))(1A)1] is not allowed, since the superscript 1 refers to the free variable 1 (the
first 1) in (1A)1.

Lemma 7.3 Let t be an Qys-term. If \° does not bind any variable in (\°)(AV)(A?) ... (\F)t,
then Yo € L71(0),0" € L(O),v" € L(1),0,0 € O, such that (v + +0") N = 0,0,0 &

T UV UV, 0" = k, we have:
[T+ +0 + +0"; 05t = [0+ +0' + +0"; 0 t]e

Proof: By induction on t using Lemmas 5.40 and 6.2. O

42

Lemma 7.4 If (t16)(t2A) is void in (£16)(t2A)t, i = 1 +nl(t1),j = 1 +nl(t2) then for allv €
L710), v € Lo(D), such that NV =0 and X = hd™ =1 ("), ([7;07;t1]e0) ([T 0" 545 t2leAx)
is void in [T;'; (£10) (t2\)t]e-

Proof: By induction on ys-terms t.

a

Lemma 7.5 p-generation is of-sound. That is, for all ty,tz,¢ Qys-terms, for all v €
[fﬂ@),v’ € Loo() such that vNv' =0, if (¢10)(t2N) is void in t then: [T;0; (£10)(t2\)t]e =
(705 (1)]e _ _
Proof: By induction ont. Leti=1+nl(t)),j = 14+nl(tz), X = hd'(v's;) = hdHI=1(0").
o Ift = e then obvious.
o Ift =m then m > 1. Moreover, ([U;v';t1]e6)([0;0 45 tale Ax) [0 + +X; 0" 55453 m]e =
(170" t1led) ([T; 0 235 tale A) [0 05 1m0 — 1 =Zemme T4
[E' U>i+j'm 1]]6 —Lemmas 5.40 and 6.2
[E + __'_hd(?);?ZZ; m]le = I[E; F; (:u(l))m]]e-

o Ift = (t\\)th then: [0;07; (10) (b \) (8 Nty Sh=1Hnl(0). X =hd" (0721,

)
(130" £1le0) (175 0 45 ole Ao ([T +X5 0745 1l Ax) T4+ X+ X5 (0504) 215 Bl =5Eme T4

[T+ +X; v_>lﬂ, (B \)th), =Lemma 6.3
[U + +X o >2; (t’ A)tlzﬂe ELemma 7i
[0+ +hd(0); 0525 (B Al = [5307; (M) (B N)Bh)e

o Ift = (ty0)t, then similar.

Remark 7.6 Note that p-generation is not sound. In particular,

[F5 35 (45 2]e (240)(Ay)1 and
[f :t I[f++$l;$22;2] =21

Now ($45)()\x/)x1 =g x1 and (246)(Ay)21 # 21.

Lemma 7.7 p-transition is sound. That is, for all Qys-terms t1,ty, for all T € L71(O) and

v € Loo(l) such that TNV = 0, for all i € IP, if i # all free variables of (ti\)ta,k =

1+ nl(t), X = hd* (") then:

Lo [7;07; (D) (£ N to]e

2. [U U”I ((i))(tlé)tQ]le
Proof:

1. Letv=1' + +0" such that [0 =i — 1
(170 (WD) tale A) [0+ X507 g1 (W)

([2; 0™ (DYt A x) [0 + +X50™ 5 (D))
([7; 0™ ()1]0) [55 0" s 5 (D)t

(I + +hd(™) + 40" 0" 505 tale Ax) [0) + +hd(V" 5 11) + +07 + + X507 5193 to)e
[U + —I—hd(v "+ LK v’”>2, (t1 \)to]e
[T; 0" (D) (11 \) b

2. Is stmalar.

43

Lem 7.3

Lemma 7.8 p-destruction is sound. That is, for all v € L71(O) and v" € Loo(T) such that
N =0, for all i,m € IP, we have:

o [707; (1D)ele = <.
o [T;0"; (uYym). = [V + +0"; 07 m)e if m <.

o [T;0"; (uYym). = [V + +0"; 07 m — e if m > i

o [3;0"; (WD)m), = [V + +hd(0™) + +07; 0" 595 m], where T =o' + +0" and ["] =i — 1

— Ifm <i thenm <i—1 and [v' + +hd(V") + +0"; 0" 59;m]e = [V + +07; 07 me.
— Ifm > i thenm > i+1 and [/ ++hd(©")++0"; 0" 50;m)e = [V +4+0"; 0" m—1]e.

a

8 Comparison and conclusions

In this paper we presented a calculus of substitution which is explicit hence mending the
problem of the implicit substitution of the A-calculus. Our calculus 2= is based on a calculus
A in which terms are written in item-notation. Moreover, Q2= uses de Bruijn’s indices rather
than variable names. We wrote our calculus in the most general way in order to apply our
results to the various existing A-calculi and type theories. In fact, the item-notation assumed
in this paper has been shown to be general enough to accommodate the type free and all the
systems of the Barendregt cube (see [NK 94]). We believe that this notation has helped to
define substitution explicitly and in a modular way with the other terms. Moreover, with our
approach, local reduction and substitution can be accommodated very naturally, something
which is difficult in the classical A-calculus. In fact we have shown that it is enough to add
one reduction rule in order to obtain local substitution.

In order to show the soundness of our calculus we provided a translation from Q= into A,
a variant of A where bound variables are taken from a particular ordered list. Our translation
functions are important on their own. First, it is nice to have a mechanical procedure which
takes terms written with variable names and returns terms with de Bruijn’s indices. Second,
it is equally important and interesting to go the other way. For instance, when translating
a lambda term (with de Bruijn indices) that represents some mathematical theory/proof to
a lambda term with named variables, we want particlular names to be used. In fact, one of
the advantages of de Bruijn’s indices is that a-conversion is no longer needed. Now, terms
written with de Bruijn’s indices are difficult to understand even for those who are familiar
with them. Variable names on the other hand, clarify the term in hand but cause a lot of
complications when applying reduction and substitution. If however, we order our lists of free
and bound variables, then we can avoid the difficulty caused by variable names. In fact, this

44

is what we do in this paper. We take our lists of variables to be ordered and we translate
every term of Qz into a term of A (i.e. using variable names) in a unique way via [-]. When
in A, it is up to us to equate terms modulo a-conversion rather than being forced to do it in
the translation (see Appendix A).

In order to make substitution explicit and to discuss [-reduction, we had to add three
kinds of reduction rules: the ¢-, o- and p-reductions. ¢ updates variables, o substitutes terms
for variables and p decreases the indices as a result of a 8-conversion which removes a A from
a term. Each kind of reduction has three rules: generation, transition and destruction. Now,
substitution and reduction in A are given similarly to that of the classical calculus; i.e. implicit
and global. Therefore, we show that our reduction rules actually do represent reduction and
substitution in A. This shows the soundness of our reduction rules. In particular, we show
that o-, u- ¢-destruction and -, u-transition are sound in that if ¢ —, ¢’ where r is one of
these rules, then [] = [t']. This is very nice because the corresponding reductions in A also
return equivalent rather than a-equivalent terms. Furthermore, we show that o-transition is
a-sound in that if t =, iransition t then [t] =g [t']. We also show that o- and p-generation
are a/3-sound in that if ¢ —, ¢’ where r is one of these two rules, then [t] =55 [t']. Now, we
are satisfied with the result concerning 3-conversion. In fact, these last two rules do actually
represent (-conversion in 2=. What we have been disappointed with however is that we had
to use a-conversion rather than equivalence in the soundness proof of o-transition and o- and
p-generation. So even though we have avoided a-conversion in our translation function, it still
had to be assumed in the soundness of three reduction rules. Look for example at the proof
of Lemma 7.5. When t = (] \)t},, we had to apply Lemma 6.3 to obtain an a-equivalent term.
This, we have not quite understood yet. Maybe in o- and p-generation and in o-transition, a-
conversion is necessary. Or maybe it is possible to complicate even more our lists of variables
and our definition of the semantic functions so that a-conversion is really avoided. This is
a point for further investigation. Finally, note that we did not discuss completeness because
this becomes here a trivial matter. In fact, everything that can be shown in the classical
A-calculus can be shown in our own. Even better, our calculus is more expressive in that it
accommodates explicit substitution whereas the classical one does not.

So to summarize, we believe that our item notation used in conjunction with de Bruijn’s
indices provide a precise formulation of the A-calculus that can be used efficiently for imple-
mentation and theoretical purposes and that can generalise a whole collection of type and
A-theories. The usefulness of the notation is not discussed in this paper but the reader is re-
ferred to [NK 94]. This notation however provides an explicit approach of substitution which
is the most general up to date and which can be used to generalise other existing approaches
of explicit substitution as shown in [KN 93]. Furthermore, the soundness of the explicit sub-
stitution and the resulting reductions is shown in terms of the classical notions of substitution
and reductions. The translation functions between terms written with de Bruijn indices and
terms written with variable names are useful and provide a detailled account of the notion of
a-conversion. Finally, we believe that our account of explicit substitution is the most general
and detailled up to date, from the point of view of both syntax and semantics. Here is a
summary of the various existing accounts of explicit substitution that we are aware of and of
their relation to our own:

[KN 93] provides an account of explicit substitution which is used to discuss local and
global substitution and reduction. No semantics is provided for that account and the preci-
sion of this paper is not assumed there. The reduction rules however of the present paper are

45

based on [KN 93] even though there, there was no p-reduction and a-reduction was assumed.
We believe that we have in this paper presented the most extensive approach of variable ma-
nipulation, substitution and reduction. Our approach can be easily and in a straightforward
fashion implemented because we have carried out all the difficult work related to variables.
The article [Abadi et al. 91] provides an algebraic syntax and semantics for explicit substi-
tution where de Bruijn’s indices are used. The connection with the classical A-calculus is not
investigated. Furthermore, [KN 93] has shown that the approach in [Abadi et al. 91] can be
interpreted in [KN 93] and can be further simplified. [Hardin and Lévy 89] proposes conflu-
ent systems of substitution based on the study of categorical combinators yet we believe that
our account is more comprehensive. [Field 90] provides an account of explicit substitution
similar to that of [Abadi et al. 91] hence it can also be accommodated in our account. The
master thesis of [van Horssen 92] discusses explicit substitution in the classical notation and
the item notation assumed in this paper. [van Horssen 92] deduces that the item notation
has advantages over the classical one. The master thesis of [Krab93] provides a semantics of
the explicit substitution of 2= which originated from our function e of this paper. [Krab93]
however, ignores to order the list of bound variables which we call . This makes it impossible
for him to impose a-conversion. In appendix A, we will provide a semantics of substitution
where all a-equivalent terms are identifiable.

A An alternative semantics

In the definition of the semantic function from Qz to A, we took F and { which were both
ordered (see Definition 6.1). This enabled us to translate every term ¢ of Q= in a unique term
t' of A which is not equivalent to any other term in the a-equivalence class of . The price we
had to pay is of course having to manipulate not only the list of free variables but also the list
of bound ones. This is not a high price to pay if we compare with the substitution we have
to manipulate if we assume a semantic function which identifies terms modulo a-conversion.
Moreover, ignoring «-conversion is remaining with the essence of de Bruijn’s indices and
avoiding all this renaming of variables. Here is how we illustrate the point:

Look at Definition 5.29. We could use another semantic function which does not choose
a particular index for the lambda, but any of the indices which has not been yet used. Here
is this new definition:

Definition A.1 (\- and §-semantics) For all ti,t2 € Q2,7 € L(),n € P U {e},

[T; (1 N)t2] =g ([T; t1]\o) [T + +v; to] where v € T\ T
[0; (216)ta] =ar ([U; 11]0)[v; L]

compy(T) if n < |7
[7;7] =df § Tn—[| n > [v]

€ ifn=c¢

Example A.2

46

X1€3,X1 is arbitrary

[0; (A)(1A)(10)3]

(10; el x,) [X715 (1N (10) 3]
(gAXl)(IIXh]IAXZ)[XIXQ; (15)3] X2€3,X> is arbitrary, X2 ZX1
(eAx,) (compr (X1)Ax,) ([X1 X235 1]6) [X1 X2; 3]
(eAx,) (X1 Ax,) (compr (X1X2)0) 23 x, x,|
(eAx;) (X1Ax,) (X26)21

We need the following definition of substitution which defines variable substitution of lists of
variables.

Definition A.3 (Substitution in lists) If T is a list of variables of A, then we define T[v := v
to be the list v but where all occurrences of v have been replaced by v'.

Now the following lemmas are needed to show that [-;-] is well defined.

Lemma A.4 For any 7,t, FV([7;t]) CTUF.
Proof: By induction on t, recalling that € is neither free nor bound. O

Lemma A.5 If X' € 1\ 7,X €7,7 € L(}) and t € O, then
[0, H[X = X" =5 [o[X = X"';1].
Proof: By induction on t € Qé‘s.
1. [sn][X == X") = [v[X := X");n] for n € IPU{e}.

2. [(010) 2 [X := X') = (([0; 1]0) [0 22]) [X := XT)' =
([7; 11][X = XTV'6)[w; to][X o= X)' ZQH

([; t1 A) [T + + X 1] [X := X))[X o= X)) =emmae AL
([7; ta) x)[o + + X[X" := X"); o)) [X = X' = (([v; t1]Ax) [T + + X" t2]) [X == XV
Now, refer to case 3 above.

(X = XT3 61 [P[X = X7V to] = [P[X = XT; (t18)ta].
3. [7; (L N\ t][X == X)) =X ENOXZX ([4 \x,) [T+ + X1 8] [X := X'] =
(7 11X = XA,)[B + +X0s][X = X7) =1
([P[X = X" ti)Ax)[(T + +X0)[X = X)s89] =
(I[@[X X’]I tlﬂkxl)[U[X X] + —l—Xl;tQ]] = I[@[X = X’]I‘ (tl)\)tQ]l-
4o [15 (B = X =X ([e)[0 + +X B [X = X)XV
(
(

a

Lemma A.6 (I[F; tlﬂkxl)ﬂﬁ + +Xq; tQ]l =a ([5; tlﬂkxz)[ﬁ + +Xo; tQH fOT Xi1,Xo € :t \F.
Proof: If X1 = X, then nothing to prove.
If X1 # X, then noting that Xo & FV ([v + +X1;t2]) by Lemma A.4, we get:

([0; 11 x [0 + +X1;5 1]

([7: 1]Axy) [0+ + X5 1] (X o= Xp) =femme A5
([7; 1) [(0 4+ +X1) [X7 1= X5 tg] =X0X280
E[)[v

v; t1]]AX2 U+ +Xo; tg]l
) (tl)‘)tQ]l

Lemma A.7 [;:] as defined in Definition A.1 is well defined. That is for all v, t, [U;t] is
unique up to a-conversion, (le. does not depend on the choice of v in clause 1 of Defini-
tion A.1).

Proof: By induction ont € Qé‘s, noting that the only interesting case is that of t = (t1\)ts.
For this case, we use Lemma A.6. O

Now compare this with the proof of Lemma 5.33. Note moreover that the versions of Lem-
mas 5.34 and 5.35 are:

Lemma A.8 For allt € QX c(t,5,1\ sl(3)) =z [s1(3); 1]
Proof: By induction on t. o

Lemma A.9 For all t € QY e(t) =z [0;1].
Proof: Obvious. U

Now the definition which replaces Definition 6.1 is the following:

Definition A.10 (Semantics of Qé&w) For all t,t1,ty € Qé‘sw,@ € Lpiit, v € L(O),0 €
0,i,n € IP k € IN, we define:

M1. [t] =4 [F:t]

M2. [v;¢] =dqf €

M3. [o;n] =q [comp, (D)

M4. [5; (tl)\)tQ]l =df ([5; tlﬂ)\x)[ﬁ + +X; t2]] where X € 1 \ v
M5, [o;(t0)ta] =g ([7511]0)[7; 2]

M6, [55 (0] =y sl =)

M7 [5; (BN =g [0 0; (9]

M8. [5;0'; (p"D)t] =g [T+ +0% + +07;1]
M9. [v++06; F? (‘P(kJrl’i))tl]] =df [0;0 + —i—?; (go(k7i))t]|
M10. [0+ +0++p" 0] =g [0+ +0F0

We leave it to the reader to check the soundness of the reduction rules with respect to this
definition.

References

[Abadi et al. 91] Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J., (1991) Explicit substitutions,
Functional Programming 1 (4), 375-416.

[Barendregt 84] Barendregt, H., (1984) Lambda Calculus: its Syntaz and Semantics, North-Holland.

[Barendregt 91] Barendregt, H., (1991) Introduction to generalised type systems, Functional Program-
ming 1(2), 125-154.

[Barendregt 92] Barendregt, H., (1992) Lambda calculi with types, Handbook of Logic in Computer
Science, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press.

48

[de Bruijn 70] Bruijn, N.G. de, (1970) The mathematical language AUTOMATH, its usage and some
of its extensions, in: Symposium on Automatic Demonstration, IRIA, Versailles, 1968, Lecture
Notes in Mathematics, 125, 29-61, Springer.

[de Bruijn 72] Bruijn, N.G. de, (1972) Lambda calculus with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem, Indagationes Math. 34
(5), 381-392.

[Church 40] Church, A., (1940) A formulation of the simple theory of types, Journal of Symbolic Logic
5, 56-68.

[CH 88] Coquand T., and Huet G., (1988) The calculus of constructions, Information and Computa-
tion 76, 95-120.

[Field 90] Field, J., (1990) On laziness and optimality in lambda interpreters: tools for specification
and analysis, 17" Annual Symposium on Principles of Programming Languages, San Fransisco,
1-15.

[Hardin and Lévy 89] Hardin, Th. and Lévy, J.-J., (1989) A confluent calculus of substitutions, Lec-
ture notes of the INRIA-ICOT symposium, Izu, Japan, November.

[van Horssen 92] Horssen, J.J. van, (1992) Ezplicit substitution in two versions of typed lambda calcu-
lus, Master’s thesis, Department of Mathematics and Computing Science, Eindhoven University
of Technology.

[KN 93] Kamareddine, F., and Nederpelt, R.P., (1993) On stepwise explicit substitution, International
Journal of Foundations of Computer Science 4 (3), 197-240, 1993.

[KN 9x] Kamareddine, F., and Nederpelt, R.P., (199x) The Beauty of the Lambda Calculus, to appear.

[Krab93] Krabbendam, J., (1993) On the soundness of explicit substitution, Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology.

[Nederpelt 87] Nederpelt, R.P., (1987) De Taal van de Wiskunde, Versluys, Almere.

[NK 94] Nederpelt, R.P., and Kamareddine, F., (1994) A unified approach to type theory through
a refined A-calculus, paper presented at the 1992 conference on Mathematical Foundations of
Programming Semantics, to appear in the proceedings.

[NGAV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., eds, (1994) Selected papers on Au-
tomath, North-Holland, Amsterdam.

49

