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ABSTRACT

This paper starts by setting the ground for a lambda calculus notation that strongly mirrors the two
fundamental operations of term construction, namely abstraction and application. In particular,
we single out those parts of a term, called items in the paper, that are added during abstraction
and application. This item notation proves to be a powerful device for the representation of basic
substitution steps, giving rise to different versions of [-reduction including local and global (-
reduction. In other words substitution, thanks to the new notation, can be easily formalised as an
object language notion rather than remaining a meta language one. Such formalisation will have
advantages with respect to various areas including functional application and the partial unfolding
of definitions. Moreover our substitution is, we believe, the most general to date. This is shown
by the fact that our framework can accommodate most of the known reduction strategies, which
range from local to global. Finally, we show how the calculus of substitution of Abadi et al., can
be embedded into our calculus. We show moreover that many of the rules of Abadi et al. are easily
derivable in our calculus.
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1 Introduction

A system of lambda calculus consists of a set of terms (lambda terms) and a set
of relations between these terms (reductions). Terms are constructed on the basis
of two general principles: abstraction, by means of which free variables are bound,
thus generating some sort of functions; and application, being in a sense the opposite
operation, formalizing the application of a function to an argument. By observing
these two operations, we provide a new notation for lambda terms which will be
very influential for many notions of interest in the lambda calculus, such as type
theory and logic. In order to avoid the well-known problems caused by variables, we
make use of de Bruijn-indices rather than variables (see [5]). Section 2 introduces
both de Bruijn’s indices and the new notation. Results concerning this new notation
and illustrative examples are given throughout.

The use of our framework as the most general vehicle for describing the well
known type theories (such as those of the Barendregt’s A-cube in [3]) is discussed
in [24]. In fact, [24] shows that our approach enables a unified framework for
representing all the systems of the A-cube in that any of these systems is just a
copy of ours but where some parameters are changed.

It seems natural to study the framework further in order to see what it can offer
to a very important notion of the A-calculus: substitution. In fact, substitution
is the most basic operation of the A-calculus. Manipulation of A-terms depends
on substitution. The a- and [-axioms are given in terms of substitution. What
substitution are we talking about? Substitution in the A-calculus is usually defined
(up to some variation) as follows (see [2]):

Definition 1.1 (Substitution in the A-calculus)
If t,t' are lambda terms and x is a variable, then we define the result of substi-
tuting t' for all the free occurrences of x in t as follows:

(¢! ift=zx
Yy ift=yZ«z
tl[ilf = t’]tg[:ﬁ = t’] ift =tits
Aw:tz[:tzzt’]'tl th = )‘Iltz'tl
thoi= ] = Apiniorr (1o = 1) 0= Ayasfamr 0 2 0,

(z & FV(t1) ory & FV(t'))
Aito[asmt]- (1 [y = 2][w = t])  if t = Nyuy b1, 2 £y,

(x € FV(t1) and y € FV (t)),

and z & FV(t1t")

\

Here FV (t) is the set of free variables of t.

So what is happening in t[z := t']? We are replacing all free occurrences of x
in ¢ by t', but without any disastrous side effects such as binding occurrences of
variables which were originally free. Take for example zz[z := y]. This will result in
yy. (Ayw.zy)[z == y] will result in A..,,.yz. So this process of substitution works fine.



It is a metalevel process however. That is, this substitution takes ¢, z,t' and returns
a final result ¢[z := t']. The various stages of moving from the ¢,z,t' to t[x := ']
are lost and nothing matters but the result. This works fine for many applications
but fails in areas which are now becoming vital in Computer Science. In functional
programming for example, there is an interest in partial evaluation. That is, given
zz[z := y], we may not be interested in having yy as the result of zz[z := y] but
rather only yz[z := y]. In other words, we only substitute one occurrence of = by y
and continue the substitution later. This issue of being able to follow substitution
and decide how much to do and how much to postpone, has become a major one
in functional language implementation (see [25]). However, in order to have this
spreading control over substitution and to be able to manipulate those partially
substituted terms, we must render the latter from being a metalevel notion to an
object level notion. It turns out that our new notation will enable such rendering
efficiently and will enable the representation of various forms of substitution: local,
global, implicit and explicit.

Based on this discussion, this paper will introduce substitution which is object
level but which can evaluate A-terms fully obtaining the result of the metalevel
substitution. More precisely, in section 3 we introduce the process of stepwise
substitution, which is meant to refine reduction procedures. Since substitution is the
fundamental operation in S-reduction, being in its turn the most important relation
in lambda calculus, we are in the heart of the matter. The stepwise substitution
is embedded in the calculus, thus giving rise to what is nowadays called explicit
substitution. It is meant as the final refinement of S-reduction, which has — to our
knowledge — not been studied before to this extent.

This substitution relation, being the formalization of a process of stepwise sub-
stitution, leads to a natural distinction between a global and a local approach.
With global substitution we mean the intended replacement of a whole class of
bound variables (all bound by the same abstraction-\) by a given term; for local
substitution we have only one of these occurrences in view. Both kinds of sub-
stitution play a role in mathematical applications, global substitution in the case
of function application and local substitution for the *
instance of a defined name. We discuss several versions of stepwise substitution and
the corresponding reductions. We also extend the usual notion of S-reduction, an
extension which is an evident consequence of local substitution. The framework for
the description of terms, as explained before, is very adequate for this matter.

Finally in section 4, we interpret the approach of [1] in our framework concluding
that ours is more general. In fact, we believe that our account of substitution is the
most refined and general one to date.

‘unfolding” of a particular



2 The Calculus

In this section, we start by introducing the reader to the lambda calculus augmented
with de Bruijn’s indices. We will explain the use of these indices in both the typed
and untyped A-calculus. As the type free A-calculus can be considered as a special
case of the typed A-calculus, we concentrate on the latter in this paper but will
be able to account for the type free A-calculus very easily as will be mentioned
(via €). We move on to provide a translation of the typed A-calculus in a novel
representation. The novel representation will be generalised to a new notation that
will prove to be a powerful vehicle for the representation of substitution, implicitly,
explicitly, locally and globally, together with the ability of tracing all stages of
substitution, stepwise substitution.

2.1 The lambda calculus with de Bruijn’s indices

Terms of the untyped lambda calculus are constructed as follows: t ::= x| (A;.t) |
(tt). Parentheses are omitted if no confusion can arise. Terms of the typed lambda
calculus are similar except that the type information is contained in the abstraction.
That is, instead of A..t we restrict = to have some type say t1 by writing A, -t.
Of course special attention has to be paid in order to construct well-typed terms.
Moreover, in the typed calculus, we can abstract over types as well as over terms.
For example, A4.)\.. 4.7 is the polymorphic identity function for every type A.

The basic axiom of the (typed or untyped) lambda calculus, is B-conversion
which is as follows:* (A..t1)ta = t1[z := t2],> where substitution has been defined
in a way which deals with the problem of variable clashes (see Definition 1.1). For
example, (M. A\y.2y)y = Ay.zy)[z :=y] = Aoayly =2z :=y] = Aaz[z = y] =
Az.yz. This process of renaming variables such as changing \,.zy to A..zz can
be avoided by the use of de Bruijn’s indices. In fact, de Bruijn noted that due
to the fact that terms as A\,.z and Ay.y are the “same”, we can find a A-notation
modulo a-conversion, where the axiom (@) is: A..t = Ay.t[z := y] for y not free in
t. That is, following de Bruijn, we can abandon variables and use indices instead.
Examples 2.1, 2.2 below show how lambda terms can be denoted using de Bruijn’s
indices and example 2.3 illustrates how [-conversion works using such indices.

Example 2.1 Consider (in “classical” notation) the lambda term (\,.z). In this
term, the x following A, is a variable bound by this A. In de Bruijn’s notation,
Az.x and all its a-equivalent expressions can be written as A.1. The bond between
the bound variable x and the operator X is expressed by the number 1; the position
of this number in the term is that of the bound variable z, and the value of the
number (“one”) tells us how many lambda’s we have to count, going leftwards in

“For the sake of clarity, we ignore in this section abstraction over types.
bIn the case of the typed calculus, the principle is: (Az:t.t1)t2 = t1[x := t2] where t and to are
related.



the term, starting from the mentioned position, to find the binding place (in this
case: the first A to the left is the binding place).

Moreover, de Bruijn’s notation can be used for the typed A-calculus. We illus-
trate here how the two terms (A;.y.2)u and Ag.A; 4.2 can be represented using de
Bruijn’s indices.

Example 2.2 The term (\,.y.)u is written as (A2.1)1 under the assumption that
y comes before u in the free variable list (see below). As in Example 2.1, the final
z in Ag.y.x is represented by the final index 1 in A2.1 since the binding X is the first
to the left. The free variables v and y in the typed lambda term are translated into
the number 1 (occurring after the term in parentheses), and the number 2: they
refer to “invisible” lambda’s that are not present in the term, but may be thought
of to preceed the term, binding the free variables in some arbitrary, but fixed order
(these invisible lambda’s form a free variable list).

Some type theories insist on distinguishing types and terms and so use A to
abstract over terms and A over types. Hence the typed term A4.)\;.4.z can be
written as A.Al.1 where the 1 adjacent to A, says that A is the binding operator
and the final 1 replaces the variable bound by A.

The described way of omitting binding variables, and rendering bound and free
variables by means of so-called reference numbers, is precisely how de Bruijn’s
notation works. Next we see how S-reduction works in this notation.

Example 2.3 In ordinary lambda calculus, the term (\;...(zy))u S-reduces to uy,
i.e. the result of substituting “argument” u for x in zy. In de Bruijn’s notation this
becomes, — under the assumption that the free variable list is Ay, A., Ay (A2. 14)1
reduces to 13. Here the contents of the subterm 14 changes: 4 becomes 3. This is
due to the fact that a A-item, viz. (A2), disappeared (together with the argument
1). The first variable 1 did not change; note, however, that the A binding this
variable has changed “after” the reduction; it is the last A in the free variable list
(“A\.”) and no longer the A inside the original term (“\,”). The reference changed,
but the number stayed (by chance) the same.¢

We have in examples 2.1, 2.2 and 2.3 introduced de Bruijn’s indices and how
they work for B-reduction. In what follows we shall introduce a new notation which
uses de Bruijn’s indices but assumes a layered representation of terms and which
groups term constituents (so-called “items”) together in a novel way. This new
notation will prove powerful for many applications, of which we study substitutions
in detail in this paper.

¢In more complicated examples, there are more cases in which variables must be “updated”.
This updating of variables is an unpleasant consequence of the use of de Bruijn-indices. It is the
price we have to pay for the banishing of actual variable names (taking reference numbers instead).
We will however provide an update function which does the work for us.



As the new notation might prove unreadable at first, and as it is very general so
as to accommodate not only the A-calculus described above but all of the A-systemns
of the A-cube of Barendregt (see [24]), we would rather introduce this notation
in steps. We start by introducing a less general representation LT in which we
translate the above A-calculus and then we give the generalised new notation which
is based on LT but also includes de Bruijn’s indices. We call this calculus BLT,
and we give its abstract definition, and the various notions related to its terms.

2.2 Translating A-terms into layered structures

2.2.1 The classical calculus T’

Usually, the typed A-calculus is considered in this form:

Definition 2.4 (T))
We consider T to be the set of the following terms:
tu=x | (Aga-t) | (E2)
We drop parentheses when no confusion occurs.

These A-terms are then drawn using binary trees which are defined below, TREFE
being the collection of these trees and tree being the association from a A-term to
a binary tree.

Definition 2.5 (TREE)

We define the domain TREE to be the domain of binary trees which have for
leaves x,y, ... and for nodes 0, Az, Ay, . ... We let w,wi,... range over these nodes,
which we also call operators.

Let us associate with each term of T}, its binary tree in TREFE as follows:

Definition 2.6 (tree)
If t is a term of the typed lambda calculus T, then tree(t) is defined recursively
as follows:

tree(x) = =z
tree(tits) = d(tree(ty), tree(ts))
tree(Ae:t,-t2) = Au(tree(ta),tree(ty))

Example 2.7 tree((Ae...xy)u) is 6(A.(0(x,y),2),u) and its graphical representa-
tion is to be found in Figure 1.

Of course these trees are all binary trees:

Lemma 2.8 For every term t in Ty, tree(t) is a binary tree.
Proof: Left to the reader. a



Figure 2: term tree of (A;.;.zy)u

Now, instead of drawing trees as above, we will rotate them anticlockwise by 135
degree hence obtaining for Example 2.7, the picture given in Figure 2.

The proposed way of drawing trees will turn out to have essential advantages in
developing a term, theoretically as well as in practical applications of typed lambda
calculi.? We call such trees term trees. Note that these trees will help to visualize
the structure of the terms. They are not however formal components of the calculus.

2.2.2 The layered terms LT

Now the concepts tree and term tree of a term t in T’ are quite obvious. However,
we like to consider the set of layered terms by itself.

Definition 2.9 (LT)
Let us define LT to be the set of layered terms as follows:

o Variables, x,y,... are in LT.

o Ifty,ty are in LT and w is an operator which is either § or any of Ay, Ay, ...,
then (tywts) is in LT.

4This observation is due to de Bruijn, see [4] or [6].



Note that we use the same variables for both T\ and LT and that we use t¢,%1,... to
denote both terms in 7 and layered terms in L7T. Note that in discussing T and
LT, we will not make a distinction between object and meta-variables. We will do
so however in BLT'.

Example 2.10 The term rendered in Figure 2 has the following representation in
LT: (ud(zAz(ydx))).

What we are looking for further is a way of writing the term ¢ which will be more
advantageous and efficient. In fact, note that in ¢ = (Az...xy)u, the term A,...zy
is applied to u. This application provokes -conversion and hence will result in
reducing the term. In fact, applying an abstraction (as in A....zy) to an element
(such as u) is important in the A-calculus. This however, is not obvious in the way
we have written terms as in (Az...xy)u. If we mimic tree(t) in a different manner
and write t as (ud)(z\;)(yd)x, then we can give a special name to the pair (ud)(zAz)-
We will call them dA-items and they will be the pairs which enable us to carry out
[B-reduction.

Notation 2.11 (Item Notation)

We shall place parentheses in LT in an unorthodox manner: we write (tjw)ts
instead of (tjwts). The reason for using this format is, that both abstraction and
application can be seen as the process of fixing a certain part (an “item”) to a
term:

e the abstraction A....t is obtained by prefixing the abstraction-item A..; to
the term ¢. Hence, (t'\,t) is obtained by prefixing t'\, to t.

e the application tt' is obtained by postfixing the argument-item ¢’ to the term
t. Now (t'dt) is obtained by prefixing ¢’ to ¢.

In item-notation we write in these cases (¢'\;)t and (#')¢, respectively. Here both
(t'Az) and (t'0) are prefived to the term ¢.¢

Definition 2.12 (Ttems)
If t is a layered term in item-notation and w is an operator, then (tw) is an
item. We use s, s1,S;,-.. as meta-variables for items.

Notation 2.13 (parentheses) Note the intended parsing convention:
In (s1...sp2w)s] ... sl y, the operator w combines the full term s; ...s,z with
the full term s ...s!,y.

Example 2.14 The term (xw;(yw=2z)) becomes in item-notation: (zwi)(yws)z.
Analogously, the term ((zwey)w:z) becomes ((xws)ywr)z.

¢In the Automath-tradition (see [6]), an abstraction-item A,.; (or (¢’ Az) in our new notation)
is called and abstractor and denoted as [z : t']. An argument-item ¢’ (or (¢'6) in our notation) is
called an applicator and denoted either as {t'} or as < ¢’ >.



Lemma 2.15 Every layered term has the form (tiw1) - . . (tawn)x for t1,. .. t, lay-
ered terms, wi,-..,wy operators, n > 0 and x a variable. In other words, every
layered term is either a variable or has the form si,s2,...,spx, for $1,82,...,8n
items and x a variable.

Proof: FEasy. |

Definition 2.16 For any tree t in TREE, we define lin(t) in LT as follows:

' [t if t is a leaf
i) = { (lin(t)w)lin(tz) — if t = w1 (t2, 1)

Example 2.17 Ift is the tree of Example 2.7, then

lin(t) = (ud)lin(A,(3(z,y),2))
(u8) 2\ )lin(3(,y))
= (ud)(z\)(p0)e

Now let us see the relation between tree(t) and lin(t), for every term ¢. Recall that
in TREE, we deviate from the normal way to depict a tree; for example: we position
the root of the tree in the lower left hand corner. We have chosen this manner of
depicting a tree in order to maintain a close resemblance with the layered terms.
This has also advantages in the sections to come. The item-notation suggests a
partitioning of the term tree in vertical layers (see Figure 3). For (zw;)(yw2)z, these
layers are: the parts of the tree corresponding with (zwi), (yw2) and z (connected
in the tree with two edges). For ((zws)yw)z these layers are: the part of the tree
corresponding with ((zws)yw;) and the one corresponding with z.

T Yy w2
Yy
(zw1 (Yywaz)) ((rway)w12)
(zw1)(yw2)z ((zw2)ywr)z

Figure 3: Term trees, with normal layered notation and item-notation

Lemma 2.18 lin : TREE — LT is well defined.
Proof: Obvious. a

Note that in the rest of this paper we will write terms of LT in item-notation.



2.2.3 Translating T in LT

Now we are ready to translate terms of T into layered terms of LT (in item-
notation) as follows:

Definition 2.19 Ift is in T\ then [(t) = lin(tree(t)).

Lemma 2.20 For any t in Ty, I(t) is well defined and | : Ty — LT is bijective.
Proof: We shall only prove the surjectivity of I.
For this, we prove by induction that for any t in LT, (3t' in T\)[(t') =t].

o Iftisx thent = .

o Ift = (t10)ty where (It],th € TH)[I(t]) = t1 NU(th) = t2] then let t' = (tht}).

Now,
It = lin(tree(tht]))
= lin(d(tree(ty), tree(ty)))
= (lin(tree(t}))d)lin(tree(t}))

= (I(t)O)I(th) = (t,0)ts = ¢

o Ift = (t1A:)t2 where (3t],t5 € THN)[I(t)) = t1 Al(ty) = ta] then let t' = Apyr 25,
Now,
I(t"

lin(tree()\m:,y1 t5))

= lin(A.(tree(th), tree(t))))
(lin(tree(t))) Az )lin(tree(t)))
= (I{E)A)(EY) = (i de)ta =1t

So far, we have translated all terms from the usual A-calculus into layered terms.
This translation is moreover bijective, so we can take any layered term into a term
of the usual A-calculus. The following are examples:

Example 2.21

U(Aery-z)u) = (ud)(yrz)z
l(u(/\w:y-x)) = ((yre)zd)u
U(AyezAzizy)u) = (ud)(2Ay)(2A2)y

2.3 A notation based on layered structures and de Bruijn’s
indices

Now that we have a bijective translation from 7T to LT, let us see how we can get
rid of the variables and replace them by de Bruijn’s indices. This would mean of
course that we no longer would need each A to carry the index x,y or so on with it,
but rather, the number would point to which A binds which occurrence. The best
way here is to start with an example. We take the layered term t with its graph



in term tree as in Figure 2. We need to remove z,y,z,u and to replace them by
numbers. For this, as we see that u, z,y are free variables, we need a free variable
list. We take the convention (arbitrarily)? that y comes before z which in turn
comes before u in the free variable list. This list is represented by three extra \’s:
Ay, A- and A, (in this order), intended to “bind” the free variables y,z and u. We
append three extra nodes and dashed lines to our term tree to show this.

Now for each variable, we draw thin lines ending in arrows, pointing at the A
binding the variable. These lines follow the path which leads from the variable to
the root following the left side of the branches of the tree. Only A’s count, the §’s
do not. For example, we draw the thin line going from z following the path which
leads from z to the root, until we reach A., the A binding x. We end the arrow
there and as we have only passed one A, the x should be replaced by 1. This is the
only x we have in the tree, so we replace A, by A. For y, in drawing the thin line
going from y following the path which leads from y to the root, keeping to the left
side of the branches until we reach \,, we see that we pass four As. Hence, the y
should be replaced by 4. Now replacing u and z will be left as exercises. Figure 4
is now self explanatory.

Mgz xy)u
(ud)(zX.) (yd)z
(18)(2X)(40)1

Figure 4: Term tree with de Bruijn’s indices

2.3.1 Layered terms with de Bruijn’s indices, BLT

Our new notation will be exactly that of layered terms, but increased with de
Bruijn’s indices. Let us start by giving the definition of our layered terms with de
Bruijn’s indices.

Definition 2.22 (BLT)

Let us define BLT to be the set of layered terms using de Bruijn’s indices as follows:

fNote that we lose bijectivity here, since a different order in the variable list gives a different
representation for the same term.



o FEvery element in = is in BLT. Here, we take = to be the set of variables:
E={¢1,2,...} and use z,x1,y,... to denote variables.

o Ift,t' are in BLT and w is an operator which is either § or A, then (twt') is
in BLT.

Remark 2.23 ¢ is a special variable that denotes the “empty term”. It can be used
for rendering ordinary (untyped) lambda calculus; take all types to be €. Another
use is as a “final type”, like O in Barendregt’s cube or in Pure Type Systems (PTS’s).
Note moreover that, as € can be used to render ordinary (untyped) lambda calculus,
we were fine in concentrating on the typed calculus in this paper.

Now we take the same notational conventions as those for LT given in Nota-
tions 2.11 and 2.13, and we define items similarly. Simple examples of terms are:
€, 3, (20)(eA)1.9 Moreover, in (tw), we may drop ¢ in case t = ¢. Hence the last
mentioned example can also be written as (20)(A)1. Here is another example:

Example 2.24 Consider the typed lambda term (\;...z)u. In item-notation with
name-carrying variables this term becomes (ud)(zA;)z. In item-notation with de
Bruijn-indices, it is denoted as (16)(2A)1.

The typed lambda term u(A;...x) is denoted as ((zAz)zd)u in our name-carrying
item-notation and as ((2A)16)1 in item-notation with de Bruiju-indices. The free
variable list, in the name-carrying version, is \., A, in both examples.

The term trees of these lambda terms are given in figure 5. In each of the two
pictures, the references of the three variables in the term have been indicated: thin
lines, ending in arrows, point at the \’s binding the variables in question.

2
1 2 Ao
1
A A J ) ‘ A A<—X )
[ — ——o 1
(16)(2M)1 ((2M)1 0)1
(ud)(zAs)x ((zAe)z O)u
Mgz - 2)u u(Ag:z - @)

Figure 5: Term trees with explicit free variable lists and reference numbers

9There can be different (finitely many) A’s and/or §’s in terms. In the present paper we shall
consider only one of each, denoted A and J, respectively. Different A’s can be used, for example,
in second-order theories: write A = Ay and A = 1.



Now it is obvious that Lemma 2.15 holds also for BLT', where the terms are
now terms of BLT. More precisely:

Lemma 2.25 Every layered term has the form (tyw) ... (tawn)x for ty,. .. t, lay-
ered terms, wy,...,w, operators, n > 0 and z a variable.
Proof: Fasy. a

2.4 «a- and (-reduction in T\, LT and BLT

The fundamental axioms of the A-calculus are (o) and (3). Other axioms such
as (n) (which is needed together with another axiom to derive extensionality) are
optional. Therefore, we shall only concentrate on (a) and (53).

2.4.1 Reduction in T)

In T, the axioms («) and (3) are as follows:

(a) Aw:tt = o Ay t'[x = y] where y & FV(¢')
(B8) (Agst )" =g t' [ = t"]

We say that ¢t —, t' (respectively t =4 t') just in case (a) (respectively (3))
takes ¢ to t'. We call the reflexive transitive closure of —, (respectively —3), %o
(respectively —»g).

2.4.2 Reduction in LT

In LT, these axioms are the same but written in item notation as follows:

() (tA)t = (A [x := y] where y & FV (')
(/3’) (t"(5) (t)\:c)t’ —gr t’[:L“ = t”]'

Of course t[z := t']' is the substitution in LT of ' for all free occurrences of x
in ¢t. Free and bound variables/occurrences in LT are easy to define and we will of
course obtain the following lemma:

Lemma 2.26 For anyt € Ty, FV(t) = FV(I(t)).
Proof: Obvious. a

The notion of substitution in LT is also easy to define. This is done as follows:

Definition 2.27 (Substitution in LT)



If t,t' are layered terms and x is a variable we define the result of substituting
t' for all the free occurrences of x in t as follows:

(¢ ift=cx
Yy ift=yZz
(ti[z =) O)ta[x =1 if t = (t10)ta
(tg[ﬂ? = tl]l)\z)tl ift = (tg)\z)tl
tle =t =q (to2[lz =t A\)(t1[x :=t]) if t = (At x Z vy,

(x P EFV(t1) ory € FV(t'))
Ay = A = t]) L= (AT 2 5,

(x € FV(t) and y € FV(t')),

and z & FV (t,t')

—
~

W

—
5]
Il

\

Now the following lemma holds:

Lemma 2.28

o Ift,t' are in T\ then l(t[lx :=t']) =1(t)[z :=1(t")]
o Ift,t" are in LT then I~ (t[z :=t']") = 171 (t)[z := 71 (¢")]
Proof: Left to the reader. a

In LT, we define —, (respectively — g/, =4, =) similarly to that of T, but
using (a') and (') instead. Now the following lemma holds:

Lemma 2.29 Fort,t' € Tx, we have: t — t' (respectively —3, %o, —»g) iff
1(t) =o U(t") (respectively —pr, —»ar,—»ga1) .
Proof: Left to the reader. a

Of course now, all the theorems of T, such as the Church-Rosser theorem, the fixed
point theorems, the undefinability results, and so on, hold for LT. Let us see now
what would happen to BLT.

2.4.3 Reduction in BLT

a-reduction is not needed for BLT, precisely because we no longer have variables (de
Bruijn’s indices got rid of them). So now, we no longer have different ways of writing
the same term as we have taken the equivalent classes so that Ag...z, Aye.y, ... all
are represented by (tA)1. For f-reduction, this is a bit more complicated. Let us
start by an example:

Example 2.30 Now for -reduction, the term (A...(xy))u of Ty, S-reduces to uy.
In LT, this becomes: (ud)(zA:)(yd)z reduces to (yd)u (see figure 6). Note that
the presence of a so-called §-A-segment (i.e. a d-item immediately followed by a
A-item), in this example: (ud)(zA;) is the signal for a possible f-reduction. Using
de Bruijn’s indices, this becomes: (16)(2X)(46)1 reduces to (30)1.
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Figure 6: -reduction in our notation

We can see from the above example that the convention of writing the argument
before the function has a practical advantage: the d-item and the A-item involved in
a fB-reduction occur adjacently in the term; they are not separated by the “body”
of the term, that can be extremely long! It is well-known that such a §-A-segment
can code a definition occurring in some mathematical text; in such a case it is very
desirable for legibility that the coded definiendum and definiens occur very close to
each other in the term.

Before we define 3-conversion in BLT, we need to define substitution and free
occurrences of variables. For this, and for the next section on explicit substitution,
we need to give a number of definitions regarding certain substrings of terms. This
is done next.

2.5 The formal machinery of BLT
2.5.1 Items and Segments

Recall that we defined items in Definition 2.12. Items together with the following
notion are basic for our machinery.

Definition 2.31 (segments)
A concatenation of zero or more items is a segment.”

Remark 2.32 Note that if 5 is a segment of BLT, then either 5 = @) or 5 =
$182...8, where 1 <n and s; is an item for 1 <7 <mn.

Recall that we use s,s1,... as meta-variables for items. Moreover, we use
5,51,5i,- .- as meta-variables for segments. Now we are ready to give an abstract
formulation (definition 2.33) of all the notions that have been defined so far. We
let V stand for the set of variables, O for operators, 7 for terms, Z for items and S
for segments.

Definition 2.33 (variables, operators, terms, items, segments)

hIn [8] an item is called a wagon and a segment is called a train.



V={e12,...}
O ={4\...}
T=VI|IT
=(TO)
S=0]7S

For the next section, when we introduce substitution, we will assume the same
sets V, T, Z, and §. O however will be increased by two more operators o and ¢
which will deal with substitution. In other applications, we use more than one ¢
and one A. [24] is an example where different A’s and §’s are introduced and needed.
It was mentioned earlier moreover that we may take two A’s, A; and Ay where in
second order theories, the first represents A and the second represents .

We define a number of concepts connected with terms, items and segments.
These will be used in the rest of the paper.

Definition 2.34 (main items, main segments, empty segments, w-items, w . . .wnp-
segments)

e Fach term t is the concatenation of zero or more items and a variable: t =
$1...8n2 (see Lemma 2.25). These items s1 .. .s, are called the main items

of t.

o Analogously, a segment 5 is a concatenation of zero or more items: § =
S1...8n (see Remark 2.32); again, these items s1...s, (if any) are called
the main items, this time of s.

o A concatenation of adjacent main items (int orS), Sm ...Smtk, iS called a
main segment (int ors).

o An item (t w) is called an w-item. Hence, we may speak about \-items,
o-items (and later on about o-items and p-items).

o A segment 5 such that s = () is called an empty segment; other segments
are non-empty. A context is a segment consisting of only A-items.

o If a segment consists of a concatenation of an wi-item up to an wy,-item, this

segment may be referred to as being an wi-...-w,-segment. An important
case is that of a 6-A-segment, being a §-item immediately followed by a A-
item.

All these definitions are easy and obvious. The reader can now think more of the
structure of terms and see some enligthening but trivial results such as: every term
is of the form Sz where 5 is a segment and z is a variable. The following is an
example of some of these notions.



Example 2.35 Let the term ¢ be defined as (e\)((16)(eA)16)(2A)1 and let the
segment 5 be (e\)((10)(eA)16)(2\). Then the main items of both ¢ and 5 are (e)\),
((16)(eA)1d) and (2X), being a A-item, a J-item, and another A-item. Moreover,
((16)(eA)15)(2)) is an example of a main segment of both ¢ and 5, which is not a
context (i.e. not a purely A-segment), but a -A-segment. Also, 5 is a A-0-\-segment,
which is a main segment of ¢.

Definition 2.36 (body, end variable, end operator)

o Lett =3Sx be a term. Then we call s the body of t, denoted body(t), and x
the end variable of t, or endvar(t). It follows that t = body(t) endvar(t).

o Let s = (tw) be an item. Then we call t the body of s, denoted body(s), and
w the end operator of s, or endop(s). Hence, s = (body(s) endop(s)).

Note that we use the word ‘body’ in two meanings: the body of a term is a
segment, and the body of an item is a term.

Items and segments play an important role in many applications. As explained
before, a A-item is the part joined to a term in an abstraction, and a J-item is the
part joined in an application. In using typed lambda calculi for e.g. mathematical
reasoning, A-items may be used for assumptions or variable introductions and a
d-A-segment may express a definition or a theorem (See [22], [23] and [24]).

2.5.2 Bound and free variables

After defining our items and segments and the various notions related to them, we
need to discuss the notion of free and bound variables. In LT, these notions are
similarly definable to that of T\. In BLT, variables are indices and A’s do not have
any reference to the variables they bind. Rather it is the number which is indicative
of the binding A. Calculating bound and free variables in BLT will turn out to be
an easy, mechanisable and efficient affair.

We start by defining sieveseg,, which will gather all the main w-items in a term,
in the order in which they occur in the term.

Definition 2.37 (sieveseg)

Let's be a segment, or let t be a term with body s.

Then sieveseg, (5) = sieveseg, (t) = the segment consisting of all main w-
items of s, concatenated in the same order in which they appear in's.

Example 2.38 In the term ¢ = (e \)((16)(eX)19)(2A)1,
) = ((16)(eA)19).

Lemma 2.39 Let s be a segment, then all variables in sievesegx(s) will point to
the same \’s that they pointed at in's.
Proof: Fasy. a

sieveseg, (t) = (eA)(2)\) and sievesegg(t



Let us now define the restriction of a term to a particular variable occurrence. We
will not give the formal definition here, but it can be found in [23]. We shall only
explain what it is and how we get it without the formal machinery.

Definition 2.40 (term restriction)

Let t be a term in BLT and x° be a particular occurrence of a variable int. We
define t[x° the term restriction of t to x° to be the original term, from which we
remove all the things to the right of ° and then we remove all extra parentheses.

Example 2.41 Let ¢ be the term (eA;)((zAy)((wd) (@A) Ay) (uX)yAy)u. tfz°,
the restriction of t to z° is (eA;)(@Ay) (ud)(zAe)z°.

Definition 2.42 (bound and free variables, type, open and closed terms)

o Let z° be a variable occurrence in t such that x Z ¢ and sieveseg, (tfz°) =
Sm ...S1 (for convenience numbered downwards). Then z° is bound in t if
z < m; the binding item of z° in t is s, and the A that binds z° in t is
endop(s;). The type of z° in t is body(s,). Furthermore, z° is free in t if
z>m.

o The variable € is neither bound nor free in a term.

o Term t is closed when all occurrences of variables in t different from € are
bound in t. Otherwise t is open or has free variables.

Example 2.43 ¢t = (\)(1A)(26)(A)((3A)2°8)(1AN)1 = t12° = (A)(IA)(28)(A)(3N)2°.
So sieveseg, (t[2°) = sasgsas1 = (A)(1A)(A)(3N). Hence, 2° is bound in ¢ since
2 < 4. Moreover, the type of 2° in ¢ is body(ss) = €. There are no free variables in
t, hence ¢ is closed.

We see from this example that one can easily account for free and bound vari-
ables, just by calculation. Note that restriction does not affect whether a variable
occurrence is free or bound.

Now, we have all the machinery to define substitution in our system, not only as
the known substitution described in Definition 1.1 but in all its forms, local, global,
explicit and implicit. From substitution, we can define S-reduction, again local and
global.

3 Reduction

Recall that in Def 1.1, substitution t[z := t'] was defined by certain metarules. Such
metalevel substitution however, is unsatisfactory for many reasons, some of which
we mention in 3.1. In the rest of the section, we make substitution a part of the
formal language for our terms, providing thereby a means by which we avoid the
disadvantages mentioned in 3.1.



3.1 Global vs. local -reduction

The traditional S-reduction causes a substitution for all variables bound by a certain
A. This is not always what is desired. In the case when a definition is coded, it is
clear that this kind of g-reduction is too radical: one sometimes wishes to “unfold”
a definition at a certain place, but such an unfolding should not concern all places
where the same definition is used. The following example illustrates the point:

Example 3.1 The notion “continuity” of a function may be defined as a A-term
in constructive mathematics but needs a rather complicated definition. Now some-
times, e.g. in a proof, one “goes back to the definition” by substituting the text
body of this definition, in which the definiens is expressed. In such a case one cer-
tainly does not want as a side effect that the word “continuity” will be replaced by
its definiens at all places in the text where it appears.

This is the reason for admitting another kind of g-reduction, called local 3-reduction,
where only one bound variable can be replaced (See also [7]). To emphasize the
difference between this local B-reduction and the usual one, we shall call the latter
global B-reduction.

Another wish is to execute substitutions only when necessary. For this purpose
one may decide to postpone substitutions as long as possible (“lazy evaluations”).
This can yield profits, since substitution is an inefficient, maybe even exploding,
process by the many repetitions it causes. This is the ground for the so-called
graph reduction, see e.g. [25].

We shall describe substitution as a step-by-step procedure, giving the user the
possibilities to use it as he wishes. Our step-wise treatment of substitution and
reduction is connected with the wish to unravel these processes in atomary steps.
This is no restriction, since we can also combine these steps into the ordinary (-
relations.

3.2 Adding substitution items

Recall that we had two kinds of items, the A-items, of the form (tA) and the J-items
of the form (¢4). In order to be able to push substitutions ahead, step by step, we
shall introduce a new kind of items, called substitution items (or o-items). These
o-items can move through the branches of the term, step-wise, from one node to
an adjacent one, until they reach a leaf of the tree. At the leaf, if appropriate, a
o-item can cause the desired substitution effect. In this manner these substitution
items can bring about different kinds of S-reductions.

Definition 3.2 (¢BLT)

We extend the set of operators with o, whose arity is two. Terms of cBLT are
ezxactly those of BLT except that new terms can now be formed using not only \
and § but also . We keep to the same meta level notation of Section 2.3, but let
Ww,wi,ws, ... range over \, § and o.



Now, if one goes back to Definition 2.33, the only set which changes is O which gets
o as an extra element. To be more precise, it is not only one ¢ that is added, rather
an infinite number of them, o(?,i € A. Based on this observation, Lemma 2.25
holds for o BLT. Moreover, all the definitions and results of Section 2.5 (and in
particular Section 2.5.2) hold here.

We use ¢ as an indezed operator, numbered with upper indices: o), o2 .. .
Hence a o-item has the form: (t'c(?)).

The intended meaning of a o-item (#'¢(?)) is: term ¢ is a candidate to be sub-
stituted for one or more occurrences of a certain variable; the index i selects the
appropriate occurrences. In fact, the index 7 preserves the variable that has to be
substituted for. More on this will follow.

3.3 Step-wise substitution
3.3.1 One-step o-reduction

Now we can give the rules for one-step o-reduction. This relation is denoted by
the symbol —,. The relation o-reduction is the reflexive and transitive closure of
one-step substitution. It is denoted by —»,. We introduce —, as a relation between
segments, although it is meant to be a relation between terms. The rules must be
read as follows: rule 5 —, s states that ¢ —, ¢’ when a segment of the form s
occurs in ¢, where ¢’ is the result of the replacement of this 5 by s’ in ¢. Otherwise
said, we omit so-called compatibility rules (see [2]).

Definition 3.3 (o-reduction)
(o-generation rule:)
(tlé)(tz)\) —o (tlé)(tzA)(tlU(l))

(o -transition rules:)

(t10D) (k) =4 (Lo D)taN) (oox — transition)
(t10 D) (ta ) =4 (t2A)(t o)) (o) — transition)
(tld(l))(tzA) — ((tld(l))tz )(tld(iJrl)) (0’01)\ — transition)
(t10D) (t26) =4 ((t10D)t20) (00s — transition)
(t10D) (t26) =4 (t20)(t10?) (015 — transition)
(t1o D) (t20) =0 ((t10D)t20) (t10D) (0015 — transition)

(o-destruction rules:)
(tio )i =, ud®(t;)
(tioNx —, x if x £ 1.

Compare the o-generation rule with (3) . Our rule, does not get rid of (¢10)(t2)\)
but keeps it because we are not necessarily going to perform a global S-reduction,
so some variables may still be bound by the A in (¢2\) (see Example 3.18). The
addition of (t;o0™)) moreover, is to fire substitutions which will, according to the
transition rules be to the right of the tree of the term, upwards in the tree or both.
The destruction rule is for the case where we have reached a leaf and o cannot



propagate any longer, then substitution takes place. The following details about
these rules elaborate more these points.

e Firstly, the o-generation rule adds a o-item to the term, as the start of a
possible reduction. Note that in this rule, the so-called J-A-segment or re-
ducible segment (t19)(t2\) stays where it is; this is different from ordinary
[B-reduction, where both argument and corresponding A\ disappear. The rea-
son for not removing this reducible segment is, of course, that we want to keep
a binding A and the corresponding argument (i.e. d-item) in a term, as long
as there still are variables in the term that are bound by that A\. When the
substitution process is on its way, existing bonds are maintained. Moreover,
when we choose to perform local 3-reduction, then one bound variable disap-
pears in the substitution process, but other bound occurrences of the same
variable, which are also possible clients for the same substitution, may stay.
We shall see in 3.5 how we can dispose of a reducible segment when there are
no more customers for the X involved, i.e. when there is no variable bound by
this A in the term.

e Secondly, the o-transition rules occur in two triples, one triple for the case
that a o-item meets a A-item, and one for the case where a o-item meets a
d-item. In each triple the following three possibilities are covered:

1. The o-item can move inside the item met (upwards in the tree; the cases
00), this is when we are interested only in inside reductions.

2. The o-item can jump over the item (to the right in the tree; oy), this is
when we are interested only in reductions to the right of the tree.

3. The o-item can do both things at the same time (o¢1), this is when we
are interested in both reductions.

For the time being, all possibilities may be effectuated. Only in the case that
the o-item jumps over a A-item (i.e. in the cases o1, and o1y ), the index of
the o increases by one. This is because that index counts the number of \’s
actually passed, in order to find the right (occurrence of the) variable involved.
The index is also of use in the process of updating the substituted term t;
(see below).

e Thirdly, the o-destruction rules apply when the o-item has reached a leaf
of the tree. When the index i of the ¢ is in accordance with the value of
the variable, then we have met an intended occurrence of the variable; the
substitution of t; for i takes place, accompanied with an updating (ud) of
the variables in ¢;. This updating is necessary, in order to restore the right
correspondences between variables in t; and A’s. When the index of ¢ and
the variable in question do not match, then nothing happens to the variable,
and the o-item vanishes without effect.



It is not hard to see that the update function ud(” should have the following
effect on term ¢;: all free variables in ¢; must increase by an amount of 7. (The
o-generation rule initialized ¢ with value 1, for obvious reasons.) This updating is
a simple process.

The following lemma shows that o-reduction reaches eventually all occurrences
to be substituted. I.e., there is a path for global g-reduction, but we may not take
it.

Lemma 3.4 In (t16)(t2\)ts, o-reduction can substitute t; for all occurrences of the
variable bound by the A of (t2A) in ts3.
Proof: The proof is by an easy induction on ts in (t10)(t2\)(t1o™M)ts. a

The examples below demonstrate how o-reduction works.

3.3.2 Examples of one-step og-reduction

Example 3.5 Let us take example 2.30 and see how o-reduction works here too.
This example is not very interesting from the point of view of different possibilities
of substitution, due to the presence of just one occurrence of the x to be substituted.
It will however, demonstrate the working of the rules, in the case where a o-item
meets a d-item.

There are 3 cases to consider, depending on the choice concerning the o-transition
rules.

case 1 (using oo, -transition rules only)

(16)(2M\)(40)1 —,

(16)(2A)(1 M) (46)1 —4

(16)(20)((1 0(M)46)1 —,

(10)(2))(49)1

case 2 (using o1, -transition rules only)

16)(20) (49)1 =,

16)(2/\)(1 o)(46)1 -,
8)(20)(40)(1 c(D)1 -,
6)(2A)(
6)(2A)(

—_— o~~~

2))(40)ud™ (1) —
2))(49)2.
3 (using oo1., -transition rules only)
0)(2A)(49)1 —,
(20) (1 oM)(46)1 —>[,
(20)((1 eM)48)(1 W) -,
(2X)(46)udM (1) —,
(10)(2))(46)2.
The first case which only carries out reductions upwards in the tree, has missed
the occurrence of x to the right of the tree, and so no reductions have been carried
out. The second case does the reduction to the right of the tree, so it does substitute



the z. The third case carries out reductions both upwards and to the right. But
upwards results in nothing new so we obtain the same result as in case 2.

In the second and third cases, (16)(2)) is useless and once we remove it, we
should decrease the free variables in (40)2 obtaining hence (36)1 (see Figure 7 which
you should also note its similarity to Figure 6).

1 2 4 3
¢ |T | ‘
oi —oi —oA —e d l/\ > 02 oi —oi —.A—— 0ot
(36)1
(16)(2X)(46)2

Figure 7: o-reduction when a o-item meets a J-item

There are, of course, more possibilities than these three cases, if we use a mixture
of the og.-, 01,- and g1, -transition rules.

Example 3.6 Now let us see how o-reduction works when we have that a o-
item meets a A-term. Take for example: (Ay.;.Ag.z.y)u. In BLT notation this is
(10)(2A)(3A)2 and in LT notation, it is: (wd)(zAy)(2Ae)y (see Figure 8). This term
reduces to A\;...u or in BLT notation (2A)2 and in LT notation (z\;)u. o-reduction
on this term results in the following 3 cases.

case 1

(16)(20)(30)2 =4
(16)(2A) (1 eM)(3N)2 =4
(16)(2A)((1 ¢M)3N)2 =,
(16)(2X)(3))2

case 2

(16)(20)(30)2 =4
(16)(2A)(1 eM)(3N)2 =4
(16)(2A) (3N (1 0)2 -,
(16)(20) (3A)ud® (1) —,
(16)(2))(3X)3.

case 3

(16)(20)(30)2 =4
(16)(2A) (1 oM)(3N)2 =4
(16)(2A)((1 eM)3N) (1 0?2 =,
(16)(20) (3A)ud® (1) -,

(16)(2M)(3M)3.
Again the first case didn’t carry out any substitutions as there was none in
the upward part of the tree. The second and third cases are similar to those of



Example 3.5. Moreover, (10)(2)) is useless and once we remove it, we should
decrease the free variables in (3\)3 obtaining (2A)2 (see Figure 8). Note that what
actually happens in Figure 8 is that the part of the tree with nodes 1,2,0,\ is
removed and the part of the tree with nodes A, 3, 3 replaces it but with the variables
updated to point at the correct A’s.

1 2 3 2
? i |
A NI l/\ A 3 A A a2
o— —eo— —e ® — —e=—
(16)(2A\)(30)3 (20)2

Figure 8: o-reduction when a o-item meets a A-item

The definition of o-reduction could be simplified further as follows:

Definition 3.7 (c-reduction)
(c-generation rule:)
(tl(S) (tg)\) —F (tl(S) (tg)\) (tlﬁ(l))
(G -transition rules:)

(l))(tzA) —F ((tlﬁ(l))tzA) (tlﬁ(i+1)) (501)\ — transition)
(l))(tzé) —F ((tlﬁ(l))tzé) (tlﬁ(l)) (5015 — transition)

(-destruction rules:

(t,7)i =5 ud?D ()  (Fo — destruction)

(ti7 N w5z ifx #£i (71 — destruction)

(t,7)) =50 (T2 — destruction)

That is, in Definition 3.3, we get rid of og, and oy, for w = X or §, and add
oo-destruction.

Now it is obvious to see that oo, and o1, are special cases of Tg1., in the
presence of ga-destruction. In fact the following lemma holds:

Lemma 3.8 For any tq,ts, if t1 =, to then t; —»7 to.
Proof: Left to the reader. a

3.3.3 Drawbacks of the one-step o-reduction

We want to ensure that references are always maintained correctly, even before
substitution takes place. This is not the case as we shall see below.



We note that our updating is less complicated, but also less general than in
the original treatment of de Bruijn-indices (see [5]), where the usual S-reduction is
applied (the global relation) and substitution is not presented as a step-wise process.
In explicit substitution procedures as in [1], the more general, but complicated
update functions are used.

Our loss of generality has the following cause. A o-item (to(?) is supposed to
be “cut off” from the rest of the term. Variables in ¢ may have lost their reference
value; in case a variable = in ¢ is bound by a A outside ¢, then this binding A can
only be found by taking also the index ¢ into consideration. That is: variables inside
a o-segment are shut off from the “outer world”, meaning that their value need not
reflect the exact binding place. Only after application of the o-destruction rule,
the updating restores the proper value of such variables. The following example
illustrates the point:

Example 3.9 Let us look back at Example 3.6. The term discussed there was
(10)(2A)(3A)2 and its term tree is pictured in Figure 9.

(10)(2A)(3X)2
Figure 9: The term tree of (16)(2X)(3A)2

When adding the o-item (10(1)), we messed up the references. In fact, the 1 in
(1oM) tells us that it is bound by the A in (2)) but this is not as it should be: its
reference must be the same as the original one in (14), namely the second A in the
free variable list. The term tree of (18)(2))(16"))(3X)2 is to be found in Figure 10.

1 2 1 3
) A W
A X | lx— l”(l) A 2
o— —o— —eo * °
(16)(2\) (16M)(31)2

Figure 10: A term tree where references are not as intended



In the following subsection we propose a solution for step-wise substitution that
does not suffer from the mentioned drawbacks.

3.4 A general step-wise substitution
3.4.1 Step-by-step update or p-reduction

In order to avoid the disadvantages mentioned in subsection 3.3, we shall describe
the effect of the update function by means of a step-by-step approach. For this
purpose we use a (unary prefix) function symbol o9 with two parameters k and

i. The intention of the indices is the following.
e Index i preserves the value of the update desired (i = ‘increment’).
e Index k counts the \’s that are internally passed by (k = ‘threshold’).

The effect of the updating must be that all free variables in ¢; increase with an
amount of ¢; the k is meant to identify the free variables in ¢;.

Now, instead of ud(® (t,), we write (¢(©%)t,. We extend our set of operators in
Definition 2.33 with . As explained above, we use the ¢’s with a double index:
e*D: ki € N. We call all (p(59)’s p-items. Note that the body of a p-item is
always the empty term.

Before we set up the p-rules, let us go back to Example 3.9 and let us show how
the use of ¢ will fix the references.

Example 3.10 In Figure 10, let us replace the 1 above ¢(!) by a tree which has 2
branches, the upwards being empty, the right branch having 1 as a leaf, and the root
being ¢(®1). Now when tracing from the 1 (above o(!)), the A which binds it, we
pass through ¢(®1) . This is indicative that the A can be found by the combination
of the index 1 and the item (1. The 0 in (0,1) tests if index 1 is free or bound.
If index 1 was bound (i.e. if 1 < 0) then we forget about the 1 in (0,1) and look
for the first A\. 1 however is not < 0 and so it is free and its binding A is the one
refered to by 1+ 1, being the sum of the variable 1 itself and the second projection
of (0,1). Figure 11 shows the right references.

1 2 5:%(07” 1 3

[ ] [ ]
| |

A A Py l”(l) [ A 2

o— —O0— —@& @ r @

(1) 2N (¢ D) 10M)(31)2

A~

Figure 11: A term tree where references are as intended



Now, the use of the p-items is established in the following rules.

Definition 3.11 (p-reduction)
(o-destruction/p-generation rule:)
(tro0D)i =, (9t
(p-transition rules:)

(PN EA) = (5N (1)
(P*D)(X'0) = (" D)t'8) (D)
(p-destruction rules:)

(p*NT =, z+iifz>k

(pFNz =,z ifr <korz=c¢.

The following details about these rules are to be noted.

e In the ¢-generation rule, ¢; is to substitute ¢, the variable bound by the ith A
to the left of i. ¢; has passed these i \’s and so all its free variables must be
increased by i. Therefore, we use ¢(®1).

e A term of the form (p(*)t will be either such that t is a variable or a M-item
or a d-item. In the case of a d-item or a A-item, we have to update all the
variables so that we keep the right references.

e The case where (p(*9) is to the left of a variable, we use one of two (-
destruction rules, the first for the case that x is free in ¢; (then a real update
occurs), the second for the case that x is bound in ¢; or x = € (then nothing
happens with ).

Now, in order to keep the references inside a o-item correct during the process of
o-transition, a g-item (p(*?) is added inside the o-item, as follows: ((¢(*9)tg()).
We shall give the rules of this general o-reduction below.

For convenience sake, we may drop the first index or both indices of the ¢,
according to the following definition:

Definition 3.12 (p-abbreviation)
For alli € N, ) denotes %) . Moreover, ¢ denotes ¢V (hence = (@)

3.4.2 General o-reduction

Now the rules for o-items can be adapted as follows (cf. Definition 3.3):

Definition 3.13 (general o-reduction)
(general o-generation rule:)
(t10) (t2A) =4 (816)(t2A) ((0)t10)

(general o-transition rules:)



(t10 D) (t2X) =4 ((t10D)ExN) (oox — transition)
(t10 D) (t2X) =4 (E20)((@)t o) (015 — transition)
(t10 D) (t2X) =4 (LoDt N (@) t1aTD)  (o01n — transition)
(t10 D) (t26) =4 ((t1oD)t6) (00s — transition)
(t10 D) (t20) =4 (t20)(t10D) (015 — transition)
(t10D) (t20) =4 ((t1oD)t20)(t10D) (0015 — transition)

(general o-destruction rules:)
(tla(i))i —s 0
(tioNx —, x if x £ 1.

Note that a term ¢; = ¢’ changes into (¢)t' when passing a A; see e.g. the o7 -
rule. The reason is that the free variables in ' must be increased by an amount of 1
(remember that ¢ = (% hence the increment is 1). The obtained ()t is again
a term, so one may take t; = (¢)t' in the next step.

Now the following lemma shows that the right bond between variables and their
binding \’s are maintained.

Lemma 3.14 In5(t10)(t2\) ()t 0™M)ts, all variable occurrences are bound by the
same \’s which bound them in 5(t10)(ta\)t3.

Proof: We will only show how some cases can be carried out. The rest will
be an easy exercise left to the reader. Let x be a variable in (t16)(t2\)((@)t1o™M).
There are only two cases to consider.

o case x occurs in (t10)(t2N), then nothing to prove, as nothing has changed for
that occurrence.

e case x occurs in (@Ot 0M), in particular in t,, then a bound variable in
t1 clearly remains bound by the same X\ in t,. A free variable x in t; becomes
updated by 1 by the o). This is exactly what is intended, since there is one
extra \ that one has to go through on the way from x to its X. That is, the \

Of (t2 A) .

Example 3.15 Let us go through example 3.6 but using y-reduction.

case 1

(16)(2N)(3N)2 —>,,
(16)2N)((p)1 o )( A2 =,
(1) (2N (((#)1 cM)3X))2 =,
(16)(22)(37)2

case 2

(16)(2M)(3N)2 —,

(10)(20) ()1 o )(3))2 =



It is not hard to see that this definition gives the same results as Definition 3.3
in the case that we apply the ¢-transition rules after all possible o-transition rules
have been applied. However, we have now the possibility to “update” the o-item
at any instance, thus re-establishing the correct bond between bound variable and
binding A. It is also more easy now to find the binding A of a certain variable in #;
before updating: following the path from the variable to the root, we just add j for
every (o)) encountered.

Again here, we may use the simplified version of general o-reduction, which
consists of the same o-generation rule, only of og1 and og1s as o-transition rules,
and the same destruction rules together with (t;0()) —, 0.

Finally, we note that our transition rules as given here do not allow for o-items
to “pass” other o-items. The reason for this is, that we wish to prevent undesired
effects, like an infinite exchange of two adjacent o-items.

3.4.3 Remarks on ¢

The mentioned (¢)) may originate as combinations of “simple” ()-items. Let us
assume for a moment that only one-step o-reductions are applied to a given term,
and no y-reductions. Then a o-item, “travelling” through this term, “collects” as
many ¢-items (p) as it has passed A-items. These p-items may be combined, since
() - () (i times) = ()" = ().

We can make a few more remarks in this respect.

1. First, it is not necessary to update ¢; completely. One can easily convince
oneself that -items with equal first index are additive, in the sense that
(™)) (p(kF?) has the same effect as (¢*™+t") for all k,m,n € N. In
particular, (™) (™) “s” (p(m*+™)). Hence, one may split up (¢¥)) into
(pU)) and (¢U")) in case j > 1 and j' 4 j” = j, and update with (pU")).
This process can be repeated at many places. Moreover, a (-transition can
be executed for one or more steps, or left alone, whichever one likes.

Things become more complicated if we desire to combine two adjacent p-items
like (%)) and (")) in one new update function. We do not consider these
matters, in order to maintain a simple systerm.



2. Second, we note, that it is quite natural to add a third (-transition rule for
the case that we desire to update a term starting with a o-item:

Definition 3.16 (p-transition rule for o-items:)
(PN (He) =4 (5Nt D) (") if L <k and
(P®N) (M) =y ((p*D) D) (D) if 1> k.

So far, we showed that o-items and ¢-items have obtained the same status
as the original M- and d-items. The o- and ¢-items have become, so to say,
“first class citizens”. There is, however, still a slight scent of discrimination,
in the sense that some items can blockade the transition of other items. For
example, o-items cannot pass p-items. These matters have to be investigated,
especially as regards the consequences for normalization. At this moment,
these questions are not yet solved.

3. A third remark is, that there is with this general o-reduction a feasible possi-
bility for the addition of a ogi,-transition. This can be done, since the bodies
of o-items now contain the correct references, by the extra (p-items added.
Hence, we can allow that o-items intrude other o-items:

Definition 3.17 (091, -transition)

(tla(i))(tga(k)) — ((tla(i))tga(k))(tla(i)) lf’L 75 k

3.5 Substitution and f-reduction

So far, we have explained using our reduction —»,, how a term containing a §-\-
segment can be transformed to another term. We have not yet explained how we
can get local and global S-reduction out of such reduction. Moreover, so far in our
approach, the reducible segment is not removed. We still have to supply the tools
for eliminating useless reducible segments. In this section we explain how reducible
segments are removed and how local and global -reduction are obtained.

3.5.1 Local and global substitution

We recall here that with global substitution we mean the intended replacement
of a whole class of bound variables (all bound by the same abstraction-A) by a
given term; for local substitution we have only one of these occurrences in view.
By restricting the choice we have in the o-transition rules we get local and global
reduction. Let us give an example.

Example 3.18 Take the term (\,...zx)u. There are three possibilities here, either
we can have global -reduction and then obtain uu, or we can have local S-reduction
where the first = of the body zz is replaced by u, or we can have local S-reduction



where the second « is replaced by u. Those three cases are easily obtainable from

our o-reduction. Here is how:

The term in our notation is (16)(2A)(16)1.

following cases:

case 1

(16)(2M)(10)1 —,
(16)(2N)((p)1 eM)(16)1 =,
(1) 2N (((p)1 eM)16)1 =,
(18)(2M)((¢)10)1 =,
(16)(2M)(20)1

case 2

(16)(2M\)(10)1 —,
(16)(2A)((#)1 eM)(16)1 =,
(10)(20)(16)((9)1 o)1 -
(10)(2N)(16)(p)1 =,
(16)(2M)(10)2.

case 8

(16)(2M)(10)1 —,
(16)(2M)((p)1 eM)(16)1 =,
(182N (((¢

(16)(2))(26)

Applying o-reduction we get the

e Case one comes from using og,-transition and is the local substitution for the

second z in zx resulting in (A;..xu)u.

e Case 2 comes from using oy, -transition and is the local substitution of the

first x resulting in (A,..uz)u.

e The third case comes from using o1, -transition and is the global substitution
resulting in (A;...uu)u which should of course be rewritten as uu (we still have
not removed useless segments). That is: the reducible segment (15)(2)) in
the result of case 3 should be removed and (26)2 should be changed to (1§)1.

Below we will see how to do this.

Note however that in cases 1 and 2, we cannot remove (15)(2\) because we only
carried out local substitution on one occurrence of the bound variable and there are

occurrences that are still bound by the same A.

3.5.2 Efficiency considerations

For local B-reduction, as is seen from the example above, we have to make a choice
between either op or o1, both when meeting a A\- or a §- item, in order to follow
the right path to the intended (occurrence of the) variable. Such a path may be

coded by a string of 0’s and 1’s in an obvious manner.

For global (-reduction

we also have a choice. Syntactically the simplest thing is to choose always the



oo1-rules, dispersing the o-item over all branches to come. However, in the case
that we know beforehand which branches lead to an occurrence of the substitutable
variable in question, and which do not, we can, at each A- or d-item met, make
the appropriate choice between oy, 01 or gg;- The last possibility is efficient as
regards the o-transitions; it depends, however, on the implementation whether the
mentioned information about branches and variables is present. Alas however, the
generation and maintenance of this information has its price as well.

Of course, there exists a scale of possibilities between local and global: e.g.,
one may formalize substitution for a number of designated occurrences of a certain
variable.

A one-step local S-reduction of a term consists of one o-generation and a local
reduction as described above, executed until the o in question (and the correspond-
ing ¢’s) have disappeared. Cases 1 and 2 of example 3.18 are instances of a one-step
local B-reduction. A one-step global B-reduction is defined analogously. Case 3 of
example 3.18 is an instance of a one-step global reduction. Note that, in both cases,
the reducible segment is not (yet) removed.

An option is to distinguish from the beginning between (possible) local and
global S-reductions, by using different A’s and/or §’s (see [24], for the use of various
N's and §7s).

Example 3.19 We could use A, for a future destination in local reductions and
Ag1o for global reductions. A “definition” then could be rendered as a §-A-segment
(t1010c) (t2A10c), ready for local reduction. A “function” could start with a A-item
(t2Ag10), whereas an “argument” for this function could have the form of a d-item

(t16g10)."

Now, for example, the general o-generation rule of Definition 3.13 obtains two
versions:

Definition 3.20 (local vs. global o-generation)
(£10:) (b Ai) =0 (816:)(t2As) ()10 "), for i = loc, glo.

As regards the o-transition rules, either the op-transition or the o;-transition is
chosen for oy,.’s, according to the path in the tree that has been prescribed. And
oo1-transition is reserved for og,’s. The o-destruction rules are adapted with an
index to the o, in an obvious manner.

The possibility of labelling A’s and §’s as above is an evidence of the flexibility
of our account.

3.5.3 Removing the useless reducible segments

Let us keep in mind the two reductions strategies (local and global) and remember
that they can overlap. For example, when we have one unique occurrence of the

iSee [22] for an explanation of these notions “definition”, “function” and “ argument” with
respect to typed lambda calculus.



variable to be substituted, as in (\,.x)u where we have one unique occurrence of
the z in the body, then both local and global substitutions are the same. Let us
hence take some standpoints as to how we are going to treat such an overlap and
when we should remove the useless segments.

It will be clear that, in applying local 8-reduction, we have a certain reducible
segment and an occurrence of one goal-variable in view, connected by means of a
path in the tree. Hence we know that the reducible segment has actual reductional
potencies, i.e. the main A of the segment binds at least one occurrence of a variable.

As regards global f-reduction, the situation is different. Here the reducible
segment may be “without customers”. Then o-generation is undesirable since this
leads to useless efforts. Hence it seems a wise policy to restrict the use of the
o-generation rule to those cases where the main A of the reducible segment does
actually bind at least one variable. When this is not the case, we shall speak of a
void J-A-segment. Such a segment may be removed. One may compare this case
to the application of a constant function to some argument; the result is always the
(unchanged) body of the function in question. For this purpose we define the void
B-reduction:



Definition 3.21 (void B-reduction)

Assume that a §-A-segment s occurs in a layered term t, where the final operator
A° of 3§ does not bind any variable in t. Let t; be the scope of 5, i.e. rightarg(\°).
Then t reduces to the term t', obtained from t by removing 5 and replacing t1 by
(D)t

Notation: t —q t'.J

We can also describe void g-reduction in the previously given format:

Definition 3.22 (d\-destruction rule)
(t'0)(t"N) =g (V) if (£'8)(t"N) is void.

Note the fact that updating here occurs with a negative amount of —1. The
reason is that the disappearance of the A\ has to be compensated. We note that this
negative updating is not without complications. For example:

e The second ¢-transition rule of Definition 3.16 is no longer valid.

o Additivity of p-items (see Section 3.4) does not hold for negative indices. E.g.
(D) (M=) is not equal to (o(1?) (the identity), since

(D) (1) (26)1 =, (16)1

e The same example shows that negative indices can have the effect that differ-
ent variables become identified:

() (20)1 =, (16)1

Hence, updating is no longer an injection, which can be highly undesirable.

We note, however, that the mentioned unpleasant effects do not occur in the
setting presented above: a p-item with a negative exponent only occurs after the
clean-up of a void d-A-segment, hence with a A that does not bind any variable.
Therefore, the injective property of updating is not threatened.

We shall give an example which demonstrates how void segments can disappear.

Example 3.23 Take example 3.5. After o-reduction we obtained (14)(2))(44)2 in
the cases 2 and 3 (see Figure 7). In this latter term, call it ¢, the J-A-segment
(16)(2)) occurs and its A does not bind any variable in ¢. Moreover, (40)2 is the
scope of (18)(2\) and if in ¢ we remove (1)(2\) and replace (46)2 by (1) (46)2
we get (30)1. Hence t reduces to (36)1.

Lemma 3.24 If t —y t' then all occurrences of variables in t' are bound by the
same \’s that bind them in t.
Proof: Left to the reader. a

JThis reduction was introduced in [21], where it was called B2-reduction. De Bruijn defines a
mini-reduction as being either a one-step local S-reduction or a void reduction; see [7].



Now we can describe the usual one-step (-reduction as a combination of o-steps
and p-steps:

Definition 3.25 (one-step B-reduction)

One-step B-reduction of a layered term is the combination of one o-generation
from a §-\-segment S, the transition of the generated o-item through the appropriate
subterm in a global manner, followed by a number of destructions, and updated by
p-items until again a layered term is obtained.

Finally, there follows one void B-reduction for the disposal of §.

Notation 3.26 We denote one-step S-reduction by t —,z t', and (ordinary) -
reduction — its reflexive and transitive closure — by ¢ —,3 t'. We write =3 for
the equivalence relation generated by —».z.

Remark 3.27 About the normalisation properties of our system (concerning the
termination of f-reduction sequences) we note the following.

We first recall some well-known concepts:
A redex in a term is a subterm which starts with a J-A-segment.
A normal form is a term without a redex (hence without a J-A-segment).
A term t is strongly normalizing if all B-reduction sequences, starting from ¢, ter-
minate (in a normal form).
A term t is weakly normalizing if some (-reduction sequence, starting from ¢, does
terminate (in a normal form).
In general: the property strong mormalization refers to the necessary termination,
for each term, of all B-reduction sequences starting from that term, and the property
weak normalization refers to the possible termination, for each term, of a 8-reduction
sequence starting from that term.

Now we discuss normalization with respect to our system of rules.

The o-generation rule, as given in Definition 3.3, can be applied indefinitely
many times. A similar remark holds for the o¢;,-transition rule, which permits an
eternal reshuffling between adjacent o-items. Hence, strong normalization is not
guaranteed without extra provisions.

This may be an awkward matter, especially in (typed) systems that “normally”
do strongly normalize. Hence, it may be advisable to restrict the use of these rules
in order to prevent the mentioned effects. For the latter rule (the op1,-transition
rule) this is easy: just forbid its use, maybe with the exception that it can be used in
one-step local B-reductions. For the former rule one might formulate the condition
that a o-item may only be generated by a d-A-segment if this segment is not void,
and if it cannot become void by substitutions which are “on the way”, i.e. by the
application of ¢- and o- reductions which are due to ¢- and o-items which are
already present in the term under consideration.

It will be clear that our rules do not hamper weak normalization . Indeed, if
a terminating sequence exists, starting from a term ¢, we can always choose an



appropriate strategy for step-wise substitution in order to “follow the path” of this
normalizing B-reduction sequence.

4 Comparison with the explicit substitution of Abadi,
Cardelli, Curien and Lévy

4.1 The calculus of Abadi, Cardelli, Curien and Lévy

In [1], the Ao-calculus is introduced, where explicit substitutions are dealt with in
an algebraic manner. We give a short survey of the operators that the authors
introduce and we discuss some features of the equational theory that is proposed in
the paper.

The authors use de Bruijn-indices and define substitutions as index manipula-
tions. A substitution is an infinite list of substitution instructions, one for each
natural number greater than 0. For example, s = {a1/1,a2/2,a3/3,...} is a nota-
tion for the substitution of the terms a; for the indices i. When s is considered as a
function, then s(i), the “substituand” for i, is a;. Another notation for s(i) is i[s].

Such an infinite substitution must be thought of as being a simultaneous substi-
tution of all a; for 1.

It will be clear that infinite substitutions are meant as meta-notations for actual
simultaneous substitutions, the latter ones being finite and therefore executable. In
fact, for any term with de Bruijn-indices there is a maximal number N that can
occur as an index; as one can easily see, this number N is equal to the number of
A’s occurring in the term plus the maximal reference place in the free variable list,
of the different free variables that occur in the term. Hence, an infinite substitution
for a given term can always be pruned to a finite explicit substitution.

Apart from id — the identity substitution {i/i} or {1/1,2/2,...} — [1] intro-
duces three other index manipulations:*

o 1 (shift), the substitution {(i + 1)/i}.

e - asin a- s, the cons of a onto s; here a is a term and s a substitution. The
substitution a - s is the substitution {a/1,s(i)/(¢ + 1)}, that is to say: a is
alloted to index 1, and all substituands s(i) are alloted to an index which is
one more than the original one (7). For example:

4= {1/1,1 (1)/2,1 (2)/3,.. .} = id.
e o, asin sot, the composition of s and t; here both s and ¢ are substitutions,

and s ot = {t(s(¢))/i}. For example:

tola-s) = {(a-)(t (0)/i} = {(a-$)(i +1)/i} = {s(i)/i} = .

kThe examples are taken from [1]. Note how the operations can be used for algebraic
manipulations.




4.2 A soundness proof

With the help of our system, we can give a soundness proof for the equality axioms
in [1]. Therefore we translate the above operations into the notation introduced in
the present paper. We have no direct means to render infinite substitutions, but
we introduce parallel o-items for this purpose. Such a parallel g-item is an infinity
of o(W-items, one for each number i > 0. The notation that we use is (t;c(").
The “vector” upper bar (7) abbreviates a universal quantification. By (t;0(®) we
mean the same as Abadi et al. mean with the substitution {¢;/1,%2/2,...}, i.e. the
simultaneous substitution of ¢; for i for all 4. Similarly, (£;0*>1)) denotes the same
as {t2/2,t3/3,...}, and so on.

Hence, the definition of the parallel o-item (t;0(?) is that for any variable k,
(tia(z))k = tg.

We may split such a parallel o-item in a finite head and an infinite tail, connected
with the symbol @. For example:
(t;io®) = (t,oM) @ (t;0>D).

We define a function [...], mapping terms from [1] to terms in our calculus. We
define moreover index manipulation functions to parallel o-items.

For terms, the definition is:

|
o~

[7]
[Aa] = (Mld]
[ab] = ([t1)]q]

For the index manipulation function we have the following:
Let a be a term, [s] = (t;,0") and [s'] = (t.o™). Then:

[éd] = (ic®)

[ 1] = ((i+1)o™)

[a-s] = (ag(l)) O (t; 1U(z>1))
[sos] = (t;,g(?))(tm(z))

Finally, [a[s]] = [s(a)] = [s]la]. It is not hard to see that (t;,0())(t;c()) =
((t;0D)t;0™), so that we have an alternative translation for s o s'.

Moreover, it will be clear that (¢) and 1 (or (i +1 ¢()) have the same effect.
The same holds, in general, for (o*)) and (i 41 ¢(*>*).

We show that we can justify the algebraic manipulations of Abadi et al. in this
setting. Moreover, the equations that the authors give as an axiomatic basis for
their equational theory, can all be derived in our approach. In our opinion, this is
an important result in favor of the treatment that we propose in this paper.

Moreover, we claim that the introduction of parallel o-items is only apparently
an extension of the system that we discussed in the present paper:

— the infinity of o-items can be reduced to a finite number for every given term
(we explained this above);
— the “parallel” (simultaneous) character of the substitutions is embodied in our



p-items; this is the only “global” substitution operator for de Bruijn-indices that
we need, the o-items being the vehicles for the substitution.

The latter property follows from the fact that we discriminate between updat-
ing of de Bruijn-indices and actual substitutions. This distinction, absent in [1],
simplifies matters considerably.

A comparison between the two systems gives the following results:

e The system of Abadi et al. is based on a set of algebraic equality rules, which
are treated with the usual term rewriting techniques. It only works for the
usual (global) S-reduction.

e Our system has a wider range of application, since it is also suited for local
reduction. Moreover, it seems that the separation of real substitution and
simple updates makes things less complex; we also have the feeling that our
system is, in a sense, more “natural”.

We give four rules from [1] and show their justification in our setting. Those
rules are:

e VarCons: 1a - s] = a.

o Abs: (Aa)[s] = Ala[l - (so 1)]).

SCons: 1[s] - (1 os) = s.

e Beta: (Aa)b = a[b-id]

To show Beta, we need the equation

(=N (p)troM) = (toW) @ (1),
That this equality holds is shown by the following Lemma:

Lemma 4.1 In goBLT, the following holds:
(PN ((@tro™M) = (o) @ (D).

Proof:
(¢ ()0 =
(i—1)((j+10D)0M) =
(differentiate between the effect of this substitution on index 1 and on indices > 1,
respectively)
(i—=10N((j+1N)tieM)@(i-100>D) =
(since, as noted above: (tia(i))(tga@) = ((tia(i))t;a@))
(i=10@)(j+109)01) & (p1-)) =
(by additivity, which holds in this case)



(joD)t0®) & (ph—1) =
(o) & (p50). 0

Now, here is how the above four rules can be derived in our system:

Lemma 4.2 In poBLT, the rules VarCons, Abs, SCons and Beta are derivable.
Proof:

e VarCons:
[1a- sl = [(a- $)1] = (([ale™) & (tie10TD))1 =, [a].

o Abs:
[(Aa)[s]] = (t:ie@)(N)[al =& N((p)timr01)]al,
since (t;0D)(N)[a] =» V) (()tiat)]a] for each i;
[AalL - (so D]l = W((Le™) & (p)tima0>))]a] =
= N((@ticia™ N, i
since [so t]= ((j +1 ¢D)t;0D) = ((p)tic™).

e SCons:
[1[s] - (1 08)] = ((t: 0-(7))10-(1))@((tja(i))ia.(7>1)):
= (o) & (ti0™) = (ti0) = [s].

e Beta:
The traditional rule of B-reduction has the following form in our system
(t10)(822) =4 (") ((p)t10™).
This enables us directly to derive the translation of the Beta-rule:
[(Aa)b] = ([515)0\)[0] = (¢ () [Ble™)]al;
la[b - id]] = (([tlo™) @ (i — 1 o=1))[d] =
(([ole™) @ ("71))[a]-
Hence, [(Aa)b] = [a[b - id]] from Lemma 4.1.

This section hence, showed that the whole of [1]’s system can be translated into
ours and that some of what they take as rules are easily derivable in our system.
This shows that our system is more general than theirs.

It is also possible to give a translation the other way round. To achieve that
purpose, we have to express o-items (to(?) and p-items (¢*)) by means of the
operators id, T, - and o. Here below we give these translations, where we adopt the
convention that the -- operation is associating to the right, so a-b-s means a- (b-s).

Then the following correspondences hold (here we identify the notations ¢ and

[¢]):

e (toW)=1-2-...-(i—1)-t-(1)" and



o (®D)y=1-2- .. k- (D).

In particular, (to(V)) = ¢- 1.
Also, (™) = (@) = (1)", (¢) = (pV)) =t and (@) = (1)~ =1-id.
When we define k! to be 1-2- ...k, then the above rules can be simplified to

o (toD)=(i—1)!-t-(1)" and
o () = K- (D4,
provided that we add the rule 0! - s = s.

Finally, we give the correspondence between our system and the ff-operator of
[10]:

o If s = B;(t;09), then 1 (s) = X;((@)t;oHD).

The translation from our system to Abadi et al. was only carried out for the
sake of completeness and because it is the norm that has to be carried out when
comparing two systems. Our claims still hold, that is, we can translate all of their
system in our and we can show that some of their rules are derivable in ours. It is
not likely that we have redundant rules which can be derived in their system. In
fact, this is also the difference between the two systems. Ours just has the rules of
the A-calculus. Theirs, has many many rules which as we have seen here, can be
got rid of in our system.

5 Advantages, Conclusions and Further Work

We believe that the notation in this paper deserves attention. We showed how
it can facilitate the introduction of substitution as an object level notion in the
lambda calculus resulting in a system which can accommodate most substitution
strategies. We showed for example, how local and global substitution can be ob-
tained in a unique formulation which can provide the most general substitution in
the A-calculus and all desirable forms of substitution. This is an important step on
its own. We have shown that the substitution calculus of [1] can all be translated
into ours, together with the result that many of their axioms are easily derivable in
our calculus. This again is a nice result. Also, our calculus accommodates explicit
substitution in a calculus very close to the classical formulation of the A-calculus,
whereas [1] uses a notation that is not easily grasped at first for those who are
unfamiliar with it. Below, we discuss the advantages of our notation and explicit
substitution together with an insight into further work. The advantages of the new
notation do not stop at substitution, but extend to all branches of the A-calculus.
The layered representation of terms can be a natural basis for the allocation of the
free and bound occurrences and for the A’s binding particular variables. It can also
be used to restrict the attention to those subterms of a term relevant for a particular
application.



5.1 Advantages of the notation

We started in Section 2 with a novel description of term formation, regarding ab-
straction and application as binary operations. The item-notation of terms enabled
us to create a term progressively, or module-like, so to say, in analogy with the man-
ner in which mathematical and logical ideas are developed. Variables and variable
bindings obtained a natural place in this setting, both in the name-carrying and in
the name-free version, the latter by means of de Bruijn-indices.

Two notational features are of great advantage in this respect: the first is to
give the argument prior to (i.e. in front of) the function; the second, of minor
importance, is that a type precedes the variable which it regards.

The advantages of our new notation are summarized below. The reader however,
will appreciate the new notation more through [23] and [24].

e The convention of writing the argument before the function has a practical ad-
vantage: the d-item and the A-item involved in a S-reduction occur adjacently
in the term; they are not separated by the “body” of the term, that can be
extremely long! It is well-known that such a §-A-segment can code a definition
occurring in some mathematical text; in such a case it is very desirable for
legibility that the coded definiendum and definiens occur very close to each
other in the term.

e The notation provides a general vehicle for describing many type theories and
calculi. This point has been elaborated in [24] where systems from Baren-
dregt’s cube are special instances of our own. Further, we showed there how
theorem proving in the calculus of constructions (see [9]) could be more easily
done in our framework.

e Bound and free variables are easily accounted for as can be seen from Exam-
ple 2.43.

e Items and segments play an important role in many applications. As explained
before, a A-item is the part joined to a term in an abstraction, and a §-item
is the part joined in an application. In using typed lambda calculi for e.g.
mathematical reasoning, A-items may be used for assumptions or variable
introductions and a d-A-segment may express a definition or a theorem (See
[22], [23] and [24]).

e There are further advantages, but for the purpose of this paper, we decided to
concentrate on explicit substitution. We will below summarize what we did
relating to this subject.

5.2 Advantages of explicit substitution and of our formula-
tion of it

In Section 3 we focussed on the relation of reduction. We differentiated between
several versions of f-reduction, for example between global S-reduction (the ordi-



nary one) and local 8-reduction, necessary for unfolding a defined name in only one
place.

In describing these versions of (-reduction, we defined the notion of step-wise
substitution, being the utmost refinement of the reduction-concept. For this step-
wise reduction we introduced o-items as a part of the term syntax, thus making
substitution an explicit procedure.

When using de Bruijn-indices, we have to make sure that the references in a
term are updated during or after a substitution. For this purpose we introduced
p-items, which again do their job in a step-wise fashion.

We also gave a general step-wise substitution, with the purpose of keeping the
references (by de Bruijn-indices) unimpaired, also inside the o-items. As to the
reducible segments, we keep them present until they are no longer necessary, then
we get rid of them using the notion of void S-reduction.

In Section 4, we introduced the calculus of [1], and showed that it is only a
special case of our calculus by providing a translation of the first in the second.
This translation can also be viewed as a soundness proof. We showed moreover
that many of the axioms that are postulated in [1] are very easily derivable in
our system, which shows that our calculus is more attractive. In fact, it is our
conviction that the step-wise substitution as introduced in this paper is easier and
more manegeable than the proposal for explicit substitution in [1]. Our approach
is very close to intuition, yet the formulation remains simple. Here is a summary
of the usefulness of explicit substitution and of the advantages of our formulation
of it.

e [(-reduction is too radical in the case when a definition is coded (see Exam-
ple 3.1). Therefore local forms of reduction are needed.

e Substitution is inefficient and may be exploding. Therefore we might wish to
postpone substitutions as long as possible. The ability hence to control what
substitutions to carry out and when is very important.

e The step-wise character of our reduction relation and of our many described
procedures enables a flexible approach, in the sense that the user may choose
how to combine basic steps into combined ones, depending on the circum-
stances. For instance, global S-reduction amounts to the generation of one
o-item, and subsequently chasing this item along all possible paths in the
direction of the leaves of the term tree, until no descendants of the original o-
item are left. For local 8-reduction the o-item has to follow precisely one path,
in the direction of the variable that is chosen as a candidate for substitution.

e The possibility of labelling A’s, §’s and ¢’s so as to control which local substi-
tutions to carry out is an evidence of the flexibility of our account.

e The step-wise substitution introduced in this paper is more manageable than
that of [1].



e Our substitution allows most strategies (local, global, in between) and all is
controlled by the user.

5.3 Further work

Now, as for further work, it is known that substitution plays an important role in
logic (in quantifier introduction or elimination, to give an example). The notions of
free/bound variables are also very important there. Moreover, combining A-calculus
with logic leads to inconsistencies if no restrictions are made. Based on these facts,
[11], ..., [20] provide various theories which attempt at combining A-calculus with
logic and at avoiding the paradoxes through types, or through A-abstraction. These
attempts are also applied to various notions of logic, programming and natural
languages, such as polymorphism, fixed point theorems, quantifiers, determiners,
undefinability results and unification. Explicit substitution has not taken place yet
in these areas and this will be followed in the future.

To give one example from Computer Science which would benefit from explicit
substitution, we take pattern matching and unification as used in functional and
logic programming. We have not yet tried to study the implications of our system
on pattern matching and unification, but we plan to do so in the near future.

As for more foundational issues, we know that the Church Rosser theorem holds
for our calculus but we would like to work out the details. We have no doubt that
this is a straightforward process similar to the usual proof of Church Rosser. As for
the semantics of explicit substitution, and the models of our calculus, this too is an
area that we will investigate in the very near future.
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