
De Bruijn's syntax and redu
tional behaviour of �-terms:the typed 
ase�Fairouz Kamareddineyand Roel Bloo zAbstra
tIn this paper, we 
onsider the typed versions of the �-
al
ulus written in a notation whi
hhelps des
ribe 
anoni
al forms more elegantly than the 
lassi
al notation, and enables to divideterms into 
lasses a

ording to their redu
tional behaviour. In this notation, �-redu
tion 
anbe generalised from a relation on terms to one on equivalen
e 
lasses. This 
lass redu
tion
overs many known notions of generalised redu
tion. We extend the Barendregt 
ube with our
lass redu
tion and show that the subje
t redu
tion property fails but that this is not unique toour 
lass redu
tion. We show that other generalisations of redu
tion (su
h as the �-redu
tionof Regnier) also behave badly in typed versions of the �-
al
ulus. Nevertheless, solution isat hand for these generalised redu
tions by adopting the useful addition of de�nitions in the
ontexts of type derivations. We show that adding su
h de�nitions enables the extensions oftype systems with 
lass redu
tion and �-redu
tion to satisfy all the desirable properties of typesystems, in
luding subje
t redu
tion and strong normalisation. Our proposed typing relation`
 is the most general relation in the literature that satis�es all the desirable properties oftype systems. We show that 
lasses 
ontain all the desirable information related to a termwith respe
t to typing, strong normalisation, subje
t redu
tion, et
.Keywords: 
lass redu
tion, type theory, subje
t redu
tion, strong normalisation.1 Introdu
tionGeneralised redu
tion has re
eived mu
h attention in the literature in the past de
ade wherevarious uses and bene�ts of generalising redu
tion have been illustrated (
f. [16, 17, 12, 11, 18, 2,3, 14, 21, 20, 13, 10, 4, 9℄). In [5℄ we gave the most general form of redu
tion ;� whi
h on onehand is �ne grained, and on the other, works on 
lasses rather than terms. We showed that thisgeneral notion of 
lass redu
tion does indeed generalise existing ones.Yet, if su
h a redu
tion is to be useful in pra
ti
e (and espe
ially in 
omputation), we needto use it in type systems. In parti
ular, we need to show that indeed using ;� with type theorywould satisfy the basi
 requirements of a typed system. In parti
ular, the issues of safety andtermination are a priority. A safe type system must give all the intermediate (and �nal) values ofa program, the same type. Similarly, a type systems should not type non terminating programs.And indeed this is the 
ase if we extend simple type theory with ;� . But, simple types are easy.The real test is those useful powerful type systems su
h as dependent or polymorphi
 type theory.In this paper, we set out to provide useful type systems whi
h use our general 
lass redu
tion.Sin
e we are interested in the behaviour of 
lass redu
tion with all sorts of types (simple, poly-morphi
 and dependent), we take the 
ube of eight di�erent systems [1℄ as the basi
 framework.�This arti
le builds on and extends the results and proofs of [7℄ for the typed 
ase. The untyped 
ase 
an befound in [5℄. We are grateful for enlightening dis
ussions and useful feedba
k and 
omments re
eived from HenkBarendregt, Twan Laan, Rob Nederpelt and Joe Wells. An anonymous referee provided useful re
ommendation forwhi
h we are grateful.yS
hool of Mathemati
al and Computational S
ien
es, Heriot-Watt University, Ri

arton, Edinburgh EH14 4AS,S
otland, fairouz�ma
s.hw.a
.ukzMathemati
s and Computing S
ien
e, Te
hnis
he Universiteit Eindhoven, P.O.Box 513, 5600 MB Eindhoven,the Netherlands, 
.j.bloo�tue.nl 1



The initial step we followed was to simply add 
lass redu
tion to the 
ube. Alas, when extendingthe systems of the 
ube with ;�, we �nd that the subje
t redu
tion property (SR) whi
h statesthat if A;;� B then B has the same type as A, no longer holds for six of the systems of the 
ube,although it holds for the weaker systems �! and �!. This problem however 
an be solved by alsoextending the 
ube with de�nitions whi
h avoid the loss of information in the 
ontexts needed totype terms. In this way, subje
t redu
tion will hold for all the systems of the 
ube. De�nitionsare a useful me
hanism in manipulating 
ontexts and we see them already used in programminglanguages under the name let expressions. Hen
e, in this way, our extension with de�nitions and
lass redu
tion gives type systems whi
h are more useful for 
omputation. We extend the 
ubewith the new typing relation `
, the de�nition me
hanism and 
lass redu
tion ;� and show that`
 is the most general relation that satis�es all the desirable properties of type systems. We alsoshow that our notion of 
lasses 
ontains all the desirable information related to a term with respe
tto typing, strong normalisation, subje
t redu
tion, et
. The arti
le is divided as follows:� In Se
tion 2, we adapt the de�nitions of [5℄ needed to introdu
e our new typing relations.� In Se
tion 3, we illustrate that our redu
tion is not unique in losing subje
t redu
tionwhen mixed with powerful type systems. We extend the eight type systems of the 
ube withredu
tion 7!� modulo �-equivalen
e of [17℄ and show that, in general, subje
t redu
tion (SR)fails. [17℄ showed that �-quivalen
e enjoys desirable properties with respe
t to normalisationand the length of redu
tions. In [5℄, we showed that ;� subsumes redu
tion modulo �-equivalen
e 7!� . So, even a weaker redu
tion than ;� loses SR in the systems of the 
ube.We explain how SR 
an be restored to the 
ube with 7!� , from the restored 
ube with ;� .� In Se
tion 4 we extend the Barendregt 
ube with ;� and show that subje
t redu
tion holdsfor �! and �! but fails for the six other systems.� In Se
tion 5, in addition to ;� , we add de�nitions in 
ontexts of the 
ube. We show thatall the desirable properties in
luding SR and strong normalisation hold for all the systemsof the extended 
ube with ;� and de�nitions. Using 
lasses means that we 
annot use theusual methods for establishing SR. The vital point is that 
lasses preserve types and thatthe 
ube with de�nitions only enjoys SR. As for the proof of strong normalisation (SN), wetranslate typing judgements of the extended 
ube into the ordinary 
ube by removing thede�nitions from the 
ontexts and unfolding them in terms. In this way, SN of the extended
ube is a result of that of the ordinary 
ube.2 Adapting the results and notation of [5℄ for typesLet V be an in�nite 
olle
tion of variables over whi
h x; y; z; : : : range and let � 2 f�;�g. Theset of pseudo-expressions T (also 
alled terms) is de�ned by: T = � j2 j V j (T Æ)T j (T �V )T .We take A;B;C;D;E;M;N; a; b; : : : , resp. S; S1; S2 to range over T resp. f�;2g.We assume familiarity with the �-
al
ulus and notions like 
ompatibility and redu
tion (
f.[1℄). We use the item notation (
f. [8℄) where one writes the argument before the fun
tion soab be
omes (bÆ)a, and one writes �x:B :a as (B�x)a. This way, a term A is a sequen
e (possiblyempty) of �-items (B�x), �-items (B�x) and Æ-items (bÆ), followed by a variable 
alled theheart of A, notation ~(A). We use s1; s2; : : : to range over items and 
all b the body of theÆ-item (bÆ). A sequen
e of items is 
alled a segment. We use s; s1; s2; : : : to range over segmentsand write ; for the empty segment. If s � s1s2 : : : sn, we 
all the si's (for 1 � i � n) the mainitems of s; these si's are also the main items of sx. The weight of a segment s, weight(s), is thenumber of its main items. We de�ne weight(sx) to be weight(s). Terms have now spe
i�
 forms:Lemma 1 Every term has one of the three forms: 1. (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,2. (B�x)A, and 3. (A1Æ) � � � (AnÆ)(BÆ)(D�x)C, where n � 0.2



Well-balan
ed segments (w-b) are 
onstru
ted indu
tively from mat
hing Æ- and �-items:� ; is w-b, � if s is w-b then (AÆ)s(B�x) is w-b,� if s1, s2, . . . sn are w-b, then the 
on
atenation s1 s2; � � � sn is w-b.Let E � s1(AÆ)s2(B�y)s3x. We say that (AÆ) and (B�y) mat
h or are partners or part-nered if s2 is w-b. If s2 � ;, then (AÆ) and (B�y) are Æ�-pairs, else, they are Æ�-
ouples.Hen
e, we speak of Æ�-pairs/
ouples, Æ�-pairs/
ouples, and Æ�-pairs/
ouples. If an item s has nopartner, we say that s is ba
helor. In item notation, a �-redex is a Æ�-pair. Bound and freevariables and substitution are de�ned as usual. We write BV (A) and FV (A) to represent thebound and free variables of A respe
tively. We write A[x := B℄ to denote the term where all thefree o

urren
es of x in A have been repla
ed by B. We take terms to be equivalent up to variablerenaming and use � to denote synta
ti
al equality of terms. We assume the usual Barendregtvariable 
onvention (whi
h says that bound variables are always 
hosen distin
t from free variablesand that whenever ne
essary, variables are renamed to ensure this) (
f. [1℄). The next de�nitionis basi
 for this paper:De�nition 2 � A term is in 
anoni
al form if it has the form:(B1�x1) : : : (Bn�xn)(C1Æ)(D1�y1) : : : (CmÆ)(Dm�ym)(A1Æ) : : : (AlÆ)x.1� For r 2 f�; �; 
; pg, we de�ne !r as the 
ompatible 
losure of the rule (r)2:(�) (BÆ)(C�x)A !� A[x := B℄(�) (CÆ)(BÆ)(D�x)A !� (BÆ)(D�x)(CÆ)A(
) (BÆ)(D�x)(E�y)A !
 (E�y)(BÆ)(D�x)A(p) (A1Æ)(B1�y1)(A2Æ)(B2�y2)B !p (A2Æ)(B2�y2)(A1Æ)(B1�y1)Bif y1 =2 FV (A2) [ FV (B2)� We de�ne !�
 to be !� [ !
 and !�
p to be !� [ !
 [ !p.� We de�ne �-redu
tion !� as the smallest 
ompatible relation 
ontaining (�) and (
).� For a redu
tion relation !r where r 2 f�; �; 
; p; �
; �
p; �g, we write !!r for its re
exivetransitive 
losure and =r for its equivalen
e 
losure. A and B are �-equivalent if A =� B.� 7!� is the least 
ompatible relation generated by: A 7!� B i� 9C =� A su
h that C !� B.� 7!7!� is the re
exive transitive 
losure of 7!� and �=� its re
exive transitive symmetri
 
losure.� The 
lass [A℄ of terms that are semi redu
tionally equivalent to A, is fB j �(
(A)) =p�(
(B))g. We say that B is semi redu
tionally equivalent to A, and write B �equi A, i�B 2 [A℄.� One-step 
lass-redu
tion ;� is the least 
ompatible relation generated by:A;� B i� 9A0 2 [A℄ (i.e., A0 �equi A) 9B0 2 [B℄ (i.e., B0 �equi B) su
h that A0 !� B0.� ;;� is the re
exive transitive 
losure of;� and �� its re
exive transitive symmetri
 
losure.A is strongly normalizing with respe
t to ! (written SN!(A) or A 2 SN!(A)) i� every !-redu
tion path from A terminates. As usual, we use CR for Chur
h Rosser.Lemma 3 � !�;!
 ;=
 ;=�;=p(�equi(=�. Moreover, �equi = =�
p = =�
 = =�.� 7!�;;�(=�. Moreover, !� ( 7!� (;� and !!� ( 7!7!� (;;�. Also, �=� = �� = =�.� !�, !
 and !�
 are strongly normalising. Moreover, !�, !
, 7!� and ;� are CR.� If A;� B then for all A0 �equi A, for all B0 �equi B, A0 ;� B0.� Let !2 f!� ;;�g. If A 2 SN! and A0 2 [A℄ then A0 2 SN!. Moreover, SN;� = SN!� .1Note that, for 1 � p; q � m, 1 � i � n and 1 � j � l, Dp, Cq , Bi and Aj are not required to be 
anoni
alforms themselves, and that (Bi�xi) and (AjÆ) are ba
helor.2In (
), the Barendregt 
onvention on the right hand side ensures that the redu
tions are only allowed whenx =2 FV (E). Moreover, we keep to tradition and do not allow redu
tion to take pla
e for a Æ�-pair although [6, 15℄give good reasons why this tradition needs to 
hange and why �-redu
tion is useful.3



Table 1: Systems of the 
ubeSystem Set of (S1; S2)-rules System Set of (S1; S2)-rules�! (�; �) �! (�; �) (2;2)�2 (�; �) (2; �) �! (�; �) (2; �) (2;2)�P (�; �) (�;2) �P2 (�; �) (2; �) (�;2)�P! (�; �) (�;2) (2;2) �P! = �C (�; �) (2; �) (�;2) (2;2)3 The 
ube with the redu
tion modulo �-equivalen
e 7!�In this se
tion we extend the 
ube of [1℄ with �-redu
tion modulo �-equivalen
e, 7!� , and showthat subje
t redu
tion fails. First, we give the typing rules of the original 
ube.The systems of the 
ube are based on a the set of terms T and a set of rules R � f�;2g2. Theredu
tion relation of the 
ube is !� . We de�ne a 
ontext to be a sequen
e (possibly empty) of�-items. We use �;�0;�1; : : : to denote 
ontexts. We denote the empty 
ontext by <>.De�nition 4 (The typing rules of the 
ube in item notation)(axiom) <> ` � : 2(start) � ` A : S�(A�x) ` x : A if x is fresh(weak) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(
onv) � ` A : B � ` B0 : S B =� B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) 2 RA 
ontext or a term is 
alled legal with respe
t to a type system if it o

urs as su
h in atype-derivation in that system.Ea
h of the eight systems of the 
ube is obtained by taking the (S1; S2) rules from a subsetR of f(�; �); (�;2); (2; �); (2;2)g. The basi
 system is the one where (S1; S2) = (�; �) is the onlypossible 
hoi
e. All other systems have this version of the formation rules, plus one or more other
ombinations of (�;2), (2; �) and (2;2) for (S1; S2). Table 1 presents those eight systems.To introdu
e �-redu
tion modulo �-equivalen
e to the 
ube, we simply use 7!� instead of !� .This means that none of the typing rules 
hanges and that our extended 
ube of this subse
tionis exa
tly that of Barendregt in [1℄ with the only di�eren
e that we use 7!� instead of !� .The next two examples show that if our type derivation rules are those of De�nition 4 and ourredu
tion relation is 7!� instead of !� , then we lose the subje
t redu
tion property (SR) whi
hstates that if � ` A : B and A 7!7!� A0 then � ` A0 : B.Example 5 (With 7!�, SR fails in �2, �P2; �! and �C)Let � � (���)(��y0 ), A � (y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x and B � (�Æ)(���)(y0Æ)(��x)x. Then,� `�2 A : � and A 7!� B. Yet, � 6`�2 B : �. Even, � 6`�2 B : � for any � .This is be
ause (��x)x : (��x)� and y : � yet � and � are unrelated and hen
e we fail in �ring theappli
ation rule to �nd the type of (y0Æ)(��x)x. Looking 
loser however, one �nds that (�Æ)(���)4



is de�ning � to be �, yet no su
h information 
an be used to 
ombine (��x)� with �. De�nitionstake su
h information into a

ount, but de�nitions are not part of the 
ube. Finally note thatfailure of SR in �2, means its failure in �P2; �! and �C.Example 6 (With 7!�, SR fails in �P , �P2; �P! and �C)Let � � (���)(��t)((��q) � �C)((tÆ)C�A), A � (AÆ)(tÆ)(��x)((xÆ)C�y)(yÆ)((xÆ)C�Z )Z andB � (tÆ)(��x)(AÆ)((xÆ)C�Z )Z. Then, � `�P A : (tÆ)C and A 7!� B but � 6`�P B : � for any � ,sin
e as A : (tÆ)C; y : (xÆ)C; (tÆ)C 6= (xÆ)C.Here again the reason of failure is similar to the above example. At one stage, we need to mat
h(xÆ)C with (tÆ)C but this is not possible even though we do have the de�nition segment: (tÆ)(��x)whi
h de�nes x to be t. All this 
alls for the need to use these de�nitions. Finally note that failureof SR in �P , means its failure in �P2; �P! and �C.The above two examples show that SR fails in six systems of the 
ube when �-redu
tion modulo�-equivalen
e, 7!� , is used. However, SR does not fail for the other two systems �! and �!.Furthermore, SR 
an be re-established for all the eight systems by allowing de�nitions in the
ontext. We will not show this for this parti
ular extension, but instead, we show it for a moregeneral extension of the 
ube, that with 
lass redu
tion ;� rather than redu
tion modulo �-equivalen
e. In fa
t, sin
e 7!��;� and hen
e, as de�nitions restore subje
t redu
tion in the 
ubewith ;� (
f. Se
tion 4), they will also restore subje
t redu
tion in the 
ube with 7!� .4 The 
ube with 
lass redu
tion ;�Alas, when extending the systems of the 
ube with;� , we �nd that the subje
t redu
tion propertywhi
h states that if A;;� B then B has the same type as A, no longer holds for six of the systemsof the 
ube, although it holds for the systems �! and �!. This problem however 
an be solvedby also extending the 
ube with de�nitions whi
h avoid the loss of information in the 
ontextsneeded to type terms. In this way, subje
t redu
tion will hold for all the systems of the 
ube.In Se
tion 4.1 we extend the 
ube with 
lass redu
tion and show that that subje
t redu
tionfails for 6 systems of the 
ube with 
lass redu
tion. In Se
tion 4.2 we show that subje
t redu
tionholds for �! and �! with ;;� (without de�nitions). We show furthermore that in �! and �!with ;;�, redu
tionally equivalent terms have the same type in the sense that if � ` A : B thenfor all A0 2 [A℄, for all B0 2 [B℄, we have � ` A0 : B0 (see Theorem 20).4.1 Extending the 
ube with ;;�In this se
tion, we introdu
e 
lass-redu
tion to the 
ube of [1℄. This means that our redu
tionrelation now is not !� but ;� and that our extended 
ube of this subse
tion is exa
tly that ofBarendregt in [1℄ with the only di�eren
e that we use ;� instead of !�.The same two examples (Examples 5 and 6) given for 7!� show that if our type derivationrules are those of De�nition 4 and our redu
tion relation is ;;� instead of !!� , then we lose thesubje
t redu
tion property (SR) whi
h states that if � ` A : B and A;;� A0 then � ` A0 : B.Lemma 7 In the 
ube with 
lass redu
tion ;;�, we have:SR fails in �2, �P2; �! and �C and also in �P , �P2; �P! and �C.Proof: Examples 5 and 6 also hold for ;;�. 2The rest of this se
tion proves that subje
t redu
tion holds for �! and �!.Remark 8 Be
ause the extension of the 
ube in this se
tion with;;� does not involve any 
hangesto the syntax or typing rules of the 
ube of [1℄, we assume the same notational 
onvention of [1℄.In parti
ular, we take dom(�), sub
ontexts and � � � to have the usual meaning.The �rst three lemmas and 
orollary are exa
tly those of the 
ube of [1℄ be
ause ;;� does notplay any role in them. Only �� (whi
h is the same as =�) is involved.5



Lemma 9 (Thinning for ` and ;;�) Let � and � be legal 
ontexts su
h that � �0 �. Then� ` A : B ) � ` A : B.Proof: Indu
tion on the length of derivations � ` A : B. 2Lemma 10 (Generation Lemma for ` and ;;�)1. � ` x : C ) 9S1; S2 2 S 9B =� C[� ` B : S1 ^ (B�x) 20 � ^ � ` C : S2℄.2. � ` (A�x)B : C ) 9S1; S2 2 S [� ` A : S1 ^ �(A�x) ` B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ [C 6� S2 ) 9S[� ` C : S℄℄℄3. � ` (A�x)b : C ) 9S;B [� ` (A�x)B : S ^ �(A�x) ` b : B ^ C =� (A�x)B^C 6� (A�x)B ) 9S0 2 S[� ` C : S0℄℄.4. � ` (aÆ)F : C ) 9A;B; x[� ` F : (A�x)B ^ � ` a : A ^ C =� B[x := a℄^(B[x := a℄ 6� C ) 9S 2 S[� ` C : S℄)℄.Proof: Indu
tion on the derivation rules using thinning. 2Corollary 11 (Generation Corollary for ` and ;;�)1. Corre
tness of Types: If � ` A : B then 9S[B � S or � ` B : S℄.2. If � ` A : (B1�x)B2 then 9S[� ` (B1�x)B2 : S℄.3. If A is a �`-term, then A is 2, a �`-kind or a �-element.Lemma 12 (Substitution for ` and ;;�) If �(B�x)� ` C : D and � ` A : B, then ��[x :=A℄ ` C[x := A℄ : D[x := A℄.Proof: By indu
tion on the derivation rules, using the thinning lemma. 24.2 Subje
t redu
tion and preservation of types by 
lasses in �! and�!Sin
e ;� is de�ned on 
lasses instead of terms, we 
annot use the usual methods for establishingSubje
t Redu
tion. For this, we need to establish that 
lasses preserve types (Theorem 20).Subje
t Redu
tion will then be a 
orollary of the fa
t that 
lasses preserve types. We start witha de�nition:De�nition 13 (Context Redu
tion and equivalen
e in the 
ube with ` and ;;�)1. We de�ne � !r �0 for r 2 f�; 
; �
g by � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !r A0.We de�ne !!r on 
ontexts to be the re
exive transitive 
losure of !r.2. We de�ne � )�
 �0 by � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !!�
 A0. Note that on
ontexts, =�
 is the equivalen
e relation of )�
.3. We say that �0 2 [�℄ if �0 results from � by substituting some main items (C�x) of � by(C 0�x) where C 0 2 [C℄ . Note that �0 2 [�℄ i� � =�
 �0.In order to prove Theorem 20, whi
h works for 
lasses modulo =�
 , we will show Lemmas 15..18whi
h deal with �-redu
tion and 
-redu
tion. Lemma 14 is a help lemma (proved in the appendix).Item 1 simpli�es the proofs by indu
tion on the derivation rules sin
e we 
an work with B insteadof B[x := C℄ for some C (it is used in the proofs of Item 2 and Lemmas 15..18). Item 2 
ombinesvarious steps of Lemma 10 and is used in the proofs of Lemmas 16..18). Item 3 eliminates the 
asethat � might be a � when some typing 
ondition holds. As a result of item 3, in what follows,when a term (aÆ)(b�x)
 is typable, we write it as (aÆ)(b�x)
. Items 4 resp. 5 are needed in theproofs of Lemmas 17 and 18 resp. Lemma 17. Throughout, IH stands for Indu
tion Hypothesis.6



Lemma 141. Sin
e we only use rules (�; �) and (2;2), if � ` (A�x)B : S then x 62 FV (B).2. [Redex Generation℄ If � ` (AÆ)(B�x)C : D then�(B�x) ` C : D, � ` A : B and � ` (B�x)D : S for some sort S.3. If � ` (aÆ)(b�x)
 : A then � is �.4. [Inter
hange℄ If �(A�x)(B�y)� ` C : D and x 62 FV (B) then also �(B�y)(A�x)� ` C : D.5. If � ` A : e and e =� S for some sort S, then e � S.Lemmas 15..18 are the basi
 building blo
ks to proving Theorem 20. In these lemmas, 1 and 2 areproven simultaneously by a tedious indu
tion on the derivation of � ` A : B. See the appendix.Lemma 15 (One step SR for !� in the 
ube with ` and ;;�) Let � ` A : B.1. If A!� A0 then � ` A0 : B. 2. If �!� �0 then �0 ` A : B.Lemma 16 (One step SR for  � in the 
ube with ` and ;;�) Let � ` A : B.1. If A0 !� A then � ` A0 : B. 2. If �0 !� � then �0 ` A : B.Lemma 17 (One step SR for !
 in the 
ube with ` and ;;�) Let � ` A : B.1. If A!
 A0 then � ` A0 : B. 2. If �!
 �0 then �0 ` A : B.Lemma 18 (One step SR for  
 in the 
ube with ` and ;;�) Let � ` A : B.1. If A0 !
 A then � ` A0 : B. 2. If �0 !
 � then �0 ` A : B.Corollary 19 (SR for 
lasses, !!�
,   �
 in the 
ube with ` and ;;�) Let � ` A : B.1. If A!!�
 A0 then � ` A0 : B. 2. If A0 !!�
 A then � ` A0 : B.3. If �)�
 �0 then �0 ` A : B. 4. If �0 )�
 � then �0 ` A : B.5. If A0 2 [A℄ then � ` A0 : B. 6. If � ` A : B and �0 2 [�℄ then �0 ` A : B.Proof: Items 1 and 2 are by indu
tion on the length of the redu
tion !!�
 using Lemmas 15..18.Items 3 and 4 are by indu
tion on the derivation � ` A : B using 1 and 2. For 5, if A0 2 [A℄ thenA0 =�
 A by Proposition 3 and 9A00 where A0 !!�
 A00 and A !!�
 A00; by 1, � ` A00 : B (asA !!�
 A00 and � ` A : B) and hen
e by 2, � ` A0 : B. For 6, as �0 2 [�℄, there are main items(C1�x1); : : : ; (Cn�xn) of � (for n � 0) whi
h are repla
ed in �0 by (C 01�x1); : : : ; (C 0n�xn) whereC 0i 2 [Ci℄ and otherwise, � and �0 are the same. The proof is by indu
tion on n.� Case n = 0 nothing to prove as � � �0.� If n = 1 then assume �0 2 [�℄ is due to (C 0�x) 2 �0 and (C�x) 2 � where C 0 2 [C℄ andthis is the only di�eren
e between � and �0. Then as for 1. C 0 =�
 C and 9C 00 su
h thatC 0 !!�
 C 00 and C !!�
 C 00. Let �00 be the same as � but where (C�x) is repla
ed by(C 00�x). Then, � )�
 �00 and �0 )�
 �00. By Item 3, �00 ` A : B (be
ause � )�
 �00 and� ` A : B). Also, by Item 4, �0 ` A : B (be
ause �0 )�
 �00 and �00 ` A : B) and we aredone.� Assume the property holds for some n � 1 and take � and �0 whi
h di�er by n + 1 su
h(Ci�xi). Let �00 be �0 but where (C 0n+1�xn+1) is repla
ed by the original item (Cn+1�xn+1)of �. Hen
e �00 and � di�er only in n items. Hen
e, by IH �00 ` A : B. But �00 and �0 di�erby 1 item only and hen
e, again by IH, �0 ` A : B. 2Theorem 20 (Classes preserve types in the 
ube with ` and ;;�)� ` A : B () 8�0 2 [�℄;8A0 2 [A℄;8B0 2 [B℄; we have �0 ` A0 : B0.Proof: (=) is obvious. =)) By Corollary 19.6, �0 ` A : B and Corollary 19.5, �0 ` A0 : B. ByCorre
tness of Types (Corollary 11.1) B � 2 or �0 ` B : S for some sort S.� If B � 2 then as B0 2 [B℄, we also have B0 � 2 and hen
e �0 ` A0 : B0.7



� If �0 ` B : S, then as B0 2 [B℄ we have by Corollary 19.5, that �0 ` B0 : S. Now, as=�
�=�, we use (
onv) to get �0 ` A0 : B0. 2Now with Theorem 20, we 
an establish SR using ` with ;;�, via SR of ` with !!� .Corollary 21 (Subje
t Redu
tion for ` and ;;�)If � ` A : B and A;;� A0 then � ` A0 : B.Proof: We prove � ` A : B, A;� A0 =) � ` A0 : B. By de�nition of ;� , there are A1, A01 su
hthat A1 2 [A℄, A01 2 [A0℄ and A1 !� A01. By Theorem 20, � ` A1 : B. By subje
t redu
tion forthe usual !� we have � ` A01 : B. Again by Theorem 20, � ` A0 : B. 2Although SR fails for the six remaining systems of the 
ube with ` of De�nition 4 and;;�, strongnormalisation holds for all the systems of the 
ube with ` of De�nition 4 and ;;� . Instead ofproving this here, we move to the version that indeed satis�es SR and all other properties.5 Extending the 
ube with ;;� and de�nitionsIn this se
tion we add de�nitions to our extension of Se
tion 4 and show in that all the desirableproperties in
luding SR hold for all the systems of the extended 
ube with ;� and de�nitions.Looking ba
k at, for instan
e, Example 5, one noti
es that when redu
ing using ;� , theinformation that y0 has repla
ed y of type � is lost. All we know after the redu
tion is that y0has type �. But we need y0 of type � to be able to type the subterm (y0Æ)(��x)x of the redu
t.De�nitions enable us to have extra information in our 
ontexts su
h as \� and � 
an be identi�ed".We do this by writing in our 
ontext: (�Æ)(���) whi
h expresses that � is de�ned to be � andis of type �. Next, we give the notion of de�nitions and how they 
an be unfolded. A de�nitionidenti�es a variable with a whole term. The unfolding of the de�nition, undoes this identi�
ationand the variable will be repla
ed everywhere it o

urs free by the term it identi�es.De�nition 22 (de�nitions, unfolding)� If s is a well-balan
ed segment not 
ontaining Æ�-
ouples, then a segment (BÆ)s(C�x) o
-
urring in a 
ontext is 
alled a de�nition.� For s well-balan
ed segment, we de�ne the unfolding of s in A, jAjs, indu
tively as follows:jAj; � A, jAj(BÆ)s1(C�x) � jA[x := B℄js1 and jAjs1 s2 � jjAjs2 js1 . Note that substitutiontakes pla
e from right to left.Lemma 23 Let s be a well-balan
ed segment not 
ontaining main Æ�-
ouples.1. j(AÆ)A0js � (jAjsÆ)jA0js and jAjs =� sA.2. If none of the binding variables of s is free in A, then jAjs � A.3. If none of the binding variables of s is free in A, then for any segment s1,s1(AÆ)sB =� s1 s(AÆ)B.Proof: 1. and 2. are by indu
tion on weight(s).3. is now obvious as s1(AÆ)sB 3� s1(jAjsÆ)sB 2=� s1(jAjsÆ)jBjs 1� s1 s(AÆ)B. 2We now introdu
e some notions 
on
erning typing rules whi
h 
oin
ide with the usual ones whenwe do not allow de�nitions in the 
ontext (as is the 
ase in the 
ube). When de�nitions are presenthowever, the notions are more general. Let ` be a typing relation and let! be a redu
tion relationwhose re
exive transitive 
losure is !! and whose equivalen
e 
losure is =�.De�nition 24 (de
larations, pseudo
ontexts, �0, ;;�, de�nitional equality =def)1. A de
laration d is a �-item (A�x); we de�ne subj(d), pred(d) and d to be x, A and ; resp.2. For a de�nition d � (BÆ)s(A�x) let subj(d), pred(d), d and def(d) be x, A, s and B resp.3. We use d; d1; d2; : : : to range over de
larations and de�nitions.8



4. A pseudo
ontext � is a 
on
atenation of de
larations and de�nitions su
h that if (A�x) and(B�y) are di�erent main items of � then x 6� y. We range �;�;�0;�1; : : : over pseudo
on-texts.5. For � a pseudo
ontext, de�ne dom(�) = fx 2 V j (A�x) is a main �-item in � for some Ag,�-def = fs j s � (AÆ)s1(B�x) is a main segment of � where s1 is well-balan
ed g, �-de
l =fs j s is a ba
helor main �-item of �g. Note that dom(�) = fsubj(d) j d 2 �-de
l[�-defg.6. De�ne �0 between pseudo
ontexts as the least re
exive transitive relation satisfying:� �� �0 �(C�x)� if no �-item in � mat
hes a Æ-item in �� �d� �0 �d� if d is a de�nition� �s(A�x)� �0 �(DÆ)s(A�x)� if (A�x) is ba
helor in �s(A�x)� and s is well-balan
ed7. Redu
tion on pseudo
ontexts is de�ned by:� �(A!)�0 ;� �(B!)�0 if A;;� B, for ! 2 fÆg [ f�v : v 2 V g.� �(A!)�0 !� �(B!)�0 if A!!� B, for ! 2 fÆg [ f�v : v 2 V g.� ;;� (resp. !!�) on 
ontexts is the re
exive transitive 
losure of ;� (resp. !�).8. We de�ne the binary relation � ` � =def � to be the equivalen
e relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T su
h that B arises from A by substituting one parti
ularo

urren
e of subj(d) in A by def(d), then � ` A =def B.De�nition 25 (Statement, judgement, �)1. A statement is of the form A : B, A and B are 
alled the subje
t and the predi
ate resp.2. For pseudo
ontext � and statement A : B, we 
all � ` A : B a judgement, meaning A : B isderivable from the 
ontext �, and we write � ` A : B : C to mean � ` A : B ^ � ` B : C.3. For pseudo
ontext � and de�nition/de
laration d, we say that � invites d, notation � � d,i�� �d is a pseudo
ontext, � �d ` pred(d) : S for some sort S,3 and� if d is a de�nition then �d ` def(d) : pred(d) and FV (def(d)) � dom(�).4. For de
larations/de�nitions d; d1; : : : ; dn, de�ne � ` d and � ` d1 � � � dn simultaneously by:� If d is a de�nition: � ` d i� � ` subj(d) : pred(d)^ � ` def(d) : pred(d)^ � ` d^� `subj(d) =def def(d). If d is a de
laration: � ` d i� � ` subj(d) : pred(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.5. A is �`-term if 9B[� ` A : B or � ` B : A℄. �`-terms = fA j 9B[� ` A : B _ � ` B : A℄g.A is 
alled legal if 9�[A 2 �`-terms℄. � is 
alled legal if 9A;B su
h that � ` A : B.6. We take �`-kinds = fA j � ` A : 2g and �`-types = fA 2 T j � ` A : �g.7. A is a �-element if 9B, S[� ` A : B and � ` B : S℄.Now we will in the de�nition below present the rules of De�nition 4 di�erently. Note that inDe�nition 26, if one takes d to be a meta-variable for de
larations only, =def the same as =�(whi
h is independent of `) and the redu
tion relation as!� , then one gets the known 
ube of [1℄given in De�nition 4. We invite the reader to 
he
k this.3Note that binding variables in d may o

ur free in pred(d) but not in def(d) if � � d.9



Table 2: De�nitions solve subje
t redu
tion(���)(��y0) `
 y0 : � : � : 2(���)(��y0)(�Æ)(���) `
 y0 : �; � : � (weakening resp. start)(���)(��y0)(�Æ)(���) `
 � =def � (use the de�nition in the 
ontext)(���)(��y0)(�Æ)(���) `
 y0 : � (
onversion)(���)(��y0)(�Æ)(���)(y0Æ)(��x) `
 x : � (start)(���)(��y0) `
 (�Æ)(���)(y0Æ)(��x)x : �[x := y℄[� := �℄ � � (de�nition rule)De�nition 26 (Axioms and rules of the 
ube with the � notation)(axiom) <> ` � : 2(start) � � d�d ` subj(d) : pred(d)(weak) � � d �d ` D : E�d ` D : E(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B if (A�x) is ba
helor in �(A�x)(
onv) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a rule and (A�x) is ba
helor in �(A�x)If we did not use the � notation, we would have needed for the 
ube with de�nitions, two rules for(start) and two rules for (weak) as follows (in (start-def) and (weak-def), take d � (BÆ)d(A�x)):(start-de
) � ` A : S�(A�x) ` x : A if x is fresh(start-def) �d ` A : S �d ` B : A�(BÆ)d(A�x) ` x : A if �d is a pseudo
ontext, FV (B) � dom(�)(weak-de
) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(weak-def) �d ` A : S �d ` B : A �d ` D : E�(BÆ)d(A�x) ` D : E if �d is a pseudo
ontext, FV (B) � dom(�)In order to solve the SR problem for the six systems of the 
ube, we extend the 
ube with de�ni-tions, ;;� and equivalen
e 
lasses modulo =�
 . Contexts now have de
larations and de�nitions.De�nition 27 (Axioms and rules of the 
ube with both ;;� and de�nitions) The typingrules `
 are exa
tly those of ` of De�nition 26 but with the addition of the de�nition rule:(def rule) �d `
 C : D� `
 dC : jDjd if d is a de�nitionIn this new system, the problem of subje
t redu
tion is solved, and all the other desirable propertieshold too. The reason that subje
t redu
tion holds now whereas it did not hold in Examples 5and 6 
an be intuitively seen by showing that the 
ounterexample given in Example 5 no longerholds. Table 2 shows how the redu
t of Example 5 
an now be typed.10



From the point of view of eÆ
ien
y, it may seem unsatisfa
tory that in the (def rule) de�nitionsare being unfolded in D, sin
e this will usually mean a size explosion of the predi
ate. However,the unfolding is not ne
essary for non-topsorts (i.e. for D 6� 2) as the following lemma shows:Lemma 28 The following rule is a derived rule:(derived def rule) �d `
 C : D �d `
 D : S� `
 dC : dD if d is a de�nitionProof: If �d `
 C : D then by the (def rule), � `
 dC : jDjd; if �d `
 D : S then by the (def rule)� `
 dD : S. Now by 
onversion � `
 dC : dD sin
e � `
 dD =def jDjd. 2If D is a sort then of 
ourse unfolding d in D is not ineÆ
ient sin
e d will disappear.Due to the possibility of using the (def rule) to type a redex, by using the (derived def rule),in some 
ases it is even possible to 
ir
umvent a size explosion: suppose we want to derive in �Ca type for the term (BÆ)(���)(��x)((��y)��f )(xÆ)f .In �C without de�nions, we will have to derive �rst the type (���)(��x)((��y)��f )� for thesubterm (���)(��x)((��x)��f )(xÆ)f , and by the appli
ation rule we will �nally derive the type(B�x)((B�y)B�f )B. Note that due to the last applied appli
ation rule the term B has been
opied four times, whi
h 
ould make the resulting type very large.Using our type system extended with de�nitions however, we would �rst derive the type(��x)((��y)��f )� for the term (��x)((��y)��f )(xÆ)f , and then by the derived de�nition rulewe would derive the type (BÆ)(���)(��x)((��y)��f )� and avoid the substitution of B for �.This is a further eviden
e for the advantage of using de�nitions.5.1 Properties of the 
ube with ;;� and de�nitionsLemma 29 (Free Variable Lemma for `
 and ;;�) Assume � `
 B : C. The followingholds:1. If d and d0 are two di�erent elements of �-de
l [ �-def, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. If � = �1s1�2 then FV (s1) � dom(�1).Proof: All by indu
tion on the derivation of � `
 B : C. 2Lemma 30 (Start Lemma for `
 and ;;�)Let � be a legal 
ontext. Then � `
 � : 2 and 8d 2 �[� `
 d℄.Proof: � is legal ) 9B;C[� `
 B : C℄; use indu
tion on the derivation � `
 B : C. 2Lemma 31 (Transitivity Lemma for `
 and ;;�)Let � and � be legal 
ontexts and de�ne � `
 � as usual. Then we have:[� `
 � ^� `
 A : B℄) � `
 A : B.Proof: Indu
tion on the derivation � `
 A : B. By the 
ompatibility of � `
 C =def D it followsthat if d 2 � and D arises from C by substituting one parti
ular free o

urren
e of subj(d) in Cby def(d), then � `
 C =def D and hen
e � `
 C =def D implies � `
 C =def D. 2By the next lemma, nested de�nitions like (AÆ)(BÆ)(C�x)(D�y) work as linear de�nitions like(BÆ)(C�x)(AÆ)(D�y). Moreover, abstra
tions 
an be inter
hanged with de�nitions.Lemma 32 Let d be a de�nition and note that subj(d) 62 FV (d).1. If �d� `
 C =def D then �d(def(d)Æ)(pred(d)�subj(d))� `
 C =def D and�(def(d)Æ)(pred(d)�subj(d))d� `
 C =def D.2. If x =2 FV (d) then �(A�x)d� `
 C =def D i� �d(A�x)� `
 C =def D.3. Let d0 be a de�nition. If �d� � d0 then �d(def(d)Æ)(pred(d)�subj(d))� � d0and �(def(d)Æ)(pred(d)�subj(d))d� � d0. 11



4. If �d� `
 C : D then �d(def(d)Æ)(pred(d)�subj(d))� `
 C : D and�(def(d)Æ)(pred(d)�subj(d))d� `
 C : D.5. Let d0 be a de�nition. If x =2 FV (d) then �(A�x)d� � d0 i� �d(A�x)� � d0.6. If x =2 FV (d) then �(A�x)d� `
 C : D i� �d(A�x)� `
 C : D.Proof: Note that (A�x) needs not be ba
helor. 1. & 2. are by indu
tion on the generation of =def.3. & 4. are proven simultaneously by indu
tion on the derivation �d� `
 C : D. 5. & 6. are splitinto impli
ations and proven simultaneously by indu
tion on the derivation (�(A�x)d� `
 C : Dfor one impli
ation and �d(A�x)� `
 C : D for the other). 3 . . . 6. need 1. & 2. for 
onversion.2 The following three lemmas and 
orollary are familiar from [1℄, but take de�nitions into a

ount.Lemma 33 (Thinning for `
 and ;;�)1. If �1�2 `
 A =def B, �1��2 is a legal 
ontext, then �1��2 `
 A =def B.2. If � and � are legal 
ontexts su
h that � �0 � and � `
 A : B, then � `
 A : B.Proof: 1. is by indu
tion on the derivation �1�2 `
 A =def B. 2. is done by showing:� If �� `
 A : B, � `
 C : S, x is fresh, and no �-item in � is partnered by a Æ-item in �,then also �(C�x)� `
 A : B. By indu
tion on the derivation �� `
 A : B using 1. for
onversion.� If �s� `
 A : B, �s `
 C : D : S, FV (C) � dom(�), x is fresh, s is well-balan
ed,then also �(CÆ)s(D�x)� `
 A : B. We show this by indu
tion on �s� `
 A : B.For (start) for instan
e where �(AÆ)s(B�y) `
 y : A 
omes from �s `
 A : B : S, yfresh and FV (A) � dom(�), then �(CÆ)s(D�x) `
 A : B : S by IH so again by (start),�(CÆ)(AÆ)s(B�y)(D�x) `
 x : A.� If �s(A�x)� `
 B : C; (A�x) ba
helor, s well-balan
ed, �s `
 D : A, FV (D) � dom(�, then�(DÆ)s(A�x)� `
 B : C. We show this by indu
tion on �s(A�x)� `
 B : C. 2Lemma 34 (Generation Lemma for `
 and ;;�)1. If � `
 x : A then for some B, S: (B�x) 2 �, � `
 B : S, � `
 A =def B and � `
 A : S0for some S0.2. If � `
 (A�x)B : C then for some D, S: �(A�x) `
 B : D, � `
 (A�x)D : S, � `
(A�x)D =def C and if (A�x)D 6� C then � `
 C : S0 for a sort S0.3. If � `
 (A�x)B : C then for some S1; S2: � `
 A : S1, � `
 B : S2, (S1; S2) is a rule,� `
 C =def S2 and if S2 6� C then � `
 C : S for some S.4. If � `
 (AÆ)B : C, (AÆ) ba
helor in B , then for some D;E, x: � `
 A : D, � `
 B :(D�x)E, � `
 E[x := A℄ =def C and if E[x := A℄ 6� C then � `
 C : S for some sort S.5. If � `
 sA : B, then �s `
 A : B for well balan
ed s.Proof: 1., 2., 3. and 4. follow by a tedious but straightforward indu
tion on the derivations (useThinning Lemma 33). As to 5., use indu
tion on weight(s). 2Lemma 35 (Substitution Lemma for `
 and ;;�) Let d be a de�nition.1. If �d� `
 A =def B, A and B are �d�-legal terms, then�d�[subj(d) := def(d)℄ `
 A[subj(d) := def(d)℄ =def B[subj(d) := def(d)℄.2. If B is a �d-legal term, then �d `
 B =def jBjd.12



3. If �(A�x)� `
 B : C, � `
 D : A and (A�x) ba
helor in �(A�x)� then ��[x := D℄ `
B[x := D℄ : C[x := D℄.4. If �(DÆ)s(A�x)� `
 B : C and s well-balan
ed then �s�[x := D℄ `
 B[x := D℄ : C[x := D℄.5. If �d� `
 C : D, then �j�jd `
 jCjd : jDjd.Proof: 1. Indu
tion on the derivation rules of =def. 2. Indu
tion on the stru
ture of B. 3. and 4.Indu
tion on the derivation rules, using 1., 2. and Lemma 33. Finally, 5. is a 
orollary of 3. 2Corollary 36 (Corre
tness of Types for `
 and ;;�)If � `
 A : B then B � 2 or � `
 B : S for some sort S.Proof: Indu
tion on the derivation rules. The interesting rules are appli
ation and de�nition:� Case � `
 dA : jBjd results from �d `
 A : B, then by IH B � 2 or �d `
 B : S for some S.In the �rst 
ase jBjd � 2, in the se
ond 
ase by the Substitution Lemma � `
 jBjd : jSjd � S.� Case � `
 (aÆ)F : B[x := a℄ results from � `
 F : (A�x)B, � `
 a : A, then by IH� `
 (A�x)B : S for some S and hen
e by Generation �(A�x) `
 B : S. Then by Lemma 33�(aÆ)(A�x) `
 B : S, so by the de�nition rule � `
 (aÆ)(A�x)B : S[x := a℄ � S. 25.2 Subje
t redu
tion and preservation of types by 
lasses for `
 and;;�Similarly to our earlier extension of the 
ube with 
lass redu
tion (` and ;;�), we 
annot usethe usual methods for establishing Subje
t Redu
tion for `
 and ;;� . For this, we need toestablish that 
lasses preserve types (Theorem 45) and that Subje
t Redu
tion holds for `
 and!!� (Theorem 37). Subje
t Redu
tion for `
 and ;;� will then be a 
orollary of Theorems 37and 45.Theorem 37 (Subje
t Redu
tion for `
 and !!�)If � `
 A : B and A!!� A0 then � `
 A0 : B.Proof: We show by simultaneous indu
tion on the derivation rules that:1. If � `
 A : B and �!� �0 then �0 `
 A : B and2. If � `
 A : B and A!� A0 then � `
 A0 : Busing Lemmas 34.5 and 35 when redu
tion is at the root. 2Similarly to Theorem 20, in order to prove Theorem 45 we need to establish four lemmas whi
hwill be the basi
 blo
ks for the proof of Theorem 45. We start with a de�nition:De�nition 38 (Context Redu
tion and equivalen
e for the 
ube with `
 and ;;�)1. Let r 2 f�; 
; �
g.� We say �!r �0 if � � �1s�2, �0 � �1s0�2 where� Either s � (A�x), s0 � (A0�x) and A!r A0 or � s is well-balan
ed and s!r s0.� We say that �)r �0 if � � �1s�2 and �0 � �1s0�2 where� Either s � (A�x), s0 � (A0�x) and A!!r A0 or � s is well-balan
ed and s!!r s0.� We de�ne !!r (resp. ))r) as the re
exive transitive 
losure of !r (resp. )r).It is easy to show that on 
ontexts, the equivalen
e relation based on ))�
 is =�
.2. We say that �0 2 [�℄ i� � =�
 �0.44Note that this implies that �0 and � are the same ex
ept that both items below hold:� There are d1 : : : dn (n � 0) de
larations/de�nitions in � whi
h are repla
ed in �0 by de
larations/de�nitionsd01 : : : d0n su
h that d0i 2 [di℄.� There are main well-balan
ed segments s1 : : : sn (n � 0) in � whi
h are repla
ed in �0 by main well-balan
edsegments s10 : : : sn0 su
h that si0 2 [sn℄.Note here that we are treating 
ontexts like terms. If you have any problem with this, use any sort S say, and write�S =�
 �0S. 13



The following lemma will be used in the proofs of Lemmas 40. . . 43.Lemma 391. If B 2 [A℄ then FV (A) = FV (B).2. If B 2 [A℄ and A doesn't 
ontain partnered �-items then B doesn't 
ontain partnered �-items.3. For well balan
ed segments d; d0, if d =�
 d0 then jCjd � jCjd0 .Proof: 1. Indu
tion on the stru
ture of A. 2. Indu
tion on the number of symbols in A. 3. Dire
t
onsequen
e of: A[x := B℄[y := C℄ � A[y := C℄[x := B℄ if y 62 FV (C) and x 62 FV (B). 2Here are now the four lemmas whi
h form the basi
 blo
ks for the proof of Theorem 45. As forLemmas 15. . . 18, the proof of these lemmas is by a tedious simultaneous indu
tion on the lengthof the derivation, distinguishing 
ases a

ording to the last rule in 1 and 2. See the appendix.Lemma 40 (One step SR for !� in the 
ube with `
 and ;;�)1. Let � `
 A : B. a) If A!� A0 then � `
 A0 : B. b) If �!� �0 then �0 `
 A : B.2. If � � d and �!� �0 then �0 � d.3. If � � d and d!� d0 then either � � d0 or (there exists s; d00 su
h thatd0 � sd00; s well balan
ed, d00 is a de�nition and �s � d00).Lemma 41 (One step SR for  � in the 
ube with `
 and ;;�)1. Let � `
 A : B. a) If A0 !� A then � `
 A0 : B. b) If �0 !� � then �0 `
 A : B.2. Let � � d. a) If �0 !� � then �0 � d. b) If d0 !� d then � � d0.Lemma 42 (One step SR for !
 in the 
ube with `
 and ;;�)1. Let � `
 A : B. a) If A!
 A0 then � `
 A0 : B. b) If �!
 �0 then �0 `
 A : B.2. If � � d and �!
 �0 then �0 � d.3. If � � d and d !
 d0 then there exists s; d00 su
h that d0 � d00s, s is well balan
ed, d00 is ade�nition and � � d00.Lemma 43 (One step SR for  
 in the 
ube with `
 and ;;�)1. Let � `
 A : B. a) If A0 !
 A then � `
 A0 : B. b) If �0 !
 � then �0 `
 A : B.2. Let � � d a) If �0 !
 � then �0 � d. b) If d0 !
 d then � � d0.Corollary 44 (SR for 
lasses, !!�
,   �
 in the 
ube with `
 and ;;�) Let � `
 A : B.1. If A!!�
 A0 then � `
 A0 : B. 2. If A0 !!�
 A then � `
 A0 : B.3. If �))�
 �0 then �0 `
 A : B. 4. If �0 ))�
 � then �0 `
 A : B.5. If A0 2 [A℄ then � `
 A0 : B. 6. If �0 2 [�℄ then �0 `
 A : B.Proof: Items 1 and 2 are by indu
tion on on the length of the redu
tion !!�
 using Lem-mas 40. . . 43. Item 3: We only show it for )�
 be
ause the proof for ))�
 is by indu
tion on thelength of ))�
 . If � )�
 �0 
omes from (C�x) !!�
 (C 0�x) then the proof is by indu
tion onthe length of the derivation (C�x) !!�
 (C 0�x) using Lemmas 40..43. If � )�
 �0 
omes froms !!�
 s0 then similar. Item 4 is similar to Item 3. Item 5: Let A0 2 [A℄. Then A0 =�
 A byProposition 3 and hen
e 9A00 su
h that A0 !!�
 A00 and A!!�
 A00. By 1, � `
 A00 : B (be
auseA !!�
 A00 and � `
 A : B). By 2, � `
 A0 : B (be
ause A0 !!�
 A00 and � `
 A00 : B). Item 6:As �0 2 [�℄ then �0 =�
 � and hen
e there is �00 su
h that �0 ))�
 �00 and � ))�
 �00. Now useitems 3 and 4 to derive that �0 `
 A : B. 214



Theorem 45 (Classes preserve types in the 
ube with `
 and ;;�)� `
 A : B () 8�0 2 [�℄;8A0 2 [A℄;8B0 2 [B℄ we have �0 `
 A0 : B0.Proof: (=) is obvious. =)) By Corollary 44.6, �0 ` A : B and by Corollary 44.5, �0 ` A0 : B.By Corollary 36, B � 2 or �0 ` B : S for some sort S.� If B � 2 then as B0 2 [B℄, we also have B0 � 2 and hen
e �0 ` A0 : B0.� If �0 ` B : S, then as B0 2 [B℄ we have by Corollary 44.5, that �0 ` B0 : S. Now, as=�
�=�, we use (
onv) to get �0 ` A0 : B0. 2Here is now the proof of SR using `
 and ;;� , via the SR of `
 and !!� .Corollary 46 (Subje
t Redu
tion for `
 and ;;�)If � `
 A : B and A;;� A0 then � `
 A0 : B.Proof: We only prove � `
 A : B, A ;� A0 =) � `
 A0 : B. By de�nition of ;� , there areA1, A01 su
h that A1 2 [A℄, A01 2 [A0℄ and A1 !� A01. By Theorem 45, � `
 A1 : B. By subje
tredu
tion for `
 and !� (Theorem 37), � `
 A01 : B. Again by Theorem 45, � `
 A0 : B. 2Lemma 47 (Uni
ity of Types for `
 and ;;�)1. If � `
 A : B and � `
 A : B0 then � `
 B =def B02. If � `
 A : B and � `
 A0 : B0 and A =� A0 then � `
 B =def B0Proof: 1. By indu
tion on the stru
ture of A using the Generation Lemma. 2. By Chur
h-Rosserand Subje
t Redu
tion using 1. 2Remark 48 We didn't prove the property � `
 B : S, � `
 A : B0, B =� B0 ) � `
 B0 : S.It seems diÆ
ult to prove be
ause if � `
 B0 : S0 then by Uni
ity of Types � `
 S =def S0 andit is un
lear whether S � S0. Also, it would be interesting whether � `
 A : B, � `
 A0 : B0,� `
 A =def A0 implies � `
 B =def B0, but to prove this we fa
e similar problems. We 
laim thatone 
an prove it by showing �rst that � `
 A : B implies � `
 jAj� : jBj�, where jAj� means thatall de�nitions in � are unfolded in A.Fa
t 49 Subtyping does not hold for `
. Consider the following derivable judgement:(���) `
 (�Æ)(���)(��y)(yÆ)(��z)z : (��y)�The subterm (���)(��y)(yÆ)(��z)z is not typable: suppose � `
 (���)(��y)(yÆ)(��z)z : A, thenby the Generation Lemma, �0 `
 z : �0 where �0 � �(���)(��y)(yÆ)(��z) and �0 satis�es �0 `
� =def �0 and �0 `
 �0 : S.Sin
e � 
annot 
ontain ba
helor Æ-items, we know that (���) is not partnered in �0, hen
e�0 6`
 � =def �. But sin
e (yÆ)(��z) 2 �0-def we know that �(���)(��y) `
 y : � : S, also�(���)(��y) `
 y : � so by Uni
ity of Types, �(���)(��y) `
 � =def �, 
ontradi
tion.The reason for failure of subtyping is that when we typed the term (�Æ)(���)(��y)(yÆ)(��z)z,we used the 
ontext (���)(�Æ)(���) to type (��y)(yÆ)(��z)z. In this 
ontext, � is de�ned to be�. Now, to type (���)(��y)(yÆ)(��z)z, the de�nition (�Æ)(���) 
annot be used. Hen
e, we don'thave all the information ne
essary to derive the type of (���)(��y)(yÆ)(��z)z. We do howeverhave a partial result 
on
erning subtyping:Lemma 50 (Restri
ted Subtyping in the 
ube with `
 and ;;�) If � `
 A : B, A0 is asubterm of A su
h that all ba
helor items in A0 are also ba
helor in A, then A0 is legal.Proof: We prove by indu
tion on the derivations: if A0 is a subterm of � or A su
h that allba
helor items in A0 are also ba
helor items in � respe
tively A, then A0 is legal. Note that inthe 
ase of the (def rule) subterms s2C where d � s1 s2 and s1 is not the empty segment, do notsatisfy the restri
tions, sin
e at least one item of s2 is ba
helor in s2C but partnered in dC. 2Subterms satisfying the ba
helor restri
tion as in Lemma 50, seem to be more important thanthose not satisfying it. The reason for this is that the latter terms have an extra abstra
tion(the newly ba
helor �-item) and hen
e are �-types whi
h makes them more involved, whereas thesubterm property is useful be
ause it tells something about less involved terms.15



5.3 Strong Normalisation of the 
ube with ;;� and de�nitionsFinally, we establish strong normalisation for the 
ube extended with de�nitions and 
lass-redu
tion.The absen
e of a stepwise de�nition unfolding redu
tion (in 
ontrast to the work on de�nitionsto the �-
ube in [19℄) makes it possible to base the proof on a translation to the 
ube withoutde�nitions and 
lass-redu
tion. This way, we avoid the 
ompli
ations [19℄ meets. We still needstrong normalisation of �C in order to prove strong normalisation for all systems of the 
ubeextended with de�nitions and 
lass-redu
tion, but this is a weaker requirement than that of [19℄.We start by de�ning the translation of judgements in the extended 
ube. In 
ontexts, de�nitionsmust be removed. In terms and types, de�nitions from the 
ontext must be unfolded similar tode�nition unfolding in De�nition 22.De�nition 51 For 
ontexts �, jj�jj is de�ned indu
tively byjj�(A�x)jj � jj�jj(A�x), jj�djj � jj�jj.For terms D and 
ontexts �, jjDjj� is de�ned indu
tively byjjDjj�(A�x) � jjDjj�, jjDjj�(BÆ)s(A�x) � jjD[x := B℄jj�s.We �rst prove some auxiliary lemmas.Lemma 52 For all terms A;B and 
ontext � we have jjB[x := A℄jj� � jjBjj�[x := jjAjj�℄.Proof: Indu
tion on the length of � using the substitution lemma whi
h says that A[x := B℄[y :=C℄ � A[y := C℄[x := B[y := C℄℄. 2Lemma 53 For all terms B;B0 and 
ontext �, if � `
 B =def B0 then jjBjj� =� jjB0jj�.Proof: Indu
tion on the length of �. 2Lemma 54 If � `�C C[x := B℄ : D, and � `�C B : A then also �; x : A `�C C : D.Proof: Tedious indu
tion on the stru
ture of C. 2Lemma 55 If A[x := b℄ 2 SN!� then also A 2 SN!� .Proof: By 
ontraposition. Suppose A =2 SN!� , say A!� A1 !� A2 !� A3 !� � � � is an in�niteredu
tion. Then also A[x := B℄ !� A1[x := B℄ !� A2[x := B℄ !� � � � , so A[x := B℄ =2 SN!� .2 Now we prove that we have a translation from derivable `
-judgements to derivable judgementsin ordinary �C. We need the strong type system �C sin
e redexes in terms as a result of the (defrule) 
an have arbitrary abstra
tions.Theorem 56 For all terms A;B and 
ontexts �, if � `
 A : B then jj�jj `�C jjAjj� : jjBjj�.Proof: Indu
tion on the derivation of � `
 A : B. We 
onsider two 
ases.(app) � `
 (aÆ)F : B[x := a℄ from � `
 F : (A�x)B and � `
 a : A.By IH we know that jj�jj `�C jjF jj� : jj(A�x)Bjj� and jj�jj `�C jjajj� : jjAjj�.Note that jj(A�x)Bjj� � (jjAjj��x)jjBjj� sin
e by the variable 
onvention, x =2 dom(�).Hen
e by (app) in �C we get jj�jj `�C (jjajj�Æ)jjF jj� : jjBjj�[x := jjajj�℄. Now we have(jjajj�Æ)jjF jj� � jj(aÆ)F jj� and jjBjj�[x := jjajj�℄ � jjB[x := a℄jj� by Lemma 52.(def rule) � `
 dC : jjDjjd as a 
onsequen
e of �d `
 C : D. By IH we have jj�djj `�C jjCjj�d : jjDjj�d.We show by indu
tion on the length of d that now j�j `�C jjdCjj� : jjjDjdjj�.Suppose d is not empty, say d � (BÆ)d(A�x). First note that jjjDjdjj� � jjDjj�d, jj�djj �jj�djj (� jj�jj) and that jjdCjj� � jjC[x := B℄jj�d � jjCjj�d[x := jjBjj�d℄.16



Sin
e �d is `
-legal we have �d `
 B : A so by IH we have jj�djj `�C jjBjj�d : jjAjj�d. Thenby Lemma 54 we have jj�djj; x : jjAjj�d `�C jjCjj�d : jjDjj�d, so by the (abs) rule (sin
ewe are in �C the ne
essary formation is allowed) we have jj�djj `�C (jjAjj�d�x)jjCjj�d :(jjAjj�d�x)jjDjj�d, whi
h is equivalent to jj�djj `�C jj(A�x)Cjj�d : (jjAjj�d�x)jjDjj�d. Notethat x =2 FV (jjDjj�d). Now by the se
ond IH we get jj�jj `�C jjd(A�x)Cjj� : (jjAjj�d�x)jjDjj�d,and sin
e jjBjj�d � jjBjj�, we also have jj�jj `�C jjBjj� : jjAjj�d. Therefore by the (app)rule, jj�jj `�C (jjBjj�Æ)jjd(A�x)Cjj� : jjDjj�d whi
h is jj�jj `�C jjdCjj� : jjDjj�d. 2Now we 
on
lude our list of properties of the 
ube with `
 and ;;�.Corollary 57 (Strong Normalisation for `
 and ;;�) If � `
 A : B then A 2 SN;� .Proof: Suppose � `
 A : B. By Theorem 56, jj�jj `�C jjAjj� : jjBjj� and sin
e �C is stronglynormalising, jjAjj� 2 SN!� . Now jjAjj� � A[x1 := A1℄ � � � [xn := An℄ for some n; x1; : : : ; xn andterms A1; : : : ; An. Therefore, by Lemma 55, also A 2 SN!� . Hen
e, by Lemma 3, A 2 SN;� .26 Con
lusionIn this paper, we extended the 
ube of eight type systems with 
lass redu
tion and showed thatsubje
t redu
tion fails for six of the eight extended systems. We then established that subje
tredu
tion 
an be regained by adding de�nitions. The importan
e of de�nitions (also known as\let expressions") is witnessed by their extensive use in programming languages and theoremprovers. Intuitively, de�nitions repair the problem of subje
t redu
tion be
ause they save the typeinformation that otherwise would have been lost as a result of redu
tion.Our typing relation `
 is the most general relation so far in the literature that satis�es all thedesirable properties of type systems and whi
h we have shown to be more general than all therest. We de�ned a notion of 
lasses of terms whi
h 
ontain all the desirable information relatedto a term with respe
t to normalisation, subje
t redu
tion, et
., and we showed that this notionis more general than any 
lassi�
ation of terms that exists in the literature. We showed that ifA0 2 [A℄ then A0 and A have the same normalisation behaviour and that if � `
 A : B then for any�0 2 [�℄, for any A0 2 A and for any B0 2 B, �0 `
 A0 : B0. We believe that our type system basedon 
lasses is a non-trivial extension of the usual typing relations and that it deserves attention.Referen
es[1℄ H.P. Barendregt. �-
al
uli with types. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook ofLogi
 in Computer S
ien
e, volume II, pages 118{310. Oxford University Press, 1992.[2℄ Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. In Amr Sabry, editor, Pro
eedings ofthe Third ACM SIGPLAN Workshop on Continuations, Te
hni
al report 545, Computer S
ien
e Department,Indiana University, pages 35{39, London, England, January 2001. Also available as the te
hni
al report BRICSRS-00-35.[3℄ P. de Groote. The 
onservation theorem revisited. In International Conferen
e on Typed Lambda Cal
uli andAppli
ations, LNCS, volume 664. Springer-Verlag, 1993.[4℄ F. Kamareddine. Postponement, 
onservation and preservation of strong normalisation for generalised redu
-tion. Logi
 and Computation, 10(5):721{738, 2000.[5℄ F. Kamareddine and R. Bloo. De Bruijn's syntax and redu
tional equivalen
e of lambda terms: the untyped
ase. Logi
 and Algebrai
 Programming, 2004.[6℄ F. Kamareddine, R. Bloo, and R. Nederpelt. On �-
onversion in the �-
ube and the 
ombination withabbreviations. Annals of Pure and Applied Logi
, 97(1{3):27{45, 1999.[7℄ F. Kamareddine, R. Bloo, and R. P. Nederpelt. De Bruijn's syntax and redu
tional equivalen
e of lambdaterms. In Pro
. 3rd Int'l Conf. Prin
iples & Pra
ti
e De
larative Programming, pages 16{27, 5{7 September2001.[8℄ F. Kamareddine and R. Nederpelt. A useful �-notation. Theoreti
al Computer S
ien
e, 155:85{109, 1996.[9℄ F. Kamareddine, A. R��os, and J.B. Wells. Cal
uli of generalised �e-redu
tion and expli
it substitution: Typefree and simply typed versions. Journal of Fun
tional and Logi
 Programming, 1998.17



[10℄ M. Karr. Delayability in proofs of strong normalizability in the typed �-
al
ulus. InMathemati
al Foundationsof Computer Software, LNCS, volume 185. Springer-Verlag, 1985.[11℄ A.J. Kfoury, J. Tiuryn, and P. Urzy
zyn. An analysis of ML typability. ACM, 41(2):368{398, 1994.[12℄ A.J. Kfoury and J.B. Wells. Addendum to new notions of redu
tion and non-semanti
 proofs of �-strongnormalisation in typed �-
al
uli. Te
hni
al report, Boston University, 1995.[13℄ Z. Khasidashvili. The longest perpetual redu
tions in orthogonal expression redu
tion systems. Pro
. of the3rd International Conferen
e on Logi
al Foundations of Computer S
ien
e, Logi
 at St Petersburg, 813, 1994.[14℄ J. W. Klop. Combinatory Redu
tion Systems. Mathemati
al Center Tra
ts, 27, 1980. CWI.[15℄ S. Peyton-Jones and E. Meijer. Henk: a typed intermediate language. Types in Compilation Workshp, 1997.[16℄ L. Regnier. Lambda 
al
ul et r�eseaux. PhD thesis, University Paris 7, 1992.[17℄ L. Regnier. Une �equivalen
e sur les lambda termes. Theoreti
al Computer S
ien
e, 126:281{292, 1994.[18℄ A. Sabry and M. Felleisen. Reasoning about programs in 
ontinuation-passing style. Pro
eedings of the 1992ACM Conferen
e on LISP and Fun
tional Programming, pages 288{298, 1992.[19℄ P. Severi and E. Poll. Pure type systems with de�nitions. In A. Nerode and Yu.V. Matiyasevi
h, editors,Pro
eedings of LFCS'94 (LNCS 813), pages 316{328, New York, 1994. LFCS'94, St. Petersburg, Russia,Springer Verlag.[20℄ M. H. S�rensen. Strong normalisation from weak normalisation in typed �-
al
uli. Information and Compu-tation, 133(1), 1997.[21℄ H. Xi. On weak and strong normalisations. Te
hni
al Report 96-187, Carnegie Mellon University, 1996.

18



A Proofs of the lemmasProof:[Lemma 14℄1. We �rst prove (by indu
tion on the derivations) that � 6` 2 : A for any A, and that if� ` A : 2 then FV (A) = ;. Then if � ` (A�x)B : 2, by Generation, � ` B : 2, soFV (B) = ;.For the 
ase � ` A : �, we �rst prove by indu
tion on the derivations that if � ` A : A0 : 2,then FV (A) � fx j 9A00 : � ` x : A00 : 2g. Now we prove that if � ` (A�x)B : � thenx 62 FV (B): sin
e we are in �!, �(A�x) ` B : � and � ` A : �. Sin
e �(A�x) is a legal
ontext, we have � ` x : A : �, but FV (B) � fy j 9A00 : �(A�x) ` x : A00 : 2g, sox 62 FV (B).2. Applying the Generation Lemma 10 twi
e we get �rst � ` (B�x)C : (A0�y)B0, � ` A : A0,B0[y := A℄ =� D and then �(B�x) ` C : B00, (A0�y)B0 =� (B�x)B00 and � ` (B�x)B00 : S.Now, it follows that B0 =� B00 and by Lemma 14.1, B0[y := A℄ � B0 so B00 =� D.Then by (
onv) we have �(B�x) ` C : D. But � ` (B�x)B00 : S implies by GenerationLemma 10 that � ` B00 : S. Also, A0 =� B so by (
onv) � ` A : B.3. Note that by Generation Lemma 10, � ` (b�x)
 : (B�y)D. If � � � then again useGeneration Lemma 10 to get that (B�y)D =� S for some S, whi
h is absurd.4. By indu
tion on the derivations. (axiom): easy. (app), (abs), (
onv), (form): use IH.� (start): if inter
hanging is in �, use IH. Otherwise, �(A�x)(B�y) ` y : B as a 
on
lusionof �(A�x) ` B : S and x 62 FV (B). We must prove that �(B�y)(A�x) ` y : B. By the
onverse of Lemma 9 (for ordinary �-
al
ulus), whi
h is proven by van Benthem-Juttingand listed in [1℄, we have � ` B : S, so by (start) �(B�y) ` y : B. Now, sin
e �(A�x) isa legal 
ontext, � ` A : S0 for some sort S0 and thus by (weak) �(B�y)(A�x) ` y : B.� (weak): if inter
hanging is in �, use IH. Otherwise, �(A�x)(B�y) ` D : E as a
on
lusion of �(A�x) ` B : S, �(A�x) ` D : E and y 62 FV (B). We must prove�(B�y)(A�x) ` D : E. Sin
e, �(A�x) ` D : E and y 62 FV (A) [ FV (D) [ FV (E), byThinning Lemma 9 for the ordinary �-
al
ulus we get �(B�y)(A�x) ` D : E.5. Suppose e =� S and e 6� S. Then e!!+� S so there is an e0 su
h that e!!� e0 !� S. Nowby Corollary 11.1, � ` e : S0 for some sort S0 and by Subje
t Redu
tion for !!� , � ` e0 : S0.But, e0 !� S means that e0 � (JÆ)(H�x)I for some H; I; J su
h that I [x := J ℄ � S. Butthen either I � S or (I � x and J � �). It is easy to 
he
k by Lemma 10 that su
happli
ation of and abstra
tion over a sort are impossible for any system of the 
ube. 2Proof:[Lemma 15℄ We prove 1 and 2 simultaneously by indu
tion on the derivation of � ` A : B.� Case (axiom): No �-redu
tion is possible.� Case (start) where �(A�x) ` x : A 
omes from � ` A : S and x is fresh, then the onlypossible �-redu
tion is in � or (A�x).{ If �-redu
tion is in �, use IH.{ If �-redu
tion is in (A�x), by IH, � ` A0 : S and hen
e by (start) �(A0�x) ` x : A0. By(
onv), A =� A0 (Proposition 3) and �(A0�x) ` A : S (weak), we get �(A0�x) ` x : A.� Case (weak), (
onv), (abs) or (form), use IH. For (abs), also use (
onv).� Case (app) where � ` (aÆ)F : B[x := a℄ 
omes from � ` F : (A�x)B and � ` a : A:{ If �-redu
tion is in � or F , use IH.{ If �-redu
tion is in a, then by Corre
tness of Types (Corollary 11.1), � ` (A�x)B : Sand by Lemma 14.1 x 62 FV (B). Hen
e, B[x := a℄ � B. Now, use IH.19



{ If F � (bÆ)(
�y)d and (aÆ)F !� (bÆ)(
�y)(aÆ)d, we must show that � ` (bÆ)(
�y)(aÆ)d :B (note again by Lemma 14.1, B[x := a℄ � B). By Lemma 10 we get from � `F : (A�x)B that �(
�y) ` d : (A0�x)B0 for some A0; B0 su
h that (A0�x)B0[y :=b℄ =� (A�x)B. Sin
e we are in �! or �!, y 62 FV ((A0�x)B0) by Lemma 14.1 soA0 =� A and B0 =� B, and by (
onv) �(
�y) ` d : (A�x)B. Now, by (weak) also�(
�y) ` a : A so by (app) �(
�y) ` (aÆ)d : B[x := a℄, i.e., �(
�y) ` (aÆ)d : B. But� ` (
�y)B : S for some sort S, sin
e B and (A�x)B have the same type, and so by(abs) � ` (
�y)(aÆ)d : (
�y)B and by (app) � ` (bÆ)(
�y)(aÆ)d : B[y := b℄ � B. 2Proof:[Lemma 16℄ We prove 1 and 2 simultaneously by indu
tion on the derivation of � ` A : B.As all 
ases are similar to Lemma 15, we only 
onsider (app) where � ` (aÆ)F : e[y := a℄ 
omesfrom � ` F : (A�y)e and � ` a : A. The 
ases where �-redu
tion is to either � or F or a aresimilar to the 
orresponding 
ases in the proof of Lemma 15. We 
onsider the 
ru
ial 
ase whereF � (b�x)(
Æ)d and (
Æ)(aÆ)(b�x)d !� (aÆ)F . By Lemma 14.1, y 62 FV (e) so e[y := a℄ � e. Wemust therefore show that � ` (
Æ)(aÆ)(b�x)d : e. By Lemma 14.2, �(b�x) ` (
Æ)d : e, � ` a : band � ` (b�x)e : S for a sort S. By Lemma 10 on �(b�x) ` (
Æ)d : e, there are B;C su
h that�(b�x) ` d : (C�y)B, �(b�x) ` 
 : C, e =� B[y := 
℄ and B[y := 
℄ 6� e implies � ` e : S0 for somesort S0. Now by Lemma 14.1, y 62 FV (B) so e =� B and if e 6� B then � ` e : S0.In order to show that � ` (b�x)(C�y)B : S00 for some sort S00, note from above that � ` (b�x)e :S00 for some sort S00 and both (A�y)e and (C�y)B are legal. Sin
e the only formation rulesare (�; �) and (2;2), this implies that b; e; C, and B are all typable and have type S00. Then,also (b�x)(C�y)B has type S00. Hen
e, we 
an apply (abs) on �(b�x) ` d : (C�y)B to get� ` (b�x)d : (b�x)(C�y)B. Sin
e � ` a : b, by (app) we get � ` (aÆ)(b�x)d : ((C�y)B)[x := a℄.Sin
e �(b�x) ` 
 : C, by the Substitution Lemma 12 we have � ` 
[x := a℄ : C[x := a℄.But, 
[x := a℄ := 
 be
ause (
Æ)(aÆ)(b�x)d !� (aÆ)(b�x)(
Æ)d. So we get by (app) that � `(
Æ)(aÆ)(b�x)d : B[x := a℄[y := 
℄ and sin
e x; y 62 FV (B) and e =� B we are done by (
onv). 2Proof:[Lemma 17℄ We prove 1 and 2 simultaneously by indu
tion on the derivation of � ` A : B.� Case (axiom): nothing to prove.� Case (start) where �(A�x) ` x : A 
omes from � ` A : S and x is fresh, then the onlypossible 
-redu
tion is in � or (A�x). In the �rst 
ase use IH, in the se
ond, use IH, (start),(
onv), (weak) and Proposition 3.� Case (weak), (
onv), (abs) or (form), use IH. For (abs), use also (
onv).� Case (app) where � ` (aÆ)F : e[x := a℄ 
omes from � ` F : (A�x)e and � ` a : A. If 
-redu
tion is in a, F or �, apply IH (if 
-redu
tion is in a, note that by Lemma 14.1, x 62 FV (e)so e[x := a℄ � e). Now we 
onsider the 
ru
ial 
ase where � ` (aÆ)(b�x)(
�y)d : e (i.e., F �(b�x)(
�y)d) with � 2 f�; �g and x 62 FV (
). We must prove that � ` (
�y)(aÆ)(b�x)d : e.By Lemma 14.2, �(b�x) ` (
�y)d : e, � ` a : b and � ` (b�x)e : S for some sort S.{ Suppose � � �. By Lemma 10 on �(b�x) ` (
�y)d : e we get �(b�x)(
�y) ` d : S2,�(b�x) ` 
 : S1, (S1; S2) is a rule and e =� S2 (and if e 6� S2 then �(b�x) ` e : S0). ByLemma 14.4 (note that x 62 FV (
)) we also have �(
�y)(b�x) ` d : S2. If needed, we use(
onv) to get �(
�y)(b�x) ` d : e and by (abs) �(
�y) ` (b�x)d : (b�x)e. As � ` a : bthen by (weak) �(
�y) ` a : b and by (app) �(
�y) ` (aÆ)(b�x)d : e[x := a℄ � e. ByLemma 14.5, e � S2 so we 
an use formation to get that � ` (
�y)(aÆ)(b�x)d : e.{ Suppose � � �. By Lemma 10 on �(b�x) ` (
�y)d : e we have for some f that�(b�x)(
�y) ` d : f , �(b�x) ` (
�y)f : S0 and (
�y)f =� e. By Lemma 14.4,�(
�y)(b�x) ` d : f . By Corollary 11.1, � ` (b�x)e : S for some S. Hen
e by Lemma 10,� ` b : S1, �(b�x) ` e : S for some S1 where (S1; S) is a rule. Similarly, �(b�x) ` 
 : S3,�(b�x)(
�y) ` f : S0 for some S3 where (S3; S0) is a rule. Sin
e e =� (
�y)f , then by thetermination of all the 
ube systems for!� we have S =� S0 and hen
e S � S0. Also byLemma 14.4, �(
�y)(b�x) ` f : S0 � S. By (weak) �(
�y) ` b : S1. Hen
e sin
e (S1; S)is a rule, (form) gives �(
�y) ` (b�x)f : S. So by (abs) �(
�y) ` (b�x)d : (b�x)f .20



Now by (weak) �(
�y) ` a : b so by (app) �(
�y) ` (aÆ)(b�x)d : f [x := a℄. Sin
e byLemma 14.1 x 62 FV (f), �(
�y) ` (aÆ)(b�y)d : f . From �(b�x) ` (
�y)f : S0, S � S0,x 62 FV (
) [ FV (f) and by the reverse of Thinning (Jutting, see [1℄) it follows that� ` (
�y)f : S. So by (abs) we get: � ` (
�y)(aÆ)(b�x)d : (
�y)f . Now use (
onv) toget � ` (
�y)(aÆ)(b�x)d : e. 2Proof:[Lemma 18℄ We prove 1 and 2 simultaneously by indu
tion on the derivation of � ` A : B.� Case (axiom): nothing to prove.� Case (start) where �(A�x) ` x : A 
omes from � ` A : S and x is fresh, then the onlypossible 
-redu
tion is to � or (A�x). In the �rst 
ase use IH. In the se
ond, use IH, (start),(
onv), (weak) and Proposition 3.� Case (weak) or (
onv), use IH.� Case (app) where � ` (aÆ)F : e[x := a℄ 
omes from � ` F : (A�x)e and � ` a : A. If
-redu
tion is to a, F or �, apply IH (for the 
ase where 
-redu
tion is in a, note that byLemma 14.1, x 62 FV (e) so e[x := a℄ � e).� Case (abs) where � ` (A�x)b : (A�x)B 
omes from �(A�x) ` b : B and � ` (A�x)B : S. Ifredu
tion is to � or b use IH. If redu
tion is to A use IH and (
onv). Now take the 
ru
ial
ase where b � (
Æ)(d�y)e (re
all Lemma 14.3) and (
Æ)(d�y)(A�x)e !
 (A�x)(
Æ)(d�y)e.We must show that � ` (
Æ)(d�y)(A�x)e : (A�x)B. Note that y 62 FV (A) and y 62 FV (B)(the latter holds sin
e FV (B) � dom(�) and by the Barendregt Convention, as y is boundin b we would not 
hoose it in dom(�)). By Lemma 14.2 on �(A�x) ` b � (
Æ)(d�y)e : Bwe get: �(A�x)(d�y) ` e : B, �(A�x) ` 
 : d and �(A�x) ` (d�y)B : S0 for a sort S0. Noteby 
-redu
tion that x 62 FV (
) [ FV (d) and hen
e by the 
onverse of the Thinning Lemmaon �(A�x) ` 
 : d we get � ` 
 : d. Note by 
-redu
tion that x 62 FV (d) and hen
e byLemma 14.4 on �(A�x)(d�y) ` e : B we get �(d�y)(A�x) ` e : B. But also by Lemma 9 on� ` (A�x)B : S we get �(d�y) ` (A�x)B : S. Hen
e, by (abs) we get �(d�y) ` (A�x)e :(A�x)B. Re
all that we have � ` (A�x)B : S and �(A�x) ` (d�y)B : S0. We want toshow that � ` (d�y)(A�x)B : S00 for some sort S00. By Lemma 10 on �(A�x) ` (d�y)B : S0we get that �(A�x) ` d : S1, �(A�x)(d�y) ` B : S0 and (S1; S0) is a rule. As y 62 FV (B)then by the 
onverse of Thinning, �(A�x) ` B : S0. By Lemma 10 on � ` (A�x)B : Swe get �(A�x) ` B : S. Hen
e, S � S0. Also from � ` (A�x)B : S we get by Lemma 9�(d�y) ` (A�x)B : S. But � ` d : S1 and (S1; S) is a rule, hen
e we get by (form) that� ` (d�y)(A�x)B : S. Now as �(d�y) ` (A�x)e : (A�x)B and � ` (d�y)(A�x)B : S we getby (abs) that � ` (d�y)(A�x)e : (d�y)(A�x)B. Finally, re
all that y 62 FV (A)[FV (B) andhen
e ((A�x)B)[y := 
℄ � (A�x)B. Now, as � ` 
 : d and � ` (d�y)(A�x)e : (d�y)(A�x)Bwe use (app) to get the 
on
lusion that � ` (
Æ)(d�y)(A�x)e : (A�x)B.� Case (form) where � ` (A�x)B : S2 
omes from � ` A : S1, �(A�x) ` B : S2 and (S1; S2)rule. If 
-redu
tion is in either � or A or B then use IH. Now take the 
ru
ial 
ase whereB � (CÆ)(D�y)E (re
all Lemma 14.3) and (CÆ)(D�y)(A�x)E !
 (A�x)(CÆ)(D�y)E, wemust show that � ` (CÆ)(D�y)(A�x)E : S2. By Lemma 14.2 on �(A�x) ` (CÆ)(D�y)E : S2we get �(A�x)(D�y) ` E : S2, �(A�x) ` C : D and �(A�x) ` (D�y)S2 : S0 for some sortS0.As x 62 FV (D), we get by Lemma 14.4 that �(D�y)(A�x) ` E : S2. By Lemma 9 on� ` A : S1, we have �(D�y) ` A : S1. Now use the fa
t that (S1; S2) is a rule to get by (form)that �(D�y) ` (A�x)E : S2. By 
onverse of Thinning Lemma, as x 62 FV (D) we get from�(A�x) ` (D�y)S2 : S0 that � ` (D�y)S2 : S0. � ` (D�y)S2 : S0 and �(D�y) ` (A�x)E :S2 give by (abs) � ` (D�y)(A�x)E : (D�y)S2. As x 62 FV (C) [ FV (D), we get by the
onverse of Thinning Lemma on �(A�x) ` C : D that � ` C : D. Now use (app) on � ` C : Dand � ` (D�y)(A�x)E : (D�y)S2 to get � ` (CÆ)(D�y)(A�x)E : S2[y := C℄ � S2. 221



Proof: [Lemma 40℄ By simultaneous indu
tion on the length of the derivation. We distinguish
ases a

ording to the last rule in 1.� (axiom): nothing to prove.� (
onv), (abs) or (form): use IH. For (abs) use also (
onv).� (start): Assume �d `
 subj(d) : pred(d) 
omes from � � d. If redu
tion is in � or in dwhere d is a de�nition then use IH. If d is a de
laration and redu
tion is in d then use IH and(
onv). Else, if d � (aÆ)(
Æ)(e�y)(b�x) and d!� d0 � (
Æ)(e�y)(aÆ)(b�x) then by IH � � d0,so by (start) �d0 `
 subj(d0) : pred(d0). Now it is easy to show that �(
Æ)(e�y) � (aÆ)(b�x)so by (start) �(
Æ)(e�y)(aÆ)(b�x) ` x : b.� (weak): Assume �d `
 D : E 
omes from �d `
 D : E and � � d. If redu
tion is in �d,in D, or in a main item of d, use IH and (
onv). Otherwise, d � (aÆ)(bÆ)(
�x)s(e�y) forsome a; b; 
; e; s well balan
ed and d0 � (bÆ)(
�x)(aÆ)s(e�y) where d !� d0. We must showthat �(bÆ)(
�x)(aÆ)s(e�y) `
 D : E. Sin
e � � d we have that �d is a pseudo
ontext,�(bÆ)(
�x)s `
 e : S for some sort S and �(bÆ)(
�x)s `
 a : e and FV (a) � dom(�). Now itfollows that also �(bÆ)(
�x) � (aÆ)s(e�y), so by (weak) �(bÆ)(
�x)(aÆ)s(e�y) `
 D : E.� (app): If redu
tion is in �; a or F , use IH (also (
onv), Corollary 36 and Lemma 35 for a).Otherwise, � `
 (aÆ)(bÆ)(
�x)F : B[y := a℄ is a 
on
lusion from � `
 (bÆ)(
�x)F : (A�y)Band � ` a : A. Then by Lemma 34, �(bÆ)(
�x) `
 F : (A�y)B and by Lemma 33 on� `
 a : A we have �(bÆ)(
�x) `
 a : A. So by (app) �(bÆ)(
�x) `
 (aÆ)F : B[y := a℄ and by(def rule) � `
 (bÆ)(
�x)(aÆ)F : jB[y := a℄j(bÆ)(
�x). Sin
e x 62 FV (B[y := a℄) we are done.� (def rule) where � `
 dC : jDjd 
omes from �d `
 C : D where d is a de�nition. Sin
e d iswell-balan
ed, and � 
ontains only partnered Æ-items, redu
tion must be in �, or d or C.y If redu
tion is in C use IH. y If redu
tion is in � where �!� �0 then:{ Use IH to dedu
e by (def rule) that �0 `
 dC : jDjd.{ Now suppose � � d and �!� �0. Then �0d is a pseudo
ontext, �0d `
 pred(d) : S and�0d `
 def(d) : pred(d) follow from IH. Moreover, FV (def(d0)) � dom(�) sin
e !�does not 
hange binders in �. Hen
e, �0 � d.y If redu
tion is in d, say d!� d0, then:{ Either d0 is still a de�nition or d � (aÆ)(bÆ)(
�x)s(e�y) and d0 � (bÆ)(
�x)(aÆ)s(e�y).In the �rst 
ase, � `
 d0C : jDjd follows from IH and (
onv). In the se
ond 
ase, sin
eby IH, �d0 `
 C : D, we get by (def rule) �(bÆ)(
�x) `
 (aÆ)s(e�y)C : jDj(aÆ)s(e�y). Byapplying (def rule) again, we get � `
 d0C : jDjd0 , and by Lemma 39 we are done.{ Lastly, suppose � � d. Then �d0 is a pseudo
ontext. If the redu
tion is in d or not on themain items of d, use IH and (
onv) to get � � d0. Otherwise, d � (aÆ)(bÆ)(
�x)s(e�y)and d0 � (bÆ)(
�x)(aÆ)s(e�y) for some a; b; 
; e and well balan
ed s. It is easy to showthat �d0 is a pseudo
ontext and that FV (a) � dom(�(bÆ)(
�x)). Also, be
ause � � dwe have that �(bÆ)(
�x)s `
 e : S and �(bÆ)(
�x)s `
 a : e. Hen
e, �(bÆ)(
�x) �(aÆ)s(e�y). 2Proof:[Lemma 41℄ By simultaneous indu
tion on the length of the derivation. We distinguish
ases a

ording to the last rule in the derivation for 1.� (axiom): nothing to prove.� (
onv), (abs) or (form): use IH.
22



� (start): Assume �d `
 subj(d) : pred(d) 
omes from � � d. If redu
tion is to � or to d whered is a de�nition then use IH. If d is a de
laration and redu
tion is to d then use IH and (
onv).Else, if d � (aÆ)s(b�x), � � �1(
Æ)(e�y) where (aÆ)(
Æ)(e�y)s(b�x)!� (
Æ)(e�y)(aÆ)s(b�x),and �1(
Æ)(e�y)(aÆ)s(b�x) `
 x : a 
omes from �1(
Æ)(e�y) � (aÆ)s(b�x) then we need toshow that �1(aÆ)(
Æ)(e�y)s(b�x) `
 x : a. It is easy to show that �1 � (aÆ)(
Æ)(e�y)s(b�x)and hen
e by (start) �1(aÆ)(
Æ)(e�y)s(b�x) `
 x : a.� (weak): Assume �d `
 D : E 
omes from �d `
 D : E and � � d. If redu
tionis either to �, d, D, or to a main item of d, use IH and (
onv) if needed. Else, ifd � (aÆ)s(b�x), � � �1(
Æ)(e�y) where (aÆ)(
Æ)(e�y)s(b�x) !� (
Æ)(e�y)(aÆ)s(b�x), and�1(
Æ)(e�y)(aÆ)s(b�x) `
 D : E 
omes from �1(
Æ)(e�y) � (aÆ)s(b�x) and �1(
Æ)(e�y)s `
D : E, then use IH to show �1 � (aÆ)(
Æ)(e�y)s(b�x) and use �1(
Æ)(e�y)s `
 D : E to
on
lude by (weak) that �1(aÆ)(
Æ)(e�y)s(b�x) `
 D : E.� (app): � `
 (aÆ)F : B[x := a℄ 
omes from � `
 F : (A�x)B and � `
 a : A.{ If �-redu
tion is to � or F , use IH.{ If �-redu
tion is to a use IH, Corre
tness of Types Corollary 36 and (
onv).{ If F � (b�x)(
Æ)F 0 and (
Æ)(aÆ)(b�x)F 0 !� (aÆ)F (where x 62 FV (
)), we must showthat � `
 (
Æ)(aÆ)(b�x)F 0 : B[x := a℄. By Lemma 34 on � `
 (aÆ)(b�x)(
Æ)F 0 : B[x :=a℄ we have �(aÆ)(b�x) `
 (
Æ)F 0 : B[x := a℄. Again by Lemma 34 �(aÆ)(b�x) `
F 0 : (C�y)D and �(aÆ)(b�x) `
 
 : C for some C; y;D su
h that �(aÆ)(b�x) `
 D[y :=
℄ =def B[x := a℄. By (def rule), � `
 (aÆ)(b�x)F 0 : ((C�y)D)[x := a℄ and by Lemma 35on �(aÆ)(b�x) `
 
 : C (note x 62 FV (
)), we get � `
 
 : C[x := a℄. Now by(app) on � `
 (aÆ)(b�x)F 0 : ((C�y)D)[x := a℄ and � `
 
 : C[x := a℄ we get � `
(
Æ)(aÆ)(b�x)F 0 : D[x := a℄[y := 
℄.Sin
e x 62 FV (
), D[x := a℄[y := 
℄ � D[y := 
℄[x := a℄ =� B[x := a℄[x := a℄ � B[x :=a℄. Therefore by (
onv), � `
 (
Æ)(aÆ)(b�x)F 0 : B[x := a℄.� (def rule): where � `
 dC : jDjd 
omes from �d `
 C : D where d is a de�nition. Sin
e dis well-balan
ed, and � 
ontains only partnered Æ-items, redu
tion must be to �, to d or toC or we must have C � (
Æ)e and d � (aÆ)(b�x) where (
Æ)(aÆ)(b�x)e !� (aÆ)(b�x)(
Æ)e.The �rst three 
ases are an easy appli
ation of IH. In the last 
ase, � `
 (aÆ)(b�x)(
Æ)e :jDj(aÆ)(b�x) 
omes from �(aÆ)(b�x) `
 (
Æ)e : D. We need to show that � `
 (
Æ)(aÆ)(b�x)e :jDj(aÆ)(b�x). By Lemma 34 on �(aÆ)(b�x) `
 (
Æ)e : D we have, �(aÆ)(b�x) `
 e : (G�y)E,�(aÆ)(b�x) `
 
 : G and �(aÆ)(b�x) `
 E[y := 
℄ =def D. Then by the (def rule), � `
(aÆ)(b�x)e : ((G�y)E)[x := a℄ and by Lemma 35.4, � `
 
[x := a℄ : G[x := a℄. But
[x := a℄ � 
 and hen
e by (app) we get � `
 (
Æ)(aÆ)(b�x)e : E[x := a℄[y := 
℄. But asy 62 FV (a), we have E[x := a℄[y := 
℄ � E[y := 
℄[x := a℄ =� D[x := a℄ and now use (
onv)on � `
 (
Æ)(aÆ)(b�x)e : E[x := a℄[y := 
℄ and Corollary 36 to obtain � `
 (
Æ)(aÆ)(b�x)e :D[x := a℄.Now suppose � � d and �0 !� � then by IH, also �0 � d.Lastly, suppose � � d and d0 !� d. If d is a de�nition, then redu
tion must be in a mainitem of d0 or on the main items of d0. Hen
e by IH, we get � � d0. 2Proof:[Lemma 42℄ By simultaneous indu
tion on the length of the derivation. We distinguish
ases a

ording to the last rule in the derivation for 1.� (axiom): nothing to prove. (
onv), (abs) or (form): use IH. For (abs) also use (
onv).� (start): Assume �d `
 subj(d) : pred(d) 
omes from � � d. If redu
tion is in � or in dwhere d is a de�nition then use IH. If d is a de
laration and redu
tion is in d then use IHand (
onv). Else, if d � (aÆ)s(
Æ)(e�y)(b�x) and d !
 d0 � (aÆ)s(b�x)(
Æ)(e�y) then byLemma 32, �(aÆ)s(b�x)(
Æ)(e�y) `
 subj(d) : pred(d) be
ause x 62 FV (
) [ FV (e).23



� (weak): Assume �d `
 D : E 
omes from �d `
 D : E and � � d. If redu
tion is in �d, inD, or in a main item of d, use IH and (
onv). Otherwise, d � (aÆ)s(bÆ)(
�x)(e�y) for somea; b; 
; e; s and d0 � (aÆ)s(e�y)(bÆ)(
�x) where d!
 d0. Now, use Lemma 32.� (app): Assume � `
 (aÆ)F : B[x := a℄ 
omes from � `
 F : (A�x)B and � `
 a :A. If redu
tion is in �; a or F , use IH (also (
onv), Corollary 36 and Lemma 35 for a).Else if � `
 (aÆ)(b�x)(
�y)F 0 : B[x := a℄ 
omes from � `
 (b�x)(
�y)F 0 : (A�x)B and� `
 a : A where (aÆ)(b�x)(
�y)F 0 !
 (
�y)(aÆ)(b�x)F 0 then we need to show that � `
(
�y)(aÆ)(b�x)F 0 : B[x := a℄. By Lemma 34 on � `
 (aÆ)(b�x)(
�y)F 0 : B[x := a℄ we havethat �(aÆ)(b�x) `
 (
�y)F 0 : B[x := a℄ and again by Lemma 34, for some term D and sort S,�(aÆ)(b�x)(
�y) `
 F 0 : D, �(aÆ)(b�x) `
 (
�y)D : S, �(aÆ)(b�x) `
 (
�y)D =def B[x := a℄and if (
�y)D 6� B[x := a℄ then �(aÆ)(b�x) `
 B[x := a℄ : S0 for some S0. By Lemma 32on �(aÆ)(b�x)(
�y) `
 F 0 : D, �(
�y)(aÆ)(b�x) `
 F 0 : D and hen
e by (def rule) we have�(
�y) `
 (aÆ)(b�x)F 0 : D[x := a℄. But �(aÆ)(b�x) `
 (
�y)D : S gives by Lemma 35.4,� `
 ((
�y)D)[x := a℄ : S. But x 62 FV (
) and hen
e � `
 (
�y)D[x := a℄ : S. Nowuse (abs) on � `
 (
�y)D[x := a℄ : S and �(
�y) `
 (aÆ)(b�x)F 0 : D[x := a℄ to get� `
 (
�y)(aÆ)(b�x)F 0 : (
�y)D[x := a℄. But as �(aÆ)(b�x) `
 (
�y)D =def B[x := a℄ andx 62 FV (
), Lemma 35.1 gives � `
 (
�y)D[x := a℄ =def B[x := a℄[x := a℄ � B[x := a℄. Wetreat two 
ases:{ If (
�y)D � B[x := a℄ then (
�y)D[x := a℄ � B[x := a℄ and we are done.{ If (
�y)D 6� B[x := a℄ then � `
 B[x := a℄ : S0. By (
onv) � `
 (
�y)(aÆ)(b�x)F 0 :B[x := a℄.� (def rule) where � `
 dC : jDjd 
omes from �d `
 C : D where d is a de�nition.{ If redu
tion is in C or in � use IH.{ If redu
tion is in d, say d!� d0, then if d0 is still a de�nition use IH and (
onv).{ If redu
tion is in d, say d!� d0 and d0 is not a de�nition then d � (aÆ)s(bÆ)(
�x)(e�y)for some a; b; 
; e; s well balan
ed and d0 � (aÆ)s(e�y)(bÆ)(
�x) where d !
 d0. Sin
eby IH, �d0 `
 C : D, we get by (def rule) �(aÆ)s(e�y) `
 (bÆ)(
�x)C : jDj(bÆ)(
�x). By(def rule) again, � `
 (aÆ)s(e�y)(bÆ)(
�x)C : jjDj(bÆ)(
�x)j(aÆ)s(e�y) � jDjd0 . Now useLemma 39.{ If redu
tion is in dC where � `
 (aÆ)(b�x)(
�y)e : D[x := a℄ 
omes from �(aÆ)(b�x) `
(
�y)e : D and (aÆ)(b�x)(
�y)e!
 (
�y)(aÆ)(b�x)e. We must show � `
 (
�y)(aÆ)(b�x)e :D[x := a℄. By Lemma 34 on �(aÆ)(b�x) `
 (
�y)e : D we get �(aÆ)(b�x)(
�y) `
 e : E,�(aÆ)(b�x) `
 (
�y)E : S, �(aÆ)(b�x) `
 (
�y)E =def D, and if (
�y)E 6� Dthen �(aÆ)(b�x) `
 D : S0. By Lemma 32 on �(aÆ)(b�x)(
�y) `
 e : E we get�(
�y)(aÆ)(b�x) `
 e : E. By (def rule) we get �(
�y) `
 (aÆ)(b�x)e : E[x := a℄.As x 62 FV (
), we get by Substitution Lemma 35 on �(aÆ)(b�x) `
 (
�y)E : S that� `
 (
�y)E[x := a℄ : S. Hen
e, by (abs) � `
 (
�y)(aÆ)(b�x)e : (
�y)E[x := a℄.� If (
�y)E � D then (
�y)E[x := a℄ � D[x := a℄ and we are done.� If (
�y)E 6� D then �(aÆ)(b�x) `
 D : S0 and hen
e by Lemma 35 � `
 D[x :=a℄ : S0. As �(aÆ)(b�x) `
 (
�y)E =def D, then by Lemma 35 �(aÆ)(b�x) `
(
�y)E[x := a℄ =def D[x := a℄. Now use (
onv) to get that � `
 (
�y)(aÆ)(b�x)e :D[x := a℄.Lastly, suppose � � d. Then �d0 is a pseudo
ontext. If the redu
tion is in d or not onthe main items of d, use IH and (
onv) to get � � d0. Otherwise, d � (aÆ)s(bÆ)(
�x)(e�y)for some a; b; 
; e; s well balan
ed and d0 � (aÆ)s(e�y)(bÆ)(
�x) where d !
 d0. Take d00 �(aÆ)s(e�y). It is easy to show that �d00 is a pseudo
ontext and that FV (a) � dom(�). Also,be
ause � � d we have that �s(bÆ)(
�x) `
 e : S and �s(bÆ)(
�x) `
 a : e and so by 
onverseof thinning �s `
 e : S and �s `
 a : e. Hen
e, � � (aÆ)s(e�y) � d00. 224



Proof:[Lemma 43℄ By simultaneous indu
tion on the length of the derivation. We distinguish
ases a

ording to the last rule in the derivation for 1.� (axiom): nothing to prove. (
onv): use IH.� (abs): Assume � `
 (A�x)b : (A�x)B 
omes from �(A�x) `
 b : B and � `
 (A�x)B : S. Ifredu
tion is to � or b use IH. If redu
tion is to A use IH and (
onv). Now take the 
ru
ial
ase where b � (
Æ)(d�y)e and (
Æ)(d�y)(A�x)e !
 (A�x)(
Æ)(d�y)e. We must show that� `
 (
Æ)(d�y)(A�x)e : (A�x)B. By Generation Lemma 34 on �(A�x) `
 (
Æ)(d�y)e : B weget �(A�x)(
Æ)(d�y) `
 e : B. By Lemma 32 �(
Æ)(d�y)(A�x) `
 e : B. By Lemma 33 on� `
 (A�x)B : S we get �(
Æ)(d�y) `
 (A�x)B : S. By (abs) we get �(
Æ)(d�y) `
 (A�x)e :(A�x)B. by (def rule) � `
 (
Æ)(d�y)(A�x)e : ((A�x)B)[y := 
℄. But by 
-redu
tion,y 62 FV (A). Also, y 62 FV (B) be
ause by Lemma 29 on �(A�x) `
 (
Æ)(d�y)e : B,FV (B) � dom(�(A�x)) and as �(A�x)(
Æ)(d�y) is a pseudo
ontext, y 62 dom(�(A�x)).Hen
e, ((A�x)B)[y := 
℄ � (A�x)B and we have � `
 (
Æ)(d�y)(A�x)e : (A�x)B.� (form): If � `
 (A�x)B : S2 
omes from � `
 A : S1, �(A�x) `
 B : S2 and (S1; S2)rule. If 
-redu
tion is in either � or A or B then use IH. Now take the 
ru
ial 
ase where� `
 (A�x)(aÆ)(b�y)C : S2 
omes from � `
 A : S1, �(A�x) `
 (aÆ)(b�y)C : S2, (S1; S2) and(aÆ)(b�y)(A�x)C !
 (A�x)(aÆ)(b�y)C. We need to show that � `
 (aÆ)(b�y)(A�x)C : S2.By Lemma 34 on �(A�x) `
 (aÆ)(b�y)C : S2, we get �(A�x)(aÆ)(b�y) `
 C : S2. ByLemma 32 we get �(aÆ)(b�y)(A�x) `
 C : S2 be
ause x 62 FV (a)[FV (b). By Lemma 33 on� `
 A : S1, we get �(aÆ)(b�y) `
 A : S1. Now use (form) to get �(aÆ)(b�y) `
 (A�x)C : S2.Finally, by (def rule) � `
 (aÆ)(b�y)(A�x)C : S2.� (start): Assume �d `
 subj(d) : pred(d) 
omes from � � d. If redu
tion is to � or to dwhere d is a de�nition then use IH. If d is a de
laration and redu
tion is to d then use IHand (
onv). Else, if �1(aÆ)(b�x)(
Æ)(e�y) `
 y : 
 
omes from �1(aÆ)(b�x) � (
Æ)(e�y) where(aÆ)(
Æ)(e�y)(b�x)!
 (aÆ)(b�x)(
Æ)(e�y) then by Lemma 32 �1(aÆ)(
Æ)(e�y)(b�x) `
 y : 
.� (weak): Assume �d `
 D : E 
omes from �d `
 D : E and � � d. If redu
tionis either to �, d, D, or to a main item of d, use IH and (
onv) if needed. Else, if�1(aÆ)(b�x)(
Æ)(e�y) `
 D : E 
omes from �1(aÆ)(b�x) � (
Æ)(e�y) and �1(aÆ)(b�x) `
D : E where (aÆ)(
Æ)(e�y)(b�x)!
 (aÆ)(b�x)(
Æ)(e�y) then by Lemma 32,�1(aÆ)(
Æ)(e�y)(b�x) `
 D : E.� (app): If redu
tion is to �; a or F , use IH (also (
onv) Corollary 36 and Lemma 35 for a).� (def rule): Assume � `
 dC : jDjd 
omes from �d `
 C : D where d is a de�nition.{ If redu
tion is to C or to � use IH.{ If redu
tion is to d, say d!� d0, then d0 must be a de�nition and we use IH.{ Assume redu
tion is to dC where � `
 (aÆ)s(e�y)(bÆ)(d�x)f : jDj(aÆ)s(e�y) 
omes from�(aÆ)s(e�y) `
 (bÆ)(d�x)f : D with (aÆ)s(bÆ)(d�x)(e�y)f !
 (aÆ)s(e�y)(bÆ)(d�x)f .We show � `
 (aÆ)s(bÆ)(d�x)(e�y)f : jDj(aÆ)s(e�y). By Lemma 34,�(aÆ)s(e�y)(bÆ)(d�x) `
 f : D. By Lemma 32, �(aÆ)s(bÆ)(d�x)(e�y) `
 f : Dbe
ause y 62 FV (b) [ FV (d). The segment (aÆ)s(bÆ)(d�x)(e�y) is well balan
ed.Case (e�y) is partnered by (aÆ), use the (def rule) and Lemma 39. Else, assume(aÆ)s(bÆ)(d�x)(e�y) � (aÆ)s1(hÆ)s2(bÆ)(d�x)(e�y) where (hÆ) is the partner of (e�y).Apply the (def rule) to get �(aÆ)s1 `
 (hÆ)s2(bÆ)(d�x)(e�y)f : jDj(hÆ)s2(bÆ)(d�x)(e�y).As (aÆ)s1 is well balan
ed, 
ontinue applying the (def rule) and using Lemma 39 untilyou get � `
 (aÆ)s(bÆ)(d�x)(e�y)f : jDj(aÆ)s(e�y). 2
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