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Abstract

In the area of foundations of mathematics and computer science, three
related topics dominate. These are A-calculus, type theory and logic.
There are moreover, many versions of A-calculi and type theories. In these
versions, the presence of logic ranges from the non-existant to the domi-
nant. In fact, the three subjects of A-calculus, logic and type theory, got
separated due to the appearence of the paradoxes. Moreover, the exis-
tence of various versions of each topic is due to the need to get back to
the lost paradise which allowed a great freedom in mixing expressivity
and logic. In any case, the presence of such a variety of systems calls
for a framework to unify them all. Barendregt’s cube for example, is an
attempt to unify various type systems and his associated logic cube is an
attempt to find connections between type theories and logic. We devise a
new A-notation which enables categorising most of the known systems in
a unified way. More precisely, we sketch the general structure of a system
of typed lambda calculus and show that this system has enough expres-
sive power for the description of various existing systems, ranging from

Automath-like systems to singly-typed Pure Type Systems. The system
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and the notation that we propose have far reaching advantages than just
being used as a generalisation formalism. These advantages range from
generalising reduction and substitution to representing Mathematics and

are investigated in detail in various articles cited in the bibliography.

Keywords: Lambda Calculus, Pure Type Systems, Barendregt’s Cube, Au-

tomath and the Calculus of Constructions.

1 Introduction

Terms of the lambda calculus are constructed by two principles: abstraction,
by means of which free variables are bound, thus generating some sort of func-
tions; and application, being in a sense the opposite operation, formalising the
application of a function to an argument. We will introduce a slight change to
the A-notation to enable us to construct lambda terms in a modular way, in ac-
cordance with the demands and needs of a mathematical entourage. This new
notation will be based on abstraction and application and, as an alternative to
the use of variables, will assume de Bruijn-indices. These are natural numbers
that do not suffer from the usual problems with variable names (the danger of

“clash of variables”, the need for appropriate renaming, etc.).

Our notation is very advantageous and should be seen as an alternative to
the usual A-calculus notation. We claim that this new formulation can avoid
many of the complications associated with the old formulation. In this paper

we will concentrate on the usefulness of this notation for generalising type



systems but we will throughout refer to the other advantages and to where
they have been investigated. For self-containedness however, here is a list of

the characteristics and advantages of our notation.

1. Types and terms are treated alike. Such a treatment is necessary since
many of the principles that govern terms govern types too. In fact it is
to be noted that in the more general type systems, types and terms are
treated alike. This is for example the case, in the Automath systems and

in the calculus of constructions (see [deB70] and [CoHS88]).

2. Q, the set of operators contains many \’s and ¢’s and contains substitu-
tion, typing and many more operators. In fact, the more general type
theories use more than one A as an abstraction operator. For example,
in the Pure Type Systems of Barendregt in [Bar92], we have A\ and II.
We will go further by providing not only various abstraction operators,
but also a variety of other operators which enable many meta-concepts of
the A-calculus to become explicit and internal. For example, substitution
can now become an explicit operation in our systems via the substitution

operators.

3. The unified treatment of the various abstraction operators (A) enables
the use of B-reduction for both terms and types. This is a step towards
the unified treatment of terms and types which is surprisingly not used
in most of the theories which claim to be generalising type systems. For
example, the Barendregt cube is based on the idea that terms and types

are are treated similarly, yet (-conversion is only allowed for terms and



not for types. With our approach here, a A can be the part of a type or of
a term, and [-reduction applies to all X’s. For a further discussion of the
charcteristic of a system which generalises S-reduction in this way and of

the typing systems obtained out of such an identification, see [KN 9w].

. In [KN 9x], we showed the usefulness of the new notation for variable
and term manipulation and for typing. In particular, we showed in that
paper, that the restriction of a term to a variable z (that is, the term
consisting of precisely those “parts” of ¢ that may be relevant for this x
in t, especially as regards binding, typing and substitution), is obtained
by simply taking the substring of string ¢ from the beginning of ¢ until x
and then deleting all unmatched opening parentheses. So not only it is
easy to find the restriction in our item notation, but also the restriction
is not even obvious to be defined in the classical notation. Moreover, we
showed in the same paper that accounting for bound and free variables
in a term is only a matter of a very simple calculation and demonstrated
that term construction can be done via trees which are at the same time

proofs of the well-typedness of the term.

. In [KN 93], we embedded stepwise substitution in the new calculus show-
ing how the new notation facilitates the introduction of substitution as
an object level notation in the A-calculus resulting in a system which can

accommodate most substitution strategies.

. in [KN 9z], we show that reduction can be generalised in a way that was

not obvious nor possible in the classical calculus. Such a generalisation



opens the way for further reduction strategies which are needed in many

disciplines that depend on the A-calculus.

All this points towards the advantages of the new notation but this is not all. In
this paper, we will show how various existing systems ranging from Authomath-
like systems to singly-typed pure type systems could be expressed in a uniform

way in our proposed setting.

In particular, after introducing in Sections 2 and 3 the new notation and
all the formal machinery needed for the paper, we concentrate in Section 4
on the typing relation. We introduce a canonical type operator, suited for the
“calculation” of one canonical type in the class of all types of a certain (typeable)
term. The typing relation connected with this type operator is presented by
means of a stepwise “process”, which can be described in different manners.
Again, we claim to give the fine-structure of a central subject in lambda calculus,
this time being the typing relation. In fact, not only the type of a A- or a
[T-abstraction is found but also IT-application (and not only A-application) is
allowed.

In Section 5, we discuss the relation between our approach and certain Pure

“”. An impor-

Type Systems (PTS’s), which make use of this typing relation
tant subclass of this class of typed lambda calculi, systematized and studied by

Barendregt and others, is relatively easy to embed in our setting.

In Section 6, we describe a number of Automath-systems in our setting. One
of these possibilities is a de Bruijn’s system AA, which is a version of Automath

in the format of typed lambda calculus.



Finally, in Section 7, we demonstrate the features of typing and term con-
struction, through a short example. This example is a system that we propose
and that has in principle similar power to that of Coquand and Huet’s Calculus
of Constructions (or AC, see [CoH88]). We work out the proof of a theorem

taken from logic in our system.

2 The new notation

We assume the reader familiar with De Bruijn’s indices and why they were
introduced. If not, the reader is referred to [deB72]; we hope that the following

examples give an idea of what these indices are.

Example 2.1 Terms such as A\;.z and A,.y are the “same”, and the use of z,
y or any other variable does not change the semantic meaning of the function
denoted by this term (the identity function). The identity function using de
Bruijn’s indices will be denoted by A.1. The bond between the bound variable x
and the operator A is expressed by the number 1; the position of this number in
the term is that of the bound variable x, and the value of the number (“one”)
tells us how many lambda’s we have to count, going leftwards in the term,
starting from the mentioned position, to find the binding place (in this case:

the first A to the left is the binding place).

Example 2.2 The identity function above could have been identity over a
particular type y (let us say) written as A;,.xz. In such a case y is a free
variable and the function is denoted by: (Al.1). The free variable y in the

typed lambda term is translated into the first number 1. Such a number refers



in this case to an “invisible” lambda that is not present in the term, but may be
thought of to preceed the term, binding the free variable. Note here that if we
had more than one free variable, we have to know which one comes before the
other. For this, we assume an arbitrary, but fixed order so that these invisible
lambda’s form a free variable list. The number 1 next to the A tells us how
many As we have to count from (and excluding!) this A. (The variable z, as

before, is translated in the second number 1.)

Example 2.3 To demonstrate how S-reduction works with de Bruijn’s indices,
we consider the term (Az:..(zy))u which S-reduces to uy. Under the assumption
that the free variable list is Ay, A;, Ay, this reduction using de Bruijn’s indices
can be represented as: (A2.14)1 reduces to 13. Here the contents of the subterm
14 changes: 4 becomes 3. This is due to the fact that A2 disappeared (together
with the argument 1). The first variable 1 did not change; note, however, that
the A binding this variable has changed “after” the reduction; it is the last A in
the free variable list (“)\,”) and no longer the \ inside the original term (“\;”).

The reference changed, but the number stayed (by chance) the same.

Now take the type free A-calculus, with the following three ways of forming
terms:

t o=z | (A1) | (t1t2).
If we forget variables (as we shall when we use de Bruijn’s indices), then we
begin with natural numbers and all that remains is abstraction and application.

We shall consider these to be the basic operations on terms and shall use A to

!This technical peculiarity disappears in the new notation.



refer to the first and ¢ to refer to the second. Note that when we work with the
typed A-calculus, these two operators can be considered to be binary. In fact,
A links a type to a term, (think of A;.,.2 which is A1.1) and ¢ links a function
to an argument. As we are trying to give a general notation which can be used
to describe the other ones, we will use a typed A-calculus notation which is
also suitable to write type free terms. This will be done via our special index ¢

below.

Notation 2.4 (Abstraction and Application operators)

As we are trying to devise a system which will be general enough to represent
a whole variety of type systems, we shall not assume the uniqueness of the
A and the 0 operators. Rather we consider A, A, Ao,... for abstraction, and
4,01, 00, . .. for application and use w, w1, ws, . .. as meta-variables for both kinds
of operators. Moreover, we refer to the set of A-operators by ) and to the
set of J-operators by (5. We assume that €2y and 25 are disjoint and finite

and write Q (or §2)5) for their union.

Example 2.5 To accommodate second-order theories, we use Ao for A and A\q
for A. To accommodate Pure Type Systems we use A; for II and As for the

ordinary A.

Notation 2.6 (Variables)

As we decided to use indices instead of variables, we take = the set of variables
to be E ={¢,1,2,...}. Sometimes we will need to use actual variables, but this
is not a part of our syntax. It is only a matter of simplifying the conversation.

We use z,x1,y,... to denote variables. ¢ is a special variable that denotes



the “empty term”. It can be used for rendering ordinary (untyped) lambda
calculus, by taking all types to be €. Another use is as a “final type”, like O in

Barendregt’s cube.

Using © and Z we define our terms (which we denote ¢,%;,...) to be those
symbol strings obtained in the usual manner on the basis of =, the operators

in ©Q and parentheses. That is:

Definition 2.7 (Terms)
Terms are the elements of Fo(E), the free Q-structure generated by =. We call

these terms Qys-terms or simply terms.

Notation 2.8 (Item Notation)

We will defer from usual practice and use the operators in € as infiz ones. That
is we write (tdt') for the function t' applied to the argument t (note the reversed
order!) and write (tA\t') for (At.t'). We go even further by using what we call
item-notation where we place parentheses in an unorthodox manner: we write

(tlw)tg instead of (tlu)tg).

Example 2.9 The following are terms: £, 3, (20)(e¢A)1, in item notation or

(20(eA1)) in the original infix notation. (We assume that A\ € Q) and 0 € Q5.)

Notation 2.10 (Tree notation)

One can also consider terms as trees, in the usual manner (in this case we
shall speak of term trees). In term trees, parentheses are superfluous (see
figure 1). In this figure, we deviate from the normal way to depict a tree; for

example: we position the root of the tree in the lower left hand corner. We have

10



chosen this manner of depicting a tree in order to maintain a close resemblance
with the linear term. This has also advantages in the sections to come. The
item-notation suggests a partitioning of the term tree in vertical layers. For
(xw1)(ywe)z, these layers are: the parts of the tree corresponding with (zw1),
(ywz) and z (connected in the tree with two edges). For ((zwe)ywi)z these
layers are: the part of the tree corresponding with ((zwe)yw;) and the one

corresponding with z.

x Yy w2
Yy
w1 w2 . w1 .
(2w (yw22)) ((zway)wi 2)
(zw1) (ywa)z ((zwo)ywr)z

Figure 1: Term trees, with normal linear notation and item-notation

Notation 2.11 (Name carrying terms)

For ease of reading, we occasionally use customary variable names like z, y, z
and v instead of reference numbers. Thus creating name-carrying terms in item-
notation, such as (ud)(yA;)z in Example 2.12. The symbols used as subscripts
for A in this notation are only necessary for establishing the place of reference;

they do not “occur” as variables in the term.

Example 2.12 Let the free variable list, in the name-carrying version, be A,

Ay-

11



1. Consider the typed lambda term (A.y.z)u. In item-notation with name-
carrying variables this term becomes (ud)(yAy)z. In item-notation with

de Bruijn-indices, it is denoted as (15)(2A)1.

2. The typed lambda term u(A.y.x) is denoted as ((yA;)xd)u in our name-
carrying item-notation and as ((2A)10)1 in item-notation with de Bruijn-

indices.

The term trees of these lambda terms are given in figure 2. In each of
the two pictures, the references of the three variables in the term have been
indicated: thin lines, ending in arrows, point at the A’s binding the variables in
question. Note that these lines follow the path which leads from the variable
to the root following the upper-left side of the branches of the tree. Only the

A’s met count, the §’s do not.

2
1 2 Ao .
A A JI ) ‘ Ao A+—X 0
o— —0— — 1 — —o——o—e1]
(16)(2M\)1 (201 6)1
(ud)(yAs)z ((yAz)z O)u
(Amzy . SC)U U(A:L’y . 1‘)

Figure 2: Term trees with explicit free variable lists and reference numbers

Example 2.13 Now for S-reduction, the term (Ag...(xy))u [B-reduces to uy.

In our sugared item-notation this becomes: (ud)(zA;)(yd)x reduces to (yd)u

12



(see figure 3). Note that the presence of a so-called J-A-segment (i.e. a J-item
immediately followed by a A-item, in this example: (ud)(z);)) is the signal for
a possible S-reduction. The “unsugared” version reads: the term (15)(2))(40)1

reduces to (30)1.

(Agez-zy)u uy
(ud)(2Az)(yd)x (yo)u
(10)(2X)(40)1 (30)1

Figure 3: (B-reduction in our notation

We can see from the above example that the convention of writing the argu-
ment before the function has a practical advantage: the §-item and the \-item
involved in a (-reduction occur adjacently in the term; they are not separated
by the “body” of the term, that can be extremely long! It is well-known that
such a §-A-segment can code a definition occurring in some mathematical text;
in such a case it is very desirable for legibility that the coded definiendum and

definiens occur very close to each other in the term.

Remark 2.14 With the help of ¢ we can construct terms without free vari-
ables, for example we can construct (eA)(1A)(16)((2A)(1A)1A)3. We note that

it may be profitable to use the empty term instead of £, which allows us to

13



write terms like (A)(1A)2 or even (A)(1)), representing the typed lambda terms
Ayie - Agy-y and Ay.e. Az .€, Tespectively. We shall use this convention in the case

of an item (ew), which we render as (w), for different operators w.

3 The formal machinery

In this section, we will introduce most of the machinery needed for the paper.

We start by the two basic concepts itemn and segment.

Definition 3.1 (items, segments)
1. If w is an operator and t a term, then (tw) is an item.
2. A concatenation of zero or more items is o segment.

We use §,51,35;,... as meta-variables for segments.

Definition 3.2 (main items, main segments, w-items, w1-. . .-wy-segments, (non)empty

segments, contezts)

1. FEach term t is the concatenation of zero or more items and a variable:

t=s1...5,x. These items s1...s, are called the main items of t.

2. A segment 3 is a concatenation of zero or more items: 5 = S1 ... Sy; again,

these items sy ... sy (if any) are called the main items, this time of 5.

3. A concatenation of adjacent main items (int or3s), Spm ... Smik, is called

e main segment (int or3s).

4. An item (t w) is called an w-item. Hence, we may speak about \-items

and d-items.

14



5. If a segment consists of a concatenation of an wi-item up to an wy-item,
w; € Q, this segment may be referred to as being an wi-. . .~w,-segment.
(An important case is that of a 6-\-segment, being a 0-item immediately

followed by a \-item.)

6. A segment s such thats = () is called an empty segment; other segments

are non-empty.

7. A context is a segment consisting of only A-items.

Example 3.3 Let the term ¢ be defined as (eA)((10)(eA)1d)(2A)1 and let the
segment 3 be (eA)((10)(eA)1)(2)A). Then the main items of both ¢ and 5 are
(eA), ((10)(eA)1d) and (2)), being a A-item, a d-item, and another A-item.
Moreover, ((16)(eA)16)(2A) is an example of a main segment of both ¢ and 3,
which is not a context, but a d-A-segment. Also, 5 is a A-6-A-segment, which is

a main segment of ¢.

Contexts and segments can be regarded as special terms in the calculus, viz.
those terms ending in . Now terms can be abbreviated in a definition, as we
saw before. Hence, in particular, contexts and segments can be abbreviated.

All this holds under the condition that we consider 3¢ to be the same as s itself.

Definition 3.4 (Segment abbreviation)
A segment 5 can be called “a” by adding the “definitional segment” (50)(\y) as

an azxiom to our system.

Of course we will not name many segments using this axiomatic scheme, only a

finite number of important segments. This definitional segment moreover, really

15



works like definitions (such as function definition in Mathematics). Think for
example of defining the identity function as ((eA\)1d)(\;). This says that I is the
identity function. With our reduction below, we can show that ((e\)16)(Ar)(16)1
((eA)10)((eA)1) = (eA)1. The use of such a definitional segment is also impor-
tant for the representation of Mathematics where not all the occurrences of the
name of the function are replaced by the body of the function. In many math-
ematical proofs, we need to keep the name instead of the body of the function.
This will be facilitated by our notation and using our explicit substitution and

reduction rules of [KN 93].

Example 3.5 In this example we use two \’s which we denote II and A respec-
tively. Now the following introduces * as a term of type ¢, L as a term of type
« and defines = as the product (x\,)(xAy)(all,;)b. This states that, given ¢ and
d of type *, the term (dd)(cd) = [-reduces to the dependent product which
sends inhabitants of ¢ to inhabitants of d. The type of = is (xIl,)(*II)*, the

‘

class of all functions sending pairs (a,b) of type * to a “new” element of type

1. (\)

2. (*AJ_)

3. ((xAa) (xAp) (ally)b 0) ((+I14)(xI1p) x A=)

Remark 3.6 In order to reap full benefit from the abbreviations, we should
allow that segment-abbreviating variables may occur in the place of actual

segments everywhere in a term. For example, with the above definition, the

16



term (tA;)a(t'\y)z is an abbreviation for (tA;)5(#'Ay)z, with 5 completely copied

out (but for the final e, which is omitted!).

Definition 3.7 (body, end variable, end operator)

1. Let t =5z be a term. Then we call s the body of t, or body(t), and x the

end variable of t, or endvar(t). It follows that t = body(t) endvar(t).

2. Let s = (tw) be an item. Then we call t the body of s, denoted body(s),

and w the end operator of s, or endop(s). Hence, it holds that s =

(body(s) endop(s)).

Note that we use the word ‘body’ in two meanings: the body of a term is a

segment, and the body of an item is a term.

Example 3.8 In Example 3.3, 5 is the body of £ and 1 is the end variable of £.

Let s be the item ((10)(eA)10). Then (1)(eA)1 is the body of s and ¢ the end

operator of s.

By means of the following definition one can sieve the main items with certain

end operator(s) from a given segment or term, forming a (new) segment:

Definition 3.9 (sieveseg)
Let 5 be a segment, or let t be a term with body S, then sieveseg, (5) =
sieveseg (t) = the segment consisting of all main w-items of 5, concatenated

in the same order in which they appear in's.

Example 3.10 In the term ¢ of Example 3.3, sieveseg,(f) = (¢A)(2)) and
sieveseg;(t) = ((10)(cA)19).

17



Definition 3.11 (weight, w-weight)

1. The weight of a segment 3, weight(3), is the number of main items that

compose the segment.

2. The weight of a term t is the weight of body(t).

3. The w-weight weight (3) of a segment 5 is the weight of sieveseg,(5).

4. The w-weight of a term t is the w-weight of body(t).

Example 3.12 For the term t = (eA;)(xAy)(20)(eAy) ((2A;)yd)(yAy)u and the
segment 35 = (eAz)(xAy)(x0)(eAy)((xA;)yd)(yAy), weight(t) = weight(s) = 6

and weight, (t) = weight,(5) = 4.

Definition 3.13 (direct subterms, subterms)

1. If vody(t) # 0, then t = (H'w)t". In this case we call t' and t" the (left

and right) direct subterms of t. We denote this by t' C t and t" C t.

2. The relation C s the reflexive and transitive closure of C. We say that

t1 is o subterm of ¢t iff t; T t.

Example 3.14 Let ¢ be the term ((16)2A)(1X)3. The left direct subterm
of ¢t is (16)2, the right direct subterm of ¢ is (1A\)3. The subterms of ¢ are

t,(16)2, (1A)3,1 (twice), 2 and 3.

Notation 3.15 When one says that ¢ is a subterm of ¢, one usually has a
certain occurrence of ¢ in ¢ in mind. (There can be more occurrences of t'

in ¢t.) If necessary, we shall “mark” an occurrence, e.g. with a small circle,

18



o, or with under- or overlining. For example, the first occurrence of = in ¢t =
((zd)(yAz)zAy)(20)y can be fixed by referring to it as z° in ((2°0)(yAz)z Ay ) (20)y.

And the occurrence of the subterm (yA;)x in this ¢ can be marked as (y\;)z.

We can also mark the occurrence of an operator: (yAJ)z.

Definition 3.16 (arguments)
Let (Hw°)t" « t. Then t' is the left argument of w° in t, or leftarg(w®),

and t" is the right argument of w° in t, or rightarg(w®).

Hence, leftarg(w®) is the left direct subterm of (¢'w°)t” and rightarg(w°®)
is the right direct subterm of (#'w®)t".

Note that a mazimal subterm of a term ¢ (i.e. a subterm that cannot be
extended to the left in t) is either ¢ itself or a left direct subterm of ¢ and hence

the left argument of some operator occurring in ¢.

Definition 3.17 (degree of a variable)
1. The degree of a variable x that is free in term t, is undefined.
2. The degree deg(c) of every £ occurring in t, is zero.

3. Assume that (the occurrence of) x is bound? in t and let t' be the type of
x. Further, let y be the end variable of this type t' and assume that deg(y)

is defined. Then deg(x) = deg(y) + 1.

Note that each variable in a closed term has a degree. The set of the degrees

of variables occurring in a term, is always a set {0,...,n} for some n > 0.

2The notions “bound” (for a variable) and “type” (of a term) are formally defined in

Definition 3.26.

19



Definition 3.18 (degree of a term)

1. The degree of a term is the degree of its end variable, if this degree is

defined; otherwise it is undefined.

2. The maximal degree of a term is the mazimal number (if any) that
occurs as a degree of a variable occurring in the term; if there is no such

number, then the mazximal degree of such a term is undefined.

Example 3.19 Take the Qys-term t: (eA;)((zAy)((wd)(zAe)xzXy)(uA,)yy)u.
The degrees for the variables occurring in this term are: deg(e) = 0; deg(z) = 1;
deg(u) = 2, except for the free v which is the end variable of the term: this
u has no degree; deg(y) = 2; deg(z) = 3. If t occurred, then its degree would
have been 2. The term itself has no degree (since its end variable is free). The

maximal degree of the term is 3.

Remark 3.20 Many existing definitions of the notion ‘degree’ count “the other
way round”, with the result that the degree of a “type” is one more than the
degree of a term of this type. Our degrees 0, 1, 2, 3 then change into (e.g.) 3,
2, 1, 0. In our approach we start with a “top level” having degree zero, and
lower levels are numbered upwards, without restriction. This makes it easier to
discuss the subject of “more degrees”. See Example 3.21 which has also for aim

to show the usefulness of more degrees.

Example 3.21 In the propositions-as-types conception (see e.g. [How80]), propo-
sitions are coded as lambda terms. When ¢ is a term which is regarded as a

proposition, then any “inhabitant” of ¢ — i.e., a term t' such that ¢’ : ¢t —

20



serves as an assertion (a “proof”) of that proposition. There clearly is a strong
parallel with sets and elements: when ¢ codes a set, and when ' is again an
inhabitant of £, then ¢’ represents an element of the set ¢.

A set can have many elements, and a proposition can have many proofs.
The elements of a set are considered to be different, but it may be useful to
identify all proofs of a certain proposition. This is because — from the point of
view of classical logic — the important thing is often whether there is a proof
of a proposition, and not so much what the exact content of the proof is.

In many systems, sets and propositions occupy the same level in the degree-
hierarchy. One presupposes, for example, a class of sets (xs) and a class of
propositions (x,), both inhabitants of some “super-class” 0. The situation

then is as follows:

degree | 3 2 1 0
term a: A kg o O
interpr. || element | set class
of sets
term P: Q: | *p: a
interpr. || proof prop | class
of Q) of props

In this schema it is possible to treat proofs and elements in a different
manner. For example, one could define an equivalence =; for proofs, viz. for
those terms ¢ of degree 3 for which the type of the type of t =5 *,,.

Another way to identify proofs is the following. In the previous diagram

one shifts the proof-prop row one column to the left, adding a class /A between
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¥, and 0. Now proofs become the only terms of degree 4:

degree || 4 3 2 1 0
term a: A *g O
interpr. element | set class
of sets
term P: Q : *p: A: O
interpr. || proof | prop class
of Q of props

This is the AUT-4 interpretation (see [deB74]). “Irrelevance of proofs”
can now be implemented by a rule of the following form, where =; is some

equivalence:

FFP:Q:%: A FEP:Q ixp: A Q=5Q
P=; P

Definition 3.22 (degree-consistency)

1. A typing relation is degree-consistent if for all terms t; and ta we
have:
if t1 @ to and if both deg(t;) and deg(ty) are defined, then deg(t)) =

deg(t2) + 1.

2. A reduction relation —, is degree-consistent if the following holds:
for all t; and ty such that t1 —, to, if deg(t1) is defined, then also deg(t2)

is defined and deg(t)) = deg(t2).?

A typing relation which is degree-consistent is called ok in [Bar92].
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Example 3.23 All Automath-systems have the property of degree-consistency,
both for the typing relation and for f-reduction (see Section 6). The same
observation holds for the systems in Barendregt’s cube, but not for general

PTS’s (see Section 5).

Definition 3.24 (term restriction)
If t is a term, and t' C t (t' is underlined in order to identify a unique

occurrence of t' int), then t[t' (pronounced the restriction of t to t') is defined

inductively as follows:

tyft iftct
(trw)(t2ft) if t Tty

Example 3.25 Let t be the following term:

(eAa) (2 Au) ((wd) (2A0)2° Ay ) (uAz )y Ao Ju. (1)
Then the restriction ¢ fx of ¢ to z° is:

(eXe) (@ Ay) (o) (zAg)x°. (2)

Moreover, the restriction ¢ NxzA;)z® =t [z°.

Definition 3.26 (Bound and free variables, type, open and closed terms)

1. Let z° be a wariable occurrence in t such that x # ¢ and assume that
sieveseg,(tz°) = sy, ... 51 (for convenience numbered downwards). Then

z° is bound in t if x < m; the binding item of x° in t is s, and the
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A that binds z° in t is endop(s;). The type of z° in t is body(sy).

Furthermore, x° is free in t if x > m.

2. The variable € is neither bound nor free in a term.

3. Term t is closed when all occurrences of variables in t different from e

are bound in t. Otherwise t is open or has free variables.

Example 3.27 The term ¢t = (eX;)(aA,)(20)(eAy)((xA,)y°) (yAy)u becomes,
in the notation with de Bruijn- indices: ¢ = (A)(1X)(26)(X)((3X)2°6)(1A)1. Now
t12° = (A)(IN)(20)(N)(BN)2°. So sieveseg, (¢ [2°) = s4s35251 = (A)(IA)(N)(3N).
Hence, 2° is bound in ¢ since 2 < weight, (¢ }2°) = 4. Moreover, the type of 2°

in ¢ is body(s2) = . There are no free variables in ¢, hence t is closed.

Things are, however, not so simple in the case that the term contains segment

abbreviations.

Example 3.28 In the term (tA\;)a(t'A,)z, where a abbreviates a segment 3,
the binding A of the variable z may be found “inside” a, e.g. when 5 =
(t1 ) (t2A;)(t30). But neither A\, nor A, is “visible” in a. Hence, using de

Bruijn-index 2 for z would connect this variable with the wrong A (viz. ;).

It will be clear from this example that the A-weight of the abbreviated segment,
i.e. the number of main A-items in the segment, plays an important role. This
number can always be recovered by inspecting the abbreviated segment. One
can imagine, however, that it is more practical to register this number together
with the segment variable. Therefore, we add a collection of segment variables

to our set of variables, which are pairs of numbers:
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Definition 3.29 (segment variables)

We add to Z a new set ¥ of segment variables:

Y ={(nym)ln=1,2,...;m=0,1,...}.

Moreover, we distinguish the A-operator Asg as being a binding X for segment
abbreviations. We do not allow that Asg-items occur “on their own”. They
should always be a part of a d-A-segment of the form (50)(Asga), coding the
abbreviation of a segment s.

In (n;m), a segment variable item, the index n gives a reference to the
binding Asg and m is the A\-weight of the abbreviated segment. Section 7 will

give many examples of such a phenomenon.

Definition 3.30 (Well-typedness of terms)
We say that a term t 1s “well-typed” with respect to a particular system
containing variable, abstraction and application conditions, if we can deduce

F ¢ where - is defined by the following three equations:

variable condition

skax
skt S(tA) H abstraction condition 4)
SE (AN
Skt s(to) Ht' application condition
- ; (5)
Sk (to)t

Notation 3.31 (Construction rules)
We call schema 3, ( respectively 4 and 5), a variable (respectively abstraction

and application) construction rule.

Example 3.32 With abstraction condition ¢t = ¢, ' # ¢, empty variable con-

dition and application condition, we obtain the syntax of the untyped lambda
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calculus.

Remark 3.33 The variable condition is optional. Example 3.34 gives two vari-
able conditions. The abstraction condition and the application condition vary
from system to system, or may even be absent. In type systems for example, the
type information plays a predominant role in the application condition: ¢ may
only be an “argument” of ¢’ (i.e. S+ (¢6)t') if ¢’ is some kind of “function”, with
a “domain” in which ¢ fits. This requirement must be expressed formally in the
application condition. Sections 4, 5 and 6 give examples of the abstraction and

application conditions. Example 3.36 gives a well-typed term.

Example 3.34 Here are some examples of variable conditions:

1. x < weight,(5) (Here count ¢ as zero, in case = = ¢).

This variable condition restricts terms to the closed ones.

2. 1 <deg(x) <3.

Hence the degree of any term is between 1 and 3. This is the case in
AUT-QE and AUT-68; (see Section 6). The reasonableness of such a re-
quirement is shown in practical applications. For example, large pieces of
mathematical texts have been coded in AUT-QE, thereby demonstrating

its utility.

Definition 3.35 (Proof trees)
For each “well-typed” term, we call the construction tree, which contains at

the same time a proof for its “well-typedness”, the proof tree for the term.
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Example 3.36 The lowest part of the proof tree of (eX;) ((zAy) ((wd)(zAi)xAy) (UX;)y Ap)u,

based on these rules, is the following:

T2 T3

T (eA) F (A) ((wd) (@A) 2 Ay) (uA2)y  (ede) ((@Au) ((ud)(@Ai)zAy) (ud)y M) Fu

Fe (eAe) F ((zAw) ((U6)(w>‘t)(x/\y) (uA2)y Av)u

F(eXs) ((zAw) ((u&)(x)\t)x)\y) (uX)y Av)u

Here 71 and 73 are only checks of the appropriate variable conditions (which

we here assume to be empty) and 7, is a part of the tree that is not displayed.

We need a function which updates variables. This we do by extending our
set 2y; with a set of p-operators 2,. We use the ¢’s with a double index:
@0 ki € N and call all (p#9))’s p-items. Our terms are now Q)s,-terms.

The use of the y-items is established in the following rules.

Definition 3.37
(p-transition rules:)
(PEDY(EA) =, ((ED)EN) (k1)
(@ED)(#8) =, ((p*D)8) (o))
(p-destruction rules:)
For k,i € N, we have:
(p*ENs s, +iifa >k
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(cp(’“l)):c —orifr<korz=e.

Definition 3.38 (p-abbreviation)

For all k € N',o®) denotes o(OF) . Moreover, ¢ denotes o) (hence go(o’l)).

Definition 3.39 (void [-reduction)
Assume that a 0-A-segment 5 occurs in an Qys-term t, where the final operator
A of s does not bind any variable in t. Let t1 be the scope of 5. Then t reduces

to the term t', obtained from t by removing 3 and replacing t| by (np(_l))tl.

Example 3.40 Let us take (1)(2X)(46)2. In this term, call it ¢, the §-A-
segment (10)(2X) occurs and its A does not bind any variable in ¢. Moreover,
(46)2 is the scope of (1)(2A) and if in ¢ we remove (15)(2\) and replace (46)2

by (1) (46)2 we get (36)1. Hence t reduces to (36)1.

Example 3.41

1. (16)(2A)(20)2 —p (10)1; this states that (Ag.,.uu)u reduces to uu.

2. (18)(2A)(3X)3 — 3 (2A)2; this states that (Ay:y.Agwy-2)2 reduces to Ag.y.z.

Notation 3.42 ((3-reduction)

Note that void S-reduction is a (B-reduction, so let us write ¢ —g ¢’ when the
reduction in the above definition takes place. (-reduction in general however,
will not be explained and the reader is referred to [KN 93]. It is not needed for

this paper, further than saying that

o (tO)ENE g t"[z =1,
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e the z’s are the variables in ¢ bound by the mentioned A,

e [z := t] is a postfix meta-operator standing for the substitution of ¢ for

all free occurrences of x.

4 Canonical types

Variables occurring bound in a term in typed lambda calculus have a “natural”
type, as expressed in Definition 3.26. This type is the body of the A-item which
binds the variable. We extend this process of typing to (general) terms by
means of a canonical typing function typ, acting on arbitrary subterms ¢’ of a

term t.

Definition 4.1 (Canonical type)
The canonical type typ(t') of a subterm t' of a term t, with © = endvar(t')

and x bound in t, is defined as follows:

typ(t') = body(t') (p!)t",

where t" is the type of x in t as defined in Definition 3.26.

Example 4.2 Take the term (16)(2A)1 (or in sugared notation (ud)(yAz)x).

1. If ¢ = 1 (the z), then typ(t') = £(pM)2 —, 3. This is obvious, it says

that the type of = is y (look at figure 2).

2. If t = (2A\)1 then typ(t”) —, (2X)3. This is intuitively correct. It states
that the type of A\j.y.2 is Mgy (identifying X’s and II’s).

3. If ¢ = (16)(2A)1 then typ(t") —, (16)(2A\)3 —p5 2. Again, this is
intuitively correct. It states that the type of (Ag.y.2)u is y. In Section 4.2
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we will see how to include an application condition stating that the type
of u and the type y must be compatible. Recall moreover that types

themselves are terms.

As we see, calculating the canonical type typ(t') of a (sub-)term ¢’ is very
straightforward. Just replace the end variable of ¢’ by its type t" (together with
some updating of free variables in t").

Following the general style of this paper, we can also use a type item (7)
and a type reduction operator —; instead of the type function typ. Hence, we
extend our set of terms defined in Definition 2.7 in order to incorporate these
T-items (we now have Q)s,--terms).

The search for the canonical type of a subterm ¢’ of ¢ starts with (7)¢'; this
term may be transformed to typ(¢') by using the following 7-reduction rules
for Q)5,-terms (so we assume that the term under consideration contains no

-items):

Definition 4.3 (7-reduction)
(T-transition rules:)

() (thiw) =7 (trw)(7)
(T-destruction rule:)

(T)x =7 (@@ ", if t" is the type in t of the x under consideration.

Note here that a term ¢, p-reduces (repectively 7-reduces) to another term ¢’ if

t' is obtained from ¢ by p-reducing (respectively 7-reducing) a subterm of ¢.

Example 4.4 Take again the term (1)(2)\)1. Now
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L (7)1 =, (p1)2 =, 3.
2. (1)(2N)1 =, 2A)(1)1 =+ 2N (¢™M)2 =, (2))3.
3. (7)(18)(20)1 =, (10)(1)(2A)1 =, (16)(2A)(1)1 =+ (18)(2N) ()2 —,
(16)(20)3 —5 2.
4.1 The type of an abstraction

In what follows, we use \; for dependent product formation (usually denoted
as IT), and As for the — ordinary — function operator A\. Now in Definition 4.3,
we did not distinguish between the two operators. Usually, the following rule

is employed:
Definition 4.5 (Abstraction rule)

1. Given that the term t' has type t”, one defines the type of a I1-abstraction

Iz : t1 .t to be t”, as well.

2. The type of a A\-abstraction \x : ty .t is the corresponding I1-abstraction

Izt . t".

As a consequence, one may refine the transition rules for A-items as follows,

replacing those of Definition 4.3 for the case that w = A:

Definition 4.6 (7-transition rules for indexed \-items:)
(T)(t1A1) =+ (7)

(T)(t1A2) =7 (t1A1)(7)

Example 4.7
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1. If t = (16)(2\1)1 then (7)(2A1)1 =, (7)1 =, (p1))2 —, 3. That is, the

type of IL;.,.z is y.

2. If t = (16)(2A2)1 then (1)(2A2)1 =, (2A)(T)1 =+ (A1) (e1)2 —,

(2X1)3. That is, the type of Agy.2 is Igy.y.

There may be circumstances in which one desires to have more “layers” of
A’s. In such a case, we can extend this kind of systems by incorporating more
different A’s. For example, with an infinity of X’s, viz. Ay, A1, A2, A3 ..., we
can generalize Definition 4.6, to the following, if we add a reduction rule stating

that (t1Ag) reduces to the empty segment:

Definition 4.8 (7-transition rule for arbitrarily many indexed \-items)

(T)(t1 hig1) =+ (E1N)(7), for i =0,1,2,...

4.2 The type of an application

Recall from the third part of Example 4.2 that we might need to add an abstrac-
tion condition which states that the type of u and the type y are compatible.

In fact, one usually employs a rule of the following form:

Definition 4.9 (Application rule)
Given a “function” F of type Iz : t".t, and an “argument” t of the appropriate
type t" (this is the type or domain which is associated with this function), then

the application term (t0)F has type t1[x := t].

For this purpose we maintain Definition 4.6 as regards the A-items, and we

employ the following 7-transition rule for d-items (as in Definition 4.3):
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Definition 4.10 (7-transition rule for 6-items)

(7)(£10) =+ (t10)(7).

However, we make demands to rule 5 (see Definition 3.30), which we repeat

for convenience sake:

Skt s(to) Ht' application condition
S (to)t

The requirement now is that the following application condition does hold

in this rule:

Definition 4.11 (General application condition)

(1)t =78, ("Mt and (7)t =5, t".
Now it follows that
() (@)t =7 (£0)(7)t' =75, (t0) (" A1)t1 =5 ti[w = ] (6)

where the z’s are the variables in #; bound by the mentioned \;. Hence, we

obtain the desired result that (¢9)t' “has type” t;[x :=¢].

Example 4.12 Take the term (1A2)(16)(2X2)1 (or in sugared notation (yAy)(uwd)(yAg)x).
From Example 4.7, (7)(2X2)1 =, 5., (2X1)3. Moreover, the type of u is:

(ML =1 (P =5 2.
Hence the application condition for (16)(2X2)1 is satisfied and

(T)(16)(2A2)1 =7 ,,—3 2.

Note that we see the A\; (i.e., the II) indeed as a kind of A, hence eligible

for an application. This is a quite natural approach. In the usual notation, this
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would amount to the introduction of a B-reduction caused by a II-application:
(Hz : A.B)a —g Bz := a.
Here one may interpret (Ilz : A . B)a as the wish to select the “axis” B(a) in
the Cartesian product Iz : A. B.

In our notation, a IT-application is characterized by a J-II-segment of the
form (¢10)(t2I1). We speak about a [sp-reduction when referring to a G-reduction
generated by such a d-II-segment. Similarly, a (Gs)-reduction is an “ordinary”

[-reduction, generated by a d-A-segment.

Summarizing, we note that there are two possible approaches regarding II-

application:

e Implicit or compulsory Bs-reduction, i.e. for F of type (Ilz : A. B) and
a of type A we immediately have that Fa is of type B[z := a], without
intermediate steps. Here II-application is not allowed. This is the case in

PTS’s (see Section 5).

e FEzxplicit Bs-reduction, where IT-application is allowed. Now we have, for

F and a as above, that Fa has type (Ilz : A. B)a, which [spp-reduces to

The latter option is an extension of the former one. With explicit Bsi-
reduction one may simulate the effects of implicit Bs;-reduction, as we explained
above. One might argue that implicit Bs-reduction is closer to the intuition
in the most usual applications. However, experiences with the Automath-
languages, containing explicit Bs-reduction, demonstrated that there exists

no formal or informal objection against the use of this explicit Gs-reduction in
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natural applications of type systems.

The two options can also be described in our step-wise structure. Our de-
scription of ezxplicit Bsp-reduction is given above. If one desires to have implicit
Bsm-reduction as a formalized notion, then we can make use of the possibility
to have different 0’s at our disposal. In that case, a d1-item (#01) can be used
as a signal for forced priority for certain operations which execute the desired
implicit SBsp-reduction.

For example, the d1’s in the chain
(T)(t61)t" =7 (E61)(T)t =7 (£61)(t"M)t1 =5 t1]z == 1]

(cf. equation 6) can be used to enforce with highest priority, i.e. before the
execution of any other “operation” on the term:

1) the “calculation” of the type typ(t') obtained by 7-reduction of (7)t',

2) the search for a term of the form (#”\;)t; which is B-convertible to (or a
B-reduct of) typ(t'),

3) and the f-reduction (t61)(t"A1)t1 —»g t1]z :=t].

By this process we obtain the term ti[x := t] as a necessary and imme-
diate result of a 7-reduction on (7)(td1)t'. For ordinary, non-compulsory Gj\-
reductions, we may employ another 9, e.g. ds.

For simplicity, however, we shall not use these different §’s in the following

of this paper.

Remark 4.13 In a now commonly accepted setting (see [Bar92] or [BaH90]),
the typing relation is expressed in the format ' - ¢, : . Here ' is a context,

and the statement t; : to expresses that ¢; has type ¢y relative to this context
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I'. Such a context can be considered as a segment consisting of main A-items,

meant to bind all free variables occurring in ¢, and t».

Example 4.14 In (e)\;)(z)y) F y : « it is stated that y has type x in the
context (eA;)(xAy), which is indeed the case, as is visible in the context-item

(xAy). Also, (eAg)(xAy) F 2 : € holds.

5 The typing relation in PTS’s

We start with a short summary of so-called Pure Type Systems (PTS’s), as de-
scribed in [BaH90]; see also [Bar92]. We are only interested in the singly sorted
PTS’s, where different types of a given term are always [-convertible; hence,
typable terms are uniquely typed (but for (-conversion). Moreover, we require
that the typing relation is degree-consistent, thus preventing “impredicative
typing” like * : .

PTS’s employ ordinary variables, and not de Bruijn-indices or another ref-
erential variable denotation. So ¢-items and updating are not incorporated.
Moreover, we note that PTS’s have a typing relation t; : to (i.e. term ¢; has
type t2), and no canonical type operator as the one explained in Section 4. The
following gives the conditions which must be obeyed for the construction of (A-

or II-) abstraction terms in PTS’s:

Definition 5.1 (II-rules)

(II-formation rule:)

IFHt1:s1 T, z:itiFig:sg
I (Ilx : ty . t9) : s3
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(I1-introduction rule:)

'Hti:s1 T, x:itibFtorsy T, x:tiHu:ts
Pzt u): (Hz:ty.ta)

In these rules, I denotes a context, t1, to and u are terms and s1, s2 and s3
are so-called sorts (these should not be confused with the meta-variable notation
for items). For convenience’ sake, we only regard the case that sy = s3; these
PTS’s contain the ones of Barendregt’s A-cube (to be explained below). Note

moreover that these rules are consistent with Definition 4.5.

Remark 5.2 The [I-formation and II-introduction rules as given above can be

condensed into one II-rule (combined II-rule):

D[z ]ty s s1 [t :]tg 0 s2
DAzt . t)): (Ilx: ty . tg) : s9

Now it is obvious that Definition 4.6 encorporates the essential part of both

[I-rules, translated in our setting. In fact,

e (7)(t1 A1) T-reduces to (7) by itself (the A\i-item — i.e. the II-item — is

erased).

e (7)(t1A2) T-reduces to (t4A1)(7), so the As-item (an ordinary A-item)

changes into the corresponding A;-item (a II-item).

Moreover, the type information given by the Il-formation and Il-introduction
rules (via the statements (Ilx : ¢1 . t2) : s9 and (Ax : t1 . u) : (Hz : t1 . t2),
respectively) is no longer necessary, since we have the canonical type operator

7 at our disposal (cf. Definition 4.6 and Remark 4.13).

Now we come to “Barendregt’s cube” where both s; and so can be either

« or O (again, see [Bar92] or [BaH90]). These two are related by the aziom
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statement: * : O. In this cube, there are eight systems of typed lambda calculus.
They differ in whether * and/or O may be taken for s; and s2, respectively. (We
recall that we take sy = s3.) The basic system is the one where (s1,$2) = (%, )
is the only possible choice. All other systems have this version of the two
[I-rules, plus one or more other combinations of (x,0), (O, %) and (O,0) for

(s1,82). The four possible versions of the II-rule can be listed as follows:

degree | 3 2 1 0

(),%) |z = tp : % : O
U to * a
(«,0) |z : t; : * : O

(O, ) x t O
U to * O
(O0,0) z O

u : tp : O

The system with only (x,x*) for (s1,s2) is known as A-Church or A— (this
is essentially the Automath-system AUT-68). The addition of (x,0) gives AP,
which is a system that is rather close to another variant of the Automath-family,
AUT-QE (see [deB80]). The addition of (O, %) to (x,x*) gives the second order

typed lambda calculus, also called A2. Adding (O,0) to (%, *), we obtain A\w.
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There are three systems that are defined by adding a combination of two of
the three last-mentioned possibilities to (*,%). When all mentioned (s1,$2)-
combinations are permitted, we have a version of the Calculus of Constructions

(AC) (see [CoHS8S]).

In our system, we may identify O with . Subsequently, the axiom % : O
may be rendered as the A-item (¢A,). Thus we can express all eight systems of
Barendregt’s cube (and, in fact, many other PTS’s) by adding the appropriate
abstraction conditions. Let us repeat the construction rule under consideration,

as stated in Definition 3.30:

Skt S(tA) H abstraction condition
sE (N

Definition 5.3 (Incorporating I1-formation)
The I1-formation rule is obtained by reading A1 for A and taking the abstraction
condition:

(T)t =78 51 and (T)t' =, 5 s2, for s1,s2 € {*,0}.

Definition 5.4 (Incorporating I1-introduction)
For the Il-introduction rule we take Ao for A and the abstraction condition:

(T)t —-5 51 and (7)*t' =, s2. Here (1)? is an abbreviation for (7)(1).

Just as the II-formation and -introduction rules incorporate the PTS-version
of the abstraction conditions, the following II-elimination rule contains the ap-

plication condition for PTS’s:
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Definition 5.5 (II-elimination rule)

PFF:(llz:A.B) T'Fa:A
'+ Fa: B[z :=d]

Now we recall the appropriate construction rule from Definition 3.30:

Skt s(to) Ht' application condition
S (to)t

and we incorporate II-elimination as follows:

Definition 5.6 (Incorporating Il-elimination)
As regards the Il-elimination rule for PTS’s, we use the application condition:

there are t" and t1 such that (7)t' =, 53 (t"A1)t1 and (1)t =, 5 t".

Summarizing, it is our opinion that the main rules for term construction
in many PTS’s have a natural rendering in our setting. The construction of
abstraction terms can be simulated with the use of A1- and Ao-items. Applica-
tion terms can be constructed with an appropriate application condition, which
mirrors the Il-elimination rule but for the difference between implicit (com-
pulsory) and explicit Bsrr-reduction. However, the latter kind of Ssp-reduction,
being more general, and fitting naturally in our setting, can be used to establish

the same effects as the former one.

Remark 5.7 The fact that systems with explicit Gs-reduction are conserva-
tive over systems with implicit Gy1-reduction, has been proven by van Benthem
Jutting (private communication). Hence, there is no technical objection against

the definition of PTS’s by means of a canonical type operator.
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6 The typing relation in Automath-systems

In this section we describe the definitions of three of de Bruijn’s Automath-
systems in our setting. These systems do have a canonical type operator, albeit
not as part of its language. Consequently, we only have 2)s-terms in the lan-
guage. Moreover, there is just one d and one A, this A taking the role both of
the ordinary functional operator A\ and the product constructor II.

The systems that we discuss are AUT-68, AUT-QE and A.* All these sys-
tems have been developed around 1970. The oldest of the three is AUT-68,
the more powerful variant AUT-QE followed soon. The system A was meant
to be a simplified and more uniform version of the two other systems. It was

developed slightly later.

6.1 The system AUT-68

The system AUT-68 ([vanD80]) was meant as a formal system suitable for

expressing large parts of mathematics, some of its features include:

e An in-built logical frame for reasoning, in a logic chosen by the user (e.g.

classical predicate logic, intuitionistic logic),

e The possibility of a step-wise development of a mathematical theory by
means of axioms and primitive notions; lemma’s, theorems, corollaries

and their proofs; definitions and abbreviations,

“We thank Bert van Benthem Jutting for the descriptions below of AUT-68 and AUT-QE.
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e An explicit treatment of contexts (assumptions, variable introductions)

for theorem-like and definition-like notions.

e Only degrees 1, 2 and 3 are permitted. Hence, ¢ (of degree 0) is not an
Automath-term. As a consequence, the A-item (e)\.), expressing that * is
of type ¢, is a “meta-axiom”, which cannot be rendered inside one of the

described Automath-systems.

If we disregard the definition mechanism of AUT-68 (in other words, if all
definitions are “unfolded”), then we can give a simple, straightforward descrip-
tion of AUT-68 in our setting by choosing the appropriate parameters. The
following definitions show what are the typing relation and construction rules

that will describe AUT-68 in our setting.

Definition 6.1 (Canonical types for AUT-68)
The canonical type typ(t') of a term t' can be calculated by means of the

following T-transition rules:

(T) (Nt =, * if deg(t') = 2
(t\)(T)t' if deg(t) =3

(1) (#0)t" — (£0)(7)t

Definition 6.2 (Well-typedness of AUT-68)
In Definition 3.30, we need the following variable, abstraction and application

conditions:
e Variable condition: The only variable of degree 1 is .

e Abstraction conditions:
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1. Either deg(t) = 2, or deg(t) = 1 and S is a context (see Defini-

tion 3.2), and

2. 2 < deg(t') <3.

o Application condition:

deg(t') = 3and typ(t') = (typ(t)A)t” for some t”

6.2 The system AUT-QE

The system AUT-QE has so-called Quasi Expressions: abstractions over x,
functioning as types of dependent products. This extra feature facilitates the
applicability of the system in a mathematical environment. Moreover, AUT-QE
has, like AUT-68, only terms of degree 1, 2 and 3. The following will show how

we can incorporate a (again definition-free) version of AUT-QE in our setting:
e Canonical type: as for AUT-68 (see Definition 6.1).
e Variable condition: as for AUT-68 (see Definition 6.2).
e Abstraction condition 1: as for AUT-68 (see Definition 6.2).
e Abstraction condition 2: absent (see Definition 6.2).

e Application condition:
either deg(t') = 3 and s+ (td)typ(t),

or deg(t') =2 and typ(t') =5 (typ(t)A)t” for some term ¢".
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6.3 The system A

In view of the sketched development of A as a uniform system (however main-
taining most of the possibilities for practical applications in logic and mathe-
matics), it will be no surprise that A is the system closest to the approach that
we follow in this report. As a matter of fact, A is contained in our description

as given before, with the following parameters:

e There is no restriction on degrees, all degrees > 0 are possible.

e There is only one abstraction operator A (hence, there is no I, or Ag, A1, Ag, .. .).

e Application is only restricted in the sense that the general application
condition (see Definition 4.11) must hold, albeit in a generalized ver-
sion (due to the unlimited degrees). Application is allowed for terms
of all degrees, so that II-application (see again Section 4) is one of the
features: [-reduction is treated similarly for all degrees, in the form

(tla)(tgAI)tg —3 tg[.CC = tl].

e The type operator behaves uniformly, as in Definition 4.3: we have that
(1)(t1w) =+ (tiw)(7), for 7 = X or 7 = 6. Hence, A has explicit, and not

implicit (compulsory) [Gsp-reduction.

7 An example

In order to demonstrate some of the features discussed above, we propose a
system A¢, that has in principle similar power as Coquand and Huet’s Calculus

of Constructions (or AC, see [CoHS88]) and give the proof of a logic theorem in
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this setting.

7.1 The system A,

Ac, has the following general features:

Variable names like z, y, ..., are used instead of de Bruijn-indices.

e Segment abbreviations, as discussed in Definitions 3.4 and 3.29 are incor-

porated.

e There is a distinction between IT’s and \’s, (i.e., A1’s and Ag’s), respec-

tively.

e A canonical type operator typ, with the usual notational convention that
typ?(t) = typ(typ(t)), etc, is used.
e [l-application and the corresponding Gsi-reduction are present.

e The maximal degree is 3.

Hence, we deviate in several respects from the official AC.

Note that we use three A’s, viz. A1, A2 and Agg. (In Section 7.3, we write II
for Ay and X for \9.) Moreover, we have one §, and as a consequence of what
we said above, there will be no ¢’s and no 7’s. The last two operators may only

be used in the meta-language.

Remark 7.1 When we use deg or typ in a condition, we implicitly require

that these operations are indeed defined for the terms under consideration.

45



Definition 7.2 (Construction rules for Ac, )

The construction rules for terms are the following:

variable construction:

1 < deg(szr) <3
Skx

abstraction construction:

SkEt S(tA) H abscon
SE (N

where, for A= A, and k =1 or 2, respectively,

typ'(t) =g fori=1Vi=2;
abscon is

typ! (') =, p¢ for j=kVji=k+1

application construction:

Skt s(to) H ¢ appcon
Sk (to)t

where
appcon is : there are t; and je{0,1} such that (7)7¢' =, 5 (1)t A1)t

Note that abscon is the same abstraction condition as the one for A\C defined
in Definitions 5.3 and 5.4. However, we do not use s; and so. To be precise: in
AC both s; and so can be either x or O. We identify O with €. Moreover, we
assume that x : O, as in Section 5, and we assume that * is the only inhabitant

of O.
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Hence, the condition “t: s1”

can be replaced by typ(t) = ¢ (in the case that
s1 = 0) or typ(t) = * (in the case that s; = x).

Analogously, in the case that A = )\ (i.e., IT), the condition “¢’ : s5” becomes
(1)t =75 € or (1)?t' =, 5 e. In the case that A\ = Xy (i.e., the ordinary

2

“functional” A), the condition “¢' : t" : so for some ¢""” becomes (7)*t' =g ¢ or

(7)3' =g €. The rules for 7 are given in Definitions 4.3 and 4.6.

Remark 7.3 It is not hard to see that both the typing relation and the reduc-

tion relations in the presented system are degree-consistent.

7.2 The environment of the theorem

The theorem that we give is very short and is taken from logic. The logic
is based on the Curry-Howard-De Bruijn isomorphism, that is the notion of
“propositions-as-types”. (Cf. Example 3.21.) This environment that we work

with only concerns the following subjects:

a class * of propositions is taken as primitive,

e in this class the notion falsum (= absurdity), denoted as L, is introduced

as a primitive notion,

e the axiom scheme % (for all propositions a) is stated (i.e. when absurdity

holds, then every proposition holds),

e the notion of implication a¢ = b is defined as the class of all mappings of

a to b, hence sending proofs of a to proofs of b,

e the notion of negation —a is defined as a = L,
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e the following logical theorem is expressed and proved:

In a kind of “Mathematical Vernacular”, adopted from the style of the
Automath-family, this piece of logico-mathematical text can be expressed by

the following three definitions:

Definition 7.4 (The aziomatic part)

[
(0]
ct

* be by axiom the class of all propositions.

[
(0]
ct

1 be by axiom a proposition.

=
o®
ct

a be a proposition

and let t be a proof of L;

then | -el of a and t is by axiom a proof of a.

Definition 7.5 (The definitional part)

let a be a proposition
and let b be a proposition;

then ‘=’of a and b is by definition the class of all mappings from a to

let a be a proposition;

then —’of @ is by definition ‘=’"of a and L.

Definition 7.6 (The theorem-and-proof part)
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let a be a proposition

and let b be a proposition,
let o be a proof of a

and let y be a proof of ‘=’ of a;

then pr ofa, b, x and y is by definition l-el of b and y of z,

being a proof of b.

Remark 7.7 In the above text, L is introduced as a primitive notion by means
of an axiom. This is, of course, unnecessary in AC, since the contradiction L
can easily be defined in \C, viz. as (xIl,)a. However, for the case of the example

we introduce L as above.

7.3 Translating the environment in \¢,

The logico-mathematical text defined in the previous section, will be translated
in its entirety, as one segment in A¢,. For convenience’ sake, we write this
segment as a concatenation of separate items, corresponding with the different
axioms, definitions and theorems in the text. Moreover, we assume that the
reader who is familiar with PTS’s will be pleased when we write II instead of

A1 and the ordinary A instead of As.

Definition 7.8 (Translating Definition 7.4)
Definition 7.4 gives the following three \-items:
(As)
(%A 1)

((#[g) (LIg)a AL_e)

49



That is: * is introduced as a term of type € and L as a term of type *; finally,
1-el is presented as being a primitively given, fixed function, sending a of type
* to an element of the set of all functions from L to a (this set is coded as
(LII;)a). Otherwise said, L-el is a function sending a of type * and ¢ of type
1 to a. This function causes any proposition @ to be inhabited as soon as L,

the absurdity, is inhabited.

Definition 7.9 (Translating Definition 7.5)
Definition 7.5, coding the definitions of implication and negation, can be ex-
pressed by the following four items, being two pairs of (‘definitional’) 0-\-
segments:

(%) (xXp) (all; )b &) ((xI1g)(xI1p) * A=)

(%) (L0)(ad) = 6) ((xILy) * A-)

Here = is defined as the product (xAg)(xAp)(all,)b; this product is ‘polymor-
phic’, in the sense that it only becomes a product after application, in this
case to two arguments. To be precise, for given ¢ and d of type #, the term
(d6)(cd) = [-reduces to the dependent product (in this case, the set of all
functions) (clIl;)d, functions which send inhabitants of ¢ to inhabitants of d.
The type of = is (xIL,)(*1Iy)*, the class of all functions sending pairs (a, b) of
‘propositions’ to a “new” ‘proposition’ (in this case: a = b).

Analogously, — is defined as the ‘polymorphic’ negation (x\,)(Ld)(ad) =
thus, (¢0)— [-reduces to (Ld)(cd)=-. The type of = is (xII,)*, the class of all

functions sending a ‘proposition’ a to a “new” ‘proposition’ (in this case: —a).
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Example 7.10 The reader may check that the following chain of 3-reductions
is correct:

- =g

(xAg)(L0)(ad) = —p

(*Aa) (L) (ad) (+Aq) (xAp) (allz)b —5

(4Aa) (L6) (+10) (aTLe)b —>

(+Xa)(alL) L.
Hence,

(ad)~ =g (all;)L.
So (ad)— (or —a in prefix-notation) is [-convertible to (all;)L (or, in infix-
notation, a = L). It is easy to check that (all;)L, in its turn, is S-convertible

to (L6)(ad) =

Definition 7.11 (Translating Definition 7.6)
Definition 7.6 of the text can be translated into one §-A-segment:

((+Xa) (xAp) (aAa) ((ad) = Ay ) ((x0)y 0)(b6) L—el 0)((+I1a)(+IT) (allz)((ad)— Ty )b Apr)

The obtained coding of the text is, indeed, one long segment. For the sake of

completeness, we give the full segment:

(As)
(%A 1)
() (LT )a AL —er)

((x\g) (xXp) (Il )b 0) ((%IT1) (xITp) * A=)
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(%) (L) (ad) = ¢) ((xIIy)* A-)
((£Aa) (xAp) (ade) ((ad) = Ay) ((xd)y 6)(bd) L—el &)

((eIHa) (#1015 ) (@Il ((ad) = TIy )b Apr) (4)

It is not hard to check that this segment obeys the conditions for term

construction as given above:®

variable condition:

The term is closed and all degrees are < 3.

abstraction condition:

Left to the reader.

application condition:
Examples are:
typ(xAg) (¥Ap) (all; )b =, (by Section 4)
(7)(*Aa) (xAp) (ally )b — - (by Def. 4.8)
(+I1g) (7) (*X\p) (ally )b —+ (by Def. 4.8)
(xI1,) (*11)(7) (all; )b =, (by Def. 4.8; (all;) reduces to the empty segment)
(xI14) (xILy)(7)b —+ (by Def. 4.3)

(11 ) (xITp)*
and
typ(*Aq)(L6)(ad) =

— - (by Section 4)

(7)(*Aa) (L) (ad) =

®Note that this segment can be considered to be a term by adding € to the segment.
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—, (by Def. 4.8)

(+11a) (7) (L6) (ad) =

—,; (since
(1)= =r (Io)(y)x =75 ((7)a Oo)(xIDy)*, so
(7)(a0)= =; (*ly)* =;p ((7)L Iy)* ) and
(1) (Lo)(ad) = =r *)

(+I1)*.

Other checks of the application condition, such as:
typ (#¥Aa) (¥ Ap) (@A) ((@d) = Ay) ((#6)y 0)(bd) L—el —»r g
(+I1q) (+ILp) (ally) ((ad) = IL,)b,

are left as an exercise for the reader.

7.4 The theorem and its proof

The main A-item of the segment in definition 7.11 contains the theorem:

(+1L,) (+115) (alL, ) ((ad)~ 1, )b.
The contents of this theorem are that any inhabitant of the theorem, being a
proof for the theorem, must be a function which, for a¢ and b of type *, for x
of type a and y of type (ad)—, gives an inhabitant of (= a proof of) the type
b. Translated in more customary phrasing: the desired function must be such
that for any pair of ‘propositions’ ¢ and b and for any pair of ‘proofs’ of a and
=(a), we have a ‘proof’ of b.

This theorem indeed has an inhabitant (and hence is true). This inhabitant

can be found in the main J-item of the J-A-segment:
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(#3a) (+26) (aAs) ((ad) Ay (d)y ) (b3) L—el.

In order to show that this term is indeed a proof of the theorem, we have to
show that its type is (-equivalent to the term coding the theorem. Otherwise
said: we have to demonstrate that this d-A-segment, in particular, obeys the

application condition. This is indeed the case, as the reader may check.

Finally, we show the usefulness of segment abbreviations for the same the-
orem and proof. (These abbreviations can also be of help for the check of the
application condition.) Segment abbreviations add to the efficiency. There are
already several segment duplications in term 4. For example, the segments
(xAq) and (xAq)(xAp) occur repeatedly; the same is the case for their respective
types: (xII;) and (xII,)(xII).

When we have terms translating longer texts than the very short one in the
example above, segments then can easily consist of many items. Moreover, in
an average term translating a piece of mathematical text, the amount of dupli-
cations is very bothersome. Segments tend to be repeated almost literally. As
a matter of fact, it turns out to be quite natural (as a consequence of the usual
structure of mathematical reasoning) that different segments occur stackwise in
the complete term; that is to say, an occurrence of a segment (t1Ag,) ... (tnAa,)
may be followed rather closely by the same segment, or by a segment which
is one item longer: (t1Aq,) ... (tng1Xa,y,) O shorter: (t1Xq,)... (tn—1Xan_y)s
and this may happen again and again. (The same holds if some of the A’s are

replaced by II’s.)

The segment abbreviations which we proposed can solve the problem. For

o4



this, we add one more abbreviation in this translation process: when, e.g.
(%*Xq)(xAp) is abbreviated by (b;2), then we abbreviate (+I1,)(xII;) by ((7)b;2).
This is quite natural, since the T-transition rules are such that (7)(x\g) (x\p)t' —
—; (*I1g) (+I1,)t" (see Definition 4.6).

Now, the term given below is the same as term 4, but with segment abbre-

viations.

(As)

(A1)

((+2a)0) (Asg o)

(((T)a; (LI )a AL —er)
((2;1)(*Ap)0) (Asg »)

((b52) (eIl )b 9) (((T)b;2) * A=)
((2;1)(Lo)(ad)= 9) (((T)a;1)* A-)
((b;2)(aAs)((ad)= Ay) 6) (Asg <)
((c;4)((wd)y 6)(bd) L—el §)

(((T)e;4)b Apr) (5)

In a final step, we change the lay-out of this term in such a manner that
it resembles an Automath-text. At the same time, for the sake of brevity we
remove those variable items of the form ((7)x;n) for which the corresponding
variable item (x;n) figures in the same line. Instead, we shall use a horizontal

stroke: —, which should be considered to refer to the segment variable (z;n),
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with (7) added in the left-hand side. This is again a way to avoid unnecessary
duplications; the three horizontal strokes in the version below should read:
((1)b;2), ((1)a;1) and ((7)c;4), respectively.

Thus doing, we come closer to both Automath and to the general PTS-

framework, which uses contexts I'.

The following version will now speak for itself.

( Ax)
( * AL)
( (*Aa) ) (Asg =)
( ((T)a; D(L)a Ap—e)
( (231) ] (+Ao) ) (Asg v)
( (2) | (all)b 0) | (—=* A=)
( (a1) | (Lo)(ad)= 0) | (—=* A-)
( (52) ] (aAs)((ad)= Ay)  0) (Asg <)
( (c;4) | ((#d)y 0)(bd) L—el 6) | (b Apr)

8 Conclusions

In this paper, we introduced an alternative A-calculus notation which is flex-
ible enough for the expression of many type systems. This notation allows
many generalizations. For example higher degrees and segment abbreviations
are straightforwardly attainable. Moreover, a difference between functions (A-
terms) and dependent products (II-terms) can be made by adapting the appro-
priate rules, whereas both kinds of abstractions still fit in the same framework,

since they may be treated as two similar kinds of A-abstraction. This turned
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out to hold to such an extent that application and [-reduction become also
possible for II-abstractions, thus simplifying and unifying the patterns.

We looked at the role of the types in our setting. For typable terms we
defined a canonical type, which can be effectively computed in a straightforward
manner. The usual relation t; : to, i.e. term #; has as one of its types the term
to, can also be expressed by means of this canonical type typ and S-reduction,
viz. as typ(t1) =g t2.

We showed how type systems such as Barendregt’s cube of Pure Type Sys-
tems can also be defined with this typ-operator in a rather uniform way. More-
over, we explained how the abstraction condition and the application condition,
present in our alternative term construction rules, can be phrased in correspon-
dence with the PTS-rules. We also presented a number of Automath-systems
in the proposed setting, which resulted in concise definitions for complicated
systems. Finally, we worked out the proof of a theorem taken from logic in our
setting.

All the above is an evidence that our new framework is expressive, general
and uniform. We believe that this framework deserves some attention in the
ongoing research in A-calculus and type theory. So far we have illustrated the
advantages and usefulness of our framework in various areas and applications.
So whereas in this paper we are concerned with generalising type theory in our
framework, we show in other papers the advantages of our notation for many
important issues of the A-calculus. In the introduction, we discussed some of
the charcteristics of our notation and of what it offers. Below, we shall reflect

further on some ongoing research we are carrying out with this notation.
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1. In [KN 93] we showed that with our notation we can introduce explicit
substitution which is more general than many explicit substitutions in-
troduced so far. We showed moreover that we can define local and global
reduction in an easy and natural way and discussed various reduction
strategies. With such substitution and reduction, our system can be more
useful to applications and implementations of the lambda calculus than
many known systems. In functional programming for example, there is
an interest in partial evaluation. That is, given zz[x := y], we may not
be interested in having yy as the result of xx[z := y] but rather only
yz[x := y|. In other words, we only substitute one occurrence of x by y
and continue the substitution later. In that article furthermore, we show
that it is the item notation which enabled such an easy account of explicit

substitution.

2. In [KN 9z] we show how a new notion of #-reduction can be obtained with
the use of our item notation. We extend the usual notion of S-reduction,
an extension which is an evident consequence of local substitution. The
framework for the description of terms, as explained before, is very ade-
quate for this matter. This extension is to do with a completely new kind
of reduction that is desirable. This results for example from replacing z
by t1in ((Ag:ts-(Ayits - Azetg-w)ta)t2)t1 resulting in (A, . (Ay:s.w)ts)t2 before
t4 has replaced y and t3 has replaced x. In the usual A-calculus, this is not
straightforward. Such a reduction however, which takes place while other

reductions are still frozen is needed. As an example, lazy evalutation,
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counts on waiting with the evaluation of some term, while still passing
it as an argument. This means that even though we have not destroyed
a particular reduction segment, we may still want to reduce other reduc-
tion segments which may be very far apart. [KN 9z investigates such
a process by providing a generalised §-reduction where the problem of
delayed reductions and substitutions is tackled. For example, we reduce
((Azie-(Agie-Azie)x3) )21 t0 (Agic.(Ayicu)x3)w2; a reduction difficult to
carry out in the classical A-calculus. This generalised (-reduction, we
claim is the most generalised up to date. With such an extended reduc-
tion there will be new reduction strategies that may prove more helpful
for the implementor. For example, [BKKS 87] have investigated the the-
ory of needed redexes in a term and we feel that needed redexes are all
easily available and obvious in our generalised notion of a redex. This is

an issue under investigation at the moment.

. Our use of segment abbreviation we conjecture will simplify proofs and
will more importantly help us treat proofs and contexts as terms and many
notions that we apply to terms we can apply to proofs and contexts. For
example, a segment is just a special kind of term whose end variable is ¢.
Now, a segment is not only a term, but is also a context. So many notions
related to terms can be also applied to contexts. Furthermore, we think
it important and elegant that we can treat and discuss contexts as terms.
The metatheory of our system is an interesting part to study and this is

one of the issues we are concentarting on at the moment.
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Hence our system can be used to improve both implementations as well as
theory. Two important notions are under study at the moment as we said:
reduction and theorem proving. But we do believe that the system is more

elegant and attractive than the existing systems and we show this in [KN 9z].
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