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Reducibility proofs in the A-calculus

Fairouz Kamareddine, Vincent Rahli and J. B. Wells®

Abstract. Reducibility, despite being quite mysterious and inflexjlthas been used to prove a
number of properties of tha-calculus and is well known to offer general proofs which ¢en
applied to a number of instantiations. In this paper, we lab&wvo related but different results in
A-calculi with intersection types.

1. We show that one such result (which aims at giving redligilpproofs of Church-Rosser,
standardisation and weak normalisation for the untypaxlculus) faces serious problems
which break the reducibility method. We provide a proposaddrtially repair the method.

2. We consider a second result whose purpose is to use rddyddr typed terms in order to
show the Church-Rosser gfdevelopments for the untyped terms (and hence the Church-
Rosser ofs-reduction). In this second result, strong normalisat®nat needed. We extend
the second result to encompass héfk and 3n-reduction rather than simpl§-reduction.
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1. Introduction

Based on realisability semantics [Kle45], the reducipititethod has been developed by Tait [Tai67] in
order to prove the normalisation of some functional theoriehe basic idea of reducibility is to interpret
types by sets ok-terms which are closed under some properties. Girard Eb@@veloped the reducibil-
ity method further and used it to prove the strong normatisadf a typedX\-calculus by introducing the
candidates of reducibility [Gal90]. Statman [Sta85], Ketes [Kol85], and Mitchell [Mit90, Mit96] also
used reducibility to prove the Church-Rosser propertyo(akslled confluence) of the simply typed
calculus. Furthermore, Krivine [Kri90] uses reducibility prove the strong normalisation of systém
an intersection type system [CDC80, CDCV80, CDCV81]. MespGallier [Gal97, Gal98] uses some
aspects of Koletsos’s method to prove a number of resultsasithe strong normalisation of theterms
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that are typable in systems lilig2 or DS [Kri90]. In particular, Gallier states some conditions aperty
needs to satisfy in order to be enjoyed by some typable tenasrisome restrictions.

Similarly, Ghilezan and Likavec [GL02] state some conditia property has to satisfy in order to
hold for all \-terms typable under some type restrictions in a type systese toDf). Furthermore,
they state a condition that a property has to satisfy in amlstep from the statement Yatermtypable
under some restrictions on typhas the property” to the statementXderm of the untyped\-calculus
has the property”. If successful, the method of [GL02] wamidvide an attractive way for establishing
properties such as Church-Rosser for all the untypeerms, by simply showing easier conditions on
typed terms. However, we show in this paper that Ghilezan_étal/ec’s method fails in both the typed
and the untyped settings. We outline the obstacle we face whiing to repair the result for the typed
setting and explain how far we have been able to to repairdéver, the result for the untyped setting
seems unrepairable. Ghilezan and Likavec also present kewgarsion of their method for a type
system similar to systerf?, which allows one to use reducibility to prove propertieshaf terms typable
by this system, namely the strongly normalisable terms.af&$ we know, this portion of their result is
correct. (They do not actually apply this weaker method tpsats of terms.)

In addition to the method proposed by Ghilezan and Likavdtddwdoes not actually work for the
full untyped A-calculus), other steps of establishing properties likairf€Ch-Rosser for typed-terms
and concluding the properties for all the untypederms have been successfully exploited in the lit-
erature. Koletsos and Stavrinos [KS08] use reducibilitystite that the\-terms that are typable in
systemD satisfies the Church-Rosser property. Using this resutttteg with a method based ¢h
developments [Klo80, Kri90], they show thatdevelopments are Church-Rosser and this in turn will
imply the confluence of the untypeXicalculus. Although Klop [Klo80] proves the confluence &f
developments [BBKV76], his proof is based on strong norsaion whereas the Koletsos and Stavri-
nos’s proof only uses an embedding®tievelopments in the reduction of typabléerms. In this paper,
we apply Koletsos and Stavrinos’s methodstbreduction and then generalise itdg-reduction.

In section 2 we introduce the formal machinery and estald@mine needed lemmas. In section 3
we present the reducibility method used by Ghilezan andveigand show that it fails at a number of
important propositions which makes it inapplicable to thk dntypedA-calculus, although a version of
their method works for the strongly normalisable terms. \We gounterexamples where all the con-
ditions stated in Ghilezan and Likavec’s paper are satisfietithe claimed property does not hold. In
section 4 we indicate the limits of the method, show how tHesis affect its salvation and then we
partially salvage it so that it can be correctly used to disfalconfluence, standardisation and weak head
normal forms but only for restricted sets of lambda terms tgpés (that we believe to be equal to the
set of strongly normalisable terms). We point out some linkisveen the work of [GL0O2] and that of
Gallier [Gal98]. In section 5, we give a precise formalisatiof 5-developments where we formally
deal with occurrences of redexes using paths and we adapttides from [Kri90] to allow 37- and
Bn-reduction. In section 6, we introduce the reducibility seics for both37- and n-reduction and
establish its soundness. Then, we show that all typablestsatisfy the Church-Rosser property. In
section 7 we adapt the Church-Rosser proof of Koletsos amdiBbs [KS08] tos-reduction. In sec-
tion 8 we non-trivially generalise Koletsos and Stavrisogaethod to handlgrn-reduction. We formalise
Bn-residuals angsn-developments in section 8.1. Then, we compare our notiginefesiduals with
those of Curry and Feys [CF58] and Klop [Klo80] in section,&&tablishing that we allow less residu-
als than Klop but we believe more residuals than Curry andg.Heyally, we establish in section 8.3 the
confluence ofin-developments and hence @f-reduction. We conclude in section 9.
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2. The Formal Machinery

This section provides some known formal machinery and déhices new definitions and lemmas that
are necessary for the paper. ketn be metavariables which range over the set of natural nunibess
{0,1,2,...}. We take as convention that if a metavariableanges over a setthen the metavariables
v; such that > 0 and the metavariables, v”, etc. also range oves.

A binary relation is a set of pairs. Let/ range over binary relations. Lébm(rel) = {z | (z,y) €
rel} andran(rel) = {y | (x,y) € rel}. Afunction is a binary relatiorfun such that if{ (x, y), (x,z)} C
fun theny = z. Let fun range over functions. Let— s’ = {fun | dom(fun) C s Aran(fun) C s'}.

Givenn setssy, ..., s,, Wwheren > 2, s; x --- X s, stands for the set of all the tuples built on the
setssy, ..., sy Ifx € 81 X -+ X s, thenz = (xq,...,2,) such thatr; € s; foralli € {1,...,n}.

2.1. Familiar background on A-calculus

This section consists of one long definition of some fam{limostly standard) concepts of thecalculus
and one lemma which deals with the shape of reductions.

Definition 2.1. 1. letx,y, z, etc. range ovel/, a countable infinite set of-term variables. The set
of terms of the\-calculus is defined by:

MeA:=x|(A\e.M) | (M My)

We letM, N, P, Q, etc. range over\. We assume the usual definition of subterms: we wiit€
M if N is a subterm of\/. We also assume the usual convention for parenthesis andimse
when no confusion arises. In particular, we wiite N; ... N,, instead of ...(M Ny) No..N,,—1) N,.

We take terms modula-conversion and use the Barendregt convention (BC) wheredimes of
the bound variables differ from the names of the free oneseM\tivo terms\ and N are equal
(moduloc), we write M = N. We writefv(M) for the set of the free variables of terid.

2. Forn > 0, defineM™(N), by induction ona by: MY(N) = N andM"™" 1 (N) = M(M™(N)).
3. Apath in atermV/ is a pointer to a subterm dff/. The set of paths is defined as follows:
pePath:=0]|1p|2p

We defineM |, by: M|o = M, (Ax.M)|1., = M|, (MN)|1, = M|,, and(MN)|2., = N|,.
We define2™.p by induction o > 0: 2°.p = p and2"t1.p = 2" 2.p.

4. The setAl C A, of terms of the\l-calculus is defined by:

o If x € Vthenz € Al
e If M € Alandx € fv(M) then\z.M € Al
o If M, N € AlthenM N € Al.
5. The substitution/ [z := N] of N for all free occurrences af in M and the simultaneous substi-

tution M [z; := N;,...,x, := N,] for 1 <i < n, of N; for all free occurrences af; in M are
defined as usual.
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We define the following four common relations:

e Beta ::= (Az.M)N, M|z := NJ).

Betal ::= ((Az.M )N, M|z := NJ), wherez € fv(M).
e Eta := (\x.Mxz, M), wherex ¢ fv(M).

e Betakta = Beta U Eta.

Let (s,r) € {(Beta, 8), (Betal, 5I), (Eta,n), (BetaEta, 5n)}.

We defineR" tobe{L | (L, R) € s}. If (L, R) € sthen we callL ar-redex andr ar-contractum
of L (or aL r-contractum). We define the ternary relatiex. as follows:

o M S, Mif (M, M) € s o \e. M 3, Az M if M D, M

o« MN X M/Nit M B, M o NM 28, NM' it M B, M
We define the binary relations,. (for simplicity we use the same name as for the ternary oeiati
as follows: M —, M’ if there existsp such that\ %, M’. We defineR}, = {p | M|, € R"}.

.LetM eAandF CA FIM={N|NecFANCM}

. Let =5 be the set of pairs of the forf\z;. ... 2, .(Ax.Mo) My ... My, Az1. ... x5 Mol =

Mi|Ms ... M,,) wheren > 0 andm > 1.

If (L,R) €—=pgthenl = Axy....x,.(Ax.Mo)M; ... M, wheren > 0 andm > 1 and
(Az.My) M, is called the3-head redex of.. We define the binary relationy;3 as—zg \ —3.

. Letr € {—=g, =y, =ay, —p1, —ns, —ig}- We use—; to denote the reflexive transitive closure

of —,.. We let~,. denote the equivalence relation induced-y. If the r-reduction fromM to N
is in k steps, we write/ —F N.

Letr € {AI,An} andn > 0. A term (A\z.M')N{Nj...N], is a directr-reduct of a term
(Az.M)NgNy ... N, iff M —* M’ andVi € {0,...,n}. N; =* N/

The selNF (of S-normal forms) andVN (of weakly S-normalisable terms) are defined by:

e NF ={Azy.... Azp.2oNy ... Ny, | n,m >0, Ny,...,N,,, € NF}.
e WN={MeA[INeNFM 5N}
Letr € {8, 81, Sn}. We say that\/ has the Church-Rosser property fathasr-CR) if whenever
M —7 My andM —5 M, then there is ad/3 such that\/; — Mz and My — Ms. We define:
e CR" = {M | M hasr-CR}.
e CR{={zM;...M, |n>0ANzeVANM©e{l,..,n},M eCR"}
e We useCR to denoteCR” andCR to denoteCRg.

A term is a weak head normal form if it is &abstraction (a term of the formz.M) or
if it starts with a variable (a term of the formM/; - -- M,,). A term is weakly head nor-
malising if it reduces to a weak head normal form. Mét = {M € A | 3In > 0,3z €
V,3P,Py,...,P, € A,M = Ax.Por M —} xP; ... P,}. We useéW to denotew”.



Kamareddine, Rahli, Wells / Reducibility proofs in thealculus 5

13. We say thafl/ has the standardisation property if WheneMr—>;§ N then there is ad/’ such
thatM —; M’ andM’ —* N. LetS = {M € A | M has the standardisation propgrty

The next lemma deals with the shape of reductions.
Lemma22. 1. M Bg M'iff (M 2g M or M B, M),

2. Ifx e fV(Ml) thenfv(()\x.Ml)Mg) = fV(Ml [(ﬂ = MQ])
If ()\:L'Ml)Mg e Al thean[:L' = Mg] e Al

3. It M —3, M’ thenfv(M') C fv(M).
4. If M —%; M' thentv(M) = fv(M') and if M € AlthenM' € Al

5. Ae.M B, Piff (p =10/, P = Ae.M’ andM %5, M) or (p = 0, M = Pz andz ¢ fv(P)).
6. If r € {BI,Bn}, n >0, Pis not a direct-reduct of N = (Az.M)Ny ... N, andN —* P, then:

(@ k> 1,and ifk = 1thenP = Mz := Ny| Ny ... N,.
(b) There exists a direetreduct(\xz. M) N)N7 ... N}, of (\x.M)Ny ... N, such that
M'[x := N}IN} ... N, —* P.

7. Letr € {BI,0n}, n > 0and(Axz.M)NyN; ... N, —& P. There exists”’ such thatP —; P’
and if (- = SI andx € fv(M)) orr = BnthenM [z := No|Ny ... N,, —F P'.

8. There existd/’ such thatl %, M’ iff p € R},
9. If M %, My andM 5, M, thenM; = M.

Proof: 1) By induction onp.

2) By induction on the structure off;.

3) (resp. 4)) By induction on the length of the reductiah—7, M’ (resp.M —p; M).

5) =) Let \x.M £>5,7 P. We prove the result by case gn Eitherp = 0 and M = Pz such that
x & tv(P). Orp=1.p', P = z.M" andM ﬂl}ﬁn M.

<) If P =X e. M andM —g, pM'. So,\z.M liﬁn PandAz.M —g, P. If M = Prandx ¢ fuP
then\z.M = \z.Px g, P,so\z.M —z, P.

6a) If k = 0thenP = (Ax.M)N;N; ... N, is a directr-reduct of(Az.M)NoN; ... N, absurd. So
k > 1. Assumek = 1, we proveP = M [z := Ny|N;y ... N, by induction onn > 0.

6b) By 6a,k > 1. We prove the statement by induction br> 1.

7) If Pis a directr-reduct of(Ax.M)Ny ... N, thenP = (Az.M’)N/ ... N}, such thatM —* M’ and
Vi € {0,...,n},N; = N/. SOP —, M'[x := N{|Nj...N] (if r = I, note thatz € fv(M’) by

lemma 2.2.4) and/[z := Ny|N;...N, —; M'[x := N{INy...N], . If Pis not a direct-reduct
of (A\z.M)Ny ... N, then by lemma 6.6b, there exists a direateduct,(Az.M')N/ ... N;, such that
M —* M’ andVi € {0,...,n}, N; =* N/, of (Az.M)Ny ... N,,. We haveM [z := No]N; ... N,, —*

M'[z := N}|N| ... N/, = P.

8) and 9) By induction on the structure pf O
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(ref) T<T

(tr) (M<mAR<IR)=7<T3

(inr) N7 <7

(inr) T N7 <7

(—-n) (1 =>m)N(nn —13) <7 — (12N73)
(mon’) (T1§T2/\T1§T3)Z>T1§T20T3
(mon) (M<TAR<ST)=>nNn <1 NT
(—-n) (M<THATS<Tm) =71 =27 <17 =7
Q) T <0

(Q-lazy) T—-00<Q—>Q

(idem) T<TNT

Figure 1. The ordering axioms on types

2.2. Background on Types and Type Systems

This section provides the necessary background for thesygtems used in this paper. The type systems
AN and\n? are used in section 3, and the type systé@randD; are used in section 6.

Definition 2.3. Let: € {1, 2}.

1. Let.A be a countably infinite set of type variables,detange ovetd and letQ2 ¢ A be a constant
type. The sets of typeBpe! c Type? are defined as follows:

o € Type! t=a| oy — oy o Noy
TGType2:::a|7'1—>7'2|7’1ﬁ7’2|Q

2. Letl' € BY = {{&1 : o1,...,2n : on} | Vi,j € {1,...,n}. 2, = 2; = 0; = o} and
DLAeB ={{z1:7,...,2n T} | Vi, €{1,...,n}. 2 =2; = 7, = 75}
Letdom(T") ={x |z :0 €T}.
Whendom(T';) N dom(T'2) = &, we writeT'y, T’y for 'y UT,. We writel',z : o for T', {z : o}
andz : o for {z : c}. We denotd" =z, : oy, ..., 2, : 0, Wheren > m > 0, by (x; : ;). If
m = 1, we simply denotd&” by (x; : 7).
If Ty = (2 Ti)n, (yi = 7" )p @ndly = (x; : 7))p, (2 : 7/")g Wherezy, . .., x,, are the only shared

K3 K3
variables, then lef'; M Ty = (z; : 73 N7 )n, (Yi = 77 )ps (2 2 7/7)g-

Let X C V. We definel’ | X =TI" C I wheredom(I'") = dom(I") N X.

Let C be the reflexive transitive closure of the axioms m C 7 andm N C . If I' = (z; :
7i)p andl” = (z; : 7/), thenT' C I iff forall i € {1,...,n}, 7, C 7/

3. ° - LetV,; = {(Tef)v (t’r)’ (inL)v (inR)’ (_> 'ﬁ)’ (’I’)’LO’I’L,), (mon)’ (_> '77)}'



Kamareddine, Rahli, Wells / Reducibility proofs in thealculus 7

—_ - T
F,w:Tl—w:T(ax) .Z':T"(L'IT(ax)

't-M:7q—>m I'EN:7 IMWEM:mm—m I9EN:7

TFMN : 7 (=) Ty Ty F MN : 7 (1)
F;]y—]\m (Ne1) F;]y—Mﬁgw (NE2)
e I T G

Figure 2. The typing rules

Let Vo = Vi U{(Q), (2 —lazy)}.

LetVp = {(inL), (inr)}.
— LetVp, = VpU{(idem)}.

e — LetTypeVt, TypeV?, andTypeV?: beType'.
— Let Type"?2 be Type®.

e — LetV be a set of axioms from Figure 1. The relatigN is defined on type3ype" and
axiomsV. We use<! instead of<V! and<? instead of<V2.

— The equivalence relation is defined by: ~V 7 <= 7 <V m A1 <V 71. We use
~!instead of~V! and~? instead of~ V2.

e — Let the type systemN! be the type derivability relatior® between the elements of

B!, A, andType' generated using the following typing rules of Figure 2z) (—z),
(=), (Nr) and(<h).

— Let the type systemn? be the type derivability relation? between the elements 5P,
A, andType? generated using the following typing rules of Figure 2t), (=), (—1),
(N), (<?) and Q).

— Let the type syster® be the type derivability relatior”” between the elements 5,
A, andType' generated using the following typing rules of Figure tX (— &), (= 1),
(N7), (NE1) and (o). Note that systen® does not use subtyping.

— Let the type systenD; be the type derivability relation®! between the elements of
B!, A, andType! generated using the following typing rule of Figure 2z{), (— 1),
(—=1), (N1, (Ng1) and (g2). Moreover, in this type system, we assume thato = o.
Note that systerD; does not use subtyping.
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3. Problems of Ghilezan and Likavec's reducibility method [GL02]

This section introduces the reducibility method of [GLOBHashows exactly where it fails. Throughout,
we let® = A\z.xx.

Definition 3.1. (Type interpretations and the reducibility method of [GL02])
Leti € {1,2} andP range over’.

1. The type interpretatiof—]* € Type’ — 24 — 2% is defined by:

° [[oz]]%D =P.
° [[Tl ﬂTQ]]%) = [[Tl]]%) M [[7'2]]%).
° [[Q]]% = A.

o [o1 = oa]h = {M | ¥N € [o1]5. MN € [oo]b}.
o [ = ]2 ={MeP|YN e [n] MN € [n]2}.

2. Avaluation of term variables in is a functionv € V — A. We writev(x := M) for the function
v wherev'(z) = M andv/(y) = v(y) if y # .

3. letr be a valuation of term variables i Then the term interpretatiop-], € A — A is defined
as follows:[M], = M[zy := v(x1),..., 2y := v(z,)], wherefv(()M) = {z1,...,z,}.
4. e v EL M:Tiff [M], € [r]b.
o vELTIff V(z:7) el v(z) € []b.
e LM Tiff VveV s AvELT=vELM: T
5. LetX C A. We recall here the variable, saturation, closure, andriemee under abstraction
predicates defined by Ghilezan and Likavec (see Definitiodiedd 3.15 of [GL02]):
e VARY(P,X) <= VAR*(P,X) < VC4X.
e SATHP,X) <= (VM €AYz € V.YN € P. M[z:= N] € X = (\z.M)N € X).
e SAT*(P,X) +—= (VM,N € A.Vz € V. M[z:=N]€ X = (\z.M)N € X).
e CLOY(P,X) «<—= (VM €AYz € V. Mz € X = M € P).
e CLO?*(P,X) «—= CLO(P,X) «— (VM cA.Vzc V.M € X = \z.M € P).
e VAR(P,X) <— (Vz €V.Vn e N.VNy,...,N, € P.zN;... N, € X).

o SAT(P,X) « (VM,Ne€A.VzeV.YneN.YNy,...,N, € P.
M[z := N]Ny...N, € X = (Ae.M)NN; ... N, € X).

e INV(P) «<—= (VM A VzeV.MecP < \x.MecP).
ForR € {VAR’,SAT!, CLO'}, et R(P) <= Vr € Type'. R(P, [7]}).

Lemma 3.2. (Basic lemmas proved in [GLO2] and needed for thisection)
1. (@ [[M]]V(x::N) = [[M]]V(x:::c) [;L' = N]
(b) [MN], = [M],[N],.
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(c) [[)\xM]],, = )\‘T'[[M]]V(Z’ZZSC)'

2. If VAR'(P) andCLO' (P) then for allo € Type', [¢]5 C P.

3. If VAR'(P), CLO'(P), SAT'(P), andl' - M : o thenT' L M : 0.

4. 1f VARY(P), CLOY(P), SAT(P), andI" ! M : o thenM < P.

5. For allr € Type?, if 7 #2 Q then[r]% C P.

6. If 71 <? mp then[r1]% C [r2]%.

7. If VAR?*(P), SAT?(P) andCLO?*(P) thenT -2 M : 7 impliesT' =2 M : 7.

8. If VAR?(P), SAT?(P) andCLO?(P) then for allT € Type?, if 7 #2 Q andI’ -2 M : 7 then
M eP.

9. CLO(P,P) = Vr € Type®. 7 £ Q = CLO*(P, [7]2).

Note that lemma 3.2.3 states that! is sound w.r.t. thé=1, interpretation, and lemma 3.2.7 states that
AN? is sound w.r.t. the=% interpretation. Based on these soundness lemmas, Ghitewhhikavec
prove lemmas 3.2.4 and 3.2.8 which are key results in thdiraieility method.

Ghilezan and Likavec (see Remark 3.9 of [GL02]) note th&tlifO* (P), VAR (P) andSAT! (P)
are true thersNg C P (note that this result does not make any use of the type System

Furthermore, given the notions and statements of definBidnand lemma 3.2, [GLO2] states that
the predicate&/ AR!(P), SAT?(P) andCLO!(P) for i € {1,2} are sufficient to develop the reducibil-
ity method. However, in order to prove these predicates {#oious instances dP), [GLO2] states
that one needs stronger and easier to prove induction hgpeth Therefore, Ghilezan and Likavec in-
troduce the following conditionsVAR(P, P), SAT(P,P) andCLO(P, P) (see Definition 3.1 above
or Definition 3.15 of [GL02]). These conditions imply restions of VAR?(P, X), SAT?(P, X), and
CLO?*(P, X). However, as we show below, this attempt fails. (They do resetbp the necessary
stronger induction hypotheses for the case when 1, and A\n' can only type strongly normalisable
terms, so we will not consider the case- 1 further.)

Our definition 3.4 and lemma 3.5 given below are necessarstébksh the results of this section (the
failure of the method of [GL02]). In definition 3.4, we use tlodowing fact that the defined preorder
relation is commutative, associative and idempotent:

Remark 3.3. Commutativity, associativity and idempotence w.r.t. theopder relation are given by the
axioms(inyg), (ing), (mon'), (tr) and(ref) listed in figure 1.

Proof: e Commutativity: by(ing), 71 N7 <? 7 and by(ing), 71 N7 <2 71 S0 by(mon’), 1N <?
T2 N 71. By (ing), 2 N1 <2 7 and by(ing), 2 N7 <2 71 S0 by(mon’), o N7y <2 71 N 72. Hence,
71 N T2 ~2 To M T1.

e Associativity: by(ZTLR), (Tl N 7'2) N 73 §2 73, by (z'nL), (Tl N 7'2) N 73 §2 T N 79, by (inR),
71N <2 7, by (ing), N1 <% 7, s0by(tr), (mNm) N1 <2 and(ry N7) N7 <2 7. By
(mon’), (7’1 N 7'2) N 73 §2 9 M 13 and again b)(mon’), (Tl N 7'2) N7y §2 71 N (7’2 N Tg). By (inL),
TN (r2N73) <2 711, by (ing), 1N (12 N73) <2 ToN13, bY (ing), oNT3 <2 7o, by (ing), oN73 <2 73,
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SO by(tr), 71 N (7’2 N Tg) §2 T andm N (7’2 N Tg) §2 3. By (mon’), 71 M (7’2 N Tg) §2 71 N 79 and
again by(mon'), 71 N (2 N'13) <2 (71 N 2) N 73. Hence(11 N 1) N3 ~2 71N (T2 N 73).

e Idempotence: byiny), 7 N7 <? 7 and by(ref) and(mon’), 7 <2 7 N 7, hences ~2 7N 7. O

Definition 3.4. Let to € TypeOmega ::= € | to1 N tos.

LetinInter(r, 7’) be true ifft = 7/ or 7/ = 74 N 75 and (nlnter(7, 71 ) or inlnter (7, 72)).

By commutativity, associativity, and reflexivity we writg N - - - N 7,,, wheren > 1, instead ofr iff
the following condition holdsinInter(7’, 7) iff there existsi € {1,...,n} such that’ = 7.

Lemma3.5. 1. If 4 <? » andr, € TypeOmega thenr, € TypeOmega.
2. If 7 <? 7 and7r’ 2 Qthent A2 Q.
3. If 7N’ #£2 Qthent 42 Qor7’ 42 Q.

4. If 7' ~2 Qthenr <2 N 7.

5. If 7 <2 7/ andinlnter(r; — 72,7') andmy, %% Q then there exist. > 1 and7{,r{,..., 7., 7"
such that for alli € {1,...,n}, inlnter(r] — 7,7) and7/ #? Qandr/N--- N7/ <% 7.
Moreover, ifr; ~? Qthen foralli € {1,...,n}, 7/ ~% Q.

6. Forallr,7 € Type?, o —» Q — 7/ £2 Q — 7.

Proof: 1) By induction on the size of the derivation af <? 7, and then by case on the last derivation
rule.
2) Letr <2 7/. Assumer ~2 Q. Then§) <? 7 and by transitivity? <? /. Moreover, by (), 7’ <2 Q.
So7r’ ~2 Q.
3)By (), 7 N7 <2 Q. Letr ~% Qandr’ ~? ©,s00Q <2 7 and <2 7’ and by(mon’), 2 <% 7N 7.
4) By (), 7 <? © and by transitivity,r <? 7/ becaus&) <? 7'. By (ref), 7 <2 7 and by(mon’),
r<?rn7.
5) By induction on the size of the derivation of<? 7’ and then by case on the last derivation rule.
6) Letr' e Type®. First we prove thaf2 — 7/ %2 Q. Assume2 — 7/ ~2 Q thenQ <2 Q — 7. By
lemma 3.5.1Q — 7' € TypeOmega which is false. We distinguish the following two cases:

o LetT ~2 Q. Assumen — Q — 7/ ~2 Q — 7thenQ — 7 <? o — Q — 7/. By lemma 3.5.5,

T <2 Q — 7/ which is false.

o LetT £2 Q. Assumea — Q — 7/ ~? Q — Tthena — Q — 7/ <2 Q — 7. By lemma 3.5.5,
a ~? Q becausé) ~2 Q, which is false.
m

The next lemma establishes the failure of a basic lemma oORREL

Lemma 3.6. (Lemma 3.16 of [GL02] does not hold)
The following lemma of [GL02] does not hold:
VAR(P, P) = V7 € Type®. (V7' € Type?. (1 % Q — 1) = VAR(P, [7]%)).
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Proof: To show that the above statement is false, we provide a caxat@ple. First, note that
VAR(P, [r]%) implies thaty C [r]%. Letz € V, T bea — Q — o andP beWN. By lemma 3.5.6, for
all 7' € Type?, 7 2 Q — 7'. Also VAR(P, P) is trivially true. Now, assum&AR(P, [r]%). By defi-
nition, z € [r]%. Then,z € [a — Q — a]% = [r]%. Becauser € P = [a]% and®@® € A = [Q]%
thenzz(®@®) € [a]% = P. Butzz(®@®) € P is false, SOVAR(P, [7]3) is false. 0

The proof for Lemma 3.18 of [GL02] does not work (because ofeng use of an induction hypoth-
esis) but we have not yet proved or disproved that lemma:

Remark 3.7. (It is not clear that lemma 3.18 of [GL02] holds)
It is not clear whether the following lemma of [GL02] holds:
SAT(P,P) = Vr € Type®. (V7' € Type®. (1 #2 Q — ') = SAT(P, [r]3)).

The proof given in [GL0O2] does not go through and we have eeitleen able to prove nor disprove
this lemma. It remains that this lemma is not yet proved amt@&annot be used in further proofs.

Furthermore, Ghilezan and Likavec state a propositiong@sition 3.21) which is the reducibility
method for typable terms. However, the proof of that prajmsidepends on two problematic lemmas
(lemma 3.16 which we showed to fail in our lemma 3.6, and len3m& which by remark 3.7 has not
been proved). The following lemma is needed to prove thabdxition 3.21 of [GLO2] does not hold:

Lemma 3.8. VAR(WN, WN), CLO(WN, WN), INV(WN) andSAT(WN, WN) hold.

Proof: e VAR(WN,WN) holds becaus&x € V,Vn > 0,VNy,...,N, € WN,zN; ... N, € WN.
e CLO(WN,WN) holds because iin,m > 0, 3zo € V, INy,...,N,, € NF such thatM —%
AT1. ... Axp. 29Ny ... Ny, thenVy € V, \y.M —>’[§ AY AT .. ATy 29Ny ... Ny € NF,

e INV(WN) holds because iin,m > 0, 3¢ € V, INy,...,N,, € NF such that\x.M _>*B
AZ1. ... Axp.2oNy ... N, thenzy = z and M —>; ALo. ... ATy ToNT ... N,p,.

e SAT(WN, WN) holds because sinceifl [x := N]N; ... N, € WN wheren > 0andNy,..., N,
WN then3P € NF such thatM [z := N|N;... N, —% P. Hence,(Az.M)NNy ... N, =5 Mz :
NIN;...N, —} P.

Lemma 3.9. (Proposition 3.21 of [GL02] does not hold)
AssumeVAR(P,P), SAT(P,P) andCLO(P, P). The following proposition of [GL02] does not hold:

7 € Type”. (7 #* Q AV € Type?. (1 #* Q@ = 7)ATF M7= M € P).

Proof: LetP beWN. Note that\y. \z.®® ¢ WN and@ 2 \y.\z.@® : a — Q — Q is derivable,
wherea — Q — Q %2 Q and by lemma 3.5.60 — Q — Q 2 Q — 7/, for all 7' € Type?. Since
VAR(WN, WN), CLO(WN, WN) andSAT(WN, WN) hold by lemma 3.8, we get a counterexample for
Proposition 3.21 of [GLOZ2]. O

Ol m

Finally, Ghilezan and Likavec's proof method for untyperhts fails too.

Lemma 3.10. (Proposition 3.23 of [GL02] does not hold)
The following proposition of [GL02] does not hold:
If P C Ais invariant under abstraction (i.éNV(P)), VAR(P, P) andSAT(P, P) thenP = A.

Proof: As by lemma 3.8VAR(WN, WN), SAT(WN, WN), andINV(WN) hold, we get a counterex-
ample for Proposition 3.23. Note that the proof in [GL02] éieg)s on Proposition 3.21 which fails.0
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4. How much of the reducibility method of [GL02] can we salvag@?

This section provides some indications on the limits of thethad. We show how these limits affect the
salvation of the method, we partially salvage it, and we stiat the obtained method can correctly be
used to establish confluence, standardisation, and weadknoemal forms but only for restricted sets of
lambda terms and types (that we believe to be equal to thd seboagly normalisable terms). We also
point out some links between the work done by Ghilezan aneusk and that of Gallier [Gal98].

Because we proved that Proposition 3.23 of [GL02] is false kmow that the set of properties that
a set of termsP has to satisfy in order to be equal to the set of terms of thgpewt\-calculus cannot
be{INV(P), VAR(P, P),SAT (P, P)}. Therefore, even if one changes the soundness result giiée t
interpretation (the set of realisers) in order to obtainghme result as the one claimed by Ghilezan and
Likavec, one also has to come up with a new set of properties.

Proposition 3.23 of [GLO2] states a set of properties chiareing the set of terms of the untyped
A-calculus. The predicat¥AR(A, A) states that the variables (more generally, the terms ofdira f
xNM; --- M,) belong to the untyped-calculus. The predicaeNV(A) states among other things that
given a\-term M, the abstraction of a variable ov&f is a\-term too. Therefore, to get a full character-
isation of the set of terms of the untypaecalculus, we need predicates that cover the applicatiea,ca
i.e., a predicate, saf%PP(P), stating that \e. M)NM; --- M,, € Pif M, N, M,..., M, € P, needs
to hold. Note that this predicate cannot be equivalent tatme of propertie/AR(P, P), SAT(P,P)
andINV(P) since we saw that the sS&N satisfies these properties but is not equal toXtelculus.
Hence, these properties are not enough to characterisedakulus.

The problem with these properties is that if one tries toagdvGhilezan and Likavec’s reducibility
method, the propertie§AR(P, P) and CLO(P, P) impose a restriction on the arrow types for which
the interpretation is ifP (the realisers of arrow types) as we can see below in the aysvcase of the
proofs of lemmas 4.4.5 and 4.5. We show at the end of thisosetiiat even if the obtained result when
considering these restrictions is an improvement of th&lufezan and Likavec using the type system
AN, it is not possible to salvage their method. (Note that thistisn does not introduce a new set of
predicates. Instead it constrains further the type systed in the method.)

The non-trivial types introduced by Gallier [Gal98] (seddwd are not much help in this case,
because of the precise restriction imposedVByR (P, P). One might also want to consider the sets
of properties stated by Gallier [Gal98], but they are unfoately not easy to prove f@&R (Church-
Rosser), because they require a proaf df € CR for all M € A. Moreover, if one succeeds in proving
that the variables are included in the interpretation offandd set of types containing — «, where2
is interpreted ad\ anda asP, then one has proved thal/ € P, which in the casé® = CR means
M e CR (this gives the intuition as why the arrow types@Type® defined below are of the form
p — », Wherep cannot be thé) type).

It is worth pointing out that part of the work done by Galli€dl98] could be adapted to the type
systemA\NZ2. Gallier defines the non-trivial types as follows (where Type?):

v € NonTrivial = a |7 = ¢ | 7Ny |YNT

Note thatNonTrivial ¢ Type?®. Types inType? are then interpreted as followga]pr = P, [ N 7]p =
[T nylp = [7]lp 0 [¥]p, [7]p = Aif 7 & NonTrivial and[r — ¢]p = {M € P | VN €
[7]p. MN € [¢]p}. One can easily prove thatif <2 = then[r;]» C [2]». Hence, considering the
type system\n? instead ofDS2, Gallier's method provides a set of predicates which whéisfgad by a
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set of termsP implies that the set of terms typable in the systent by a non-trivial type is a subset of
‘P. Gallier proved that the set of head-normalisixgerms satisfies each of the given predicates.

Using a method similar to Ghilezan and Likavec’s method]i&ahlso proved that the set of weakly
head-normalising termsA() is equal to the set of terms typable by a weakly non-triaktin the type
systemDS2. The set of weakly non-trivial types is defined as follows:

¥ € WeaklyNonTrivial :=a |7 = ¢ [ Q= Q|7NY [vNT

As explained above and inspired by Gallier's method, we oaw try to salvage Ghilezan and
Likavec’'s method by first restricting the set of realisersewhefining the interpretation of the set of
types inType?. The different restrictions lead us to the definitionNdoFType® (where “NT” stands for
non trivial sinceNTType® = NonTrivial) and the following type interpretation:

Definition 4.1. We defineNTType® by:
peNTTyped i=a |7 —=p|pnT|TNp
Note thatNTType® c Type®. We define a new interpretation of the typesype? as follows:
[o] = P.

[[7’1 N Tgﬂ% = [[7'1]]% N [[7—2]]%, if MmN e NTType3.

[7]3 = A, if 7 ¢ NTType®.
[r1 = 7lh ={M e P|VYN € [n]}. MN € [n]}},ifn = m e NTType®.

In order to prove the relation between the stronger indactigpotheses\(AR, SAT, and CLO)
and those depending on type interpretatioia g2, SAT?, andCLO?), and in order to be able to use
these stronger induction hypotheses in the soundness lemenaave to impose other restrictions (we
especially need these restrictions to prove lemma 4.4dwbehich itself uses lemma 4.4.2 and the fact
that arrowOType® types defined below are of the restricted fosme ).

Definition 4.2. We define the seédType® (where “O” stands foomega as follows:
peOTyped i=a|Q|p—plent|Tne

Note thatOType® c Type?.

LetT' € B3 = {{z1 : o1,...,@n : o} | Vi,j € {1,....n} 2 = 2 = ¢ = @}, i.e.,
environments i3 are built from types irOType®.

Let-3 bel-? whereB? is replaced by3?, and let\n? be the type system based et

Let =% be the relatior=% where[r]% is replaced byj7]3.

Note that-3, \n?, and=3, are still built onType?.

Due to the saturation predicate and its uses, we could impoiser restrictions on the type system.
Alternatively, we slightly modify this predicate (for sifigity of notation, we keep the same name):

Definition 4.3. SAT(P,X) <— (VM,N € A.Vx € V.VYn € N.VNy,..., N, € A.
M[z = N]N;...N, € X = (A\z.M)NN; ... N, € X).
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We can prove that i? € {CR, S, W}, whereCR is the Church-Rosser proper®y,is the standardi-
sation property, an@V is the weak head normalisation property, ti%eXil' (P, P) holds.
The next lemma (and the relation between the old/new indadtypothesis) is useful for soundness.

Lemmad.4. 1. [nN7]d = [n]d N [r].
2. [p]3 C P.

. If 71 <2 75 andmy, € NTType® thenr; € NTType®.

3
4, If §2 T2 then[[rlﬂ% - [[Tg]]%.

5. If VAR(P, P) then for allp € OType®, VAR(P, [¢]3).
6

. If SAT(P, P) then for allr € Type?, SAT(P, [7]3).

Proof: 1) If 71 N7 € NTType?® then it is done by definition. Otherwise, 7» ¢ NTType?.
Hence[ri N 7e]% = A = AN A = [1]3 N []3.

2) By induction on the structure of

3) By induction on the size of the derivation af <? 7, and then by case on the last step.

4) By induction on the size of the derivation of <? 7, and then by case on the last step.

5) By induction on the structure qf.

6) By induction on the structure of O

We now state the following soundness lemma:
Lemma 4.5. If VAR(P, P), SAT(P,P), CLO(P,P) andI' -3 M : r thenl" =3, M : 7.

Proof: By induction on the size of the derivation Bf—3 M : 7 and then by case on the last rule used
in the derivation. Cases dealing with¢ NTType? are trivial since{[r]];’g = A. The intersection case is
also trivial by IH. So we only consider € NTType® wherer is not an intersection type.

e (ax): Lety =4 T,z : p thenv(z) € [¢]3.

e (g ByHH, I E* M : 7y —» mpandl' =* N : 7, so by lemma 3.2.10, =}, MN : 7
(because if, € NTType® thent; — 75 € NTType?®).

e (=) ByHH, Iz : 7y ) M : 7. Letv =5 I'andN € [r]%. Thenv(z := N) =L T
sincez ¢ dom(T) andv(z := N) |5 « : 7y sinceN € [r]3. Thereforev(z := N) 3
M : 7, ie. [M],u—n) € [r]}. Hence, by lemma 3.2.14M], ;.o [z := N] € [n]5.
SinceSAT(P,P) holds, we can apply lemma 4.4.6 to obtgixw.[M],,.—,))N € [r]%. By
lemma 3.2.1c([Az.M],)N € [r2]%. Hence[Az.M], € {M | VN € [r]%. MN € [r]3}.
Sincer; € OType® and becaus& AR(P, P) holds, then by lemma 4.4.5, [m1]%. Hence, by
the same argument as above we obf@if], ,.—,) € [72]%. Sincer; — 7 € NTType® then

m € NTType®. BecauseCLO(P,P) holds, then by lemma 4.4.22.[M], (3. € P, and by
lemma 3.2.1c[A\z.M], € P. Hence, we conclude thfpz.M], € [r1 — m2]%.



Kamareddine, Rahli, Wells / Reducibility proofs in thealculus 15

e (<3): We conclude by IH and lemma 4.4.4.

e (Q): This case is trivial because ¢ NTType®.
0

The next lemma states that a set of terms satisfying the GHRosser, the standardisation, or the
weak head normalisation properties, also satisfies thablatisaturation and closure predicates.

Lemma4.6. LetP € {CR,S,W}. ThenVAR(P, P), SAT(P,P), andCLO(P,P).

Proof. Straightforward using the relevant property and predicataitions. O
We obtain the following proof method which is our attemptaltzaging the method of [GLO2].

Proposition 4.7. If I'F3 M : pthenM € CR, M € S, andM € W.

Proof: Bylemma 4.6, lemma 4.4.2 and lemma 4.5 O

We conjecture that the set of terms typable in our type systéia no more than the set of strongly
normalisable terms.

5. Formalising the background on developments

In this section we go through some needed background froi@(Kon developments and we precisely
formalise and establish all the necessary properties.utimaut the paper, we takdo be a metavariable
ranging oven). As far as we know, this is the first precise formalisation @f@lopments. Our definition
of developments is similar to Koletsos and Stavrinos’s [BIS@ major difference is that Koletsos and
Stavrinos [KS08] deal informally with occurrences of regexvhile the current paper deal with them
formally using paths (see definition 2.1.3 above).

The next definition adapt&, of [Kri90] to deal with 57- and Sn-reduction. Al. is A. where in the
abstraction construction rule (R1).2, we restrict absimado Al. In An. we introduce the new rule (R4)
and replace the abstraction rule/of by (R1).3 and (R1).4.

Definition 5.1. (A7, Al.)
1. We letM. range over\r,., Al. defined as follows (note thatl. C Al):
(R1) If z is a variable distinct frona then

1. xe M..

2. If M € Al andx € fv(M) thenz.M € Al..

3. If M € An. then\z. M [z := c(cx)] € Ane.

4. If Nx € An. such that: € fv(N) andN # cthen\z.Nx € An,.
(R2) If M, N € M.thencM N € M..
(R3) If M, N € M. andM is aX-abstraction thed/ N € M..
(R4) If M € An.thencM € An,.
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As standard in lambda calculi, the next lemma gives necgsstmrmation on terms ofM1...

Lemma 5.2. (Generation)
1. M[z := ¢(cx)] # = and for anyN, M|z := ¢(cz)] # Nzx.

2. Letx & fv(M). Then,M[y := c(cx)] # x and for anyN, M|y := c¢(cx)] # Nz.
3. If M € M.thenM # c.

4. If M,N € M thenM|[z := N] # c.

5. LetMN € M.. ThenN € M, and either:

o M = cM' whereM’ € M, or
e M =cand M, = An. or
o M = Mx.Pisin M..

6. If (M) € M.thenM € M..
7. If M € An. andn > 0 thenc™ (M) € An.
8. If \x.P € An. thenz # c and either:

e P = Nz whereN, Nz € An,, x ¢ fv(N) andN # cor
e P = Nz :=c(cx))] whereN € An..

9. If \x.P € Al . thenx # ¢, x € fv(P) andP € Al..
10. If M,N € M. andz # cthenM [z := N] € M..

11. Lety & {x,c}. Then:

o If Mz :=c(czx)] =ythenM =y.
o If M|z := c(cx)] = PythenM = Ny andP = N[z := ¢(cz)].
o If M|z := c(cz)] = A\y.PthenM = \y.N andP = N[z := ¢(cx)].

e If M[z := c¢(cx)] = PQ then eitherM = z, P = cand@ = cx or M = P'Q" and
P = Pz :=c¢(cx)] andQ = Q'[z := ¢(cx)].

If M[z := c(cz)] = (\y.P)Q thenM = (\y.P")Q andP = P'[x := ¢(cx)] and@Q =
Q' [z := c(cx)].

12. LetM € An,.

(@) If M = Ax.P thenP € An..
(b) If M = Az.PxthenPz, P € An,., x & tv(P)U{c} andP # c.

13. (a) Letr # c. M|z := c(cx)] ﬁmn M"iff M" = Nz := c(cz)] andM gﬁn N.
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(b) Letn > 0. If (M) Bp, M’ thenp = 2".p’ and there exist&V € A7, such thatM’ =
¢ (N) andM %, N.

Proof: 1) and 2) By induction on the structure df.
3) By cases on the derivation 8f € M...

4) By cases on the structure &f using 3).

5) By cases on the derivation 8f N € M..

6) By induction onn.

7) Easy.

8) By cases on the derivation aft. P € An,.

9) By cases on the derivation af. P € Al..

10) By induction on the structure éaff € M..

11) By case on the structure 6f.

12a) By definition,x # c. By 8), P = Nz whereNz € An. or P = N[z := ¢(cx)] whereN € An,. In
the second case since by (Rf}z) € An., we get by 10) thalV [z := c(cz)] € An,.

12b) By 1) and 8).
13a) Both=-) and<) are by induction on the structure pf
13b) By induction om. O

As the formalisation of developments is basic to our worle tlext lemma is about sets/paths of
redexes.

Lemma5.3. Letr € {GI, fn} andF C RY,.
o If M cVthenR), = gandF = 2.
o If M =X z.NthenF ={p|1l.pe F} C R} and:

—if M e R"thenR}, = {0} U{l.p |p e R} andF\ {0} ={l.p | p € F'}.
—elseRy, ={lp|peRy}andF ={l.p|pec F}

o If M = PQthenF, = {p|lpeF} CRp, Fo={p|2peF}CRand:

— if M € R"thenR}, = {0} U{l.p [p € Rp}U{2.p | p e RGtandF\ {0} = {l.p|p €
Fiyu{2p|p e F}

—elseRy, ={lp|peRptU{2.p|peRGandF ={1l.p |p e Fi}U{2.p|p € Fo}.

Proof: The part related t&’), is by case on the structure 8f. The part related t& is also by case
on the structure ol and uses the first part. O

The next lemma shows the role of redexes w.r.t. substitsitiovolving c.

Lemmab5.4. Letr € {8n, 51} andzx # c.
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1. M € RPiff M[x := c(cx)] € RP.

2. Ifpe Rfv? thenM [z := c(cx)]|, = M|p[x := c(cz)].

3.p¢c R}\Z‘ Mz:=c(cz)] iff p=1Lp andp € RM[SE =c(cx)]”
Bn _ pbBn

4. RM[m::c(cw)] - RJ\/['

573577 —{2"p|p€RBn}

Proof: 1) and 2) By induction on the structure &f.

3=)Letp € R Mzi—e(cay)- BY lEMMa 5.2. 1)z Mz := c(cz)] ¢ RP" so by lemma 5.3p = 1.p’

such thap’ € R?"
<) Letp € RO

Mz:=c(cx)]"

By lemma5.31.p € RN

Mz:=c(cz)]" Ax.M[z:=c(cz)]"

4)=)LetpeR z\;[x;:c(cx)]- We prove the statement by induction on the structur&/of

<) Letp € R%,. Then by definitionM |, € R, By 1), M|,[z := c(cz)] € R°". By 2), M[z =
B Bn

c(ex)]|, € RPN, Sop € R feee(ea))

5) By induction onn > 0. O

The next lemma shows that any elemékt. P)Q of Al. (resp.An.) is afI- (resp.fn-) redex, that
Al (resp.An.) contains thesI-redexes (respin-redexes) of all its terms and generalises a lemma given
in [Kri90] (and used in [KS08]) stating thaltn. (resp.Al.) is closed under g,- (resp.— 5;-) reduction.

Lemmab5.5. 1. Let(M,,r) € {(Al.,BI),(An., fn)} andM € M..

(@ If M =(\z.P)QthenM € R".
(b) If p € R}, thenM|, € M..

2. (a) fM € An.andM — g, M'thenM’ € An..
(b) If M € Al.andM — 57 M’ thenM’ € Al..

Proof: 1a) By case on.
1b) By induction on the structure @il .

2a) LetM € An. andM — 3, M'. Then there existp such that\/ &Bn M'. We prove thatVl’ € An.
by induction on the structure of.

2b) By induction onM — gy M'. 0
The next definition, taken from [Kri90], erases all #ig from an M _-term. We extend it to paths.

Definition 5.6. (| — |°)
We defing| M |© and|(M, p)|¢ inductively as follows:
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o x| =1z o Az .N|¢= Az.|N|¢ if x # ¢
e |cP|¢ = |P|° o [INP|¢=|N||P|¢if N # ¢
o |(M,0)|°=0 o |[(Ax.M,1.p)|¢ = 1.{M, p)|,if x # ¢
o [(cM,2.p)[* = [(M, p)[* o [(NM,2.p)|° = 2.(M, p)|*, if N # ¢

o [(MN,1p)|° = 1.(M, p)|°
Let F C Path then we defing(M, F)|© = {|(M, p)|° | p € F}.

Now, ¢" is indeed erased froma™(M)|¢ and from|c™ (V)| for anyc™(N) subterm of)M.

Lemmab5.7. 1. Letn > 0then|c"(M)|¢ = |M|.

2. (e (M), RET\p) o = (M RN

(
3. [{¢"(M),2".p)|* = [(M, p)|°.

4. Let|M|c = P.

e If P € Vthendn > 0 such thatM = ¢"(P).
o If P = \z.QQ thendn > 0 such thatM/ = ¢"(Az.N) and|N|¢ = Q.
e If P = P, P, thendn > 0suchthatM = Cn(MlMg), M, 75 C, |]\41|C =P and|M2|c = P.

Proof: 1), 2) and 3) By induction on.
4) Each case is by induction on the structuré\of O

The next lemma shows that: if theerasures of two paths af/ are equal, then these paths are
also equal and inside a term; substitutingy c(cz) is undone bye-erasurey is definitely erased from
the free variables of)/|¢; erasure propagates through substitutions; @adhsing a\l.-term returns a
Al-term.

Lemmab5.8. 1. Letr € {8I,0n}. If p,p’ € R, and|(M, p)|© = [(M, p')| thenp = p’.
2. Letx # c. Then,|M[z := c¢(cx)]|© = |M]°.
. Letz # candp € Rﬁ/’] Then,|(M [z := c(cx)], p)|¢ = [(M, p)|°.
.M e M. thenfv(M) \ {c} = tv(|M]°).

3
4
5. If M, N € M. andzx # cthen|M|[z := N]|® = |[M|[z := | N|°].
6. If M € Al.then|M|¢ € Al

7

. Let(M.,r) € {(Al., BI), (An., fn)} and M, My, N1, My, Ny € M..

(@) If p € Ry, andM 5, M’ then|M|° %5, |M'|° such thay' = |(M, p)|°.

(b) Letx # c, [(M1,Riy,)|¢ C [(Ma, Ry, [N, Ry ) C [(Na, Ry, [Ma|© = [Mal®
and|Ny [ = [No|7. Then,|[(Mi[z = NiJ, Ry, (., )|° € [(Malo = NoJ, Ry oy
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(©) Let|(My, Ry, ) C [(Ma, Ry, )¢ and [M;[¢ = |Mal. If My 25, M{, My %3, M} such
that|(My, p1)|© = [(Ma, p2)|“ then| (M7, Ry )| € [(Ma, Ry )|

Proof: 1)... 6) By induction on the structure 6f.
7a) By induction on the structure pf
7b) and 7¢) By induction on the structure faf; . O

6. Reducibility method for the CR proofs w.r.t. 57- and $n-reductions

In this section, we introduce the reducibility semantiastfoth 37- and 8n-reductions and establish its
soundness (lemma 6.4). Then, we show that all terms typalelighierD; or D satisfy the Church-Rosser
property, and that all terms dfl. (resp.Ar.) are typable in syster®; (resp.D).

The next definition introduces a reducibility semanticsTigpe' types.

Definition 6.1. 1. Letr € {31, An}. We define the type interpretatidn-]” : Type! — 22 by:

e [a]" = CR", wherea € A.
e [ont]" =[o]"Nn[r]".
o [0 7]’ = {M e CR" | VN € [os]". MN € [r]'}.

2. AsetX C Aissaturated iff'n > 0. VM, N, My,..., M, € A.Vz € V.
Mz := N|M;...M, € X = (Az.M)NM; ... M, € X.

3. AsetX C Alis I-saturated iftyn > 0. VM, N, My, ..., M, € A. Vv € V.
zefv(M)= Mlz:=N|M;,...M, € X = (Ae.M)NM, ... M, € X.

The next background lemma is familiar to many type systems.

Lemma6.2. 1. fTF M :othenM € Al andfv(M) = dom(T).
2. LetT'F7" M : o. Thenfv(M) C dom(T) and ifT' C IV thenT F57 M : 0.

3. Letr € {BI,8n}. f T "M : 0,0 C o’ andl” C T thenT” " M : o',

Proof: 1) By induction onl’ F M : o.
2) By induction onl" 57 M : o.

3) First prove: ifl’ =" M : o, ando C ¢’ thenI' =" M : ¢’ by induction ono C ¢’. Then, do the proof
of 3. by induction ol +" M : o. O

The next lemma states that the interpretations of types atgaged and only contain terms that
are Church-Rosser. Krivine [Kri90] proved a similar redolt » = /5 and whereCR{; andCR" were
replaced by the corresponding sets of strongly normaligings. Koletsos and Stavrinos [KS08] adapted
Krivine’s lemma for Church-Rosser w.rf-reduction instead of strong normalisation. Here, we adapt
the result to37 and5n.
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Lemma 6.3. Letr € {51, n}.
1. Vo € Type'. CR}, C [¢]" € CR".
2. CR"! is I-saturated.
3. CR"is saturated.
4. Yo € Type'. [¢]?! is |-saturated.
5. Yo € Type'. [¢]" is saturated.

Proof: WhenM —* N andM —! P, we write M —} {N, P}.

1) By induction onw € Type®.

2) Let M[z := N]N;...N, € CR” wheren > 0, » € fv(M) and (\z.M)NN;... N, —%,
{M;, M>}. By lemma 2.2.7, there exidt/; and M, such thatV/; — b1 M{, M[z := N|N;y...N, — b1

M{, My —%, My andM([z := NIN; ... N, —%, Mj. Then, usingM [z := N]N; ... N, € CR™.

3) Let M[z := N|N;...N, € CR” wheren > 0 and(Az.M)NNj ... N, —5, {Mi, Ma}. By
lemma 2.2.7, there exist/{ and M such thatV, —7 My, Mz := N]Ny... N, —5, M{, My —7,

Mj andM([z := N]N; ... N, —7%, Mj. Then we conclude usindy/[z := N]N; ... N, € CRA".
4) and 5) By induction om. O

Next, it is straightforward to adapt (and prove) the sousdriemma of [Kri90] to botf-?! andr57.

Lemma6.4. Letr € {SI,6n}. Ifx1 1 01,...,2p :0p F" M o andVi € {1,...,n}, N; € [o;]" then
M[(I’Z = Nz)?] S [[O’HT.

Proof: By inductiononz; : oq,..., 2, : 0, F" M : 0. O

Finally, we adapt a corollary from [KS08] to show that evesynt of A typable in systenD; (resp.
D) has thes I (resp.Sn) Church-Rosser property.

Corollary 6.5. Letr € {B8I,8n}. f ' +" M : o thenM € CR".

Proof: Letl = (z;: 04),. Bylemma6.3¥i € {1,...,n},x; € [o;]", so by lemma 6.4 and again by
lemma 6.3 € [o]" C CR". |

To accommodat@ - and Sn-reduction, the next lemma generalises a lemma given iPKrfand
used in [KS08]). This lemma states that every term\bf (resp.An.) is typable in systen®; (resp.D).

Lemma 6.6. Letfv(M) \ {c} = {z1,...,z,} C dom(T") wherec ¢ dom(T).

1. If M € Al.then forl” =T | fv(M), 3o, 7 € Type' such that
if ¢ € fv(M)thenl” c:o T M : 7, and ifc & fv(M) thenT” -7 M : 7.

2. If M € An. thendo, T € Type! such thaf,c: o H°7 M : 7.

Proof: By induction onM. Note that by Lemma 5.2/ # c. O
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7. Adapting Koletsos and Stavrinos’s method [KS08] tg?/-developments

Koletsos and Stavrinos [KS08] gave a proof of Church-Rofses-reduction for the intersection type
systemD of Definition 2.3 (studied in detail by Krivine in [Kri90]) ahshowed that this can be used
to establish confluence g-developments without using strong normalisation. In Heistion, we adapt
their proof tos1. First, we adapt and formalise a number of definitions andramgiven by Krivine

in [Kri90] in order to make them applicable tty-developments. Then, we adapt [KS08] to establish the
confluence of3/-developments and hence @f-reduction.

7.1. Formalising5I-developments

The next definition, taken from [Kri90] (and used in [KS08Bes the variable to “freeze” thes1-
redexes of\/ which are not in the sef of 51-redex occurrences i/, and to neutralise applications so
that they cannot be transformed into redexes aftereduction. For example, ia(A\z.z)y, c is used to
freeze the3l-redex(\z.x)y.

Definition 7.1. (®¢(—, —))
Let M € Al, such that ¢ fv(M) andF C R]BWI.

1. If M =z thenF = @ and®‘(x, F) =«

2. If M = \z.N such thatr # candF = {p | 1.p € F} C Ry thend‘(\z.N,F) =
Az.®¢(N, F).

3. M =NP,Fi={p|lpeF} CRY andF, = {p | 2.p € F} C R} then

cO°(N, F1)®(P, Fy) if0¢F

(NP, F) =
( ) { ®°(N, F1)®¢(P, F,)  otherwise.

The next lemma is an adapted version of a lemma which appef(SD8] and which in turns adapts
a lemma from [Kri9Q].

I
Lemma7.2. 1. 1f M € Al ¢ ¢ fv(M),andF C R5] then

(@) fv(M) = fv(D(M, F)) \ {c}.
(b) (M, F) € Al..

(©) [@°(M, F)|* = M.

(d) [(@°(M, F), Rie yy )| = F.

2. LetM € Al..

(a) |<M7 Rf/}”c g R‘ﬁj\fﬂc andM = (I)c(|M|cv |<M7 Rﬁ/[lﬂc)

(b) (|M]¢, |{M, R]BV[I>]C> is the one and only paitV, F) such thatV € Al, ¢ € fv(N), F C R’fvl
and®“(N, F) = M.
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Proof: Allitems of 1) are by induction on the structure bf € Al. Note that 1b) uses 1a) and that 1d)
uses 1b).

2a) By induction on the construction 8f € Al.. Note that by lemma M |¢ € Al.

2b) By lemma 6/M|° € Al. By lemma 4,c ¢ fv(|M|). By 2a,|(M,Ry})|° € R{};. and M =
oe(|M|°, (M, RE1Y|€). To show unicity, let(N’, F') be another such pair. We hav® C R%, and
M = ®¢(N', F"). Then,|M|¢ = |®¢(N', F')|¢ ='¢ N' and F' = \((I)C(N’,J—“’),Rg{(N,’f,)W =

(M, Ry 0

The next lemma is needed to defifie-developments.

Lemma 7.3. Let M € Al, such thatc & fv(M), F C Rfj p € FandM %5, M'. Then, there exists
a unique sef’ C Rﬁj, such thatd¢(M, F) 3;51 Qe(M', F') and|(D(M, F), p")|¢ = p.

Proof: Bylemma 7.2.1c and lemma 5.8.5.8.1, there exists a urp(q&eRgﬂ(M 7y such that
(Rieqnr.z) P)|° = p. By lemma 2.2.8, there exisf8 such thatb®(M, F) Z, 41 P. By lemma 5.8.7a,

M =T (@M, F)| Bogr [PI%, such that(Ry: . 2)|° = - Sop = py and by lemma 2.2,

M' = |P|°. LetF = \(P,R?fﬂc. Because®“(M, F) 5;51 P, by lemma 2 and lemma 7.2.1b,
P € Al.. Bylemma 7.2.2aP = ®¢(M', F') and F' C Rfé By lemma 7.2.2bF’ is unique. O

We follow [Kri90] and define the set gi/-residuals of a set of/-redexesF relative to a sequence
of gI-redexes. First, we give the definition relative to one redex

Definition 7.4. Let M € Al, such that ¢ fv(M), F C Ril, p € FandM %5, M'. By lemma 7.3,

there exists a uniqué” C Rfé such thatd(M, F) 5;51 (M, F') and|[(P¢(M, F),p’)|c = p. We
call 7' the set of37-residuals in M’ of the set of 31-redexesF in M relative to p.

Definition 7.5. (31-development)
Let M € Al wherec ¢ fv(M) and F C R]BWI. A one-steppI-development of(M, F), denoted

(M, F) —pra (M',F'), is apI-reductionM &51 M’ wherep € F and.F’ is the set of3/-residuals in
M’ of the set of3I-redexesF in M relative top. A 3I-developmentis the transitive closure of a one-
stepBI-development. We write alsb/ fmld M, for the 5I-development M, F) =514 (M, Fp).

7.2. Confluence of5I-developments hence of I-reduction

The next lemma is informative abogff-developments. It relates/-reductions of frozen terms t6.-
developments, and it states that givefiladevelopment, one can always define a new development that
allows at least the same reductions.

Lemma7.6. 1. LetM € Al, suchthat ¢ fv(M)andF C Rfj Then:(M, F) —5rq (M, F') <=
O¢(M, F) —>El (M, F).
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2. LetM € Al, such thate ¢ fv(M) andF, C Fy C R]BVI} If (M,F1) —pra (M',F7) then there
existsF, C R41, such thatF] C Fy and (M, Fy) — 14 (M, Fb).

Proof: 1) It sufficient to prove{M, F) —grq (M', F') <= ®°(M,F) —p5 (M, F').

o =) Let(M,F) =54 (M, F'). By definition 7.53p € F whereM % 5; M’ andF' is the set of
pI-residuals inM’ of the set of redexe in M relative top. By definition 7.4,8°(M, F) — 41
(M, F).

o <) Let (M, F) —pr ©¢(M',F'). By lemma 2.2.85pR5{(Mﬂ such thatd(M, F) Bs;
oc(M’', F'). Because, by lemma 7.2.18¢(M, F) € Al., by lemma 5.8.7a and lemma 7.2.1c,
M = |0¢(M, F)|c Bgp |@°(M', F')|* = M" such that(®¢(M, F), po)|¢ = p. By definition 7.4,
F' is the set of3I-residuals inM’ of the set of redexe& in M relative topy. By definition 7.5,
(M,]:> —Bd (M/,]:,>.

2) By lemma 7.2.1b®¢(M, F;), (M, F3) € Al.. By lemma 7.2.1c|®¢(M, F1)|¢ = |D(M, F)lc.
By lemma 7.2.1d}(®°(M, F1), Ryl »))° = Fi € Fo = |(9°(M, ), Ry )1

o°(M,F o°(M,Fs)
If (M, F1) —pra (M', F}) then by lemma 19¢(M, Fy) —p; ®¢(M’', F7). By lemma 2.2.8, there
existsp1 € Ryl 7, Such thatde(M, F1) By (M, F). Letpy = |(Rgc 5, P1)I°, SO by

lemma 7.2.1dpy € F;. Bylemma 5.8.7a and lemma 7.2.1d, @51 M.
By lemma 7.3 there exists a unique s&t C R]B\j[r,, such thatd“(M, F1) ﬂ;m oc(M’', F') and

(®¢(M, F1), p')|¢ = po. By lemma 2.2.8p’ € Rgﬁ(Mﬁ). Sincep’, p; € Rgﬁ(M’E), by lemma 5.8.1,
p’ = pi1. So, by lemma 2.2.90¢(M', F') = ®¢(M’, ;). By lemma 7.2.1d,F’ = F| and F| =
(@M, F7), Rgeapr 7)) |

By lemma 7.3 there exists a unique s&f C Rﬁ,, such thatd(M, Fp) B, (M, Fy) and
|(®€(M, F2), p2)|° = po.

By lemma 2.2.8p, € ®¢(M, F,). By lemma 7.2.1dF)} = ]<<I>C(M’,J-“§),Rgﬁ(M,ﬂ)Hc.

Hence, by lemma 5.8.7&] C 7} and by lemma LM, F2) —pgrqa (M', F5). O

The next lemma adapts the main theorem in [KS08] where asfaredknow it first appeared.

Lemma 7.7. (Confluence of the?[—develogments)
Let M € Al, such thate ¢ fv(M). If M T35r4 My and M D354 Mo, then there exisF| C Rr ,

F! F
fé - R@L andMg € Al such thatMl —ﬁﬁjd M3 ansz 451[1 Mg.

Proof: If M ﬂgld My, andM Eﬁld My, then there exist&, 7} such that M, F;) —51d (M, FY')
and (M, Fz) —7%;4 (Ma, Fy). By definitions 7.4 and 7.5F) C R]Bwll and 7Y C R]BV[IQ. Note that by
definition 7.5 and lemma 2.2.4/, M> € Al. By lemma 8.6.2, there exist]” C Rﬁjl and 7y C

R% such that(M, 71 U F2) —5py (Mr, F{ U F") and (M, Fi U F2) =5, (M2, Fy U F)'). By
lemma 7.6.17 —%; Ty andT —7%; Tp whereT = @¢(M, Fy U ), Ty = @°(My, F{' U F7") and
Ty = ©°(Mo, Fy UFL") . Since by lemma 7.2.18; € Al. and by lemma 6.6.11 is typable in the type
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systemDy, soT € CRA! by corollary 6.5. So, by lemma 2.2Db, there exigsc Al., such thatl; =51

T3 andTy —%; Ts. Let F = [(T5,R7])|© and My = [T3]%7, then by lemma 7.2.2 = &°(Ms, F3).

Hence, by lemma 7.6. XMy, F{' U F") =75, (Ms, F3) and (Ma, F5 U F') =5, (M3, F3), ie.

My J:lig:l BId M3 and M, f2£>f2 BId M. d
We follow [Bar84] and [KS08] and define the following redwctirelation:

Definition 7.8. Let M, M’ € Al, such thatc ¢ fv(M). We define the following one step reduction:
M-y M = 3F,F,(M,F) =514 (M, F').

Before establishing the main result of this section we needdllowing lemma that, among other
things, relate$/-developments t@/-reductions (lemma 7.9.5).

Lemma7.9. 1. Lete fv(M). Then Ry, , = 2.
2. Lete & fv(MN) andz # c. TReNRGL 1/ gein.oy = 2
3. Lete ¢ fv(M). If p € R5] and®°(M, {p}) —5; M’ thenR’!, = &.
4. LetM € Alsuch thate ¢ fv(M). If M %57 M then(M, {p}) —s14 (M, D).
5. —>EI:—>’{I.

Proof: 1), 2) and 3) By induction on the structure ff.
4)Bylemma2.2.8p Rfvf By lemma 7.3, there is a unique s&t C R]BV‘I’,, such thatb®(M, {p}) —sr

®°(M', F'). By lemma 7.9.3RG. 1 7 = @, SO[(®(M', F'), Ry 1 7)|° = @ and F' = & by
lemma 7.2.1d. Finally, by lemma 7.6 0\, {p}) —p1a (M', ).
5) Itis obvious that>7;C—%;. We prove—7;C—7; by induction on the length of/ —7%; M’ 0

Finally, we achieve what we started to do: the confluengélefeduction onAl.
Lemma 7.10. Al C CRY.

Proof: Let M € Al andc be a variable such that ¢ fv(M). Let M —3; My andM —3; Mo.
By lemma 5,M —7;, M; andM —7; M. We prove the statement by induction on the length of
M =7 M;. a

8. Generalising Koletsos and Stavrinos’s method [KS08] tGn-developments

In this section, we generalise the method of [KS08] to hapdleeduction. This generalisation is not
trivial since we needed to define developments involvjsrgduction and to establish the important result
of the closure undey-reduction of a defined set of frozen terms. These were the reasons that led us
to extend the various definitions related to developments.ekample, clause (R4) of the definition of
An. in definition 5.1 aims to ensure closure ungereduction. The definition oA in [Kri90] excluded
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such a rule and hence we lose closure ungdezduction as can be seen by the following example: Let
M = Xz.cNxz € A, wherex ¢ fv(N) andN € A., thenM —, cN & A..

First, we formalisesn-residuals angn-developments in section 8.1. Then, we compare our notion
of gn-residuals with those of Curry and Feys [CF58] and Klop [KIb& section 8.2, establishing
that we allow less residuals than Klop but we believe morgueds than Curry and Feys. Finally, we
establish in section 8.3 the confluencesgftdevelopments and hence ©@#-reduction.

8.1. Formalisingn-developments

The next definition adapts definition 7.1 to deal with-reduction. The variable is used to 1) freeze
the gn-redexes of\/ which are not in the sef of gn-redex occurrences il/; 2) neutralise applications
so that they cannot be transformed into redexes @ftereduction; and 3) neutralise bound variables
So A-abstraction cannot be transformed into redexes @fereduction. For example, inz.y(c(cx))

(z # y), cis used to freeze theredex\z.yz.

Definition 8.1. (@¢(—, —), ¥§5(—, —))

Letc ¢ fv(M) andF C Ry

(P1) If M e V\ {c¢} andF =M 535 then:

UM, F)={c"(M)|n >0} UG(M, F) ={M}

(P2) If M = \z.N,z # ¢, andF = {p | L.p € F} C'eM-53RE1 then:
N

WM, F) = { {"(\x.N'[z :=c(cx)]) [In > 0AN" € ¥(N,F)} if0 gf
{"A\x.N") |n>0AN" € U§(N,F)} otherwise
UE(M, F) = { . N'[w = e(ea)] | N € US(N, F)} i 0¢ F
{Ax.N"| N" € U§(N,F')} otherwise

(P3) IfM = NP, Fi = {p | 1.p € F} C'eM- 53R andF, = {p | 2.p € F} C'eM- 53R then:

WM, F) = {"(cN'P") |n>0AN"€U(N,F) NP € V4P, Fp)} if0&F
T {(N'P)) [n>0AN' € UE(N, Fi) AP € U¢(P,F,)} otherwise
weM,F) = | N PIN € UN F) A Pl e WG(P.Fy)}y W02 F

o {N'P'| N' € W§(N, Fy) NP € UE(P,F,)  otherwise

The next lemma is needed to defifie-developments and relates the freezing and erasure apesati

B .
Lemma8.2. 1. Letc ¢ fv(M)andF C R)]. We have:

(@) VG(M,F) C UM, F).
(b) VN € T¢(M, F). fv(M) = tv(N) \ {c}.
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(c) T(M,F) C Ane.

(d) LetM = Nz wherez ¢ fv(N) U {c} andP € W§(M,F). Then,Ry" , = {0} U {1.p |
p e RN,

(e) LetM = Nuz. If Px € ¥¢(Nx,F) thenPz € V§(Nx, F).

() VN € U¢(M, F). Vn > 0. ¢"(N) € U¢(M, F).

(@) VN € We(M, F). [N| = M.

(h) YN € U¢(M, F). F = |(N,R3"|.

2. LetM € An.. We have:

(@) (M, R3] € Ry andM € e(|M°, [(M, R7)[°).

(b) (|M]e, |(M, Rfjﬂ% is the unique(N, F) wherec ¢ fv(N), F C Rf\? andM € ¥¢(N, F).

3. LetM € A, wherec ¢ fv(M), F C RS, p € FandM %5, M’'. Then,3 a uniqueF’ C RY,

whereVN € U¢(M, F) there areN’ € v¢(M',F') andp’ € R]BV" such thatv 5;5,7 N’ and
(N, p')|* = p.

Proof: 1a), 1b.), 1c), 1g) and 1h) By induction on the structuré/af
1d) and 1e) By case on the belongingiah F.

1f) By case on the structure éf and induction om.

2a) By induction on the construction of.

2b) By lemmas 5.8.4 and 8.2.2a¢ fv(|M %), [(M, R3])|° € R}, andM e We(|M %, [(M, RG])[).
If (N', F') is another such pair thef’ C R]BV’Z andM € ¥¢(N', ') and by lemmas 8.2.1g and 8.2.1h,

|M|¢ = N’ andF' = |(M, R1|°. O

Definition 8.3. (n-development)
1 LetM € A, F C R’fv?, p € FandM B, M'. By lemma 8.2.33 a uniqueF’ C Rf},
such thatv~N € U¢(M, F), there areN’ € v¢(M', F') andp’ € R]BV" where N %5, N’ and

|(N,p)|° = p. We call ' the set ofgn-residuals in M’ of the set of fn-redexesF in M
relative to p.

2. Let M € A, wherec ¢ fv(M), andF C R]B\j. A one-stepgn-development of M, F), de-
noted (M, F) —p,q (M',F'), is afn-reductionM %5, M’ wherep € F and F' is the set
of Sn-residuals inM’ of the set of3n-redexesF in M relative top. A Sn-developmentis the

transitive closure of a one-stép)-development. We writd/ J—T>5,7d M’ for the Sn-development
<M>]:> —>E7id <M,>]:,>'
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8.2. Comparison with Curry and Feys [CF58] and Klop [Klo80]

A common definition of &n-residual is given by Curry and Feys [CF58] (p. 117, 118). #heo defini-
tion of Sn-residual (called\-residual) is presented by Klop [Klo80] (definition 2.4, p43. Klop shows
that these definitions allow one to prove different propsriof developments. Following the definition
of a gn-residual given by Curry and Feys [CF58] (and as pointed my€CF58, Klo80, BBKV76]), if
the n-redex\z.(A\y. M)z, wherex ¢ fv(\y.M), is reduced in the tern? = (Az.(Ay.M)x)N to give
the term@ = (A\y.M)N, then( is not agn-residual of P in P (note that following the definition of a
A-residual given by [KIo80]() is a A-residual of the redef\y.M)x in P since the\ of the redex is
the same as the of the redex(\y.M )z in P). Moreover, if theS-redex(\y.My)z, wherey ¢ fv(M),

is reduced in the tern? = Az.(\y.My)x to give the term@ = A\z. Mz, then@ is not agn-residual
of P in P (note that following the definition of a-residual given by [KIo80]( is a A-residual of the
redexP in P since the\ of the redex() is the same as the of the redexP in P). Our definition 8.3.1
differs from the common one stated by Curry and Feys [CF58fheycases illustrated in the follow-
ing example:W¢((Ax.(Ay.M)x)N,{0,1.0,1.1.0}) = {c"((A\x.(Ay.P[y := c(cy)))x)Q) | n > 0AP €
Ue(M,2)AQ € W¢(N, @)}, wherer & fv(\y.M). Letp = 1.0then(Az.(\y.M)z)N L5, (\y.M)N.

Moreover, Py = ¢"((Az.(Ay.Ply = c(cy)])z)Q) ﬂl}ﬁn "((M\y.Ply = c(cy)])@) such thatn > 0,
P e Ve(M,2),Q € ¥¢(N,2), and|(Py, p')|¢ = [(Py, 2".1.0)| = p, andc™((A\y.Ply := c¢(cy)))Q) €
Ve ((Ay.M)N, {0}).

Let us now compare our definition @fy-residuals to the\-residuals given by Klop [Klo80]. We
believe that we accept more redexes as residuals of a setl®ta® than Curry and Feys [CF58] (as
shown by the examples of this section) and less than Klop.

We introduce the two calcult and A7, which are labelled versions of the calcliand A7,

t e A n= x| Mgt | tite

v € ABS. =\ z.wT | \,z.ulz = c(cz)], wherez & fv(w)
w € APP., = wv]cu

u € An n= Z|v|wulcu

wherez, j € V \ {c}. Note thatABS. C APP, C A7, C A.

The labels enable to distinguish two different occurrerafesA.

Since these two calculi are only labelled versiona.@ndAn,, let us assume in this section that the
work done so far holds wheh ansA7, are replaced by andAr..

Klop [KIo80] defines his\-residuals as follows:

‘Let R = My — M1 — ... — M, — ... be agn-reduction,R, a redex inM, and Ry,
a redex inM;. such that the head-of R, descends from that dg,.
Regardless whethek,, R, are- or n-redexesR;. is called a\-residual ofRy viaR.”

We define the head-of a gn-redex by:headlam((A,x.t1)t2) = (1,n) andheadlam(\,z.tgz) =
(2,n), if z & tv(ty). If F C Rf" we defineheadlamred(t, F) to be{(i,n) | 3p € F. headlam(t|,) =
(i,m)}. We definehlr(¢) to beheadlamred(t, Rtﬁn)

The following lemma states the equality between the héaaf a setF of gn-redexes of a term
and the headv's of the Sn-redexes of any term in the application of the functiod® to ¢t and F:

Lemma 8.4. Letc ¢ fv(t) andF C an. If w € We(¢t, F) thenhlr(u) = headlamred(t, F).
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Proof: By induction on the structure of O

The following lemma states that if a term in A7, reduces to a term’ then the set of head's of
the Sn-redexes of/ is included in the set of healls of the 5n-redexes ofy;.

Lemma 8.5. If u; € An. andu; g, ' thenhlr(u’) C hlr(uy).
Proof: By induction on the size af; and then by case on the structureugf O

Let us now prove that, following our definition, the set of tieés of the 5n-residuals of a set of
pn-redexes in a term is included in the set of heéglef the considered set @in-redexes.

Lete & fv(t), F C Rf" andt %4, ' then by definition 8.3.1, there exists a unighé C Rf",
such that for all, € W¢(¢, F) (by lemma 8.2.1cy € An,), there exist/ € ¥e(¢/, F/) andp’ € RS"
such thatu gﬁn v and|(u, p’)|¢ = p. The setF’ is the set ofsn-residuals int’ of the set of redexes
Fin t relative top. By lemma 2.2.3¢ ¢ fv(t'). By definition U¢(¢, F) is not empty. Letu € Ue(t, F)
then there exist/ € W¢(¢/, F/) andp’ € R5" such thatu ﬂlmn o and|(u, p’)| = p. By lemma 8.5,
hir(u') C hlr(u). So, by lemma 8.4headlamred (¢, ') C headlamred(t, F).

However, this is not enough to match Klop’s definition)ofesiduals. As a matter of fact, as we
show below, we can find and F such that, following Klop’s definitionp, < Rf," and pg is a A-
residual of 7 via p butpy ¢ F'. Lett = (Noz.zy)(\12.yz) gﬁn (Mzyz)y = t' and letF =
{0,2.0}. ThenUe(t, F) = {c™((Aox.c™2(c(2)y)) (" (A\12.c" T (y)2))) | n1,no,n3,n4 > 0}. Let
u € Ue(t, F), thenu = ™ ((Aoz.c"2(c3(x)y)) (" (M12.¢ 1 (y)2))) such thaty, ng, n3,ng > 0. We
obtainu = ¢ ((Agz.c"2 (3 (x)y)) (" (M12.c™H (y)2))) Bg, ctm2(cH3 (A 2. (y)2)y) = of
such thapy = 2".0. ThenF’ = {1.0} is the set ofdn-residuals in’ of the set of redexe¥ in ¢ relative
to p. But0 is a\-residual of 7 via 0 and0 ¢ F'.

It turns out that, though ousn-residuals are\-residuals, the opposite does not hold. For example:

t = MZ-Am3.20)% V5 AZ.2% = ' and0 € RE", butu = A\, Z.(Anj.c2(c(cy)))z € We(t,{0,1.0})

andu = A\, 2. (Ami-c2(c(cp)))E g, AnF.cz(c(cr)) = v/ and0 ¢ R
8.3. Confluence ofsn-developments and hence ofn-reduction

The next lemma relate$n-reductions of frozen terms t6n-developments, and states that givefira
development, one can always define a new development tbaisadit least the same reductions.

Lemma8.6. 1. LetM € A, wherec ¢ fv(M), andF C R/ Then:
(M, F) =% (M', F') <= 3N € W(M, F). IN' € We(M", F'). N =% N’

2. LetM € A, such that ¢ fv(M) andF; C Fo C RET I (M, Fy) —p,a (M', F}) then there
existsFy C Rfj, such thatF| C F) and(M, Fa) —gya (M', F).
Proof: 1) Note that¥“(M, F) # @. Then, it is sufficient to prove:

° <M"F> _>;77d <M/7f/> = VN € \I/C(M,]:) JN' e \IIC(M/7.F/)- N —);n N’/ by induction on
the reduction M, F) —% ; (M', F').
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e IN € V¢(M,F). 3N" € U(M', F'). N =3, N' = (M, F) —},, (M',F') by induction on
the reductionV —%, N’ such thatV € W¢(M, F) andN' € We(M', 7).

2) By lemma 8.2.1cW¢(M, F;), V¢(M, Fo) C An.. ForallN; € W¢(M,F;) andNy € V¢(M, Fy),
by lemma 8.2.1g,V1|° = |N3|° and by lemma 8.2.1H(Ny, R )|¢ = F1 € Fp = [(No, Ry

If (M, F1) —pga (M', Fi) then by 1), there exis¥; € ¥°(M, F;) andN; € w¢(M’, F7) such that
Ny — 3, Ni. By definition, there existg; such thatV, 55,7 Nj, and by lemma 2.2.8), € R]BVZ Let
po = [(IV1, p1)|¢ so by lemma 8.2.1lyy € F;. By lemma 5.8.7a and lemma 8.2.14, ’3577 M.

By lemma 8.2.3 there exists a unique g&tC Rﬁ} such that for allP, € ¥¢(M, F;) there exist
P} € Ue(M', F') andp’ € R2 such thatP;, %, P} and|(Py, p')|° = po.

Because N, € U¢(M, Fy), there existP] € U¢(M',F') andp’ € R]BVZ such thatV; ﬂ;ﬁn P/
and (N, p")|¢ = po. Sincep’,p; € Rf\g by lemma 1,p" = p;, so by lemma 2.2.9P] = Nj. By
lemma 8.2.1hF" = |(N], R]BV”{)F = Fl.

By lemma 8.2.3 there exists a unique $&tC Rfj],, such that for allP, € W¢(M, F») there exist
Py € U¢(M’, Fy) andpy € R such that?, %35, Py and|(P2, pa)|° = po.

SinceV(M, Fy) # &, let Ny € W¢(M, F»). So, there exislV), € W¢(M', F}) andp, € R% such
that Ny %35, Nj and|(Na, pa)|° = po. By lemma 8.2.1hFj = \(NQ,R]BVZHC.

Hence, by lemma 5.8.7¢] C F; and by lemma 8.6.1,M, F2) —gnq (M', F3). O

Lemma 8.7. (Confluence of thegn-developments)
Let M € A such thate ¢ fv(M). If M =3, My and M Egnd Ms, then there exisf#] C R]B\/’]l,

F F}
Fy C R/fv}z andMs € A such thatM = 3,4 M3 and My =3 g,q Ms.

Proof: If M “35,4 My andM 735,4 Mo, then there exisF}, F such thatM, F1) —%,, (My, FY)
and (M, Fy) —%,, (Ma, F§). By definiions 8.3.1 and 8.3.2F) C R}/ and 7y C Ry]. By
lemma 8.6.2, there exisE;” C R} and 7}’ € R4/ such that(M, 7y U Fy) —%,, (M, Fy U Fy")
and (M, F1 U Fo) =4, (Ma, F5 U Fy'). By lemma 7.6.1 there exist € We(M,Fy U J), Th €
Ue(My, Fy UF")andTy € We(My, Fy U Fy') such thatl’ — 5, Th andT — 5y To-

Because by lemma 8.2.1¢, € An. and by lemma 6.6.2]" is typable in the type syste@®@, soT <
CR" by corollary 6.5. So, by lemma 2.2a, there exigjs= A1, such thafl} —>;§n T3 andTy —>gn Ts.
Let F3 = y<T3,R§g>\c and M3 = |T3|°", then by lemma 8.2.2aF; C Rfj}s andTy € ¥¢(Ms, F3).
Hence, by lemma 8.6.XMy, 7' U FY") —7%,, (Ms, F3) and (Ms, F5 U F)') —5, (M3, F3), i.e.
M, ]:12)]:1 Bnd M3 and My ]:2257:2 Bnd Ms. O
Definition 8.8. Let ¢ ¢ fv(M). We define the following one step reduction:

M =1 M' < 3F, F (M, F) =54 (M', F')

The next lemma is needed for the main proof of this sectioe: Ghurch-Rosser property of the
untyped\-calculus w.r.t3n-reduction and relateSn-developments t@n-reductions (lemma 8.9.5).
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Lemma8.9. 1. Letcd fv(M).VP € V¢(M,2). Ry = @.
2. Lete & fv(M) Ufv(N) ande # c. VP € U(M,2).¥Q € W(N, 2). Ryl _, = 2.
3. Lete & fv(M). If p € RG], P € W(M, {p}) andP —4, Q thenR))’ = &.

4. Lete & fv(M). If M L5, M’ then(M,{p}) —ps,a (M',2).
5. —>;n:—>’{.

Proof: 1), 2) and 3) By induction on the structure ff.

4) By lemma 2.2.8p € Rﬁ? By lemma 8.2.3, there exists a unique $&tC Rfj,, such that for all
N € U¢(M,{p}), there existsV' € W°(M’, F') such thatN' —,, N'. Note that¥*(M, {p}) # @. Let
N € ¥°(M,{p}) then there exist&V" € w¢(M’, F’) such thatN — 3, N'. By lemma S,R]BV’Z =@, S0
\(N’,Rfﬁ,ﬂc = @ and by lemma 8.2.1F" = @. Finally, by lemma 8.6.1(M, {p}) —s,4 (M', ).

5) By definition—7C—7, . We prove by induction on/ —7, M’ that—7 C—1. O
Finally, the next lemma is the main result of this section.
Lemma 8.10. A C CR"",

Proof: LetM € A and letc € V such that ¢ fv(M). LetM —5 My andM —5, M. Then by
lemma 5,M —7 M; andM —7 M,. We prove the statement by induction &h —7 M. 0

9. Conclusion

Reducibility is a powerful concept which has been applieghimve a number of properties of the
calculus (Church-Rosser, strong normalisation, etc.)ngusi single method. This paper studied two
reducibility methods which exploit the passage from typeadag intersection type system) to untyped
terms. We showed that the first method given by Ghilezan akaviec [GL02] fails in its aim and we
have only been able to provide a partial solution. We adagitedsecond method given by Koletsos
and Stavrinos [KS08] fron® to s1-reduction and we generalised it t)-reduction. There are dif-
ferences in the type systems chosen and the methods of béiyiecised by Ghilezan and Likavec on
one hand and by Koletsos and Stavrinos on the other. KoletsgsStavrinos use system [Kri90],
which has elimination rules for intersection types whei®hgezan and Likavec usen and \n** with
subtyping. Moreover, Koletsos and Stavrinos’s method dép®n the inclusion of typable-terms in
the set ofA-terms possessing the Church-Rosser property, whereasvttking part of) Ghilezan and
Likavec’s method aims to prove the inclusion of typable timan arbitrary subset of the untypaed
calculus closed by some properties. Moreover, GhilezanLétaVec consider th&’AR(P), SAT(P),
andCLO(P) predicates whereas Koletsos and Stavrinos use standardbiity methods through satu-
rated sets. Koletsos and Stavrinos prove the confluencevefatenents using the confluence of typable
A-terms in systenD (the authors prove that even a simple type system is suffjcighe advantage of
Koletsos and Stavrinos’s proof of confluence of developsenthat strong normalisation is not needed.
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