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tThe past de
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al
uli for pra
ti
al notions like the implementation of typed fun
tionalprogramming languages and higher order proof assistants. It has also been shown that eta-redu
tion isuseful for adapting substitution 
al
uli for pra
ti
al problems like higher order uni�
ation. This paper
on
entrates on rewrite rules for eta-redu
tion in three di�erent styles of expli
it substitution 
al
uli:��, �se and the suspension 
al
ulus. Both �� and �se when extended with eta-redu
tion rules, haveproved useful for solving higher order uni�
ation. We enlarge the suspension 
al
ulus with an adequateeta-redu
tion rule whi
h we show to preserve termination and 
on
uen
e of the asso
iated substitution
al
ulus and to 
orrespond to the eta rules of the other two 
al
uli. We prove that �� and �se as wellas �� and the suspension 
al
ulus are non 
omparable while �se is more adequate than the suspension
al
ulus in simulating one step beta-redu
tion.After de�ning the eta-redu
tion rule in the suspension 
al
ulus, and after 
omparing these three
al
uli of expli
it substitutions (all with an eta rule), we then 
on
entrate on the implementation of therewrite rules of eta-redu
tion in these 
al
uli. We note that it is usual pra
ti
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al
uli, to mix isolated appli
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tion with the appli
ation of otherrules of the 
orresponding substitution 
al
uli. The main disadvantage of this pra
ti
e is that the etarewrite rules so obtained are un
lean be
ause they have an operational semanti
s di�erent from that ofthe eta-redu
tion of the �-
al
ulus. For the three 
al
uli in question enlarged with adequate eta rules weshow how to implement these eta rules. For the �se we build a 
lean implementation of the eta rule andwe prove that it is not possible to follow the same approa
h for the �� and �susp.Keywords Expli
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Desired properties of expli
it substitution 
al
uli in
lude a) simulation of �-redu
tion, b) 
on
uen
e (CR) on
losed terms, 
) CR on open terms, d) strong normalization (SN) of expli
it substitutions and e) preservationof SN of the �-
al
ulus. The ��-
al
ulus (without eta) satis�es a), b), d) and satis�es 
) only when the setof open terms is restri
ted to those whi
h admit metavariables of sort term. The �s-
al
ulus (without eta)satis�es a)..e) but not 
). However, the �s-
al
ulus has an extension �se (again without eta) for whi
h a)..
)holds, but e) fails and d) is unknown. The suspension 
al
ulus (whi
h does not have eta) satis�es a) andwhen restri
ted to well formed terms it also satis�es b)..d). For the suspension 
al
ulus, e) is unknown.The above dis
ussion holds for these 
al
uli without eta-redu
tion. However, work on higher orderuni�
ation (HOU) in �se and �� established the importan
e of 
ombining eta-redu
tion (as well as expansion)with expli
it substitutions. This has provided extensions of �se and �� with eta-redu
tion rules also referredto by �se and �� (
f. [15, 3℄). In fa
t, due to the importan
e of eta-redu
tion, 
al
uli of expli
it substitutions(in
luding ��) have been extended with eta rules earlier than the appli
ation of �� to HOU [19, 39, 12, 29℄.Eta-redu
tion (as well as expansion) is ne
essary for working with fun
tions and programs, sin
e one needsto express fun
tional or extensional equality. In parti
ular, when the appli
ation of two lambda terms a andb to any term 
 yields the same result, then a and b should be 
onsidered equal.Although �se and �� have already been extended with eta-redu
tion, the suspension 
al
ulus still hasnot. This paper �lls the gap and gives the �rst extension of the rewriting system of the suspension 
al
uluswith an eta-redu
tion rule bringing to it the advantages of the use of eta-redu
tion in substitutions 
al
uli.On
e the suspension 
al
ulus is extended with this eta-redu
tion rule, one 
an then 
ompare these three
al
uli and assess the way eta-redu
tion should be implemented in ea
h of them. This paper deals with threeuseful notions for these three 
al
uli:� Extending the suspension 
al
ulus with an eta-redu
tion rule resulting in �susp. We show the soundnessof this rule and the 
on
uen
e and strong normalisation of the underlying substitution 
al
ulus witheta.� Comparing the adequa
y of the redu
tion pro
ess of these three substitution 
al
uli extended witheta-redu
tion, using the eÆ
ient simulation of �-redu
tion of [26℄ whi
h showed that �s and �� arenon 
omparable. In this paper we show that �se and �� as well as �� and �susp are non 
omparable,that �se is more adequate than �susp for simulating one step beta-redu
tion.� Re
e
ting on the 
orre
t de�nition and adequate implementation of the eta-redu
tion rewrite rulesin these 
al
uli. It is usual pra
ti
e when implementing the eta rule for substitution 
al
uli [11, 2℄,to mix isolated appli
ations of eta-redu
tion with the appli
ation of other rules of the 
orrespondingsubstitution 
al
uli. The main disadvantage of this pra
ti
e is essentially that the eta rewrite rulesso obtained are un
lean be
ause they have an operational semanti
s di�erent from the one of the eta-redu
tion rule of the �-
al
ulus: the notion of fun
tional equivalen
e embedded in the eta-redu
tionshould be interpreted modulo the semanti
s of the 
orresponding substitution 
al
ulus. For the three
al
uli enlarged with adequate eta rules we show how to implement in pra
ti
e these eta rules withoutmixing the isolated appli
ation of the eta-redu
tion with the appli
ation of other rules of the asso
iatedsubstitution 
al
uli. The de�nition of a su

essful implementation depends on an e�e
tive spe
i�
ationof a pra
ti
al method for evaluating the 
onditions of these eta rules whi
h are 
onditional rules ofthe rewriting systems of the three treated 
al
uli. For ea
h of these expli
it substitution 
al
uli, ourimplementation 
onsists basi
ally of a linear veri�
ation along a term of the nonexisten
e of o

urren
esof the free variable of the eta-redu
tion while simultaneously upgrading all other free de Bruijn indi
esand without applying any additional rewrite rule of the 
orresponding substitution 
al
ulus. The threeimplementations are proved 
omplete in the sense that they e�e
tively simulate eta-redu
tion over purelambda terms.After in
luding the ne
essary notations and motivation about expli
it substitutions, in the se
ond se
tion,we present the ��, the �se, and the suspension 
al
ulus. We enlarge the latter with an eta-redu
tion rulewhi
h is proved sound in the third se
tion. Then, in the fourth and �fth se
tions, we 
ompare the adequa
yof these 
al
uli in simulating one step beta-redu
tion and the appropriateness of the de�ned eta rewritingrules. Finally, and before 
on
luding, we dis
uss the 
lean implementation of these eta rules in the sixth andseventh se
tions. 2



2 PreliminariesWe assume familiarity with the notion of term algebra T (F ;X ) built on a (
ountable) set of variables X anda set of operators F . Variables in X are denoted by X;Y; ::: and for a term a 2 T (F ;X ), var (a) denotes theset of variables o

urring in a. Throughout, we take a; b; 
; : : : to range over terms. Additionally, we assumefamiliarity with basi
 notions of rewriting as in [5℄. In parti
ular, for a redu
tion relation R over a set A, wedenote with =!R the re
exive 
losure of R , with !�R or just !� the re
exive and transitive 
losureof R and with !+R or just !+ the transitive 
losure of R . When a !� b we say that there exists aderivation from a to b . By a!n b, we mean that the derivation 
onsists of n steps of redu
tion and 
all nthe length of the derivation. Synta
ti
al identity is denoted by a = b. For a redu
tion relation R over A,(A;!R), we use the standard de�nitions of (lo
ally-)
on
uent or (weakly) Chur
h Rosser (W)CR, normalforms and strong and weak normalization/termination SN and WN. Suppose R is a SN redu
tionrelation and let t be a term, then R-nf(t) denotes its normal form. As usual we use indis
riminately either\noetherian" or \terminating" instead of SN.A valuation is a mapping from X to T (F ;X ). The homeomorphi
 extension of a valuation, �, from itsdomain X to the domain T (F ;X ) is 
alled the grafting of �. As usual, valuations and their 
orrespondinggraftings are denoted by the same Greek letter. The appli
ation of a valuation � or its 
orrespondinggrafting to a term a 2 T (F ;X ) will be written in post�x notation a�. The domain of a grafting �, isde�ned by Dom(�) = fX j X� 6= X;X 2 Xg. Its range, is de�ned by Ran(�) = [X2Dom(�)var (X�). We letvar (�) = Dom(�) [ Ran(�). For expli
it representations of a valuation and its 
orresponding grafting �, weuse the notation � = fX 7!X� j X 2 Dom(�)g. Note that the notion of grafting, usually 
alled �rst ordersubstitution, 
orresponds to simple synta
ti
 substitution without renaming.We use notations from [6℄ for the �-
al
ulus. Let V be a (
ountable) set of variables denoted by lower
aselast letters of the Roman alphabet x; y; :::De�nition 2.1 Terms �(V) of the �-
al
ulus with names are indu
tively de�ned by: �(V) ::= x j(�(V) �(V)) j �x:�(V), where x 2 V. We 
all �x:a resp. (a b) abstra
tion resp. appli
ation terms.Terms in �(V) are 
alled 
losed �-terms or terms without substitution meta-variables. An abstra
tion �x:arepresents a fun
tion of formal parameter x, whose body is a. Its appli
ation (�x:a b) to an argument b,returns the value of a, where x is repla
ed by b. This repla
ement of formal parameters with argumentsis known as �-redu
tion. In the 
ontext of the �rst order substitution or grafting, �-redu
tion would bede�ned by (�x:a b)! afx 7!bg.But in this 
ontext problems arise for
ing the use of �-
onversion to rename bound variables:1. Let � = fx 7! bg. There are no semanti
 di�eren
es between the abstra
tions �x:x and �z :z; bothabstra
tions represent the identity fun
tion. But (�x:x)� = �x:b and (�z :z)� = �z :z are di�erent.2. Let � = fx 7!yg. (�y:x)� = �y :y and (�z :x)� = �z :y, thus a 
apture is possible.Consequently, �-redu
tion, should be de�ned in a way that takes 
are of renaming bound variables whenne
essary to avoid harmful 
apture of variables.The �-
al
ulus usually 
onsiders substitution as an atomi
 operation leaving impli
it the 
omputationalsteps needed to e�e
tively perform 
omputational operations based on substitution su
h as mat
hing anduni�
ation. In any real higher order dedu
tive system, the substitution required by basi
 operations su
h as �-redu
tion should be implemented via smaller operations. Expli
it substitution is an appropriate formalism forreasoning about the operations involved in real implementations of substitution. Sin
e expli
it substitutionis 
loser to real implementations than to the 
lassi
 �-
al
ulus, it provides a more a

urate theoreti
al modelto analyze essential properties of real systems (termination, 
on
uen
e, 
orre
tness, 
ompleteness, et
.) aswell as their time/spa
e 
omplexity. For further details of the importan
e of expli
it substitution see [28, 4℄.�-
onversion should be performed before applying the substitution in the body of an abstra
tion. Thegrafting of a fresh variable avoids the possibility of 
apture. It is important to note that renaming sele
tsfresh variables that have not been used previously. Moreover, sin
e fresh variables are sele
ted randomly,the result of the appli
ation of a substitution � to a term a, whi
h we denote in pre�x notation �a fordis
riminating substitution from grafting, 
an be 
on
eived as a 
lass of equivalen
e of terms.3



De�nition 2.2 �-redu
tion is the rewriting relation de�ned by the rewrite rule (�) and �-redu
tion isthe rewriting relation de�ned by the rewrite rule (�), where:(�) (�x:a b) ! fx=bg(a)(�) �x:(a x) ! a; if x 62 Fvar (a) , where Fvar (a)denotes the free variables o

urring in a:Note that our notion of substitution is not 
ompletely satisfa
tory be
ause fresh variables depend on thehistory of the renaming pro
ess. �-terms with meta-variables or open �-terms are given by:De�nition 2.3 Terms �(V ;X ), of the �-
al
ulus with names and meta-variables are indu
tively de-�ned by: �(V ;X ) ::= x j X j (�(V ;X ) �(V ;X )) j �x:�(V ;X ), where x 2 V and X 2 X .We have seen that the names of bound variables and their 
orresponding abstra
tors play a semanti
allyirrelevant role in the �-
al
ulus. So any term in �(V) or �(V ;X ) 
an be seen as a synta
ti
al representativeof its obvious equivalen
e 
lass. Hen
e, during synta
ti
 uni�
ation, the role that names of bound variablesand their 
orresponding abstra
tors play in
reases the 
omplexity of the pro
ess and 
reates 
onfusion.Avoiding names is an e�e
tive way of 
larifying the meaning of �-terms and, for the uni�
ation pro
ess,of eliminating redundant renaming. De Bruijn proposed in [14℄ that names of bound variables be repla
edby indi
es whi
h relate these bound variables to their 
orresponding abstra
tors.It is 
lear that the 
orresponden
e between an o

urren
e of a bound variable and its asso
iated abstra
toroperator is uniquely determined by its depth, that is the number of abstra
tors between them. Hen
e, �-terms
an be written in a term algebra over the natural numbers N, representing depth indi
es, the appli
ationoperator ( ) and a sole abstra
tor operator � ; i.e., T (f( ); � g [ N).In de Bruijn's notation, indexing the o

urren
es of free variables is given by a referential a

ording to a�xed enumeration of the set of variables V , say x; y; z; : : :, and pre�xing all �-terms with : : : �z:�y :�x: .Now we 
an de�ne the �-
al
ulus in de Bruijn notation with open terms or meta-variables.De�nition 2.4 The set �dB(X ) of �-terms in notation of de Bruijn is de�ned indu
tively as:�dB(X ) ::= n j X j (�dB(X ) �dB(X )) j ��dB(X ), where X 2 X and n 2 N n f0g.�dB(X )-terms without meta-variables are 
alled 
losed �-terms.We write de Bruijn indi
es as 1; 2; 3; : : : ; n; : : :, to distinguish them from s
ripts. Sin
e all 
onsidered
al
uli of expli
it substitutions are built over the language of �dB(X ), we will use � to denote �dB(X ).De�ning �-redu
tion in de Bruijn notation's as (�a b)! f1=bga (where f1=bga is the substitution of theindex 1 in a with b) fails: 1) when eliminating the leading abstra
tor all indi
es asso
iated with free variableo

urren
es in a should be de
remented; 2) when propagating the substitution f1=bg 
rossing abstra
torsthrough a the indi
es of the substitution (initially 1) and of the free variables in b should be in
remented.Hen
e, we need new operators for dete
ting, in
rementing and de
rementing free variables.De�nition 2.5 Let a 2 �dB(X ). The i-lift of a, denoted a+i is de�ned indu
tively as follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2 )3) (�a1)+i = �a+(i+1)1 4) n+i = � n+ 1; if n > in; if n � iThe lift of a term a is its 0-lift and is denoted brie
y as a+.De�nition 2.6 The appli
ation of the substitution by b at the depth n� 1; n 2 N n f0g, denoted fn=bga,on a term a in �dB(X ) is de�ned indu
tively as follows:1) fn=bgX = X, for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�a1 = �fn+ 1=b+ga1 4) fn=bgm = 8<: m� 1; if m > nb; if m = nm; if m < n if m 2 N n f0g.De�nition 2.7 �-redu
tion in the �-
al
ulus with de Bruijn indi
es is de�ned as (�a b)! f1=bga.4



Observe that the rewriting system of the sole �-redu
tion rule is left-linear and non overlapping (i.e. orthog-onal). Consequently, the rewriting system de�ned over �dB(X ) by the �-redu
tion rule is CR.In the �-
al
ulus with names, the �-redu
tion rule is de�ned by �x:(a x)! a; if x 62 Fvar(a). In �dB(X ),the left side of this rule is written as �(a0 1), where a0 stands for the 
orresponding translation of a undersome �xed referential of variables into the language of �dB(X ). \a has no free o

urren
es of x" means, in�(X ), that there are neither o

urren
es in a0 of the index 1 at height zero nor of the index 2 at height onenor of the index 3 at height two et
. Hen
e, there is in general, a term b su
h that b+ = a.De�nition 2.8 �-redu
tion in the �-
al
ulus with de Bruijn indi
es is: �(a 1)! b if b+ = a.3 Cal
uli �a la ��, �se and the Suspension Cal
ulusWe present ��, �se and the Suspension Cal
ulus. We enlarge the latter with an eta-redu
tion rule whi
h weprove to be sound and to preserve the 
on
uen
e of the suspension 
al
ulus.3.1 The ��-
al
ulusThe ��-
al
ulus is a �rst order rewriting system that 
ontains the lambda 
al
ulus in de Bruijn notation andwhi
h makes expli
it the substitutions started by �-redu
tions [1℄. This 
al
ulus works on 2-sorted terms:(proper) terms (over whi
h a; b; : : : range), and substitutions (over whi
h s; t; : : : range). In this 
al
ulus,when a substitution fn=bg is applied to a term a: fn=bga, we internalise this as a[1: : : : :n� 1:b: "n+1℄. Thismeans that all de Bruijn indi
es ex
ept n remain un
hanged, while n is repla
ed with b. Noti
e that b is pla
edat position n of the substitution list, whi
h allows for simultaneous substitutions; for instan
e, a[b1:b2: : : :℄repla
es 1; 2; : : : with b1; b2; : : :, respe
tively. Operationally, this 
al
ulus applies this kind of substitutionde
rementing by one the size of the substitution list as well as the de Bruijn indi
es. When doing that theoperator " is rea
hed, a["k℄ internalises the k-lifting of the term a. In this 
al
ulus only 1 is used and theother de Bruijn indi
es are 
oded by lifting 1 as we will explain below. For details see [1℄.De�nition 3.1 The ��-
al
ulus is de�ned as the 
al
ulus of the rewriting system �� of Table 1 whereterms a ::= 1 j X j (a a) j �a j a[s℄; where X 2 X subs s ::= id j " j a:s j s Æ sTable 1: The �� Rewriting System of the ��-
al
ulus with Eta rule(Beta) (�a b) �! a [b � id℄ (Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a (App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �a [1 � (s Æ ")℄ (Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s (IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s (Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u) (VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s (Eta) �(a 1) �! b if a =� b["℄For every substitution s we de�ne the iteration of the 
omposition of s indu
tively as s1 = s and sn+1 = sÆsn.We use s0 to denote id . Note that the only de Bruijn index used is 1 , but we 
an 
ode n by 1["n�1℄ .The equational theory asso
iated with the rewriting system �� de�nes a 
ongruen
e denoted =��. The
ongruen
e obtained by dropping Beta and Eta is denoted =�. We use �-redu
tion, �-normal form, et
.,with the obvious meaning, in the 
ase when redu
tion is restri
ted to the �-rules.The rewriting system �� is lo
ally 
on
uent [1℄, CR on substitution-
losed terms (i.e., terms withoutsubstitution variables) [39℄ and not CR on open terms (i.e., terms with term and substitution variables) [13℄.The possible forms of a ��-term in ��-normal form were given in [39℄ by:5



1. �a, where a is a normal term;2. a1 : : : ap: "n, for a1; : : : ; ap normal terms and ap 6= n3. (a b1 : : : bn), where a is either 1, 1["n℄, X or X [s℄ for s 6= id a substitution term in normal form.In the �-
al
ulus with names or de Bruijn indi
es, the rule Xfy=ag = X , where y is an element of Vor a de Bruijn index, respe
tively, is ne
essary be
ause there is no way to suspend the substitution fy=aguntil X is instantiated. In the ��-
al
ulus, the appli
ation of this substitution 
an be delayed, sin
e theterm X [s℄ does not redu
e to X . The fa
t that the appli
ation of a substitution to a meta-variable 
an besuspended until the meta-variable is instantiated will be used to 
ode the substitution of variables in X by\X -grafting" and expli
it lifting. Consequently a notion of X -substitution in the ��-
al
ulus is unne
essary.Observe that the 
ondition a =� b["℄ of the Eta rule is stronger than the 
ondition a = b+ given in De�nition2.8 as X = X+, but there exists no term b su
h that X =� b["℄. Note that ��-redu
tion is 
ompatible with�rst order substitution or grafting and hen
e X -grafting and ��-redu
tion 
ommute.3.2 Cal
uli �a la �s and the �se-
al
ulusCal
uli �a la �s avoid introdu
ing two di�erent sets of entities and insist on remaining 
lose to the syntaxof the �-
al
ulus using de Bruijn indi
es1. Next to � and appli
ation, they introdu
e substitution � andupdating ' operators. A term 
ontaining neither substitution nor updating operators is 
alled a pure term.The role of the substitution operator is to internalise the substitution. Essentially, a�nb makes operationalthe appli
ation of the substitution fn=bg to a. This operator is propagated into the body of the abstra
tors,while all free de Bruijn indi
es (greater than n) are de
reased by one. On
e an o

urren
e of n is found, b isadequately modi�ed (lifted) by the updating operator. The operational e�e
t of 'ijb is the (i� 1)-lifting ofall de Bruijn indi
es in b greater than j. For details see [23, 24℄.De�nition 3.2 (The �s-
al
ulus) Terms of the �s-
al
ulus are given by:�s ::= N j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :The set of rules �s is given in Table 2. Table 2: The �s-rules�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destru
tion n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destru
tion 'ik n �! � n+ i� 1 if n > kn if n � k1It 
an be argued that be
ause we use de Bruijn indi
es, we remain 
lose to de Bruijn's philosophy rather than to the syntaxof the �-
al
ulus and that instead it is 
al
uli like �x of [10℄ and �� of [30℄ that remain 
lose to the syntax of the lambda
al
ulus. So, we need to explain here that by staying with the syntax of the �-
al
ulus we mean that we do not introdu
esubstitutions and other 
ategory of operators separately as in ��, but that a term for us is either an abstra
tion term, anappli
ation term, a substitution term or an updating term. 6



The �s-
al
ulus was introdu
ed in [23℄ with the aim of providing a 
al
ulus that preserves strong normal-isation and has a 
on
uent extension on open terms [24℄. In [23, 25℄, we establish the properties of these
al
uli whi
h we list in the following theorem.Theorem 3.3 The s-
al
ulus is SN, the �s-
al
ulus is 
on
uent on 
losed terms and satis�es PSN. More-over, the �s-
al
ulus simulates �-redu
tion, is sound and has a 
on
uent extension on open terms.We introdu
e the open terms and the rules that extend �s to obtain the �se-
al
ulus.De�nition 3.4 The set of open terms, noted �sop is given as follows:�sop ::= V j N j �sop�sop j ��sop j �sop �i�sop j 'ik�sop where i � 1 ; k � 0and where V stands for a set of variables, over whi
h X, Y , ... range. We take a; b; 
 to range over �sop.Furthermore, 
losures, pure terms and 
ompatibility are de�ned as for �s.Working with open terms one loses 
on
uen
e as shown by the following 
ounterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no 
ommon redu
t. Moreover, the above example shows thateven lo
al 
on
uen
e is lost. But sin
e ((�X)�11)(Y �11) !! (X�21)�1(Y �11), the solution to the problemseems at hand if one has in mind the properties of meta-substitutions and updating fun
tions of the �-
al
ulus in the Bruijn notation. These properties are equalities whi
h 
an be given a suitable orientation andthe new rules, thus obtained, added to �s yield a rewriting system whi
h happens to be lo
ally 
on
uent. Forinstan
e, the rule 
orresponding to the meta-substitution lemma is the �-�-transition rule. The addition ofthis rule solves the 
riti
al pair in our 
ounterexample, sin
e now we have (X�1Y )�11! (X�21)�1(Y �11).De�nition 3.5 The set of rules �se is obtained by adding the rules given in Table 3 to the set �s. The �se-Table 3: The new rules of the �se-
al
ulus�-�-transition (a�ib)�j 
 �! (a�j+1 
) �i (b �j�i+1 
) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a�j�i+1 b) if k + i � j'-�-transition 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l+ j
al
ulus is the redu
tion system (�sop;!�se) where !�se is the least 
ompatible redu
tion on �sop generatedby the set of rules �se. The 
al
ulus of substitutions asso
iated with the �se-
al
ulus is the rewriting systemgenerated by the set of rules se = �se � f�-generationg and we 
all it se-
al
ulus.The equational theory asso
iated to the rewriting system �se de�nes a 
ongruen
e =�se . The 
ongruen
eobtained by dropping �-generation and Eta (that will be de�ned below in Table 4) is denoted by =se .Noti
e that for the ��-
al
ulus we need two sorts: term and substitution [15℄. The set of variables ofsort term in a term a 2 T�se(X ) is denoted by T var (a).We 
an des
ribe the operators of the �se-
al
ulus over the signature of a �rst order sorted term algebraT�se(X ) built on X , the set of variables of sort term and its subsort nat�term by:n : ! nat; 8n 2 N n f0g( ) : term� term ! term�i : term� term ! term; 8i 2 N n f0g� : term ! term'ik : term ! term; 8i 2 N; k 2 N n f0gIn [24℄ we proved the following: 7



Theorem 3.6 (WN and CR of se) The se-
al
ulus is weakly normalising and 
on
uent.Lemma 3.7 (Simulation of �-redu
tion) Let a; b 2 �, if a!� b then a!!�se b .Theorem 3.8 (CR of �se) The �se-
al
ulus is 
on
uent on open terms.Theorem 3.9 (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .In [3℄ we proved that:Proposition 3.10 X -grafting and �se-redu
tion 
ommute.This 
al
ulus was originally introdu
ed without the Eta rule that was added in [3℄ to deal with higher orderuni�
ation problems as originally done in [15℄ for the ��-
al
ulus.Table 4: The eta rule of the �se-
al
ulus(Eta) �(a 1) �! b if a =se '20bThe 
hara
terization of the �se-normal forms was given in [24, 3℄ by: a term a 2 �se is a �se-nf if andonly if one of the following holds:1. a 2 X [ N;2. a = b
 with b; 
 in �se-nf and b not an abstra
tion �d;3. a = �b, where b is a �se-nf ex
luding appli
ations of the form (
 1) where '20d =se 
 for some d;4. a = b�j
, where b; 
 in �se-nf and b is of the form: X or d�ie, with j < i or 'ikd, with j � k;5. a = 'ikb, where b is a �se-nf of the form: X or 
�jd, with j > k + 1 or 'jl 
, with k < l;3.3 The Suspension Cal
ulusThe suspension 
al
ulus [37, 34℄ deals with �-terms as 
omputational me
hanisms. This was motivated byimplementational questions related to �Prolog, a logi
 programming language that uses typed �-terms asdata stru
tures [36℄. The suspension 
al
ulus works with three di�erent types of entities:suspended terms M , N ::= C j n j �M j (M N) j [[M; i; j; e1℄℄environments e1, e2 ::= nil j et :: e1 j ffe1; i; j; e2ggenvironment terms et ::= �i j (M; i) j hhet; i; j; e1iiwhere C denotes any 
onstant and i; j are non negative natural numbers.As 
onstants and de Bruijn indi
es are suspended terms, the suspension 
al
ulus has open terms. Ratherthan performing adjustments at ea
h stage, the suspension 
al
ulus notation performs the adjustments intoa substitution term only at the �nal substitution stage. Intuitively, a suspended term of the form [[M; i; j; e1℄℄means that the �rst i variables of the �-termM must be substituted in a way determined by the environmente1 and its remaining bound variables must be renumbered a

ording to the fa
t thatM used to appear withini abstra
tions but now appears within j of them.The suspension 
al
ulus owns a generation rule �s, that initiates the simulation of a �-redu
tion (as forthe �� and the �se, respe
tively, the Beta and the �-generation rules do) and two sets of rules for handlingthe suspended terms. The �rst set, the r rules, for reading suspensions and the se
ond set, the m rules, formerging suspensions are given in Table 5.As in [37℄ we denote by .rm the redu
tion relation de�ned by the r- andm-rules in Table 5. The asso
iatedsubstitution 
al
ulus, denoted by susp, is the one given by the 
ongruen
e =rm.8



Table 5: Rewriting rules of the suspension 
al
ulus(�s) ((�t1 t2)�! [[t1; 1; 0; (t2; 0) :: nil℄℄(r1) [[
; ol; nl; e℄℄�!
; where 
 is a 
onstant(r2) [[i; 0; nl; nil℄℄�!i+nl(r3) [[1; ol; nl;�l :: e℄℄�!nl-l(r4) [[1; ol; nl; (t; l) :: e℄℄�! [[t; 0; (nl-l); nil℄℄(r5) [[i; ol; nl; et :: e℄℄�! [[i-1; (ol-1); nl; e℄℄; for i > 1(r6) [[(t1 t2); ol; nl; e℄℄�!([[t1; ol; nl; e℄℄ [[t2; ol; nl; e℄℄)(r7) [[� t; ol; nl; e℄℄�!� [[t; (ol + 1); (nl + 1);�nl :: e℄℄(m1) [[[[t; ol1; nl1; e1℄℄; ol2; nl2; e2℄℄�! [[t; ol0; nl0; ffe1; nl1; ol2; e2gg℄℄; whereol0 = ol1 + (ol2 : nl1) andnl0 = nl2 + (nl1 : ol2)(m2) ffnil; nl; 0; nilgg�!nil(m3) ffnil; nl; ol; et :: egg�!ffnil; (nl-1); (ol-1); egg; for nl; ol � 1(m4) ffnil; 0; ol; egg�!e(m5) ffet :: e1; nl; ol; e2gg�!hhet; nl; ol; e2ii :: ffe1; nl; ol; e2gg(m6) hhet; nl; 0; nilii�!et(m7) hh�m;nl; ol;�l :: eii�!�(l + (nl : ol)); for nl = m+ 1(m8) hh�m;nl; ol; (t; l) :: eii�!(t; (l + (nl : ol))); for nl = m+ 1(m9) hh(t; nl); nl; ol; et :: eii�!([[t; ol; l0; et :: e℄℄;m); wherel0 = ind(et) and m = l0 + (nl : ol)(m10) hhet; nl; ol; et0 :: eii�!hhet; (nl-1); (ol-1); eii; for nl 6= ind(et)De�nition 3.11 ([37℄) The length len(e) of an environment e is given by:len(nil) := 0; len(et :: e0) := len(e0) + 1 andlen(ffe1; i; j; e2gg) := len(e1) + (len(e2) : i).The index ind(et) of an environment term et, and the l-th index indl(e) of environment e and natural numberl, are simultaneously de�ned by indu
tion on the stru
ture of expressions:ind(�m) = m+ 1; ind((t0;m)) = m;ind(hhet0; j; k; eii) = � indm(e) + (j : k) if len(e) > j : ind(et0) = mind(et0) otherwiseindl(nil) = 0; ind0(et :: e0) = ind(et) and indl+1(et :: e0) = indl(e0)indl(ffe1; j; k; e2gg) = 8>>>><>>>>: indm(e2) + (j : k) if l < len(e1) andlen(e2) > m = j : indl(e1)indl(e1) if l < len(e1) andlen(e2) � m = j : indl(e1)indl�l1+j(e2) if l � l1 = len(e1)The index of an environment e, denoted as ind(e), is ind0(e).De�nition 3.12 ([37℄) An expression of the suspension 
al
ulus is said to be well-formed if the following
onditions hold over all its subexpressions s:� if s is [[t; ol; nl; e℄℄ then len(e) = ol and ind(e) � nl� if s is et :: e then ind(e) � ind(et)� if s is hhet; j; k; eii then len(e) = k and ind(et) � j� if s is ffe1; j; k; e2gg then len(e2) = k and ind(e1) � j.In the sequel, we only deal with well-formed expressions of the suspension 
al
ulus.The suspension 
al
ulus simulates �-redu
tion and its asso
iated substitution 
al
ulus susp is CR (over
losed and open terms) and SN [37℄. In [34℄ Nadathur 
onje
tures that the suspension 
al
ulus preserves9



strong normalization too but there is still no proof of this 
onje
ture. The following lemma 
hara
terizes the.rm-normal forms.Lemma 3.13 ([37℄) A well-formed expression of the suspension 
al
ulus x is in its .rm-nf if and only ifone of the following aÆrmations holds:1) x is a pure �-term in de Bruijn notation;2) x is an environment term of the form �l or (t; l), where t is a term in its .rm-nf;3) x is the environment nil or et :: e for et and e resp. an environment term and an environment in .rm-nf.3.4 The suspension 
al
ulus enlarged with �-redu
tion: the �susp-
al
ulusThe suspension 
al
ulus was initially formulated without �-redu
tion. Here we introdu
e an adequate Eta rulethat enlarges the suspension 
al
ulus preserving 
orre
tness, 
on
uen
e, and termination of the asso
iatedsubstitution 
al
ulus. The suspension 
al
ulus enlarged with this Eta rule is denoted by �susp and we 
ontinueto 
all its asso
iated substitution 
al
ulus susp. The Eta rule is formulated in Table 6. Intuitively Eta mayTable 6: The eta rule of the suspension 
al
ulus(Eta) (� (t1 1)) �! t2 if t1 =rm [[t2; 0; 1; nil℄℄be interpreted as: when it is possible to apply the �-redu
tion rule to the redex �(t1 1) we obtain a termt2 that has the same stru
ture as t1 with all its free de Bruijn indi
es de
remented by one. This is possiblewhenever there are no free o

urren
es of the variable 
orresponding to 1 in t1. Proposition 3.16 proves the
orre
tness of Eta a

ording to this interpretation.Remark 3.14 The reader may wonder whether this is the best formulation of Eta in the suspension 
al
ulus.Indeed, the reader may ask this question also in 
onne
tion with the formulation of Eta in both the ��- and�se-
al
uli. Initially, [15℄ intended to use �(a["℄1)! a as a formulation of Eta in the ��-
al
ulus. However,this formulation would lead to an in�nite set of 
riti
al pairs. For this reason, [15℄ took the formulationgiven in Table 1. The same reason led [3℄ to use a formulation of Eta in the �se-
al
ulus whi
h uses se
onvertibility (see table 4). And indeed for the suspension 
al
ulus, we also get an in�nite set of 
riti
al pairsif we use (� ([[t1; 0; 1; nil℄℄ 1)) �! t1.We follow [11℄ and [2℄ for �� and �se respe
tively, and implement the Eta rule of the �susp-
al
ulus byintrodu
ing a dummy symbol �, by:�(M 1) �!Eta N if N = .rm-nf([[M; 1; 0; (�; 0) :: nil℄℄) and � does not o

ur in N .The 
orre
tness of this implementation is explained be
ause an �-redu
tion �(M 1) !� N gives us aterm N , whi
h is obtained from M by de
rementing by one all free o

urren
es of de Bruijn indi
es, aspreviously mentioned, and whi
h 
orresponds exa
tly to the .rm-normalization of the term ((�M) �) !�s[[M; 1; 0; (�; 0) :: nil℄℄, whenever � does not appear in this normalized term.Lemma 3.15 Let A be a well-formed term of the suspension 
al
ulus. Then the susp-normalization of theterm [[A; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ gives a term obtained from A by in
rementing by one all itsde Bruijn free indi
es greater than k and preserving unaltered all other de Bruijn indi
es.Proof. By indu
tion on the stru
ture of A. The 
onstant 
ase is trivial.� A = n. If n > k: [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !kr5 [[n� k; 0; k + 1; nil℄℄ !r2 n+ 1.If n � k: [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !n�1r5 [[1; k � n+ 1; k + 1;�k � n+ 1:: : : : ::�1::nil℄℄ !r3 n;� A = (B C). we apply r6 and indu
tion hypothesis for B and C;10



� A = (�B). Sin
e B is bounded by an abstra
tor, only its free variables greater than k + 1 should bein
remented by one, the other variables remain un
hanged. Sin
e [[(�B); k; k + 1;�k :: : : : :: �1 :: nil℄℄!r7 �[[B; k + 1; k + 2;�k + 1 :: : : : :: �1 :: nil℄℄, by applying indu
tion hypothesis over the previousterm we obtain the desired result.� A = [[t; ol; nl; e℄℄. Without loss of generality A may be .rm-normalized and by Lemma 3.13 theobtained term is of one of the forms analysed in the previous 
ases. �Proposition 3.16 (Soundness of the Eta rule) Every appli
ation of the Eta rule of �susp to the redex�(t1 1) gives e�e
tively the term t2 obtained from t1 by de
rementing all its de Bruijn free indi
es by one.Proof. The proof is by indu
tion over the stru
ture of t2 
onsidering the premise t1 =rm [[t2; 0; 1; nil℄℄.The e�e
t of normalizing [[t2; 0; 1; nil℄℄ is to in
rement by one all de Bruijn free indi
es o

urring at t2:� t2 = n. [[n; 0; 1; nil℄℄!r2 n+ 1 =rm t1.� t2 = (A B). Without loss of generality we 
an assume that both A and B are in .rm-nf. Observe that[[(A B); 0; 1; nil℄℄!r6 [[A; 0; 1; nil℄℄ [[B; 0; 1; nil℄℄. Now, by indu
tion hypothesis over A and B, we havethat the normalization of the suspended terms [[A; 0; 1; nil℄℄ and [[B; 0; 1; nil℄℄ have the desired e�e
t and
onsequently the same happens with the normalization of the suspended term [[(A B); 0; 1; nil℄℄.� t2 = (�A). As before, assume A is in .rm-nf. Note that [[(�A); 0; 1; nil℄℄ !r7 (�[[A; 1; 2;�1::nil℄℄). Byapplying Lemma 3.15 to the term [[A; 1; 2;�1 :: nil℄℄ we 
on
lude that all free o

urren
es of de Bruijnindi
es greater than 1 at A are in
remented by one while the other indi
es are un
hanged.� t2 = [[t; i; j; e℄℄. If t is in .rm-nf then [[t; i; j; e℄℄ .�rm t0, where t0 is a pure �-term in de Bruijn notationby Lemma 3.13. Hen
e, the analysis given in the previous three 
ases applies here too. �Noetherianity of susp plus the Eta rule enables us to apply the Newman diamond lemma and theKnuth-Bendix 
riti
al pair 
riterion for proving its 
on
uen
e.Lemma 3.17 (susp+ Eta is SN) The rewriting system asso
iated to susp and the Eta rule is noetherian.Proof. (Sket
h) This is proved by showing that the Eta rule is also 
ompatible with the well-foundedpartial ordering � that is de�ned and proved 
ompatible with .rm in [37℄. �A simple environment is an environment without subexpressions of the form ff ; ; ; gg or hh ; ; ; ii.Lemma 3.18 ([37℄) Let e1 be a simple environment and suppose that nl and ol are naturals su
h that(nl � ind(e1)) � ol. Then ffe1; nl; ol; e2gg .�rm e1.Lemma 3.19 (Lo
al-
on
uen
e of susp+ Eta) The rewriting system of the substitution 
al
ulus suspplus the Eta rule is lo
ally-
on
uent.Proof. The rewrite relation .rm, i.e., susp, was shown in [37℄ to be (lo
ally) 
on
uent. Thus forproving that the asso
iated rewriting system enlarged with the Eta rule is lo
ally-
on
uent, it is enoughto show that all additional 
riti
al pairs built by overlapping between the Eta rule and the other rules ofsusp are joinable. Note that no 
riti
al pairs are generated from Eta and itself. Moreover, there is a uniqueoverlapping between the set of rules in Table 5 (minus (�s)) and Eta: namely, the one between Eta and (r7).This 
riti
al pair is h[[t2; ol; nl; e℄℄; �[[(t1 1); ol + 1; nl+ 1;�nl :: e℄℄i, where t1 =rm [[t2; 0; 1; nil℄℄. Afterapplying the rules r6 and r3 the right-side term of this 
riti
al pair redu
es to �([[t1; ol + 1; nl+ 1;�nl :: e℄℄ 1).We prove by analyzing the stru
ture of t1 that this 
riti
al pair is joinable. We take t1 and t2 as .rm-nf's.� t1 = n. For making possible the Eta appli
ation, we need that n > 1. A

ording to the length of theenvironment �nl :: e (i.e., ol + 1) we have the following 
ases:{ ol + 1 < n. On one side, �([[n; ol + 1; nl+ 1;�nl :: e℄℄ 1) !ol+1r5 �([[n-ol-1; 0; nl+ 1; nil℄℄ 1) !r2�(n-ol+nl 1) !Eta n-ol+nl-1. On the other side, t1 =rm [[t2; 0; 1; nil℄℄, hen
e t2 = n-1 and wehave [[n-1; ol; nl; e℄℄ !olr5 [[n-1-ol; 0; nl; nil℄℄ !r2 n-ol+nl-1.11



{ ol + 1 � n. On one side, �([[n; ol + 1; nl+ 1;�nl :: e℄℄ 1) !n�1r5 �([[1; ol � n+ 2; nl+ 1; e1 :: e0℄℄ 1)and the subsequent derivation depends on the stru
ture of e1: when e1 = �l we apply r3 obtaining�(nl+1-l 1) !Eta nl-l and on the other side, [[n-1; ol; nl; e℄℄!n�2r5 [[1; ol � n+ 2; nl;�l :: e0℄℄ !r3nl-l; when e1 = (t; l), where without loss of generality t is supposed to be in .rm-nf, we have�([[1; ol � n+ 2; nl+ 1; (t; l) :: e0℄℄ 1) !r4 �([[t; 0; nl� l + 1; nil℄℄ 1) !Eta.rm-nf([[[[t; 0; nl+1�l; nil℄℄; 1; 0; (�; 0) ::nil℄℄) !m1.rm-nf([[t; 0; nl�l; ffnil; nl+1�l; 1; (�; 0) ::nilgg℄℄)!m3.rm-nf([[t; 0; nl� l; ffnil; nl� l; 0; nilgg℄℄) !m2 .rm-nf([[t; 0; nl� l; nil℄℄)and on the other side, [[1; ol � n+ 2; nl; (t; l) :: e0℄℄!r4 [[t; 0; nl� l; nil℄℄.Sin
e .rm-nf([[t; 0; nl� l; nil℄℄) and [[t; 0; nl� l; nil℄℄ are joinable we obtain the 
on
uen
e.� t1 = (A B). Sin
e the sole rule of the �susp that truly \applies" appli
ations is the �s, we 
an sepa-rately 
onsider Eta-redu
tions for A and B and then apply the indu
tion hypothesis. That is, supposeindu
tively that �([[A; ol + 1; nl+ 1;�nl :: e℄℄ 1)!Eta A00 and [[A0; ol; nl; e℄℄, where [[A0; 0; 1; nil℄℄ =rm Aas well as �([[B; ol + 1; nl + 1;�nl :: e℄℄ 1) !Eta B00 and [[B0; ol; nl; e℄℄, where [[B0; 0; 1; nil℄℄ =rm B arejoinable. Then sin
e �([[(A B); ol + 1; nl+ 1;�nl ::e℄℄ 1) !r6�(([[A; ol + 1; nl+ 1;�nl ::e℄℄ [[B; ol + 1; nl+ 1;�nl ::e℄℄) 1) !Eta (A00 B00) and [[(A0 B0); ol; nl; e℄℄ !r6([[A0; ol; nl; e℄℄ [[B0; ol; nl; e℄℄) we 
an 
on
lude the 
on
uen
e.� t1 = (�A). By the Eta rule implementation, it is enough to show the joinability of the Eta-redu
tion ofthe term �([[(�A); ol + 1; nl+ 1;�nl ::e℄℄ 1) that is .susp-nf([[[[(�A); ol + 1; nl+ 1;�nl ::e℄℄; 1; 0; (�; 0) ::nil℄℄)and the term [[ .susp -nf([[(�A); 1; 0; (�; 0) ::nil℄℄); ol; nl; e℄℄.On the one side, [[ .susp -nf([[(�A); 1; 0; (�; 0)::nil℄℄); ol; nl; e℄℄ .�rm.susp-nf([[[[(�A); 1; 0; (�; 0)::nil℄℄; ol; nl; e℄℄) !r7;r7.susp-nf((�[[[[A; 2; 1;�0::(�; 0)::nil℄℄; ol + 1; nl+ 1;�nl::e℄℄)) .�rm(� .susp -nf([[[[A; 2; 1;�0::(�; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) !m1(� .susp -nf([[A; ol + 2; nl+ 1; ff�0::(�; 0)::nil; 1; ol+ 1;�nl::egg℄℄))and we have that ff�0::(�; 0)::nil; 1; ol+ 1;�nl::egg !m5;m5hh�0; 1; ol+ 1;�nl::eii::hh(�; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol+ 1;�nl::egg!m7�nl::hh(�; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol+ 1;�nl::egg !m10�nl::hh(�; 0); 0; ol; eii::ffnil; 1; ol+ 1;�nl::egg !m3;m4�nl::hh(�; 0); 0; ol; eii::e. Then we obtain the term(� .susp -nf([[A; ol + 2; nl+ 1;�nl :: hh(�; 0); 0; ol; eii :: e℄℄)). On the other side,.susp-nf([[[[(�A); ol + 1; nl+ 1;�nl :: e℄℄; 1; 0; (�; 0) :: nil℄℄) !r7;r7.susp-nf((�[[[[A; ol + 2; nl+ 2;�nl+ 1::�nl ::e℄℄; 2; 1;�0::(�; 0) ::nil℄℄)) .�rm(� .susp -nf([[[[A; ol + 2; nl + 2;�nl+ 1::�nl ::e℄℄; 2; 1;�0::(�; 0) ::nil℄℄)) !m1(� .rm -nf[[A; ol + 2; nl + 1; ff�nl + 1::�nl ::e; nl+ 2; 2;�0::(�; 0) ::nil℄℄) and we have that ff�nl+1 ::�nl :: e; nl+ 2; 2;�0 :: (�; 0) :: nilgg !m5;m5hh�nl + 1; nl + 2; 2;�0 :: (�; 0) ::nilii :: hh�nl; nl + 2; 2;�0 :: (�; 0) ::nilii ::ffe; nl + 2; 2;�0 :: (�; 0) ::nilgg!m7 �nl :: hh�nl; nl+ 2; 2;�0 :: (�; 0) :: nilii :: ffe; nl + 2; 2;�0 :: (�; 0) :: nilgg .�rm (By Lemma 3.18,sin
e we are working with well-formed terms and then) ind(e) � nl)�nl :: hh�nl; nl+ 2; 2;�0 :: (�; 0) :: nilii :: e !m10�nl :: hh�nl; nl+ 1; 1; (�; 0) :: nilii :: e !m8 �nl :: (�; nl) :: e.Then we obtain the term (� .susp -nf([[A; ol + 2; nl+ 1;�nl :: (�; nl) :: e℄℄)).The sole di�eren
e of the obtained suspended terms is the se
ond environment term of their envi-ronments, that is hh(�; 0); 0; ol; eii and (�; nl). But sin
e the Eta rule applies, when propagating thesubstitution between these suspended terms, the dummy symbol and hen
e these se
ond environmentterms should disappear. Now we 
an 
on
lude that these terms are joinable. �Finally, sin
e the rewriting system asso
iated to susp enlarged with the Eta rule is lo
ally-
on
uent andnoetherian, we 
an apply the Newman diamond lemma for 
on
luding its 
on
uen
e.Theorem 3.20 (Con
uen
e of susp+ Eta) The 
al
ulus susp jointly with the Eta rule, is 
on
uent.12



4 Comparing the adequa
y of the 
al
uliA

ording to the 
riterion of adequa
y introdu
ed in [26℄ we prove that the �� and the �susp as well as the�� and the �se are non 
omparable. Additionally, we prove that the �se is more adequate in the simulationof one step �-redu
tion than the �susp.Let a; b 2 � su
h that a !� b. A simulation of this �-redu
tion in ��, for � 2 f�; se; suspg is a ��-derivation a!r 
!�� �(
) = b, where r is the rule starting � (beta for ��, �-generation for �se, �s for �susp)applied to the same redex as the redex in a!� b. The 
riterion of adequa
y is de�ned as follow:De�nition 4.1 ([26℄) (Adequa
y) Let �1; �2 2 f�; se; suspg. The ��1-
al
ulus is more adequate (in sim-ulating one step �-redu
tion) than the ��2-
al
ulus, denoted ��1 � ��2, if:� for every �-redu
tion a!� b and every ��2-simulation a!n��2 b there exists a ��1-simulation a!m��1 bsu
h that m � n;� there exists a �-redu
tion a !� b and a ��1-simulation a !m��1 b su
h that for every ��2-simulationa!n��2 b we have m < n.If neither ��1 � ��2 nor ��2 � ��1, then we say that ��1 and ��2 are non 
omparable.The 
ounterexamples proving that �� and �s are non 
omparable presented in [26℄ apply also to the in
om-parability of �� and �se sin
e �se is an extension of �s for open terms.Proposition 4.2 The ��- and the �se-
al
uli are non 
omparable.Lemma 4.3 Every ��-derivation of ((��2) 1) to its ��-nf has length greater than or equal to 6.Proof. In fa
t, all possible derivations are of one of the following forms.� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !ShiftCons �1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !ShiftCons�1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !Map�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !Map�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !Clos�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !Clos�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !IdL�1["℄[1:(1["℄: ")℄ !Clos �1[" Æ(1:(1["℄: "))℄ !ShiftCons �1[1["℄: "℄ !V arCons �1["℄ = �2. �In the following lemmas, (M 1n) is a shorthand for n appli
ations of 1, i.e., (: : : ((M 1)1) : : : 1).Lemma 4.4 Every �susp-derivation of (��(2 2)) 1n to its �susp-nf has length 4n+ 5.Proof. In fa
t, note that the sole possible derivation is:(��(2 2)) 1n !�s [[(�(2 2)); 1; 0; (1n; 0) ::nil℄℄ !r7 �[[(2 2); 2; 1;�0::(1n; 0) ::nil℄℄ !r6�([[2; 2; 1;�0::(1n; 0) ::nil℄℄ [[2; 2; 1;�0::(1n; 0) ::nil℄℄) !2r5�([[1; 1; 1; (1n; 0) ::nil℄℄ [[1; 1; 1; (1n; 0) ::nil℄℄) !2r4 �([[1n; 0; 1; nil℄℄ [[1n; 0; 1; nil℄℄) !2(n�1)r6�(([[1; 0; 1; nil℄℄)n ([[1; 0; 1; nil℄℄)n) !2nr2 �(2n 2n). �13



Lemma 4.5 ( [26℄) There exists a derivation of (��(2 2)) 1n to its ��-nf whose length is n+ 9.Proof. Consider the following derivation:(��(2 2)) 1n = (��(1["℄ 1["℄)) 1n !Beta (�(1["℄ 1["℄))[1n:id℄ !Abs�((1["℄ 1["℄)[1:((1n:id)Æ ")℄) !Map�((1["℄ 1["℄)[1:(1n["℄:(idÆ "))℄) !n�1App �((1["℄ 1["℄)[1:((1["℄)n:(idÆ "))℄) !App�((1["℄[1:((1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !Clos�((1[" Æ(1:(1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !ShiftCons�((1[(1["℄)n:(idÆ ")℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !V arCons�((1["℄)n (1["℄[1:((1["℄)n:(idÆ "))℄)) !3 �((1["℄)n (1["℄)n) = �(2n 2n). �Proposition 4.6 The ��- and �susp-
al
uli are non 
omparable.Proof. On one side, by Lemmas 4.4 and 4.5, there exists a simulation (��(2 2)) 1n !�� �(2 2) shorterthan the shortest of the simulations (��(2 2)) 1n !�susp �(2 2). Then �susp 6� ��.On the other side, 
onsider the following simulation in �susp:((��2) 1) !�s [[(�2); 1; 0; (1; 0) :: nil℄℄ !r7 �[[2; 2; 1;�0 :: (1; 0) :: nil℄℄ !r5�[[1; 1; 1; (1; 0) :: nil℄℄ !r4 �[[1; 0; 1; nil℄℄ !r2 �2.This simulation together with Lemma 4.3 allows us to 
on
lude that: �� 6� �susp. �To prove that �se is more adequate in the simulation of one step �-redu
tion than �susp we need toestimate the lengths of derivations.De�nition 4.7 Let A;B;C 2 � and k � 0. We de�ne the fun
tions M : �! N and Qk : �� �! N by:�M(n)=1�M(�A)=M(A)+1�M(A B)=M(A)+M(B)+1 �Qk(n; B)=8<: n if n<kn+M(B) if n=kk+1 if n>k�Qk((A B); C)=Qk(A;C)+Qk(B;C)+1 �Qk(�A;B)=Qk+1(A;B)+1Lemma 4.8 Let A 2 �. Then all se-derivations of 'ikA to its se-nf have length M(A).Proof. By simple indu
tion over the stru
ture of A. This is an easy extension of the same lemmaformulated for the �s-
al
ulus in [26℄. �Lemma 4.9 Let A 2 �. Then all susp-derivations of the well-formed term [[A; i; i;�i� 1 :: : : : :: �0 :: nil℄℄to its susp-nf have length greater than or equal to M(A).Proof. By indu
tion over the stru
ture of terms.� A = n. If n > i then [[n; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !ir5 [[n� i; 0; i; nil℄℄ !r2 n. The length of thederivation is i+ 1 �M(A). If n � i then [[n; i; i;�i� 1:: : : : ::�0::nil℄℄!n�1r5[[1; i� n+ 1; i;�i� n :: : : : ::�0::nil℄℄!r3 n. The length of the derivation is n �M(A).� A = (B C). We have that [[(B C); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r6([[B; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ [[C; i; i;�i� 1 :: : : : :: �0 :: nil℄℄). By the indu
tion hypothesis we 
on-
lude that the length of the derivation is greater than or equal to 1+M(B)+M(C) =M(B C) =M(A).� A = (�B). We have that [[(�B); i; i;�i� 1 :: : : : :: �0 :: nil℄℄!r7 �[[B; i+ 1; i+ 1;�i :: : : : :: �0 :: nil℄℄.By indu
tion hypothesis we 
on
lude that the length of the derivation is greater than or equal to1 +M(B) =M(�B) =M(A). �Lemma 4.10 Let B 2 � and i; j � 0. The derivation of the susp-term [[B; i; j;�j � 1 :: e℄℄ to its susp-nfhas length greater than or equal to M(B).Proof.� Case B = n, [[n; i; j;�j � 1 :: e℄℄ rewrites to its susp-nf in one or more steps depending on n.14



� Case B = (C D), we have [[(C D); i; j;�j � 1::e℄℄!r6 [[C; i; j;�j � 1::e℄℄ [[D; i; j;�j � 1 :: e℄℄. By theindu
tion hypothesis we obtain the desired result.� Case B = (�C), we have [[(�C); i; j;�j � 1 :: e℄℄ !r7 �[[C; i+ 1; j + 1;�j :: e0℄℄, that by indu
tionhypothesis 
ompletes the proof. �Proposition 4.11 Let A;B 2 � and k � 0. Then every susp-derivation of[[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ to its susp-nf has length greater than or equal to Qk(A;B).Proof. By stru
tural indu
tion over A.� A = n. If n < k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; k � n+ 1; k � 1;�k � n� 1:: : : : ::�0:: (B; l) ::nil℄℄! r3 n. This derivation has length n � Qk(n; B).If n = k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5 [[1; 1; k � 1; (B; l) ::nil℄℄ ! r4[[B; 0; k � 1� l; nil℄℄. By Lemma 4.10 the last term rewrites to its susp-nf in M(B) or more rewritesteps. The whole derivation has length greater than or equal to n+M(B) = Qk(n; B) = Qk(A;B).If n > k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !kr5 [[n-k; 0; k-1; nil℄℄ !r2 n� 1. Derivationwhose length is k + 1 � Qk(n; B) = Qk(A;B).� A = (C D). [[(C D); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r6([[C; k; k-1;�k-2 :: : : : ::�0::(B;0)::nil℄℄ [[D; k; k-1;�k-2 :: : : : ::�0:: (B;0)::nil℄℄). By the indu
tion hypothe-sis the derivation has length greater than or equal to 1+Qk(C;B)+Qk(D;B)=Qk((C D); B)=Qk(A;B).� A = �C. [[(�C); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄!r7 �[[C; k + 1; k;�k � 1:: : : : ::�0::(B; l) ::nil℄℄.By the indu
tion hypothesis we 
an 
on
lude that this derivation has length greater than or equal to1 +Qk+1(C;B) = Qk(�C;B) = Qk(A;B). �Proposition 4.12 Let A;B 2 � and k � 1. se-derivations of A�kB to its se-nf have length � Qk(A;B).Proof. By stru
tural indu
tion over the pure lambda term A.� A = n. By applying the �-destru
tion rule, in the 
ase n 6= k, we obtain either n� 1 or n and in the
ase n = k, 'k0B. In the 
ase that n 6= k, the derivation has length equal to 1 � Qk(n; B). In the other
ase, we apply Lemma 4.8 obtaining that the 
omplete se-normalization has length 1+M(B). In both
ases the derivation has length less than or equal to Qk(n; B).� A = (C D). (C D)�kB ! (C�kB D�kB). By applying the indu
tion hypothesis we 
on
lude thatthe 
omplete derivation has length less than or equal to 1 +Qk(C;B) +Qk(D;B) = Qk((C D); B).� A = (�C). (�C)�kB ! �(C�k+1B). By the indu
tion hypothesis we 
on
lude that the wholederivation has length less than or equal to 1 +Qk+1(C;B) = Qk(�C;B). �Theorem 4.13 (�se��susp)The �se is more adequate in the simulation of one step �-redu
tion than the�susp-
al
ulus.Proof. We prove the stronger result that if A 2 � and A!�s B !msusp susp-nf(B) is a �susp-simulationof a �-redu
tion then: A !��generation C !nse se-nf(C) has length n+ 1 � m+ 1 .In �susp, for any redex of �s we have (�D) E !�s [[D; 1; 0; (E; 0) ::nil℄℄!msusp susp-nf([[D; 1; 0; (E; 0) ::nil℄℄). Inthe �se, (�D) E !��generation D�1E !nse se-nf(D�1E). By Propositions 4.11 and 4.12,m � Q1(D;E) � n.Hen
e, the length of a �susp-simulation of a �-redu
tion is not shorter than that of some �se-simulation.The 2nd part of being more adequate is shown by 
omparing the length of simulations. E.g., let (�2) 1!�1. In �susp the only possible three steps simulation is: (�2) 1 !�s [[2; 1; 0; (1; 0) ::nil℄℄ !r5 [[1; 0; 0; nil℄℄ !r21. In �se the only possible two steps simulation is: (�2) 1 !��generation 2�11 !��destru
tion 1. �As mentioned in the above proof, we prove a stronger result than simple better adequa
y of �se asin [26℄. In fa
t, we prove that the length of all �se-simulations are shorter than the length of any �susp-simulation. Examining the proofs of Propositions 4.11 and 4.12 whi
h relate the length of derivations with themeasure operator Qk, it appears evident that both 
al
uli work similarly ex
ept that after having propagated15



suspended terms between the body of abstra
tors, �susp deals with the substitutions in a less eÆ
ient way.To explain that, 
ompare the simulations of �-redu
tion from the term (�(�ni)) j, where n � 0:(�(�ni))j!��gen (�ni)�1j!n����trans �n(i�n+1j) =: t1(�(�ni))j!�s [[�ni; 1; 0; (j;0)::nil℄℄!nr7 �n[[i; n+ 1; n;�n-1 :: : : : ::�0:: (j;0)::nil℄℄ =: t2.After that the �se 
omplete the simulation in one or two steps by 
he
king arithmeti
 inequations:t1 !��dest 8<: �ni; if i < n+ 1�ni� 1; if i > n+ 1�n('n+10 j)!'�dest �nj+ n; if i = n+ 1But in the �susp we have to destru
t the environment list, environment by environment:t28<: !i�1r5 �n[[1; n-i+ 2; n;�n-i :: : : : ::�0:: (j; 0) ::nil℄℄!r3 �ni; if i < n+ 1!n+1r5 �n[[i� n� 1; 0; n; nil℄℄!r2 �ni� 1; if i > n+ 1!i�1r5 �n[[1; 1; n; (j; 0) ::nil℄℄!r4 �n[[j; 0; n; nil℄℄!r2 �nj+ n; if i = n+ 1These simple 
onsiderations lead us to believe that the main di�eren
e of the two 
al
ulus (at least inthe simulation of �-redu
tion) is given by the manipulation of indi
es: although �susp in
ludes all de Bruijnindi
es, it does not pro�t from the existen
e of the built-in arithmeti
 for indi
es. These observations may berelevant for the treatment of the open question of preservation of strong normalization of �susp (
onje
turedpositively in [34℄), sin
e the �se has been proved to answer this question negatively in [18℄.5 Relating the Eta rules[3℄ established the 
orresponden
e between the Eta rules of �� and �se through the premises t["℄ =� Mand '20t =se M , where t 2 �dB . This 
orresponden
e means that the e�e
t of applying the substitution ["℄,in ��, and the upgrading '20, in �se, to a pure �-term are identi
al. This implies that these Eta rules areequivalent when applied to a pure �-term. Hen
e, it remains to show that the results, in the two 
al
uli, ofapplying the substitution ["℄ and the upgrading operator '20 to a �-term t are equal (up to the 
odi�
ationof the term in the internal language of the 
al
ulus). This is the 
ase k = 0 of the third item of the followinglemma.Lemma 5.1 (Eta 
orresponden
e of �� and �se [3℄)1. Let n be a de Bruijn index. Then, for k�0, the se-nf of '2kn and the �-nf ofn[1:1["℄:1["2℄: : :1["k�1℄: "k+1℄ are 
orresponding de Bruijn indi
es.2. Let �t an abstra
tion over �dB. Then, for k � 0,(�t)[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ �-rewrites to �(t[1:1["℄:1["2℄ : : : 1["k℄: "k+2℄).3. Let t 2 �dB and t0 its 
odi�
ation in the language of ��, where all de Bruijn indi
es n 2 N o

urringin t are repla
ed with 1["n�1℄. Then, for k � 0,the �-nf of t0[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ 
orresponds to the se-nf of '2kt.Analogously to the previous lemma, in the next proposition we establish the 
orresponden
e between therules Eta of �susp and �se; i.e., the 
orresponden
e, in the above mentioned sense, between the terms at theirpremises: [[t; 0; 1; nil℄℄ and '20t, for t 2 �dB. This 
orresponds to the 
ase k = 0 of the following proposition.Proposition 5.2 (Eta 
orresponden
e of �susp and �se) Let t 2 �dB. Then, for all k � 0,the susp-nf of the suspended term [[t; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ 
orresponds to the se-nf of '2kt.Proof. This is done by indu
tion on the stru
ture of t.� t = n. By Lemma 3.15 we have that for all k � 0,[[n; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ ! � n+ 1 if n > kn if n � kThis 
oin
ides with the result of applying the rule '-dest to the term '2kn.16



� t = (A B). [[(A B); k; k+1;�k ::�k�1:: : : : ::�1::nil℄℄ !r6([[A; k; k + 1;�k :: : : : :: �1 :: nil℄℄ [[B; k; k+1;�k :: : : : ::�1::nil℄℄) IH�('2kA '2kB). Also, '2kt!'�app ('2kA '2kB).� t=(�A). [[(�A); k; k+1;�k ::�k�1:: : : : ::�1:: nil℄℄ !r7(�[[A; k+1; k+2;�k+1:: : : :::�1::nil℄℄) IH� (�'2k+1A). Also, '2k(�A)!���trans (�'2k+1A). �This 
orresponden
e is not obvious for open terms. In fa
t, let 
 be a 
onstant. On one side, in �susp,we have that [[
; k; k + 1;�k :: : : : :: �1 :: nil℄℄ !r1 
. On the other side, '2k
 is irredu
ible in �se. Bothterms 
an, in a 
ertain sense, be 
onsidered equivalent sin
e the upgrading operator '2k does not modifythe 
onstant 
 and this 
orresponden
e 
ould be assumed in other pra
ti
al 
ontexts su
h as those of higherorder uni�
ation via expli
it substitutions.The following notational 
onventions are useful for the rest of the paper:Notation 5.3 Let � 2 f�; se; suspg, and let �� be the 
orresponding expli
it substitution 
al
ulus. Thegeneration rules of �� (i.e. the Beta, �-generation or �s rules), will be denoted 
orrespondingly by ��-gen.Similarly, Eta� denotes the 
orresponding Eta rule. � denotes the asso
iated substitution 
al
ulus, that isgiven by the rewriting rules of the 
al
ulus �� ex
ept the �-gen and the Eta� rules. The 
ongruen
e generatedby the rules of the substitution 
al
ulus � is denoted by =�. By �-nf(M) we denote the �-normal form of the��-term M . If M has a ��-gen redex at the root position then we denote by gen��(M; root) its 
ontra
tum.Now, we establish the appropriateness of the three Eta rules of ��, �se and �susp. By appropriatenessof a spe
i�
 Eta rule we understand that every pure �-terms whi
h 
ontains an Eta redex is redu
ed to thesame pure �-term by the usual �-rule as well as by the spe
i�
 Eta rule.Lemma 5.4 (Appropriateness of the Eta rules) Let a 2 �dB. Then the following statements are equiv-alent:(a) �(a 1)!�b(b) �(a 1)!Eta�b, where � stands for �, se or susp.Proof. Suppose (a) is true. Then by stru
tural indu
tion on the term a:1. �susp: We will show that [[b; 0; 1; nil℄℄ =susp a.� a = n (n > 1): [[n� 1; 0; 1; nil℄℄!2 n.� a = (
 d). b+ = (
 d) means that b is obtained from (
 d) de
reasing all its free indi
es by one.Now note that the e�e
t of normalizing [[b; 0; 1; nil℄℄ is to in
rease all free indi
es of b by one asshown in the proof of the proposition 3.16.� a = �
. Suppose b+ = �
 so b is obtained from �
 de
reasing all free indi
es in 
 but 1 by oneand 
on
lude 
onsidering the same argument of the previous item.2. �se: This is a straightforward from previous item and proposition 5.2.3. ��: This is a straightforward from previous item and lemma 5.1.Conversely, we will show that:1. In �susp that [[b; 0; 1; nil℄℄ =susp b+:� [[n� 1; 0; 1; nil℄℄!r2 n = (n� 1)+.� [[(
 d); 0; 1; nil℄℄!r6 [[
; 0; 1; nil℄℄ [[d; 0; 1; nil℄℄ IH= 
+ d+ = (
 d)+.� [[�
; 0; 1; nil℄℄!r7 �[[
; 1; 2;�1 :: nil℄℄ IH= �
+1 = (�
)+.2. In �se that '20(b) = b+: 17



� '20(n� 1)!'�destr n = (n� 1)+� '20(
 d)!'�app '20(
) '20(d) IH= 
+ d+ = (
 d)+.� '20(�
)!'�� �('21
) IH= �(
+1) = (�
)+.3. In �� that b["℄ = b+.� 1["n�2℄["℄!Clos 1["n�1℄ = (n� 1)+.� (
 d)["℄!App 
["℄ d["℄ IH= 
+ d+ = (
 d)+.� (�
)["℄!Abs �(
[1: "2℄) IH= �
+1 = (�
)+. �6 Usual implementations of EtaIn the sequel we use \�" for �-redu
tion, and \Eta" for the Eta-redu
tion rules of the expli
it substitution
al
uli. By an \implementation" of the Eta rule of any of the three treated 
al
uli of expli
it substitutions weunderstand an e�e
tive 
omputational me
hanism of evaluation of the premisse of the 
onditional rewritingEta rule, whi
h allows for de
iding the o

urren
e of Eta-redi
es and their subsequent redu
tion. In otherwords, an implementation is an e�e
tive me
hanism for de
iding the one step Eta-redu
tion relation.When implementing the one step redu
tion of these 
al
uli one has to take into a

ount that the givenEta rule and its suggested implementation are not 
lean in the sense that one appli
ation of Eta-redu
tion
an involve appli
ations of other rules of the substitution 
al
ulus.In an expli
it substitution 
al
ulus ��, a 
lean implementation of the �-redu
tion does not apply additionalrules of the asso
iated substitution 
al
ulus � during a one step appli
ation of the implemented �-redu
tion.De�nition 6.1 (Clean Implementations of �-redu
tion) An implementation of �-redu
tion, sayImEta�, in an expli
it substitution 
al
ulus �� is said to be 
lean if for any ��-term M , whenever we obtainN from M by applying this implementation of the �-redu
tion, denoted by M !ImEta� N , there is no N 0su
h that M !Eta� N 0 and N 0 !�� N . An implementation of �-redu
tion that is not 
lean is 
alled un
lean.Lemma 6.2 (The Eta rules are un
lean) The implementations of �-redu
tion dire
tly from the Eta�rewriting rules of the three treated 
al
uli are un
lean.Proof. Counterexamples are easy to formulate (e.g. see proof of Lemma 6.4) be
ause the equationalpremise of all the three rules is given in terms of the 
orresponding � 
ongruen
e =�: a =� b["℄, a =se '20(b)and a =susp [[b; 0; 1; nil℄℄, respe
tively. �6.1 Rule implementation for ��We used OCAML, a variation of the ML language, for implementing the rewriting rules of the three treated
al
uli. The 
ode of this implementation is available at http://www.mat.unb.br/~ayala/TCgroup/. For��, 
onsider for example the rule Abs. We have to remark that �� works with two di�erent entities: terms(terms) and substitutions (subs), whi
h should be dis
riminated in any implementation. ��-terms of theform 1, �M , (M N) and M [S℄ are respe
tively represented as One, L(M), A(M,N) and Sb(M,S) and ��-substitutions of the form id, ", M:S and S Æ T as Id, Up, Pt(M,S) and Cp(S,T). Appli
ations of the rulesare implemented in two steps: the �rst one of dete
tion of redi
es and the se
ond one, after sele
tion of apossible redex, of true redu
tion. Dete
tion of redi
es for this rule is implemented as in Table 7. Note thatthe sear
h for redi
es is divided in the sear
h over terms and substitution entities. On
e a redex at positionpr of the term exp is dete
ted (and sele
ted) the appli
ation of Abs is done by means of the fun
tion spe
i�edin Table 8. Analogously, the appli
ation is divided in parts for terms and substitutions. All other rules aresimilarly implemented. 18



Table 7: Dete
tion of redi
es for Abs of ��let re
 mat
hingAbs exp l pos =mat
h exp with Dummy -> l | One -> l | Vr 
 -> l |A(e1,e2) -> append (mat
hingAbs e1 l (append pos [1℄)) (mat
hingAbs e2 [℄ (append pos [2℄)) |L(e1) -> mat
hingAbs e1 l (append pos [1℄) |Sb(L(e1),sb) -> pos::append(mat
hingAbs e1 l (append pos [1;1℄))(mat
hingAbsSb sb [℄ (append pos [2℄)) |Sb(e1,sb) -> append (mat
hingAbs e1 l (append pos [1℄)) (mat
hingAbsSb sb [℄ (append pos [2℄))and mat
hingAbsSb subs l pos =mat
h subs with Up -> l | Id -> l |Pt(e1,sb) -> append (mat
hingAbs e1 l (append pos [1℄)) (mat
hingAbsSb sb [℄ (append pos [2℄)) |Cp(s1,s2) -> append (mat
hingAbsSb s1 l (append pos [1℄)) (mat
hingAbsSb s2 [℄ (append pos [2℄));;Table 8: Appli
ation of Abs of ��let re
 absredu
tion exp pr =mat
h pr with [℄ -> (mat
h exp with Sb(L(e1),sb) -> L(Sb(e1,Pt(One,Cp(sb,Up)))) | _ -> exp) |1 :: tail -> (mat
h exp with Dummy -> exp | One -> exp | Vr 
 -> exp |A(e1,e2) -> A((absredu
tion e1 tail),e2) | L(e1) -> L(absredu
tion e1 tail) |Sb(e1,s2) -> Sb((absredu
tion e1 tail),s2)) |2 :: tail -> (mat
h exp with Dummy -> exp | One -> exp | Vr 
 -> exp |L(e1) -> exp | A(e1,e2) -> A(e1,(absredu
tion e2 tail)) |Sb(e1,s2)-> Sb(e1,(absredu
tionSb s2 tail))) | _ -> expand absredu
tionSb subs pr =mat
h pr with [℄ -> subs |1 :: tail -> (mat
h subs with Id -> subs | Up -> subs |Cp(s1,s2) -> Cp((absredu
tionSb s1 tail),s2) |Pt(e1,s2) -> Pt((absredu
tion e1 tail),s2)) |2 :: tail -> (mat
h subs with Id -> subs | Up -> subs |Cp(s1,s2) -> Cp(s1,(absredu
tionSb s2 tail)) |Pt(e1,s2)-> Pt(e1,(absredu
tionSb s2 tail))) | _ -> subs;;6.2 Rule implementation for �seThe implementation for �se is simpler sin
e we have to 
onsider a sole entity, that is the one of (lambda) terms.�se-terms are of the form n, (M N), �M , M�iN and 'ikM and are represented in OCAML respe
tively asDB n, A(M,N), L(M), S(i,M,N) and P(k,i,M). Sear
hing for redi
es of the �-�-transition and its appli
ationfor a sele
ted redex pr are given in Tables 9 and 10, respe
tively.Table 9: Dete
tion of redi
es for �-�-transition of �selet re
 mat
hingSLtransition exp l pos =mat
h exp with Dummy ->l | DB i ->l | Vr 
 ->l |A(e1,e2)->append (mat
hingSLtransition e1 l(append pos [1℄))(mat
hingSLtransition e2 [℄ (append pos [2℄)) |L(e1) -> (mat
hingSLtransition e1 l (append pos [1℄)) |S(i,L(e1),e2)->pos::append(mat
hingSLtransition e1 l (append pos [1;1℄))(mat
hingSLtransition e2 [℄ (append pos [2℄)) |S(i,e1,e2) -> append (mat
hingSLtransition e1 l (append pos [1℄))(mat
hingSLtransition e2 [℄ (append pos [2℄)) |P(j,k,e1) -> (mat
hingSLtransition e1 l (append pos [1℄));;6.3 Rule implementation for �suspExpressions in �susp 
an be of three di�erent types: (suspended) terms, environments and environmentterms. Terms of the form C, n, (M N), �M and [[t; i; j; e℄℄ are represented by Vr 
, DB n, A(M,N), L(M)and Sp(t,i,j,e); environments of the form nil, et :: e and ffenv1; i; j; env2gg by Nilen, Con(et,e) andCk(env1,i,j,env2); and environment terms of the form �n, (t; l) and hhenvt; i; j; envii by Ar(n), Paar(t,l)and LG(envt,i,j,env), respe
tively. The sear
h for redi
es of the rule (r7) is given in Table 11 and for itsappli
ation in a sele
ted position in Table 12. Note that the sear
h for redi
es and the appli
ation of therule is divided in the sear
h over suspended terms, environments and environment terms.19



Table 10: Appli
ation of �-�-transition of �selet re
 sltransition exp pr =mat
h pr with [℄ -> (mat
h exp with S(i,L(e1),e2) -> L(S(i+1,e1,e2)) | _ -> exp) |1 :: tail -> (mat
h exp withA(e1,e2) -> A((sltransition e1 tail),e2) |L(e1) -> L(sltransition e1 tail) |S(i,e1,e2)-> S(i,(sltransition e1 tail),e2) |P(j,k,e1) -> P(j,k,(sltransition e1 tail)) | _ -> exp ) |2 :: tail -> (mat
h exp withA(e1,e2) -> A(e1,(sltransition e2 tail)) |S(i,e1,e2)-> S(i,e1,(sltransition e2 tail)) | _ -> exp ) | _ -> exp;;Table 11: Dete
tion of redi
es for r7 of �susplet re
 mat
hing_r7 exp l pos = mat
h exp with Dummy ->l | DB i ->l | Vr 
 ->l |A(e1,e2) -> append (mat
hing_r7 e1 l (append pos [1℄))(mat
hing_r7 e2 [℄ (append pos [2℄)) |L(e1) -> (mat
hing_r7 e1 l (append pos [1℄)) |Sp(L(e1),_,_,env)->pos::append(mat
hing_r7 e1 l (append pos [1;1℄))(mat
hingEnv_r7 env [℄ (append pos [2℄))|Sp(e1,_,_,env) -> append (mat
hing_r7 e1 l (append pos [1℄))(mat
hingEnv_r7 env [℄ (append pos [2℄))and mat
hingEnv_r7 env l pos = mat
h env with Nilen -> l |Con(envt, env1) -> append (mat
hingEt_r7 envt l (append pos [1℄))(mat
hingEnv_r7 env1 [℄ (append pos [2℄)) |Ck(env1,_,_,env2) -> append (mat
hingEnv_r7 env1 l (append pos [1℄))(mat
hingEnv_r7 env2 [℄ (append pos [2℄))and mat
hingEt_r7 envt l pos = mat
h envt with Ar i -> l |LG(envt1,_,_,env1) -> append (mat
hingEt_r7 envt1 l (append pos [1℄))(mat
hingEnv_r7 env1 [℄ (append pos [2℄)) |Paar(e1,i) -> (mat
hing_r7 e1 l (append pos [1℄));;6.4 Implementations by �-normalization of Eta are un
leanObserve that ex
ept for the Eta rule, de
iding the appli
ability of all other rewrite rules of the three 
al
uli(
f. Table 1 for ��; 2, 3 and 4 for �se; 5 and 6 for �susp) is straightforward, sin
e these rules are eithernon 
onditional rules or their premises are simple arithmeti
 
onditions easy to de
ide by means of built-inarithmeti
 me
hanisms that are embedded in all modern 
omputational systems.Nevertheless, the appli
ability of the Eta rules of the three 
al
uli depends on 
he
king a 
ondition overthe 
ongruen
e of the rewrite system, whi
h 
an, in the �rst instan
e be implemented following a suggestionby Borovansk�y in [11℄ for �� and used in [2℄ for �se. Note that the �-redu
tion �(M 1) !� N gives aterm N resulting from M by de
rementing all its free de Bruijn indi
es by one. And the suggestion isthat this 
orresponds to the normalization, after the appli
ation at the root position of the generation ruleof the 
onsidered 
al
ulus of the term ((�M) �) whenever � does not o

ur in this normalization. Theimplementation of this suggestion is presented for the three 
al
uli in the following de�nition.De�nition 6.3 (�-nf implementation of the �-redu
tion) For the three treated 
al
uli, the dire
t im-plementation of the rewrite rule�(M 1)�!nfEta�N if N = �-nf(gen��(((�M) �); root)) and � does not o

ur in Nis 
alled the implementation by �-normalization of the �-redu
tion, denoted by nfEta�.This implementation is sound for �� (
f. [11℄) as well as for �se (
f. [2℄). However this implementation isun
lean be
ause during �-normalization, rules of the substitution 
al
uli not stri
tly involved in �-redu
tion
an be applied. For instan
e, the �se-term �((4�11) 1) !nfEtase 2, but �((4�11) 1) 6!� 2. Of 
ourse,�((4�11) 1) !��dest �(3 1) !� 2 (as well as �(3 1) !nfEtase 2). Observe here that the Eta rule (table 4)does not 
orrespond to the intended operational semanti
s of the � rule: �(M 1)!� N means that M andN are fun
tionally equivalent. 20



Table 12: Appli
ation of r7 of �susplet re
 r7_redu
tion exp pr =mat
h pr with [℄ -> (mat
h exp with Sp(L(e1),i,j,env) -> L(Sp(e1,i+1,j+1,Con(Ar(j),env))) | _ -> exp ) |1 :: tail -> (mat
h exp with(e1,e2) -> A((r7_redu
tion e1 tail),e2) |L(e1) -> L(r7_redu
tion e1 tail) |Sp(e1,i,j,env) -> Sp((r7_redu
tion e1 tail),i,j,env) | _ -> exp) |2 :: tail -> (mat
h exp withA(e1,e2) -> A(e1,(r7_redu
tion e2 tail)) |Sp(e1,i,j,env) -> Sp(e1,i,j,(r7_redu
tionEnv env tail)) | _ -> exp)and r7_redu
tionEnv env pr = mat
h pr with1 :: tail -> (mat
h env withCon(envt,env1) -> Con((r7_redu
tionEt envt tail),env1) |Ck(env1,i,j,env2) -> Ck((r7_redu
tionEnv env1 tail),i,j,env2) | _ -> env) |2 :: tail -> (mat
h env withCon(envt,env1) -> Con(envt,(r7_redu
tionEnv env1 tail)) |Ck(env1,i,j,env2) -> Ck(env1,i,j,(r7_redu
tionEnv env2 tail)) | _ -> env)and r7_redu
tionEt envt pr = mat
h pr with1 :: tail -> (mat
h envt withPaar(e1,i) -> Paar((r7_redu
tion e1 tail),i) |LG(envt1,i,j,env1) -> LG((r7_redu
tionEt envt1 tail),i,j,env1) | _ -> envt) |2 :: tail -> (mat
h envt withLG(envt1,i,j,env1) -> LG(envt1,i,j,(r7_redu
tionEnv env1 tail))| _ -> envt);;Lemma 6.4 (nfEta� implementations of the �-redu
tion are un
lean) The implementations of the�-redu
tion by �-normalization for the three treated 
al
uli are un
lean.Proof.� For the ��, 
onsider the redu
tion �((1["3℄[1["℄:id℄)1)!nfEta� 1["℄ = 2. But �((1["3℄[1["℄:id℄)1)!Eta�1["2℄[1:id℄!�� 2.� For the �se, 
onsider the redu
tion �((4�12)1)!nfEtase 2. But '20(3�11) =se 4�12 and so�((4�12)1)!Etase 3�11!se 2.� For the �susp, 
onsider the redu
tion �([[4; 1; 0; (2; 0) :: nil℄℄ 1)!nfEtasusp 2. But[[[[3; 1; 0; (1; 0) :: nil℄℄; 0; 1; nil℄℄ =susp [[4; 1; 0; (2; 0) :: nil℄℄ and so �([[4; 1; 0; (2; 0) :: nil℄℄ 1)!Etasusp[[3; 1; 0; (1; 0) :: nil℄℄!�susp 2. �In the sequel, we present a 
leaner way to implement the Eta rules avoiding the appli
ation of other rulesof the substitution 
al
uli than the ones stri
tly involved in the �-redu
tion.7 Clean implementations of EtaWe will adapt the above implementation idea, but will restri
t the �-normalization of the term gen��((�M) �).The restri
ted �-normalization, 
alled �-pseudo-normalization, should propagate the dummy symbol betweenthe stru
ture of the term M without applying extra rules of the substitution 
al
ulus.Essentially the idea for avoiding the appli
ation of extra rules of the substitution 
al
uli during theveri�
ation of the premise via pseudo-normalization is to apply rules only when o

urren
es of � are dete
ted:l! r if � o

urs in lAs for all the other rules previously illustrated, our OCAML implementation divides the appli
ationof an Eta rule in two parts: dete
tion of redi
es and redu
tion. For ��, gen��((�M) �) = M [�:id℄. The�-pseudo-nf(M [�:id℄) has been implemented as the fun
tion sig-norm in Table 13, where the o

urdummy's
he
ks sear
h in linear time the o

urren
e of Dummy in exp. Note that in sig-norm ex
ept for the rulesIdL, IdR and Clos, non trivial redu
tions are possible only if � o

urs. In 
ase these rules had been
onditioned like the others, it should be impossible to normalize very simple terms as for instan
e, 1[" Æid℄21



that are ne
essary for pseudo-normalizations as ((�1["2℄) �) !�s 1["2℄[�:id℄ !Clos 1["2 Æ(�:id)℄ !Asso
1[" Æ(" Æ(�:id))℄ !ShiftCons 1[" Æid℄ !IdR 1["℄. Sin
e our obje
tive is to propagate the dummy symbolbetween the stru
ture of the normalized term that non restri
ted appli
ation of these rules may be pointedout as a de�
ien
y be
ause extra rules may be applied during the �-pseudo-normalization.Table 13: �-pseudo-normalizationlet re
 sig-norm exp = mat
h exp with Dummy -> Dummy | One -> One | Vr 
 -> Vr 
 |(*App*) Sb(A(e1,e2),sb)->(if o

urdummy1sb(sb) then A(Sb(e1,sig-normsb(sb)),Sb(e2,sig-normsb(sb)))else exp)|(*Abs*) Sb(L(e1),sb)-> (if o

urdummy1sb(sb) then L(Sb(e1,sig-normsb(Pt(One,Cp(sb,Up))))) |(*Clos*) Sb(Sb(e1,s1),s2) -> Sb(e1,sig-normsb(Cp(s1,s2))) |(*VarCons*) Sb(One,Pt(e1,sb)) -> (if (o

urdummy1(e1) || o

urdummy1sb(sb)) then sig-norm(e1) else exp) |(*Id*) Sb(e1,Id) -> (if o

urdummy1(e1) then sig-norm(e1) else exp)and sig-normsb subs = mat
h subs with Up -> Up | Id -> Id |(*SCons*) Pt(Sb(One,s1),Cp(Up,s2)) -> (if ((s1 = s2)&&(o

urdummy1sb(s1))) then sig-normsb(s1) else subs) |(*ShiftCons*) Cp(Up,Pt(e1,sb)) -> (if (o

urdummy1(e1) || o

urdummy1sb(sb)) then sig-normsb(sb)else subs) |(*IdL*) Cp(Id,sb) -> sig-normsb(sb) |(*IdR*) Cp(sb,Id) -> sig-normsb(sb) |(*Map*) Cp(Pt(e1,s1),s2) -> (if (o

urdummy1(e1) || o

urdummy1sb(s1) || o

urdummy1sb(s2)) thensig-normsb(Pt(sig-norm(Sb(e1,s2)),sig-normsb(Cp(s1,s2)))) else subs) |(*Asso
*) Cp(Cp(s1,s2),sb3) -> (if (o

urdummy1sb(s1) || o

urdummy1sb(s2) || o

urdummy1sb(sb3)) thensig-normsb(Cp(s1,sig-normsb(Cp(s2,sb3)))) else subs) | _ -> subs;;For �se, we have gen�se ((�M) �) =M�1�. And the se-pseudo-normalization of a �se-term, exp, is givenby the fun
tion se-norm in Table 14. This pseudo-normalization is simpler than the previous one, sin
e weare dealing with a sole entity and additionally the �se rewrite rules preserve, in a 
ertain way, the stru
tureof terms: the symbol � remains always as last argument of the term to be normalized. As a 
onsequen
e ofthis regularity, implementation of the pseudo-normalization is done via un
onditional rewrite rules (withoutpremises \if o

urrdumy"). Clearly, this represents an advantage over the other two 
al
uli.Table 14: se-pseudo-normalizationlet re
 se-norm exp = mat
h exp with Dummy -> Dummy | DB i -> DB i | Vr 
->Vr 
|S(i,Vr 
,Dummy)-> exp |(*si-dest*) S(i,DB j,Dummy) -> (if j<i then DB j else (if j>i then (DB (j-1)) else P(0,i,Dummy))) |(*si-app*) S(i,A(e1,e2),Dummy) -> A((se-norm (S(i,e1,Dummy))),(se-norm (S(i,e2,Dummy)))) |(*si-lambda*) S(i,L(e1),Dummy) -> L(se-norm (S(i+1,e1,Dummy))) |(*si-si*) S(i,S(j,e1,e2),Dummy)->(if i >= j then S(j,(se-norm(S(i+1,e1,Dummy))),(se-norm(S(i-j+1,e2,Dummy))))else exp) |(*si-phi*) S(i,P(k,n,e),Dummy)->(if i>=k+n then P(k,n,(se-norm(S(i-n+1,e,Dummy))))else (if i>k then P(k,n-1,e) else exp)) | _ -> exp;;In �susp this implementation is very similar to the one of ��. We have that gen�susp((�M) �) =[[M; 1; 0; (�; 0) :: nil℄℄. The fun
tion susp-norm in Table 15 implements the susp-pseudo-normalization ofa �susp expression exp. Observations done for the sig-norm of �� apply for the susp-norm of �susp: ex
eptfor three rules, one step redu
tion is de
ided via the o

urdummy's 
he
k that runs in linear time on the sizeof exp. Rules r2 and r3 should be implemented without any Dummy. As for ��, this implies that other rulesthan those essential for the propagation of the � symbol may be applied during this pseudo-normalization.One may think there is a tradeo� be
ause of the in
lusion 
onditionals, but the veri�
ation of o

urren
esof the Dummy symbol 
an be performed simultaneously when solving the mat
hing without additional 
ost.De�nition 7.1 (�-pse-nf implementation of the �-redu
tion) For the 
al
uli ��; �se and �susp thepreviously proposed implementation of the �-redu
tion, that is formulated as the rewrite rule�(M 1)�!pse-nfEta�N if N = �-pse-nf(gen��(((�M) �); root)) and � does not o

ur in Nis 
alled the implementation by �-pseudo normalization of the �-redu
tion, denoted by pse-nfEta�.22



Table 15: susp-pseudo-normalizationlet re
 susp-norm exp = mat
h exp with Dummy -> Dummy | DB i -> DB i | Vr 
 -> Vr 
 |(*r1*) Sp(Dummy,i,j,env) -> Dummy |(*r2*) Sp(DB i,0,j,Nilen) -> DB (i+j) |(*r3*) Sp(DB 1,i,j,Con(Ar(k),env)) -> DB (j-k) |(*r4*) Sp(DB 1,i,j,Con(Paar(e1,k),env)) -> (if (o

urdummy3 e1) then susp-norm(Sp(e1,0,j-k,Nilen))else exp) |(*r5*) Sp(DB i,j,k,Con(envt,env)) -> (if((o

urdummy3_Et envt) || (o

urdummy3_Env env))then susp-norm(Sp(DB (i-1),j-1,k,env))else exp) |(*r6*) Sp(A(e1,e2),i,j,env) -> (if ((o

urdummy3 e1) || (o

urdummy3 e2) || (o

urdummy3_Env env))then A(susp-norm(Sp(e1,i,j,env)),susp-norm(Sp(e2,i,j,env))) else exp) |(*r7*) Sp(L(e1),i,j,env)->(if ((o

urdummy3 e1) || (o

urdummy3_Env env))then L(susp-norm(Sp(e1,i+1,j+1,Con(Ar(j),env)))) else exp) |_ -> exp;;From the argumentations before the previous de�nition, one 
an 
on
lude that the implementation of �-redu
tion by �se-pseudo-normalization is 
leaner and more eÆ
ient than the 
orresponding implementationsof �-redu
tion for �� and �susp.Lemma 7.2 (pse-nfEtasusp and pse-nfEta� implementations of the �-redu
tion are un
lean)The implementations of �-redu
tion by susp- and �-pseudo normalization are un
lean.Proof. Observing the pseudo-normalization rules for these two 
al
uli we 
an see that, for ��, the rulesnamed Clos, IdL and IdR must be implemented without 
onditional as the others, i.e., these rules do notpropagate the � symbol. The justi�
ation for this 
an be found in the third paragraph of Se
tion 7.An analogous argument is used in the 
ase of �susp. �Lemma 7.3 (pse-nfEtase implementation of the �-redu
tion is 
lean)The implementation of �-redu
tion by se-pseudo normalization is 
lean.Proof. By dire
t inspe
tion of the pseudo-normalization rules of the �se-
al
ulus (Table 15). Note thatall applied rules just propagate the � symbol. �The following three propositions show the 
ompleteness of the implementations of the Eta rules based onthese pseudo-normalizations, denoted by Eta� for � 2 f�; se; suspg, restri
ted for pure lambda terms.Lemma 7.4 Let M 2 �dB. The �-pseudo-nf of M [1:1["℄: : : : :1["k�2℄:�["k�1℄: "k�1℄ gives a term that pre-serves all o

urren
es of terms inM 
orresponding to variables less than k un
hanged, repla
es all o

urren
es
orresponding to the the kth variable with �["k�1℄ and de
rements by one all o

urren
es 
orresponding tovariables greater than k.Proof. We use the word variable for o

urren
es of 1["k�1℄. By indu
tion on the stru
ture of M :� M = n. If n<k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄ !Clos1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄ !n�2Asso
1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1))))℄ !n�1ShiftCons 1["n�1℄.If n = k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄!Clos 1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄!n�2Asso
1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1))))℄!n�1ShiftCons �["n�1℄.If n > k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄!Clos 1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄!n�2Asso
1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1))))℄ !n�1ShiftCons 1["n�1�k Æ "k�1℄ = 1["n�2℄.� M = (A B). Dire
tly by the indu
tion hypothesis.� M = (�A). Then(�A)[1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1℄ !Abs �A[1:((1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1)Æ ")℄!kMap�A[1:(1["℄:1["℄["℄ : : :1["k�2℄["℄:�["k�1℄["℄:("k�1 Æ "))℄!Clos �A[1:1["℄:1["2℄ : : : 1["k�1℄:�["k℄: "k℄. And bythe indu
tion hypothesis we 
an 
on
lude. �23



Proposition 7.5 (Completeness of pse-nfEta�)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEta� N .Proof. Here we are interpreting the de Bruijn index k in the language of �� as usual by 1["k�1℄. Theproof is by indu
tion on the stru
ture of M .� M = n. If n 6= 1 then on the one side, �(n 1) !� n� 1. On the other side we have to thatn[�:id℄ = 1["n�1℄[�:id℄ �-pseudo-normalizes to n� 1. In fa
t, 1["n�1℄[�:id℄!Clos 1["n�1 Æ(�:id)℄!Asso
1["n�2 Æ(" Æ(�:id))℄!ShiftCons 1["n�2 Æ(id)℄!IdR 1["n�2℄ = n� 1.� M = (A B). For A and B without o

urren
es of the free de Bruijn index 1, by the 
onditionfor the appli
ation of the �-redu
tion to (A B), we have that �(A 1) !� A0 and �(B 1) !� B0,where A0 and B0 are obtained from A and B by de
rementing all the free variables by one. Also,(A B)[�:id℄!App A[�:id℄ B[�:id℄. By the indu
tion hypothesis the �-pseudo-nf of A[�:id℄ and B[�:id℄
orresponds respe
tively to A0 and B0.� M = (�A). A does not own o

urren
es of terms 
orresponding to the free de Bruijn index 2. Then�((�A) 1) !� �A00, where A00 is obtained from A by de
rementing all its free variables ex
ept 1 byone. Thus applying Lemma 7.4 to the term M [�:id℄, we obtain the desired result. �Lemma 7.6 Let M 2 �dB. Then the se-pseudo-nf of M�i� gives a term obtained from M by preserving allfree de Bruijn indi
es less than i un
hanged, repla
ing the o

urren
es of the ith free de Bruijn index with'i0� and de
rementing all the free o

urren
es of de Bruijn indi
es greater than i by one.Proof. Indu
tion on the stru
ture of M .� M = n. If n < i then n�i� !��dest n. If n = i then n�i�!��dest 'i0�. If n > i then n�i� !��destn� 1.� M = (A B). (A B)�i�!��app (A�i�) (B�i�). And by indu
tion hypothesis we 
an 
on
lude.� M = (�A). (�A)�i�!��� �A�i+1�. And by indu
tion hypothesis we 
an 
on
lude. �Proposition 7.7 (Completeness of pse-nfEtase)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEtase N .Proof. Indu
tion on the stru
ture of M .� M = n. If n > 1 then n�1�!��dest n� 1.� M = (A B). For A and B without free o

urren
es of the de Bruijn index 1, we have that �(A 1)!�A0 and �(B 1) !� B0, where A0 and B0 are obtained from A and B by de
rementing all their freeo

urren
es of de Bruijn indi
es by one. Also, (A B)�1�!��app (A�1�) (B�1�), and by the indu
tionhypothesis we have that (A�1�)!Etase A0 and (B�1�)!Etase B0.� M = (�A). For A without free o

urren
es of the de Bruijn index 2, �((�A) 1)!� �A00, where A00 isobtained from A by de
rementing all its free de Bruijn indi
es ex
ept 1 by one. Also, (�A)�1� !����A�2�. Now by Lemma 7.6 we get the desired result. �Lemma 7.8 Let A and B be well-formed �susp-terms and k � 0. Then the rm-normalization of the well-formed term [[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ gives a term by de
rementing by one all free deBruijn indi
es greater than k o

urring at A, repla
ing the kth free variable of A with B (a
tualized a

ordingto the 
ontext of the term) and keeps un
hanged all other free o

urren
es of de Bruijn indi
es.Proof. Similar to the proof of Lemma 3.15. �Proposition 7.9 (Completeness of pse-nfEtasusp)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEtasusp N .24



Proof. By indu
tion on the stru
ture of M .� M = n. If n > 1 then [[n; 1; 0; (�; 0) :: nil℄℄!r5 [[n� 1; 0; 0; nil℄℄ !r2 n� 1.� M = (A B). Similar to Lemma 7.8 using that [[(A B); 1; 0; (�; 0) ::nil℄℄ !r6 [[A; 1; 0; (�; 0) ::nil℄℄[[B; 1; 0; (�; 0) ::nil℄℄ and IH: [[A;1;0;(�;0) ::nil℄℄!Etasusp A0 and [[B; 1; 0; (�; 0) ::nil℄℄ !Etasusp B0.� M = (�A). For A without free o

urren
es of the de Bruijn index 2, �((�A) 1) !� �A00, where A00is obtained from A de
rementing by one all its free de Bruijn indi
es ex
ept 1.Now use [[(�A); 1; 0; (�;0) ::nil℄℄ !r7 �[[A; 2; 1;�0::(�; 0) ::nil℄℄ and Lemma 7.8. �8 Future Work and Con
lusion[15, 3℄ showed that �-redu
tion is of great interest for adapting substitution 
al
uli (�� and �se) for importantpra
ti
al problems like higher order uni�
ation. In this paper, we have enlarged the suspension 
al
ulusof [37, 34℄ with an adequate Eta rule for �-redu
tion and showed that this extended suspension 
al
ulus,named �susp, enjoys 
on
uen
e and termination of the asso
iated substitution 
al
ulus susp (with Eta).Additionally, we used the notion of adequa
y of [26℄ for 
omparing these three 
al
uli when simulatingone step �-redu
tion. We 
on
luded that �� and �� are mutually non 
omparable for � 2 fse; suspg but that�se is more adequate than �susp in simulating one step beta-redu
tion. After all, although �� is a �rst order
al
ulus and the other two 
al
uli are se
ond order, 
omparing them is not unfair sin
e the use of (built-in)arithmeti
 is standard in all modern programming environments. Re
ently Liang and Nadathur pointed outthe importan
e of having the possibility to 
ombine steps of beta-redu
tion in pra
ti
al implementations,whi
h resumes to the ability of the 
al
ulus to 
ompose substitutions [31, 35℄. This results in naturalappli
ations for �� and the suspension 
al
ulus in 
ontrast to the �se. Consequently, it will be of greatimportan
e to study possible adaptations of the �se whi
h enable this property. In parti
ular, this wouldbe interesting if the work 
arried out for �se on HOU, 
an be mapped into the �t [26℄ whi
h is a 
al
ulus�a la �se but whi
h updates �a la ��. That is, �t does partial updating, like �� and the suspension 
al
ulus,whereas, �se does global updating. We leave this for future work.Moreover, we established the 
orresponden
e of these Eta rules of the three 
al
uli. This 
orresponden
emeans that the operational e�e
ts of applying these Eta rules over pure �-terms in the three 
al
uli areidenti
al. For the three 
al
uli in question enlarged with adequate eta rules we showed how to implementthese eta rules. For the �se we build a 
lean implementation of the eta rule, that is, avoiding the appli
ationof other rules of the substitution 
al
uli than the ones stri
tly involved in the veri�
ation of the �-redi
es.And we proved that it is not possible to follow the same approa
h for the �� and �susp. We proved thatthese implementations are 
omplete in the sense that any �-redu
tion for dealing with pure �-terms in deBruijn notation 
an be simulated by these Eta implementations. For the three treated 
al
uli, the mainadvantage of our 
lean eta implementation approa
h is that it is 
loser than previous implementations tothe operational semanti
s of the usual �-redu
tion of the �-
al
ulus. Additionally, we have pointed out thatfor �susp as well as for the ��-
al
ulus, in these Eta implementations, the appli
ation of rules not stri
tlyinvolved with the �-redu
tion is ne
essary, but that this is not the 
ase for �se. We have also showed that forthe former two 
al
uli, 
onditional rewriting rules whose premises are de
ided in linear time in the size of theterms in normalization are ne
essary while for �se this is done via non 
onditional rules whose appli
abilityis de
ided by simple mat
hing of their left-hand sides. Our Eta implementation is being in
orporated intoan ELAN prototype for simply-typed higher order uni�
ation via �se.An immediate work to be done is to study two open questions: whether the se-
al
ulus has strongnormalization (SN) [27℄ , and whether �susp preserves SN. Interesting points arise in this 
ontext sin
e: �seis more adequate in the simulation of one step �-redu
tion than �susp; �se does not preserves SN [18℄; andthe substitution 
al
ulus of �susp has SN.Referen
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