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Abstract

The past decade has seen an explosion of work on calculi of explicit substitutions. Numerous work has
illustrated the usefulness of these calculi for practical notions like the implementation of typed functional
programming languages and higher order proof assistants. It has also been shown that eta-reduction is
useful for adapting substitution calculi for practical problems like higher order unification. This paper
concentrates on rewrite rules for eta-reduction in three different styles of explicit substitution calculi:
Ao, Ase and the suspension calculus. Both Ao and As. when extended with eta-reduction rules, have
proved useful for solving higher order unification. We enlarge the suspension calculus with an adequate
eta-reduction rule which we show to preserve termination and confluence of the associated substitution
calculus and to correspond to the eta rules of the other two calculi. We prove that Ao and As. as well
as Ao and the suspension calculus are non comparable while As. is more adequate than the suspension
calculus in simulating one step beta-reduction.

After defining the eta-reduction rule in the suspension calculus, and after comparing these three
calculi of explicit substitutions (all with an eta rule), we then concentrate on the implementation of the
rewrite rules of eta-reduction in these calculi. We note that it is usual practice when implementing the
eta rule for substitution calculi, to mix isolated applications of eta-reduction with the application of other
rules of the corresponding substitution calculi. The main disadvantage of this practice is that the eta
rewrite rules so obtained are unclean because they have an operational semantics different from that of
the eta-reduction of the A-calculus. For the three calculi in question enlarged with adequate eta rules we
show how to implement these eta rules. For the As. we build a clean implementation of the eta rule and
we prove that it is not possible to follow the same approach for the Ao and Asyse.
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1 Introduction

Recent years have witnessed an explosion of work on expliciting substitution [1, 7, 9, 16, 17, 21, 23, 4] and
on its usefulness for: automated deduction and theorem proving [32, 33|, proof theory [40], programming
languages [8, 20, 28, 34] and higher order unification [3, 15]. This paper studies three styles of substitutions:

1. The Ao-style [1] which introduces two different sets of entities: one for terms and one for substitutions.

2. The suspension calculus [37, 34], which introduces three different sets of entities: one for terms, one
for environments and one for lists of environments.

3. The As-style [23] which uses a philosophy of de Bruijn’s Automath [38] elaborated in the new item
notation [22]. The philosophy states that terms are built by applications (a function applied to an
argument), abstraction (a function), substitution or updating. The advantages of this philosophy
include remaining as close as possible to the familiar A-calculus (cf. [22]).
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Desired properties of explicit substitution calculi include a) simulation of S-reduction, b) confluence (CR) on
closed terms, ¢) CR on open terms, d) strong normalization (SN) of explicit substitutions and e) preservation
of SN of the A-calculus. The Ao-calculus (without eta) satisfies a), b), d) and satisfies ¢) only when the set
of open terms is restricted to those which admit metavariables of sort term. The As-calculus (without eta)
satisfies a)..e) but not c). However, the As-calculus has an extension As. (again without eta) for which a)..c)
holds, but e) fails and d) is unknown. The suspension calculus (which does not have eta) satisfies a) and
when restricted to well formed terms it also satisfies b)..d). For the suspension calculus, e) is unknown.

The above discussion holds for these calculi without eta-reduction. However, work on higher order
unification (HOU) in As, and Ao established the importance of combining eta-reduction (as well as expansion)
with explicit substitutions. This has provided extensions of As. and Ao with eta-reduction rules also referred
to by Ase and Ao (cf. [15, 3]). In fact, due to the importance of eta-reduction, calculi of explicit substitutions
(including Ao) have been extended with eta rules earlier than the application of Ao to HOU [19, 39, 12, 29].
Eta-reduction (as well as expansion) is necessary for working with functions and programs, since one needs
to express functional or extensional equality. In particular, when the application of two lambda terms a and
b to any term c yields the same result, then a and b should be considered equal.

Although As. and Ao have already been extended with eta-reduction, the suspension calculus still has
not. This paper fills the gap and gives the first extension of the rewriting system of the suspension calculus
with an eta-reduction rule bringing to it the advantages of the use of eta-reduction in substitutions calculi.
Once the suspension calculus is extended with this eta-reduction rule, one can then compare these three
calculi and assess the way eta-reduction should be implemented in each of them. This paper deals with three
useful notions for these three calculi:

e Extending the suspension calculus with an eta-reduction rule resulting in Asysp. We show the soundness
of this rule and the confluence and strong normalisation of the underlying substitution calculus with
eta.

e Comparing the adequacy of the reduction process of these three substitution calculi extended with
eta-reduction, using the efficient simulation of S-reduction of [26] which showed that As and Ao are
non comparable. In this paper we show that As. and Ao as well as Ao and Agygp are non comparable,
that As. is more adequate than Agygp for simulating one step beta-reduction.

e Reflecting on the correct definition and adequate implementation of the eta-reduction rewrite rules
in these calculi. It is usual practice when implementing the eta rule for substitution calculi [11, 2],
to mix isolated applications of eta-reduction with the application of other rules of the corresponding
substitution calculi. The main disadvantage of this practice is essentially that the eta rewrite rules
so obtained are unclean because they have an operational semantics different from the one of the eta-
reduction rule of the A-calculus: the notion of functional equivalence embedded in the eta-reduction
should be interpreted modulo the semantics of the corresponding substitution calculus. For the three
calculi enlarged with adequate eta rules we show how to implement in practice these eta rules without
mixing the isolated application of the eta-reduction with the application of other rules of the associated
substitution calculi. The definition of a successful implementation depends on an effective specification
of a practical method for evaluating the conditions of these eta rules which are conditional rules of
the rewriting systems of the three treated calculi. For each of these explicit substitution calculi, our
implementation consists basically of a linear verification along a term of the nonexistence of occurrences
of the free variable of the eta-reduction while simultaneously upgrading all other free de Bruijn indices
and without applying any additional rewrite rule of the corresponding substitution calculus. The three
implementations are proved complete in the sense that they effectively simulate eta-reduction over pure
lambda terms.

After including the necessary notations and motivation about explicit substitutions, in the second section,
we present the Ao, the Ase, and the suspension calculus. We enlarge the latter with an eta-reduction rule
which is proved sound in the third section. Then, in the fourth and fifth sections, we compare the adequacy
of these calculi in simulating one step beta-reduction and the appropriateness of the defined eta rewriting
rules. Finally, and before concluding, we discuss the clean implementation of these eta rules in the sixth and
seventh sections.



2 Preliminaries

We assume familiarity with the notion of term algebra 7 (F, X’) built on a (countable) set of variables X" and
a set of operators F. Variables in X are denoted by X,V ... and for a term a € T (F, X), var(a) denotes the
set of variables occurring in a. Throughout, we take a,b, ¢, ... to range over terms. Additionally, we assume
familiarity with basic notions of rewriting as in [5]. In particular, for a reduction relation R over a set A, we
denote with =g the reflexive closure of R, with —7% or just —* the reflexive and transitive closure
of R and with —>J15 or just —7T the transitive closure of R. When a —* b we say that there exists a
derivation from a to b. By a =™ b, we mean that the derivation consists of n steps of reduction and call n
the length of the derivation. Syntactical identity is denoted by a = b. For a reduction relation R over A,
(A, —R), we use the standard definitions of (locally-)confluent or (weakly) Church Rosser (W)CR, normal
forms and strong and weak normalization/termination SN and WN. Suppose R is a SN reduction
relation and let ¢ be a term, then R-nf(t) denotes its normal form. As usual we use indiscriminately either
“noetherian” or “terminating” instead of SN.

A valuation is a mapping from X to 7 (F, X). The homeomorphic extension of a valuation, 6, from its
domain X to the domain 7 (F,X) is called the grafting of #. As usual, valuations and their corresponding
graftings are denoted by the same Greek letter. The application of a valuation 6 or its corresponding
grafting to a term a € T(F,X) will be written in postfix notation af. The domain of a grafting 6, is
defined by Dom(#) = {X | X8 # X, X € X'}. Its range, is defined by Ran(f) = Uxcpom(g)var(X0). We let
var(f) = Dom(6) U Ran(6). For explicit representations of a valuation and its corresponding grafting 6, we
use the notation § = {X — X6 | X € Dom(#)}. Note that the notion of grafting, usually called first order
substitution, corresponds to simple syntactic substitution without renaming.

We use notations from [6] for the A-calculus. Let V be a (countable) set of variables denoted by lowercase
last letters of the Roman alphabet z,y, ...

Definition 2.1 Terms A(V) of the A-calculus with names are inductively defined by: AY) =1z
(AV) A(V)) | Ae-A(V), where x € V. We call A\;.a resp. (a b) abstraction resp. application terms.

Terms in A(V) are called closed A-terms or terms without substitution meta-variables. An abstraction A;.a
represents a function of formal parameter z, whose body is a. Its application (A,.a b) to an argument b,
returns the value of a, where z is replaced by b. This replacement of formal parameters with arguments
is known as f-reduction. In the context of the first order substitution or grafting, S-reduction would be
defined by (A;.a b) = a{z+>b}.

But in this context problems arise forcing the use of a-conversion to rename bound variables:

1. Let 8 = {z — b}. There are no semantic differences between the abstractions A,.z and A,.z; both

abstractions represent the identity function. But (A,.z)8 = A,.b and (\..2)0 = A, .z are different.

2. Let § = {z—y}. (Ay.2)0 = Ay.y and (A..x)§ = A..y, thus a capture is possible.

Consequently, S-reduction, should be defined in a way that takes care of renaming bound variables when
necessary to avoid harmful capture of variables.

The A-calculus usually considers substitution as an atomic operation leaving implicit the computational
steps needed to effectively perform computational operations based on substitution such as matching and
unification. In any real higher order deductive system, the substitution required by basic operations such as -
reduction should be implemented via smaller operations. Explicit substitution is an appropriate formalism for
reasoning about the operations involved in real implementations of substitution. Since explicit substitution
is closer to real implementations than to the classic A-calculus, it provides a more accurate theoretical model
to analyze essential properties of real systems (termination, confluence, correctness, completeness, etc.) as
well as their time/space complexity. For further details of the importance of explicit substitution see [28, 4].

a-conversion should be performed before applying the substitution in the body of an abstraction. The
grafting of a fresh variable avoids the possibility of capture. It is important to note that renaming selects
fresh variables that have not been used previously. Moreover, since fresh variables are selected randomly,
the result of the application of a substitution 6 to a term a, which we denote in prefix notation fa for
discriminating substitution from grafting, can be conceived as a class of equivalence of terms.



Definition 2.2 f-reduction is the rewriting relation defined by the rewrite rule (5) and n-reduction is
the rewriting relation defined by the rewrite rule (n), where:

(B)  Azab) = {z/b}(a)

(m)  Apaz) —a, ife & Foar(a) , where Fvar(a)denotes the free variables occurring in a.

Note that our notion of substitution is not completely satisfactory because fresh variables depend on the
history of the renaming process. A-terms with meta-variables or open A-terms are given by:

Definition 2.3 Terms A(V, X), of the A-calculus with names and meta-variables are inductively de-
fined by: AV, X) =z | X | (AV,X) AWV, X)) | A\e AV, X), where x €V and X € X.

We have seen that the names of bound variables and their corresponding abstractors play a semantically
irrelevant role in the A-calculus. So any term in A(V) or A(V, X) can be seen as a syntactical representative
of its obvious equivalence class. Hence, during syntactic unification, the role that names of bound variables
and their corresponding abstractors play increases the complexity of the process and creates confusion.

Avoiding names is an effective way of clarifying the meaning of A-terms and, for the unification process,
of eliminating redundant renaming. De Bruijn proposed in [14] that names of bound variables be replaced
by indices which relate these bound variables to their corresponding abstractors.

It is clear that the correspondence between an occurrence of a bound variable and its associated abstractor
operator is uniquely determined by its depth, that is the number of abstractors between them. Hence, A-terms
can be written in a term algebra over the natural numbers N, representing depth indices, the application
operator (- _) and a sole abstractor operator A_; i.e., T ({(--),A-} UN).

In de Bruijn’s notation, indexing the occurrences of free variables is given by a referential according to a
fixed enumeration of the set of variables V, say z,y, 2, ..., and prefixing all A-terms with ... A, Ay M.

Now we can define the A-calculus in de Bruijn notation with open terms or meta-variables.

Definition 2.4 The set Agp(X) of A-terms in notation of de Bruijn is defined inductively as:
AdB(X) =1 | X | (AdB(X) AdB(X)) | )\AdB(X), where X € X andn € N\ {0}

Agp(X)-terms without meta-variables are called closed A-terms.

We write de Bruijn indices as 1,2,3,...,n,..., to distinguish them from scripts. Since all considered
calculi of explicit substitutions are built over the language of Ayp(X), we will use A to denote Agp(X).

Defining S-reduction in de Bruijn notation’s as (Aa b) — {1/b}a (where {1/b}a is the substitution of the
index 1 in a with b) fails: 1) when eliminating the leading abstractor all indices associated with free variable
occurrences in a should be decremented; 2) when propagating the substitution {1/b} crossing abstractors
through a the indices of the substitution (initially 1) and of the free variables in b should be incremented.

Hence, we need new operators for detecting, incrementing and decrementing free variables.

Definition 2.5 Let a € Aqp(X). The i-lift of a, denoted a™® is defined inductively as follows:

)X =X forXeXx 2) (a1 a2)*® = (a]" ad?)
+i oy (1) i J n+1, dfn>i
3) (Aa1)t" = Aa; 4) o™= { n, ifn <i

The lift of a term a is its 0-lift and is denoted briefly as a*.

Definition 2.6 The application of the substitution by b at the depth n — 1,n € N\ {0}, denoted {n/b}a,
on a term a in Agp(X) is defined inductively as follows:

1) {n/b}X =X, for X € X 2) {n/b}(a1 a2) = ({n/b}a:r {n/b}a,)
m—1, ifm>n
3) {n/b}rar = Mn+1/b% }ay 4){n/blm=4 b, ifm=n if m € N\ {0}.

m ifm<n

Definition 2.7 f-reduction in the A-calculus with de Bruijn indices is defined as (Aa b) — {1/b}a.



Observe that the rewriting system of the sole f-reduction rule is left-linear and non overlapping (i.e. orthog-
onal). Consequently, the rewriting system defined over Agp(X’) by the S-reduction rule is CR.

In the A-calculus with names, the -reduction rule is defined by \,.(a ) — a, if © € Fuvar(a). In Agp(X),
the left side of this rule is written as A(a’ 1), where a' stands for the corresponding translation of ¢ under
some fixed referential of variables into the language of Agp(X). “a has no free occurrences of z” means, in
A(X), that there are neither occurrences in a’ of the index 1 at height zero nor of the index 2 at height one
nor of the index 3 at height two etc. Hence, there is in general, a term b such that b* = a.

Definition 2.8 n-reduction in the A-calculus with de Bruijn indices is: AM(a 1) = b if bt = a.

3 Calculi a la Ao, As, and the Suspension Calculus

We present Ao, As. and the Suspension Calculus. We enlarge the latter with an eta-reduction rule which we
prove to be sound and to preserve the confluence of the suspension calculus.

3.1 The M\o-calculus

The Ao-calculus is a first order rewriting system that contains the lambda calculus in de Bruijn notation and
which makes explicit the substitutions started by S-reductions [1]. This calculus works on 2-sorted terms:
(proper) terms (over which a,b,... range), and substitutions (over which s,¢,... range). In this calculus,
when a substitution {n/b} is applied to a term a: {n/b}a, we internalise this as a[1..... n — 1.b. t"*1]. This
means that all de Bruijn indices except n remain unchanged, while n is replaced with b. Notice that b is placed
at position n of the substitution list, which allows for simultaneous substitutions; for instance, a[b;.bs....]
replaces 1,2,... with by, bo, ..., respectively. Operationally, this calculus applies this kind of substitution
decrementing by one the size of the substitution list as well as the de Bruijn indices. When doing that the
operator 1 is reached, a[1*] internalises the k-lifting of the term a. In this calculus only 1 is used and the
other de Bruijn indices are coded by lifting 1 as we will explain below. For details see [1].

Definition 3.1 The Ao-calculus is defined as the calculus of the rewriting system Ao of Table 1 where
TERMS a == 1| X | (aa) | Aa | als], where X € X SUBSs == id| 1 |a.s|sos

Table 1: The Ao Rewriting System of the Ao-calculus with Eta rule

(Beta) (Aab) — alb-id (1d) alidf — a

(VarCons)  1fa-s] — a (App) @bl —  (als) GlsD
(Abs) (Aa)[s] — Aa[Ll-(so?)] (Clos) (a[sD[t] — alsot]

(IdL) idos — s (IdR) soid — s

(ShiftCons) to(a-s) — s (Map) (a-s)ot —> alt]-(sot)
(Ass) (sot)ou — so(tou) (VarShift) 1.1+ — id

(SCons) 1[s] - (tos) — s (Eta) AMal) — b if a=,b[1]

For every substitution s we define the iteration of the composition of s inductively as s' = s and s"t! = sos”.
We use s° to denote id. Note that the only de Bruijn index used is 1, but we can code n by 1[t"71].

The equational theory associated with the rewriting system Ao defines a congruence denoted =),. The
congruence obtained by dropping Beta and FEta is denoted =,. We use o-reduction, o-normal form, etc.,
with the obvious meaning, in the case when reduction is restricted to the o-rules.

The rewriting system Ao is locally confluent [1], CR on substitution-closed terms (i.e., terms without
substitution variables) [39] and not CR on open terms (i.e., terms with term and substitution variables) [13].
The possible forms of a Ao-term in Ao-normal form were given in [39] by:



1. Aa, where a is a normal term;
2. ay...ap. 1", for ay,...,a, normal terms and a, #n

3. (aby...by,), where a is either 1, 1[1"], X or X[s] for s # id a substitution term in normal form.

In the A-calculus with names or de Bruijn indices, the rule X{y/a} = X, where y is an element of V
or a de Bruijn index, respectively, is necessary because there is no way to suspend the substitution {y/a}
until X is instantiated. In the Ao-calculus, the application of this substitution can be delayed, since the
term X[s] does not reduce to X. The fact that the application of a substitution to a meta-variable can be
suspended until the meta-variable is instantiated will be used to code the substitution of variables in A" by
“X-grafting” and explicit lifting. Consequently a notion of X-substitution in the Ao-calculus is unnecessary.
Observe that the condition a =, b[1] of the Eta rule is stronger than the condition a = b* given in Definition
2.8 as X = X, but there exists no term b such that X =, b[f]. Note that Ao-reduction is compatible with
first order substitution or grafting and hence AX'-grafting and Ao-reduction commute.

3.2 Calculi a la As and the \s.-calculus

Calculi a la As avoid introducing two different sets of entities and insist on remaining close to the syntax
of the A-calculus using de Bruijn indices'. Next to A and application, they introduce substitution o and
updating ¢ operators. A term containing neither substitution nor updating operators is called a pure term.
The role of the substitution operator is to internalise the substitution. Essentially, ac™b makes operational
the application of the substitution {n/b} to a. This operator is propagated into the body of the abstractors,
while all free de Bruijn indices (greater than n) are decreased by one. Once an occurrence of n is found, b is
adequately modified (lifted) by the updating operator. The operational effect of 'b is the (i — 1)-lifting of
all de Bruijn indices in b greater than j. For details see [23, 24].

Definition 3.2 (The As-calculus) Terms of the As-calculus are given by:
As =N | AsAs | Ms | AsoiAs | piAs  where i>1, k>0.
The set of rules As is given in Table 2.

Table 2: The As-rules

o-generation (Aa)b — ac'b
o-A-transition (Aa)oib  —  Aao®tlb)
o-app-transition (a1 as)o’b  — (a1 0'b) (ay o'b)

n—1 if n>14

o-destruction nolb — obb if n=i
n if n<i

p-A-transition ei(Aa)  — Aephya)

p-app-transition i(araz) —  (phar) (¢l az)

n+i—-1 if n>k

@-destruction pYpn — { n if n<k

Tt can be argued that because we use de Bruijn indices, we remain close to de Bruijn’s philosophy rather than to the syntax
of the A-calculus and that instead it is calculi like Az of [10] and Ax of [30] that remain close to the syntax of the lambda
calculus. So, we need to explain here that by staying with the syntax of the A-calculus we mean that we do not introduce
substitutions and other category of operators separately as in Ao, but that a term for us is either an abstraction term, an
application term, a substitution term or an updating term.



The As-calculus was introduced in [23] with the aim of providing a calculus that preserves strong normal-
isation and has a confluent extension on open terms [24]. In [23, 25], we establish the properties of these
calculi which we list in the following theorem.

Theorem 3.3 The s-calculus is SN, the As-calculus is confluent on closed terms and satisfies PSN. More-
over, the As-calculus simulates B-reduction, is sound and has a confluent extension on open terms.

We introduce the open terms and the rules that extend As to obtain the As.-calculus.

Definition 3.4 The set of open terms, noted Asop, is given as follows:
Asop :=V | N | AsopAsop | Msop | AsopoiAsep | ¢iAs,, where i>1, k>0
and where V stands for a set of variables, over which X, Y, ... range. We take a, b, ¢ to range over As,p.

Furthermore, closures, pure terms and compatibility are defined as for As.

Working with open terms one loses confluence as shown by the following counterexample:
(AX)Y)oll = (Xo'Y)olt (AX)Y)olL = (A X)o!1)(Yoll)

and (Xo'Y)ol1l and ((AX)o'1)(Ye'1) have no common reduct. Moreover, the above example shows that
even local confluence is lost. But since ((AX)o'1)(Yo'1l) — (Xo?1)o!(Yo'l), the solution to the problem
seems at hand if one has in mind the properties of meta-substitutions and updating functions of the A-
calculus in the Bruijn notation. These properties are equalities which can be given a suitable orientation and
the new rules, thus obtained, added to As yield a rewriting system which happens to be locally confluent. For
instance, the rule corresponding to the meta-substitution lemma is the o-o-transition rule. The addition of
this rule solves the critical pair in our counterexample, since now we have (Xo'Y)o'1 — (Xo?1)o!(Yo'1).

Definition 3.5 The set of rules As. is obtained by adding the rules given in Table 3 to the set As. The Ase-

Table 3: The new rules of the As.-calculus

o-o-transition (ac’d)aic — (aciTre) o' (bo?™He) if i<
o-p-transition 1 (c,o}c a) 0']: b — cp;:cfl a if k<j<k+i
o-p-transition 2 (pha)o’b —  L(ac? T D) if k+i<j
p-o-transition cp}vcv(a Uf by — (cp}@rl‘a) o7 (phy1;b) if j<k+1
p-p-transition 1 ek (pla) — ¢l (Phy1—ja) if 1+j<k
p-p-transition 2 oh(pla) — T ra if I<k<l+j

calculus is the reduction system (As,p, —xs,) Where —xs_ is the least compatible reduction on As,, generated
by the set of rules As.. The calculus of substitutions associated with the As.-calculus is the rewriting system
generated by the set of rules s, = \s. — {o-generation} and we call it s.-calculus.

The equational theory associated to the rewriting system As. defines a congruence =y,,. The congruence
obtained by dropping o-generation and Eta (that will be defined below in Table 4) is denoted by =, .

Notice that for the Ao-calculus we need two sorts: TERM and SUBSTITUTION [15]. The set of variables of
sort TERM in a term a € Ty, (X) is denoted by T var(a).

We can describe the operators of the As.-calculus over the signature of a first order sorted term algebra
Tas, (X) built on X, the set of variables of sort TERM and its subsort NATC TERM by:

n — NAT, Vn e N\ {0}
(..) : TERM X TERM — TERM
_o'_ : TERM X TERM — TERM, Vi€ N\ {0}

Ao TERM — TERM

L TERM — TERM, Vie Nk €N\ {0}

In [24] we proved the following:



Theorem 3.6 (WN and CR of s.) The s.-calculus is weakly normalising and confluent.
Lemma 3.7 (Simulation of S-reduction) Leta, b€ A, if a =3 b then a —»xs. b.
Theorem 3.8 (CR of As.) The As.-calculus is confluent on open terms.

Theorem 3.9 (Soundness) Let a,be A, if a —»xs, b then a =5 b.

In [3] we proved that:
Proposition 3.10 X-grafting and As.-reduction commute.

This calculus was originally introduced without the Eta rule that was added in [3] to deal with higher order
unification problems as originally done in [15] for the Ao-calculus.

Table 4: The eta rule of the As.-calculus

(Eta) Aal) — b if a=s pib

The characterization of the As.-normal forms was given in [24, 3] by: a term a € As, is a As.-nf if and
only if one of the following holds:

l.ae YUN;

2. a = bc with b, ¢ in As.-nf and b not an abstraction Ad;

3. a = Ab, where b is a As.-nf excluding applications of the form (c 1) where p3d =,_ ¢ for some d;

4. a = bo’c, where b, ¢ in As.-nf and b is of the form: X or do'e, with j < i or pid, with j < k;

5. a = pib, where b is a Ase-nf of the form: X or coid, withj >k+1 or plc, with k < I;

3.3 The Suspension Calculus

The suspension calculus [37, 34] deals with A-terms as computational mechanisms. This was motivated by
implementational questions related to AProlog, a logic programming language that uses typed A-terms as
data structures [36]. The suspension calculus works with three different types of entities:

SUSPENDED TERMS M,N == C|n|AM|(M N)|[M,i,je]

ENVIRONMENTS er,ea == nil|et:e | fer,i,j el

ENVIRONMENT TERMS et @i | (M,1) | (et,i,j,e1))
where C' denotes any constant and i, j are non negative natural numbers.

As constants and de Bruijn indices are suspended terms, the suspension calculus has open terms. Rather
than performing adjustments at each stage, the suspension calculus notation performs the adjustments into
a substitution term only at the final substitution stage. Intuitively, a suspended term of the form [M, i, j, e1]
means that the first ¢ variables of the A-term M must be substituted in a way determined by the environment
e1 and its remaining bound variables must be renumbered according to the fact that M used to appear within
1 abstractions but now appears within j of them.

The suspension calculus owns a generation rule s, that initiates the simulation of a S-reduction (as for
the Ao and the As., respectively, the Beta and the o-generation rules do) and two sets of rules for handling
the suspended terms. The first set, the r rules, for reading suspensions and the second set, the m rules, for
merging suspensions are given in Table 5.

As in [37] we denote by >,.,, the reduction relation defined by the r~ and m-rules in Table 5. The associated
substitution calculus, denoted by susp, is the one given by the congruence =,,,.



Table 5: Rewriting rules of the suspension calculus

) (()\tl tz) — [[tl, 1,0, (tQ,O) s ml]]
) [c,0l,nl,e] — ¢, where ¢ is a constant
) [1,0,nl,nil] —i+nl
3) [1,0l,nl,Ql :: e] —nl-1
) [1,0l,nl,(t,1) :: €] —[t, 0, (nl-1), nil]
) [i,0l,nl,et :: e] — [i-1, (0l-1),nl,e], for i > 1
) [(t1 t2),0l,nl,e] — ([t1,0l,nl, €] [t2,0l,nl, e])
) [Mt,ol,nl,e] — At, (ol + 1), (nl + 1),@nl :: €]

my) [[t,ol1,nl1,e1],0la, nls, ex] — [t, ol’,nl', {e1, nly, ol2, e2}], where
ol' = oly + (oly = nly) and
nl' =nla + (nly = ols)
(m2) {nil, nl,0,nil} — nil
(ms) {nil,nl, ol et :: e} — {nil, (nl-1), (ol-1),e}, for nl,ol > 1
(my) {nil,0,0l, e} —e
(ms) {et :: e1,nl,0l,ex} — (et,nl, ol,e2)) :: {e1,nl,ol,ex}
(mg) {et,nl,0,nil)) — et
(mr) {(@m,nl,ol,Ql :: e)y — Q(l + (nl = ol)), fornl =m + 1
(ms)  (@m,nl,ol, (1) = e}
(mo) {(t,nl),nl,ol, et :: )

(t,(I + (nl = ol))), fornl=m+1
([t,ol,l' et :: €],m), where

I =ind(et) and m = I' + (nl = ol)
(m1o) {et,nl,ol, et :: e)) — ((et, (nl-1), (ol-1),e)), for nl # ind(et)

—
—

Definition 3.11 ([37]) The length len(e) of an environment e is given by:

len(nil) := 0; len(et :: €') :=len(e’) + 1 and

len({e1,i,7,e2}}) := len(er) + (len(ez) ~ 7).
The index ind(et) of an environment term et, and the [-th index ind;(e) of environment e and natural number
[, are simultaneously defined by induction on the structure of expressions:
ind(@Qm) =m + 1; ind((t',m)) =m;

} . . . N
(et kye) = { o) H U= o) 2= ndet) = m
indi(nil) = 0;  indy(et :: €') = ind(et) and indj4q(et :: €') = ind;(e’)
indy(e2) + (= k) if Il < len(e1) and
len(ez) > m = j = indi(e1)

indi({er, g, k,ea}) =< indi(er) if I < len(e1) and
len(ex) <m =j = indi(e1)
indi—i,+j(e2) if 1 > 1y =len(er)

The index of an environment e, denoted as ind(e), is indy(e).

Definition 3.12 ([37]) An expression of the suspension calculus is said to be well-formed if the following
conditions hold over all its subexpressions s:

if s is [t,ol,nl,e] then len(e) = ol and ind(e) < nl

if s is et :: e then ind(e) < ind(et)

if s is {(et, ], k,e)) then len(e) =k and ind(et) < j

if s is {e1, ], k,ex} then len(es) = k and ind(e1) < j.

In the sequel, we only deal with well-formed expressions of the suspension calculus.
The suspension calculus simulates S-reduction and its associated substitution calculus susp is CR (over
closed and open terms) and SN [37]. In [34] Nadathur conjectures that the suspension calculus preserves



strong normalization too but there is still no proof of this conjecture. The following lemma characterizes the
>,.m-normal forms.

Lemma 3.13 ([37]) A well-formed expression of the suspension calculus x is in its >.,,-nf if and only if
one of the following affirmations holds:

1) x is a pure A-term in de Bruijn notation;

2) © is an environment term of the form Ql or (t,1), where t is a term in its >ppy,-nf;

3) x is the environment nil or et :: e for et and e resp. an environment term and an environment in >y, -nf.

3.4 The suspension calculus enlarged with n-reduction: the \y,s,-calculus

The suspension calculus was initially formulated without n-reduction. Here we introduce an adequate Eta rule
that enlarges the suspension calculus preserving correctness, confluence, and termination of the associated
substitution calculus. The suspension calculus enlarged with this Eta rule is denoted by Agysp and we continue
to call its associated substitution calculus susp. The Eta rule is formulated in Table 6. Intuitively Eta may

Table 6: The eta rule of the suspension calculus

(Eta} (A (t1 l)) — i if t1 =rm IItz,O, 1,ml]]

be interpreted as: when it is possible to apply the n-reduction rule to the redex A(t; 1) we obtain a term
ty that has the same structure as t; with all its free de Bruijn indices decremented by one. This is possible
whenever there are no free occurrences of the variable corresponding to 1 in ¢;. Proposition 3.16 proves the
correctness of Eta according to this interpretation.

Remark 3.14 The reader may wonder whether this is the best formulation of Eta in the suspension calculus.
Indeed, the reader may ask this question also in connection with the formulation of Eta in both the Ao- and
Ase-calculi. Initially, [15] intended to use A(a[t]1) — a as a formulation of Eta in the Ao-calculus. However,
this formulation would lead to an infinite set of critical pairs. For this reason, [15] took the formulation
given in Table 1. The same reason led [3] to use a formulation of Eta in the \s.-calculus which uses s.
convertibility (see table 4). And indeed for the suspension calculus, we also get an infinite set of critical pairs
if we use (A ([t1,0,1,ndl] 1)) — t;.

We follow [11] and [2] for Ao and As. respectively, and implement the Eta rule of the Agysp-calculus by
introducing a dummy symbol ¢, by:

AM 1) — g N if N =pp,-nf([M,1,0,(0,0) :: nil]) and ¢ does not occur in N.

The correctness of this implementation is explained because an n-reduction A(M 1) =, N gives us a
term N, which is obtained from M by decrementing by one all free occurrences of de Bruijn indices, as
previously mentioned, and which corresponds exactly to the >,,,-normalization of the term ((AM) ¢) —5,
[M,1,0,(0,0) :: nil], whenever ¢ does not appear in this normalized term.

Lemma 3.15 Let A be a well-formed term of the suspension calculus. Then the SUSP-normalization of the
term [A,k,k+1,Qk :: Qk — 1 :: ... :: Q1 :: nil] gives a term obtained from A by incrementing by one all its
de Bruijn free indices greater than k and preserving unaltered all other de Bruijn indices.

PROOF. By induction on the structure of A. The constant case is trivial.

e A=n Ifn>k: [nkk+1,Qk:. . =Qlunil] -5 [n—k,0,k+1,nil] -, n+1.
Ifn<k: [nkk+1,Qk:...:Ql:ni] —>:}571 [L,k—n+1,k+1,@k—n+1:...::@QLl:unil] —,, n;

e A = (B C). we apply rg and induction hypothesis for B and C;
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e A = (AB). Since B is bounded by an abstractor, only its free variables greater than k + 1 should be
incremented by one, the other variables remain unchanged. Since [(AB),k,k + 1,Qk :: ... :: @1 :: nil]
= A[Byk+1,k+2,@Qk+1::...:: @1 ::ndl], by applying induction hypothesis over the previous
term we obtain the desired result.

e A = [t,ol,nl,e]. Without loss of generality A may be >,,,-normalized and by Lemma 3.13 the
obtained term is of one of the forms analysed in the previous cases. O

Proposition 3.16 (Soundness of the Eta rule) Every application of the Eta rule of Asusp to the redex
Aty 1) gives effectively the term to obtained from t1 by decrementing all its de Bruijn free indices by one.

PROOF. The proof is by induction over the structure of ¢, considering the premise t; =, [t2,0, 1, nil].
The effect of normalizing [t2,0,1,nil] is to increment by one all de Bruijn free indices occurring at to:

et =n. [n,0,1,nil] -, n+1=.,1t.

e to = (A B). Without loss of generality we can assume that both A and B are in >,,,-nf. Observe that
[(A B),0,1,nil] =, [A,0,1,nil] [B,0,1,nil]. Now, by induction hypothesis over A and B, we have
that the normalization of the suspended terms [A4,0, 1,nil] and [B, 0, 1, nil] have the desired effect and
consequently the same happens with the normalization of the suspended term [(A B),0, 1, nil].

e to = (AA). As before, assume A is in >p,-nf. Note that [(AA4),0,1,nil] —,, (A[4,1,2,Q1::nil]). By
applying Lemma 3.15 to the term [A, 1,2, @1 :: nil] we conclude that all free occurrences of de Bruijn
indices greater than 1 at A are incremented by one while the other indices are unchanged.

o ty = [t,1,7,€e]. If t is in >,.,,-nf then [¢,4,7,e] >, ¢, where ¢’ is a pure A-term in de Bruijn notation
by Lemma 3.13. Hence, the analysis given in the previous three cases applies here too. O

Noetherianity of susp plus the Eta rule enables us to apply the Newman diamond lemma and the
Knuth-Bendix critical pair criterion for proving its confluence.

Lemma 3.17 (susp+ FEta is SN) The rewriting system associated to SUSP and the Eta rule is noetherian.

Proor.  (Sketch) This is proved by showing that the Eta rule is also compatible with the well-founded
partial ordering < that is defined and proved compatible with ©,.,, in [37]. g
A simple environment is an environment without subexpressions of the form {_,_,_,_} or {(_,_,_,_).

Lemma 3.18 ([37]) Let ey be a simple environment and suppose that nl and ol are naturals such that
(nl — ind(e1)) > ol. Then {e1,nl,ol,ex}} >%,. e1.

Lemma 3.19 (Local-confluence of susp+ Eta) The rewriting system of the substitution calculus SUSP
plus the Eta rule is locally-confluent.

PRrOOF. The rewrite relation >, i.e., SUSP, was shown in [37] to be (locally) confluent. Thus for
proving that the associated rewriting system enlarged with the Eta rule is locally-confluent, it is enough
to show that all additional critical pairs built by overlapping between the Eta rule and the other rules of
Susp are joinable. Note that no critical pairs are generated from Eta and itself. Moreover, there is a unique
overlapping between the set of rules in Table 5 (minus (8;)) and Eta: namely, the one between Eta and (r7).

This critical pair is ([t2,0l,nl,e], A[(t1 1),0l + 1,nl + 1,@nl :: e]), where t1 =pp, [t2,0,1,nil]. After
applying the rules rg and r3 the right-side term of this critical pair reduces to A([t1,0l + 1,nl + 1, @Qnl :: €] 1).

We prove by analyzing the structure of ¢; that this critical pair is joinable. We take t; and to as >, -nf’s.

e t; = n. For making possible the Eta application, we need that n > 1. According to the length of the
environment @Qnl :: e (i.e., ol + 1) we have the following cases:

— ol +1 < n. On one side, A([n, ol +1,nl +1,@nl :: e] 1) =2+ A([n-01-1,0,nl + 1,nil] 1) —,
A(n-ol4nl 1) — g, n-ol4nl-1. On the other side, t1 =, [t2,0,1,nil], hence ¢t = n-1 and we
have [n-1,0l,nl,e] =% [n-1-01,0,nl,nil] —,, n-ol4+nl-1.

11



— ol +1>n. On one side, A([n,ol + 1,nl + 1,@nl :: €] 1) =71 A([1,0l —n +2,nl+1,e; €] 1)
and the subsequent derivation depends on the structure of e;: when e; = @[ we apply r3 obtaining
A(nl+1-1 1) = g, n1-1 and on the other side, [n-1,0l,nl,e] =772 [1,0l —n +2,nl,Ql :: '] —,,
nl-1; when e; = (t,1), where without loss of generality ¢ is supposed to be in >.,,-nf, we have
AL, 0l =n+2,nl+1,(t,1) 2 €] 1) =, A([t,0,nl =1+ 1,nil] 1) = Eta
>rm-nf([[t,0,nl+1—1,7nil], 1,0, (0,0) =nil]) —m,

Srm-nf([t, 0, nl =1, {nil,nl+1-1,1, (0, 0) ::nil }]) —>m,

Srm-nf ([t, 0,0l — I, {nil,nl — 1,0,nil }]) —m, Prm-nf([t,0,nl — I, nil])

and on the other side, [1,0l —n + 2,nl, (t,1) :: €'] =, [t,0,nl — 1, ndl].

Since bpp-nf([t,0,nl — 1, nil]) and [¢,0,nl — I, nil] are joinable we obtain the confluence.

e t; = (A B). Since the sole rule of the Agysp that truly “applies” applications is the 35, we can sepa-
rately consider Fta-reductions for A and B and then apply the induction hypothesis. That is, suppose
inductively that A([A,ol + 1,nl +1,Qnl :: €] 1) = ge A" and [A', 0l,nl, €], where [A",0,1, nil] =, A
as well as A([B,ol +1,nl +1,@Qnl :: €] 1) =g, B"” and [B’,0l,nl, €], where [B’,0,1,nil] =,,, B are
joinable. Then since A([(A B),ol + 1,nl + 1,@nl::e] 1) —,,

A([A ol + 1,nl + 1,@nl €] [B,ol + 1,nl +1,@Qnl::e]) 1) =g, (A" B") and [(A’ B'),ol,nl,e] —r,
([A',0l,nl,e] [B’',0l,nl,e]) we can conclude the confluence.

e t; = (AA). By the Etarule implementation, it is enough to show the joinability of the Fta-reduction of
the term A([(AA),ol + 1,nl + 1,@nl::e] 1) that is bgyse-nf([[(AA4), ol + 1,nl + 1,@nl::€], 1,0, (¢,0) ::nil])
and the term [ >susp -nf([(AA4), 1,0, (¢,0)::nil]), ol, nl, e].

On the one side, [>suse -nf([(AA), 1,0, (0, 0):nil]), ol, nl, €] >k,

psuse-nf([[(AA), 1,0, (0, 0):nil], o, nl,e]) —r, r;

bsusp-E((A[[4, 2, 1, @0::(0, 0):nil], ol + 1,nl + 1,@nl:e])) >r,,

(A >suse -nf([[4, 2, 1,@0::(0, 0):nil], ol + 1,nl + 1,@nl:e])) —pm,

(A >suse -nf([A, ol + 2,nl + 1, {@Q0::(0,0):nil, 1,0l + 1, @nl:e}}]))

and we have that {@0::(0,0)::nil, 1,0l + 1,@nize} — iy ms

(@0, 1,0l + 1,Qnl:e)::(((0,0), 1,0l + 1,Qnl:e))::{nil, 1,0l + 1, Qnize} —,,

@Qnl:(((0,0),1,0l + 1,Qnl:el)::{nil, 1,0l + 1,Qnl:e} —p,,

@nl:(((0,0),0,0l, e)::f{nil, 1,0l + 1,Qnl:e} =y my

@nl::(((0,0),0,0l,e)::e. Then we obtain the term

(A>suse nf([A, 0l + 2,nl + 1,@nl :: {((¢,0),0,0l,e) :: e])). On the other side,

psuse-NE([[(AA), ol +1,nl +1,@Qnl = €], 1,0, (0,0) = nil]) =, r,

bsusp-DE(A[[A4, 0l + 2,nl + 2,Q@nl 4+ 1::@Qnl::e],2,1,Q0::(0,0) ::nil])) >k,

(A >suse -nf([[A, 0l + 2,nl +2,@nl 4+ 1::@nl::e],2,1,@Q0::(Q,0) ::nil])) —m,

(Abpm -nf[A, ol + 2,0l + 1, {@nl + 1::@nl::e,nl + 2,2,@0:: (0, 0) ::nil]]) and we have that {@nl+1 ::
@Qnl ::e,nl +2,2,Q0 :: (0,0) :: il — g ms

{@nl + 1,nl +2,2,@Q0::(0,0) ::nil)y:: (Qnl,nl + 2,2,Q@0:: (¢, 0) =:nil)) :: {e,nl + 2,2,@0:: (¢,0) =:nil}
—m. @Qnl :: (Qnl,nl +2,2,Q0 == (0,0) :: nil) :: {e,nl +2,2,Q0 :: (¢,0) :: nil} »%,, (By Lemma 3.18,
since we are working with well-formed terms and then) ind(e) < nl)

@Qnl :: (@Qnl,nl +2,2,Q0 :: (0,0) :: nil)) 1 e =y,

@nl :: (@Qnl,nl+1,1,(0,0) = nil)) : e =y @l (O,nl) e

Then we obtain the term (X pgygp -nf([A, ol + 2,nl + 1,Qnl :: (O, nl) :: €])).

The sole difference of the obtained suspended terms is the second environment term of their envi-
ronments, that is {({,0),0,0l,e) and (¢,nl). But since the Eta rule applies, when propagating the
substitution between these suspended terms, the dummy symbol and hence these second environment
terms should disappear. Now we can conclude that these terms are joinable. |

Finally, since the rewriting system associated to SUSP enlarged with the Eta rule is locally-confluent and
noetherian, we can apply the Newman diamond lemma for concluding its confluence.

Theorem 3.20 (Confluence of susp+ FEta) The calculus SUSP jointly with the Eta rule, is confluent.
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4 Comparing the adequacy of the calculi

According to the criterion of adequacy introduced in [26] we prove that the Ao and the Agysp as well as the
Ao and the As, are non comparable. Additionally, we prove that the As. is more adequate in the simulation
of one step S-reduction than the Agygp.

Let a,b € A such that a —g b. A simulation of this S-reduction in X, for £ € {0, s, SUSP} is a A¢-
derivation a =, ¢ =¢ &(c) = b, where r is the rule starting 3 (beta for Ao, o-generation for As., s for Agusp)
applied to the same redex as the redex in @ =3 b. The criterion of adequacy is defined as follow:

Definition 4.1 ([26]) (Adequacy) Let & ,& € {0, sc,SUSP}. The A& -calculus is more adequate (in sim-
ulating one step B-reduction) than the A -calculus, denoted N\ < Ao, if:

o for every (-reduction a =3 b and every A -simulation a — 3¢, b there exists a A& -simulation a —3g b
such that m <mn;

e there exists a B-reduction a =5 b and a X -simulation a =N b such that for every A -simulation
a —3e, b we have m <n.

If neither A& < A& mor A& < A&y, then we say that A& and A& are non comparable.

The counterexamples proving that Ao and As are non comparable presented in [26] apply also to the incom-
parability of Ao and As. since As. is an extension of As for open terms.

Proposition 4.2 The Ao- and the As.-calculi are non comparable.
Lemma 4.3 Every Ao-derivation of ((A2) 1) to its Ao-nf has length greater than or equal to 6.
Proor. In fact, all possible derivations are of one of the following forms.

o (AL[T]) L = Beta (AL[T)[L.id] — a5 AL[T][L.
ALt o(L.((Lid)o 1) = Shiftcons AL[(Lid)o

((1 Zd) )] —*Clos

T] _)Map >‘1[ [T]('Ldo T)] —VarCons Al[ﬂ = >\2;
((

ALl

(A l[T]) 1 = peta (AL[])[L.id] = aps AML[T ][
AL[(Lid)o 1] = map AL[L[M].(ido T)] = 1aL

[ ) L = peta (ALID[L4d] =55 A

Lid)o 1)] otox AL o(L((Lid)o 1)] = sificons
[T T] —VarCons )\1[T] = /\2,
)o

[ 1[1][L.((L-id)o 1)] = cios AL[T o(L.((L-id)o 1))] = pap
(A[1].(ido 1))l = sniftcons ALL[T].(ido T)] = varcons ALT] = A2;

]
To(1

[ D) L = Beta (ALMD[L43d] = aps AL[T[L-((L-id)o 1)] =105 AL[T o(L.((Liid)o 1))] = rrap
(l( [T](ldo )))] _>ShiftCons Al[l[T] ( do T)] —IdL )\1[ [T] T] —*VarCons AL[T] = )\2;

M) L = peta (AL[T][L4d] = aps AL][L.((L-id)o 1)] = map ALT[L-(L[T]-(ido )] = cios
1 l[T](ldO )))] ShiftCons Al[l[T](ZdO T)] —?VarCons AL[T] — )\2

(
o (AM[T]) L —=Beta (AL[TD[L-id] —aps AL[T][L.((L-id)o T)] = amrap AL[T][L.(1[1].(ido 1))] —Ct0s
o(1. ( [T] (ldO )))] ShiftCons Al[ [T] (ldO T)] —IdL Al[_[ﬂ T] —VarCons Al[ﬂ = \2;
1

= Beta (ALT][Lid] = aps ALM[L.((1-id)o 1)] = arap AML[M[L-(L[1]-(ido 1))] = 1az
Al[ﬂ[l(l[ ] )] —Clos >\1[T ( ( [ ] ))] _>ShzftCons >\1[ [T] T] —VarCons Al[ﬂ = >\2 g

In the following lemmas, (M 1™) is a shorthand for n applications of 1, i.e., (... ((M 1)1)...1).
Lemma 4.4 Every Agysp-derivation of (AN(2 2)) 1™ to its Asuse-nf has length 4n + 5.

PrROOF. In fact, note that the sole possible derivation is:

(AA2 2)) 1" =5, [(AM(22)),1,0,(2",0)=nil] =, A[(2 2),2,1,Q0:: (1", 0) :nil] —r,
A([2,2,1,@0:: (1", 0) ::nil] [2, 2,1,@0 (1, 0) ::nil]) —2

AL, 1,1, (17, 0): ml]] [[1, 1, (27, 0) =nal]) =2, A([L",0,1,nil] [17,0,1, nil]) -7

A(([L,0,1,nal])™ ([1,0,1,nil])") =71 A(2" 27). 0
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Lemma 4.5 ( [26]) There ezists a derivation of (AXN(2 2)) 1" to its Ao-nf whose length is n + 9.

PROOF. Consider the following derivation:
(AN(2 2)) 1" = (AL L[1]) 1" = Beta (AL[T] L[1])[L"-id] — abs

(( [ ] D[L.(A"™id)o )]) = prap

1[ DL (L[] Gido )]) =4, AL LD (L. (@)™ (ido T))]) = app

1.((2[t])"-(ido 1))]) (L[T][L.((L[1])™.(ido 1))])) —cios
1.(2[t])™.(ido 1))]) (L[I[L-(A[T])"-(ido 1))])) = Shiftcons
".(ido 1)]) (L[F][L-(L[T])™ (Zdo ™) = varcons
™ @HIL- (@[ (ide 1))])) =7 A@L[D™ (@A[th™) = A2 27). O

Proposition 4.6 The \o- and Asysp-calculi are non comparable.

1.
d

PROOF.  On one side, by Lemmas 4.4 and 4.5, there exists a simulation (A(2 2)) 1" —xs A(2 2) shorter
than the shortest of the simulations (AA(2 2)) 1™ — ... A(2 2). Then Agysp £ Ao
On the other side, consider the following simulation in Agysp:
((AA2) 1) —p, [(A2),1,0,(1,0) = nil] =, A[2,2,1,@Q0 :: (1,0) :: nil] —,,
AL, 1,1, (1,0) i nil] =, A[L,0,1,nil] =, A2.
This simulation together with Lemma 4.3 allows us to conclude that: Ao £ Agysp- O
To prove that As. is more adequate in the simulation of one step [-reduction than Agysp we need to
estimate the lengths of derivations.

Definition 4.7 Let A,B,C € A and k > 0. We define the functions M : A - N and Qr : A x A = N by:

eM(n)=1 n ifn<k

(AM)=M(A)+1 eQr(n,B)=< n+M®B) ifn=k

MA B =M(A)+M(B)+1 k+1 ifn>k

*Qr(A B),C)=Qx(A,C)+Qx(B,C)+1  eQr(AA, B)=Qp11(4, B)+1
Lemma 4.8 Let A € A. Then all s.-derivations of @i A to its s.-nf have length M(A).

PROOF. By simple induction over the structure of A. This is an easy extension of the same lemma
formulated for the As-calculus in [26]. O
Lemma 4.9 Let A € A. Then all susp-derivations of the well-formed term [A,i,i,Qi — 1 :: ... :: Q0 :: nil]

to its SUSP-nf have length greater than or equal to M(A).

Proor. By induction over the structure of terms.

e A =n Ifn>ithen [n,i,i,@ —1:...:Q0:nil] - [[n i O,z,ml]] —)m n. The length of the
derivation is i +1 > M (A). If n < then [n,4,4,Qi — 1::...::@Q0: ml]] -
[1,i —n+1,i,@Qi —n:...::@Q0:nil] —,, n. The length of the derivation is n > M (A).
= (B C). We have that [(B C),,i, @i — 1 :: ... :: Q0 :: nil] =,
(IB,i,i,@Qi —1::...:: @0 ::nil] [C,4,i,@i —1::...:: @O0 :: nil]). By the induction hypothesis we con-
clude that the length of the derivation is greater than or equal to 1+ M (B)+M (C) = M (B C) = M(A).
= (AB). We have that [(AB),4,7,@i — 1 :: ... Q0 :: nil] =, A[B,i+ 1,i +1,@;i :: ... :: @0 :: nil].
By induction hypothesis we conclude that the length of the derivation is greater than or equal to
1+ M(B)=M(AB) = M(A). O

Lemma 4.10 Let B € A and i,j > 0. The derivation of the susp-term [B,i,j,Qj — 1 :: €] to its SUSP-nf
has length greater than or equal to M (B).

PROOF.

e Case B = n, [n,i,j,@j — 1 :: e] rewrites to its suspP-nf in one or more steps depending on n.
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e Case B = (C D), we have [(C D),i,j,Qj — 1::e] =, [C,i,7,Qj —1::e] [D,i,7,@Qj —1:: e]. By the
induction hypothesis we obtain the desired result.

e Case B = (AC), we have [(AC),i,7,Qj —1:e] —,, A[C,i+1,j+1,Q@j ::¢€'], that by induction
hypothesis completes the proof. |

Proposition 4.11 Let A,B € A and k > 0. Then every SUSP-derivation of
[A k k—1,@k —2::...:: @0 :: (B,l) :: nil] to its susp-nf has length greater than or equal to Q(A, B).

PrOOF. By structural induction over A.

e A=n Ifn<kthen nk,k—1,Qk—2:...::Q0::(B,1)::nil] —)?5_1
[LLE—n+1,k—1,@k—n—1:...::@Q0::(B,1) ::nil] — r3 n. This derivation has length n > Q. (n, B).
If n =k then [n, k,k —1,Qk — 2::...::@0:: (B, 1) =nal] =71 [1,1,k — 1,(B,1)=nil] — 4

[B,0,k—1—1,nil]. By Lemma 4.10 the last term rewrites to its Susp-nf in M (B) or more rewrite
steps. The whole derivation has length greater than or equal to n + M (B) = Qk(n, B) = Qr(A, B).
If n > k then [n,k,k—1,@k —2::...:@0::(B,1):nil] —»¥ [n-k,0,k-1,nil] —,, n—1. Derivation
whose length is k + 1 > Qx(n, B) = Qr (4, B).

e A= (C D). [(CD),k,k—1,@k —2::...::@Q0::(B,1) =nil] =,
(IC, k, k-1, @Kk-2::...::@Q0:: (B0) ::nil] [D, k, k-1, Qk-2::...::@Q0:: (B0)::nil]). By the induction hypothe-
sis the derivation has length greater than or equal to 14+Q(C, BHQ (D, B)=Q((C D), B)=Q(A, B).

e A=XC. [(A\O),k,k—1,Qk —2::...:@0:: (B, 1) :nil] =, A[C,k + 1,k,@k — 1::...::@Q0::(B, 1) ::nil].
By the induction hypothesis we can conclude that this derivation has length greater than or equal to
1+Qk+1(C,B) :Qk()\C,B) :Qk(A,B). O

Proposition 4.12 Let A,B € A and k > 1. s.-derivations of Ac*B to its s.-nf have length < Q1(A, B).
PROOF. By structural induction over the pure lambda term A.

e A = n. By applying the o-destruction rule, in the case n # k, we obtain either n — 1 or n and in the
case n = k, pk B. In the case that n # k, the derivation has length equal to 1 < Q. (n, B). In the other
case, we apply Lemma 4.8 obtaining that the complete s.-normalization has length 1+ M (B). In both
cases the derivation has length less than or equal to Q(n, B).

e A= (C D). (C D)o*B - (Co*B Do*B). By applying the induction hypothesis we conclude that
the complete derivation has length less than or equal to 1 + Qx(C, B) + Q«(D, B) = Q+((C D), B).

e A = (AC). (\C)o*B — X(Co**t'B). By the induction hypothesis we conclude that the whole
derivation has length less than or equal to 1 + Qy41(C, B) = Q(A\C, B). O

Theorem 4.13 (As < Asusp) The Ase is more adequate in the simulation of one step B-reduction than the
Asusp -calculus.
PrROOF.  We prove the stronger result that if A € A and A —5, B =¥, SUSP-nf(B) is a Agysp-simulation
of a B-reduction then: A —,_generation C =45 se-nf(C) has length n+1<m+1.
In Asysp, for any redex of 85 we have (AD) E —g, [D, 1,0, (E,0) =nil] =2, susp-nf([D, 1,0, (E,0)::ndl]). In
the Ase, (AD) E —5_generation Do'E =7 s.-nf(Do' E). By Propositions 4.11 and 4.12, m > Q,(D, E) > n.
Hence, the length of a Agygp-simulation of a S-reduction is not shorter than that of some Ase-simulation.
The 2nd part of being more adequate is shown by comparing the length of simulations. E.g., let (A\2) 1 —4
1. In Agysp the only possible three steps simulation is: (A2) 1 —5, [2,1,0,(1,0)::nil] —,,; [1,0,0,nil] —,
1. In As. the only possible two steps simulation is: (A2) 1 —=4_generation 201 —=o_destruction 1. a
As mentioned in the above proof, we prove a stronger result than simple better adequacy of As. as
in [26]. In fact, we prove that the length of all As.-simulations are shorter than the length of any Agysp-
simulation. Examining the proofs of Propositions 4.11 and 4.12 which relate the length of derivations with the
measure operator (0, it appears evident that both calculi work similarly except that after having propagated
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suspended terms between the body of abstractors, Asysp deals with the substitutions in a less efficient way.
To explain that, compare the simulations of S-reduction from the term (A(A"1)) j, where n > 0:

(A(Anl))l _)a—gen (Anl)all _)gf)\ftrans )\n(io.n+11) = tl
(AA"1))j =5, [A\"1,1,0, G0 s:nil] =5 A1, + 1,n, @n-1:. .0 @0 (§,0) snil] =: to.
After that the As, complete the simulation in one or two steps by checking arithmetic inequations:
A4, ifi<n+1
t1 o _dest A1 — 1, ifi>n+1

A" (gt ) —p—dest A"j+mn, ifi=n+1

But in the Asusp We have to destruct the environment list, environment by environment:
=i VXML, mei 4 2,0, @i @0 (§,0) nndl] = A, i <n+1

ty 4 =P AMi—n—1,0,n,nil] =, \"i—1, ifi>n+1
—>fq;1 AL, 1,n, (3,0) mnil] =4y AP[3,0,n,nil] =y, A"j +n,ifi=n+1

These simple considerations lead us to believe that the main difference of the two calculus (at least in
the simulation of S-reduction) is given by the manipulation of indices: although Asusp includes all de Bruijn
indices, it does not profit from the existence of the built-in arithmetic for indices. These observations may be
relevant for the treatment of the open question of preservation of strong normalization of Agysp (conjectured
positively in [34]), since the As. has been proved to answer this question negatively in [18].

5 Relating the Eta rules

[3] established the correspondence between the Eta rules of Ao and As, through the premises ¢[f] =, M
and p3t =5, M, where t € Ayp. This correspondence means that the effect of applying the substitution [1],
in Ao, and the upgrading @3, in As., to a pure A-term are identical. This implies that these Eta rules are
equivalent when applied to a pure A-term. Hence, it remains to show that the results, in the two calculi, of
applying the substitution [1] and the upgrading operator 3 to a A-term t are equal (up to the codification
of the term in the internal language of the calculus). This is the case k = 0 of the third item of the following
lemma.

Lemma 5.1 (Eta correspondence of Ao and As. [3])
1. Letn be a de Bruijn index. Then, for k>0, the sc-nf of pin and the o-nf of
n[L.1[1].1[12]. . .1[t*Y). 2%+ are corresponding de Bruijn indices.

2. Let At an abstraction over Ayp. Then, for k>0,
A [L.2[1]-2[12]. ... .A[t* ). %Y o-rewrites to A(#[1.1[1].1[1%] ... 1[1F]. 15+2)).

3. Lett € Agp and t' its codification in the language of Ao, where all de Bruijn indices n € N occurring
in t are replaced with 1[t"~]. Then, for k > 0,
the o-nf of t'[1.1[1].1[1?]-.. .. 1[1*71. R corresponds to the sc-nf of pit.

Analogously to the previous lemma, in the next proposition we establish the correspondence between the
rules Eta of Agysp and Asg; i.e., the correspondence, in the above mentioned sense, between the terms at their
premises: [t,0,1,nil] and @32t, for t € Agp. This corresponds to the case k = 0 of the following proposition.

Proposition 5.2 (Eta correspondence of A\gusp and As.) Lett € Agg. Then, for all k > 0,
the sUSP-nf of the suspended term [t,k, k +1,@Qk :: @k — 1 :: ... :: Q1 :: ngl] corresponds to the s.-nf of Yit.

PrOOF. This is done by induction on the structure of .
e t = n. By Lemma 3.15 we have that for all £ > 0,

" o e i n+1 ifn>k
[[g,k,k+1,@k..@k—1.......@1..mz]]—>{ n <k

This coincides with the result of applying the rule p-dest to the term ¢7n.
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et =(AB). [AB),k,k+1,Qk::Qk—1::...:QL::nil] —,,
([A, bk, k+1,Qk =z ... :: QL :: nal] [B,k,k+1,Q@k::...::@QL::nil]) =
(PR A ¢EB). Also, pit =o—app (P A $1B).

e t=(AA). [(AA),k,k+1,Qk::Qk—1::...::@1: nil] —,

LA, k1, k42, @k+ 15 @Lunil]) 2 (Ap2,, A). Also, 92 (AA) =ox trans (Ap2,, A). O

This correspondence is not obvious for open terms. In fact, let ¢ be a constant. On one side, in Agygp,
we have that [c,k,k+ 1,@k ::...:: @1 :: nél] —,, c¢. On the other side, pic is irreducible in As.. Both
terms can, in a certain sense, be considered equivalent since the upgrading operator 7 does not modify
the constant ¢ and this correspondence could be assumed in other practical contexts such as those of higher
order unification via explicit substitutions.

The following notational conventions are useful for the rest of the paper:

Notation 5.3 Let £ € {0, s.,SUSP}, and let \§ be the corresponding explicit substitution calculus. The
generation rules of X (i.e. the Beta, o-generation or B rules), will be denoted correspondingly by Aé-gen.
Similarly, Etas denotes the corresponding Eta rule. ¢ denotes the associated substitution calculus, that is
given by the rewriting rules of the calculus A& except the {-gen and the Etag rules. The congruence generated
by the rules of the substitution calculus & is denoted by =¢. By &-nf(M) we denote the E-normal form of the
A§-term M. If M has a A{-gen redex at the root position then we denote by gen,, (M, root) its contractum.

Now, we establish the appropriateness of the three FEta rules of Ao, As. and Agysp. By appropriateness
of a specific Fta rule we understand that every pure A-terms which contains an Eta redex is reduced to the
same pure A-term by the usual n-rule as well as by the specific Eta rule.

Lemma 5.4 (Appropriateness of the Eta rules) Leta € Ayp. Then the following statements are equiv-
alent:

(a) Aa1)—,b

(b) AMa 1)= Etacb, where § stands for o, s. or SUSP.
PROOF.  Suppose (a) is true. Then by structural induction on the term a:
1. Agusp: We will show that [b,0, 1, nil] =susp a-

ea=n (n>1): [n—1,0,1,nil] =2 n.

e a = (cd). bt = (c d) means that b is obtained from (c d) decreasing all its free indices by one.
Now note that the effect of normalizing [b,0,1,nil] is to increase all free indices of b by one as
shown in the proof of the proposition 3.16.

e a = Ac. Suppose b = Ac so b is obtained from Ac decreasing all free indices in ¢ but 1 by one
and conclude considering the same argument of the previous item.

2. Ase: This is a straightforward from previous item and proposition 5.2.
3. Ao: This is a straightforward from previous item and lemma 5.1.
Conversely, we will show that:
1. In Agygp that [b,0,1,nil] =gusp bT:

e [n—1,0,1,nil] =»,,n=(n—1)".

e [(c d),0,1,nil] =, [c,0,1,nil] [d,0,1,nil] £ ¢t d+ = (c d)*.

o [Ac,0,1,nil] =, Ale,1,2,@1 :: nil] £ Act! = (Ac)*.
2. In As. that p3(b) = b™:
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* pi(n—1) =y dgestrn=(n—-1)"
o Q3(cd) <o ap 93(0) (@) £ ¢t dF = (c ).
PRA) —por Agie) £ A(c) = (Ao) .
3. In Ao that O[] = b*.
o 11" 2] —ctos 11 = (@=1) .
o (c ] —app c[1] d[t] £+ d* = (cd)*.
o (A = ans Ale[L 1)) F At = (Ao)*

6 Usual implementations of Eta

In the sequel we use “n” for p-reduction, and “Eta” for the Eta-reduction rules of the explicit substitution
calculi. By an “implementation” of the Eta rule of any of the three treated calculi of explicit substitutions we
understand an effective computational mechanism of evaluation of the premisse of the conditional rewriting
Eta rule, which allows for deciding the occurrence of Eta-redices and their subsequent reduction. In other
words, an implementation is an effective mechanism for deciding the one step Eta-reduction relation.

When implementing the one step reduction of these calculi one has to take into account that the given
Eta rule and its suggested implementation are not clean in the sense that one application of Eta-reduction
can involve applications of other rules of the substitution calculus.

In an explicit substitution calculus A, a clean implementation of the n-reduction does not apply additional
rules of the associated substitution calculus ¢ during a one step application of the implemented n-reduction.

Definition 6.1 (Clean Implementations of np-reduction) An implementation of n-reduction, say

ImEtae, in an explicit substitution calculus A is said to be clean if for any A\{-term M, whenever we obtain
N from M by applying this implementation of the n-reduction, denoted by M —rmpia; N, there is no N'
such that M — gia, N' and N' —>E N. An implementation of n-reduction that is not clean is called unclean.

Lemma 6.2 (The FEta rules are unclean) The implementations of n-reduction directly from the Etag
rewriting rules of the three treated calculi are unclean.

ProOF.  Counterexamples are easy to formulate (e.g. see proof of Lemma 6.4) because the equational
premise of all the three rules is given in terms of the corresponding & congruence =¢: a =, b[1], a =5, ©3(b)
and a =gysp [0, 0, 1, nil], respectively. |

6.1 Rule implementation for \o

We used OCAML, a variation of the ML language, for implementing the rewriting rules of the three treated
calculi. The code of this implementation is available at http://www.mat.unb.br/"ayala/TCgroup/. For
Ao, consider for example the rule Abs. We have to remark that Ao works with two different entities: terms
(TERMS) and substitutions (SUBS), which should be discriminated in any implementation. Ao-terms of the
form 1, AM, (M N) and M|[S] are respectively represented as One, L(M), A(M,N) and Sb(M,S) and Ao-
substitutions of the form id, T, M.S and S oT as Id, Up, Pt(M,S) and Cp(S,T). Applications of the rules
are implemented in two steps: the first one of detection of redices and the second one, after selection of a
possible redex, of true reduction. Detection of redices for this rule is implemented as in Table 7. Note that
the search for redices is divided in the search over terms and substitution entities. Once a redex at position
pr of the term exp is detected (and selected) the application of Absis done by means of the function specified
in Table 8. Analogously, the application is divided in parts for terms and substitutions. All other rules are
similarly implemented.
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Table 7: Detection of redices for Abs of Ao

let rec matchingAbs exp 1 pos =
match exp with Dummy -> 1 | One -> 1 | Vr ¢ -> 1 |

A(el,e2) -> append (matchingAbs el 1 (append pos [1])) (matchingAbs e2 [] (append pos [2])) |

L(el) -> matchingAbs el 1 (append pos [1]) |

Sb(L(el),sb) -> pos::append(matchingAbs el 1 (append pos [1;1]))(matchingAbsSb sb [] (append pos [2])) |
Sb(el,sb) -> append (matchingAbs el 1 (append pos [1])) (matchingAbsSb sb []1 (append pos [2]))

and matchingAbsSb subs 1 pos =
match subs with Up -> 1 | Id -> 1 |
Pt(el,sb) -> append (matchingAbs el 1 (append pos [1])) (matchingAbsSb sb [] (append pos [2])) |
Cp(s1,s2) -> append (matchingAbsSb si1 1 (append pos [1]1)) (matchingAbsSb s2 []1 (append pos [21));;

Table 8: Application of Abs of Ao

let rec absreduction exp pr =
match pr with [] -> (match exp with Sb(L(el),sb) -> L(Sb(el,Pt(One,Cp(sb,Up)))) | _ -> exp) |
1 :: tail -> (match exp with Dummy -> exp | One -> exp | Vr ¢ -> exp |
A(el,e2) -> A((absreduction el tail),e2) | L(el) -> L(absreduction el tail) |
Sb(el,s2) -> Sb((absreduction el tail),s2)) |

2 :: tail -> (match exp with Dummy -> exp | One -> exp | Vr ¢ -> exp |
L(el) -> exp | A(el,e2) -> A(el,(absreduction e2 tail)) |
Sb(el,s2)-> Sb(el, (absreductionSb s2 tail))) | _ -> exp

and absreductionSb subs pr =
match pr with [] -> subs |
1 :: tail -> (match subs with Id -> subs | Up -> subs |
Cp(s1,s2) -> Cp((absreductionSb si tail),s2) |
Pt(el,s2) -> Pt((absreduction el tail),s2)) |
2 :: tail -> (match subs with Id -> subs | Up -> subs |
Cp(sl,s2) -> Cp(sl,(absreductionSb s2 tail)) |
Pt(el,s2)-> Pt(el, (absreductionSb s2 tail))) | _ -> subs;;

6.2 Rule implementation for \s,

The implementation for As, is simpler since we have to consider a sole entity, that is the one of (lambda) terms.
Ase-terms are of the form n, (M N), AM, Mc'N and ¢ M and are represented in OCAML respectively as
DB n, A(M,N), L(M), S(i,M,N) and P(k,i,M). Searching for redices of the o-A-transition and its application
for a selected redex pr are given in Tables 9 and 10, respectively.

Table 9: Detection of redices for o-A-transition of \s,

let rec matchingSLtransition exp 1 pos =
match exp with Dummy ->1 | DB i ->1 | Vr ¢ ->1 |
A(el,e2)->append (matchingSLtransition el 1(append pos [1]))
(matchingSLtransition e2 [] (append pos [2])) |

L(el) -> (matchingSLtransition el 1 (append pos [1])) |

S(i,L(el),e2)->pos::append(matchingSLtransition el 1 (append pos [1;11))
(matchingSLtransition e2 [] (append pos [2])) |

S(i,el,e2) -> append (matchingSLtransition el 1 (append pos [1]))

(matchingSLtransition e2 [] (append pos [2])) |
P(j,k,el) -> (matchingSLtransition el 1 (append pos [11));;

6.3 Rule implementation for \g,p

Expressions in Agysp can be of three different types: (suspended) terms, environments and environment
terms. Terms of the form C, n, (M N), AM and [t,4,7,e] are represented by Vr c, DB n, A(M,N), L(M)
and Sp(t,i,j,e); environments of the form nil, et :: e and {envl,i,j,env2} by Nilen, Con(et,e) and
Ck(envl,i,j,env2);and environment terms of the form @n, (¢,1) and {envt, i, j,env)) by Ar(n), Paar (t,1)
and LG(envt,i,j,env), respectively. The search for redices of the rule (r7) is given in Table 11 and for its
application in a selected position in Table 12. Note that the search for redices and the application of the
rule is divided in the search over suspended terms, environments and environment terms.
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Table 10: Application of o-A-transition of As,

let rec sltransition exp pr =
match pr with [] -> (match exp with S(i,L(el),e2) -> L(S(i+l,el,e2)) | _ -> exp) |
1 :: tail -> (match exp with
A(el,e2) -> A((sltransition el tail),e2)
L(el) -> L(sltransition el tail)

|
|
S(i,el,e2)-> S(i,(sltransition el tail),e2) |
|

P(j,k,el) -> P(j,k,(sltransition el tail)) _—>exp) |
2 :: tail -> (match exp with
A(el,e2) -> A(el,(sltransition e2 tail)) |
S(i,el,e2)-> S(i,el,(sltransition e2 tail)) | _->exp ) | _ -> exp;;

Table 11: Detection of redices for r7 of Agysp

let rec matching_r7 exp 1 pos = match exp with Dummy ->1 | DB i ->1 | Vr ¢ ->1 |
A(el,e2) -> append (matching_r7 el 1 (append pos [1])) (matching_r7 e2 [] (append pos [2])) |
L(el) -> (matching_r7 el 1 (append pos [1])) |

Sp(L(el),_,_,env)->pos: :append(matching r7 el 1 (append pos [1;1]))
(matchingEnv_r7 env [] (append pos [2]))|
Sp(el,_,_,env) -> append (matching_r7 el 1 (append pos [1]))

(matchingEnv_r7 env [] (append pos [2]))
and matchingEnv_r7 env 1 pos = match env with Nilen -> 1 |
Con(envt, envl) -> append (matchingEt_r7 envt 1 (append pos [1]))
(matchingEnv_r7 envl [] (append pos [2])) |
Ck(envl,_,_,env2) -> append (matchingEnv_r7 envl 1 (append pos [1]))
(matchingEnv_r7 env2 [] (append pos [2]))
and matchingEt_r7 envt 1 pos = match envt with Ar i -> 1 |
LG(envtl,_,_,envl) -> append (matchingEt_r7 envtl 1 (append pos [1]))
(matchingEnv_r7 envl [] (append pos [2])) |
Paar(el,i) -> (matching_r7 el 1 (append pos [1]));;

6.4 Implementations by {-normalization of Eta are unclean

Observe that except for the Eta rule, deciding the applicability of all other rewrite rules of the three calculi
(cf. Table 1 for Ao; 2, 3 and 4 for As.; 5 and 6 for Agygp) is straightforward, since these rules are either
non conditional rules or their premises are simple arithmetic conditions easy to decide by means of built-in
arithmetic mechanisms that are embedded in all modern computational systems.

Nevertheless, the applicability of the FEta rules of the three calculi depends on checking a condition over
the congruence of the rewrite system, which can, in the first instance be implemented following a suggestion
by Borovansky in [11] for Ao and used in [2] for As.. Note that the p-reduction A(M 1) —, N gives a
term N resulting from M by decrementing all its free de Bruijn indices by one. And the suggestion is
that this corresponds to the normalization, after the application at the root position of the generation rule
of the considered calculus of the term ((AM) ¢) whenever ¢ does not occur in this normalization. The
implementation of this suggestion is presented for the three calculi in the following definition.

Definition 6.3 (¢{-nf implementation of the n-reduction) For the three treated calculi, the direct im-
plementation of the rewrite rule

A(M l)_)nfE'taEN if N =E&-nflgenye((AM) Q),root)) and & does not occur in N

is called the implementation by &-normalization of the n-reduction, denoted by nfEtac.

This implementation is sound for Ao (cf. [11]) as well as for As, (cf. [2]). However this implementation is
unclean because during -normalization, rules of the substitution calculi not strictly involved in np-reduction
can be applied. For instance, the As.-term A((40'1) 1) —nfEta,, 2, but A((40'1) 1) 4, 2. Of course,
A(40'1) 1) —=o_dest A(3 1) =y, 2 (as well as A(3 1) —pnfEBta,, 2). Observe here that the Eta rule (table 4)
does not correspond to the intended operational semantics of the n rule: A\(M 1) —, N means that A/ and
N are functionally equivalent.
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Table 12: Application of r7 of Asysp

let rec r7_reduction exp pr =
match pr with [] -> (match exp with Sp(L(el),i,j,env) -> L(Sp(el,i+1,j+1,Con(Ar(j),env))) | _ -> exp ) |
1 :: tail -> (match exp with
(el1,e2) -> A((xr7_reduction el tail),e2) |
L(el) -> L(r7_reduction el tail) |
Sp(el,i,j,env) -> Sp((r7_reduction el tail),i,j,env) |
2 :: tail -> (match exp with
A(el,e2) -> A(el,(r7_reduction e2 tail)) |
Sp(el,i,j,env) -> Sp(el,i,j,(r7_reductionEnv env tail)) | _ -> exp)
and r7_reductionEnv env pr = match pr with
1 :: tail -> (match env with
Con(envt,envl) -> Con((r7_reductionEt envt tail),envl) |
Ck(envl,i,j,env2) -> Ck((r7_reductionEnv envl tail),i,j,env2) |
2 :: tail -> (match env with
Con(envt,envl) -> Con(envt,(r7_reductionEnv envl tail)) |
Ck(envl,i,j,env2) -> Ck(envl,i,j,(r7_reductionEnv env2 tail)) | _ -> env)
and r7_reductionEt envt pr = match pr with
1 :: tail -> (match envt with
Paar(el,i) -> Paar((r7_reduction el tail),i) |

-> exp) |

-> env) |

LG(envtl,i,j,envl) -> LG((r7_reductionEt envtl tail),i,j,envl) | _ -> envt) |
2 :: tail -> (match envt with
LG(envtl,i,j,envl) -> LG(envtl,i,j,(r7_reductionEnv envl tail))| _ -> envt);;

Lemma 6.4 (nfEta; implementations of the n-reduction are unclean) The implementations of the
n-reduction by &-normalization for the three treated calculi are unclean.

PROOF.

e For the Ao, consider the reduction A((1[1?][1[1].id])1) —nfEta, 1[1] = 2. But A((1[+*][1[1].id])1) = Bta,
1[?][L.id] = 2.

2. But p3(30'1) =, 40'2 and so

e For the As., consider the reduction A((40'2)1) —nyEta.,
A(40'2)1) = Eta,, 3011 =5, 2.

0,(2,0) = nél] 1) = nsEtag. 2. But

e For the Agysp, consider the reduction A([4, 1,
0,(2,0) :: nél] and so A([4,1,0,(2,0) :: nil] 1) = Bra.

[[[[§7 ]-7 07 (l: 0) = ’r”/l]]: 07 ]-7 ’r”/l]] =susp [[é: ]-7 )
[3,1,0,(1,0) : nil] =%, 2

O

In the sequel, we present a cleaner way to implement the Eta rules avoiding the application of other rules
of the substitution calculi than the ones strictly involved in the n-reduction.

7 Clean implementations of Eta

We will adapt the above implementation idea, but will restrict the {-normalization of the term gen,, ((AM) 0).
The restricted é&-normalization, called £-pseudo-normalization, should propagate the dummy symbol between
the structure of the term M without applying extra rules of the substitution calculus.

Essentially the idea for avoiding the application of extra rules of the substitution calculi during the
verification of the premise via pseudo-normalization is to apply rules only when occurrences of ¢ are detected:

| — rif ¢ occursinl

As for all the other rules previously illustrated, our OCAML implementation divides the application
of an Eta rule in two parts: detection of redices and reduction. For Ao, gen,, ((AM) ¢) = M[0.id]. The
o-pseudo-nf(M[$.id]) has been implemented as the function sig-norm in Table 13, where the occurdummy’s
checks search in linear time the occurrence of Dummy in exp. Note that in sig-norm except for the rules
IdL, IdR and Clos, non trivial reductions are possible only if ¢ occurs. In case these rules had been
conditioned like the others, it should be impossible to normalize very simple terms as for instance, 1[1 oid]
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that are necessary for pseudo-normalizations as ((AL[1?]) 0) —5, 1[1?][0.id] —cios 1[1? 0(0.id)] = Assoc
11 o(1 o(0.id))] —shiftcons L1[T oid] —rar 1[T]. Since our objective is to propagate the dummy symbol
between the structure of the normalized term that non restricted application of these rules may be pointed
out as a deficiency because extra rules may be applied during the o-pseudo-normalization.

Table 13: o-pseudo-normalization

let rec sig-norm exp = match exp with Dummy -> Dummy | One -> One | Vr ¢ -> Vr c |
(*App*) Sb(A(el,e2),sb)->(if occurdummylsb(sb) then A(Sb(el,sig-normsb(sb)),Sb(e2,sig-normsb(sb)))
else exp)|
(*Abs*) Sb(L(el),sb)-> (if occurdummylsb(sb) then L(Sb(el,sig-normsb(Pt(0ne,Cp(sb,Up))))) |
(*Clos*) Sb(Sb(el,s1),s2) -> Sb(el,sig-normsb(Cp(si,s2))) |
(*VarCons*) Sb(One,Pt(el,sb)) -> (if (occurdummyl(el) || occurdummyisb(sb)) then sig-norm(el) else exp) |
(*Id*) Sb(el,Id) -> (if occurdummyl(el) then sig-norm(el) else exp)
and sig-normsb subs = match subs with Up -> Up | Id -> Id
(*SCons*) Pt(Sb(One,s1),Cp(Up,s2)) -> (if ((s1 = s2)&&(occurdummyisb(s1))) then sig-normsb(sl) else subs) |
(*ShiftCons*) Cp(Up,Pt(el,sb)) -> (if (occurdummyl(el) || occurdummylsb(sb)) then sig-normsb(sb)
else subs) |
(*IdL*) Cp(Id,sb) -> sig-normsb(sb) |
(*IdR*) Cp(sb,Id) -> sig-normsb(sb) |
(*Map*) Cp(Pt(el,sl1),s2) -> (if (occurdummyl(el) || occurdummylsb(sl) || occurdummylsb(s2)) then
sig-normsb(Pt(sig-norm(Sb(el,s2)),sig-normsb(Cp(sl,s2)))) else subs) |
(*Assocx) Cp(Cp(s1l,s2),sb3) -> (if (occurdummylsb(sl) || occurdummylsb(s2) || occurdummylsb(sb3)) then
sig-normsb(Cp(sl,sig-normsb(Cp(s2,sb3)))) else subs) | _ -> subs;;

For As., we have geny, ((AM) 0) = Mo'¢. And the s.-pseudo-normalization of a As.-term, exp, is given
by the function se-norm in Table 14. This pseudo-normalization is simpler than the previous one, since we
are dealing with a sole entity and additionally the As. rewrite rules preserve, in a certain way, the structure
of terms: the symbol ¢ remains always as last argument of the term to be normalized. As a consequence of
this regularity, implementation of the pseudo-normalization is done via unconditional rewrite rules (without
premises “if occurrdumy”). Clearly, this represents an advantage over the other two calculi.

Table 14: s.-pseudo-normalization

let rec se-norm exp = match exp with Dummy -> Dummy | DB i -> DB i | Vr c¢->Vr c|S(i,Vr c,Dummy)-> exp |
(*si-dest*) S(i,DB j,Dummy) -> (if j<i then DB j else (if j>i then (DB (j-1)) else P(0,i,Dummy))) |
(*si-app*) S(i,A(el,e2),Dummy) -> A((se-norm (S(i,el,Dummy))),(se-norm (S(i,e2,Dummy)))) |
(*si-lambda*) S(i,L(el),Dummy) -> L(se-norm (S(i+l,el,Dummy))) |
(*si-six) S(i,5(j,el,e2),Dummy)->(if i >= j then S(j,(se-norm(S(i+1,el,Dummy))),
(se-norm(8(i-j+1,e2,Dummy))))

else exp) |
(*si-phi*) S(i,P(k,n,e),Dummy)->(if i>=k+n then P(k,n,(se-norm(S(i-n+1,e,Dummy))))

else (if i>k then P(k,n-1,e) else exp)) | _ -> exp;;

In Agusp this implementation is very similar to the one of Ao. We have that gen, ((AM) Q) =
[M,1,0,(0,0) :: nil]. The function susp-norm in Table 15 implements the SusP-pseudo-normalization of
a Agusp expression exp. Observations done for the sig-norm of Ao apply for the susp-norm of Agygp: except
for three rules, one step reduction is decided via the occurdummy’s check that runs in linear time on the size
of exp. Rules 5 and r3 should be implemented without any Dummy. As for Ao, this implies that other rules
than those essential for the propagation of the ¢ symbol may be applied during this pseudo-normalization.

One may think there is a tradeoff because of the inclusion conditionals, but the verification of occurrences
of the Dummy symbol can be performed simultaneously when solving the matching without additional cost.

Definition 7.1 (¢-pse-nf implementation of the np-reduction) For the calculi Ao, Ase and Agysp the
previously proposed implementation of the n-reduction, that is formulated as the rewrite rule

A(M 1) _)pse—nfE'taEN if N =E-pse-nflgenye((AM) Q),root)) and § does not occur in N

is called the implementation by &-pseudo normalization of the n-reduction, denoted by pse-nfEtac.
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Table 15: susp-pseudo-normalization

let rec susp-norm exp = match exp with Dummy -> Dummy | DB i -> DB i | Vr ¢ -> Vr ¢

(*r1*) Sp(Dummy,i,j,env) -> Dummy

(*r2%) Sp(DB i,0,j,Nilen) -> DB (i+j)

(*r3*) Sp(DB 1,i,j,Con(Ar(k),env)) -> DB (j-k) |

(*xr4*) Sp(DB 1,i,j,Con(Paar(el,k),env)) -> (if (occurdummy3 el) then susp-norm(Sp(el,0,j-k,Nilen))
else exp) |

(*xr5*) Sp(DB i,j,k,Con(envt,env)) -> (if((occurdummy3_Et envt) || (occurdummy3_Env env))
then susp-norm(Sp(DB (i-1),j-1,k,env))else exp) |
(*r6*) Sp(A(el,e2),i,j,env) -> (if ((occurdummy3 el) || (occurdummy3 e2) || (occurdummy3_Env env))
then A(susp-norm(Sp(el,i,j,env)),susp-norm(Sp(e2,i,j,env))) else exp) |
(xr7*) Sp(L(el),i,j,env)->(if ((occurdummy3 el) || (occurdummy3_Env env))
then L(susp-norm(Sp(el,i+l,j+1,Con(Ar(j),env)))) else exp) |_ -> exp;;

From the argumentations before the previous definition, one can conclude that the implementation of 7-
reduction by As.-pseudo-normalization is cleaner and more efficient than the corresponding implementations
of np-reduction for Ao and Agygp.

Lemma 7.2 (pse-nfEtasusp and pse-nfEta, implementations of the n-reduction are unclean)
The implementations of n-reduction by SUSP- and o-pseudo normalization are unclean.

PrROOF.  Observing the pseudo-normalization rules for these two calculi we can see that, for Ao, the rules
named Clos, IdL and IdR must be implemented without conditional as the others, i.e., these rules do not
propagate the ¢ symbol. The justification for this can be found in the third paragraph of Section 7.

An analogous argument is used in the case of Agysp- O

Lemma 7.3 (pse-nfEta,, implementation of the 7n-reduction is clean)
The implementation of n-reduction by s.-pseudo normalization is clean.

PrOOF. By direct inspection of the pseudo-normalization rules of the As.-calculus (Table 15). Note that
all applied rules just propagate the ¢ symbol. a

The following three propositions show the completeness of the implementations of the Eta rules based on
these pseudo-normalizations, denoted by Etae for £ € {0, s., SUSP}, restricted for pure lambda terms.

Lemma 7.4 Let M € Aqp. The o-pseudo-nf of M[1.1[1]..... 1R 72LO[* 1. 1%71] gives a term that pre-
serves all occurrences of terms in M corresponding to variables less than k unchanged, replaces all occurrences
corresponding to the the k" wvariable with O[t*~!] and decrements by one all occurrences corresponding to
variables greater than k.

PROOF. We use the word variable for occurrences of 1[t*~1]. By induction on the structure of M:

e M =n. If n<k then 1[1"][1.1[1]... 1[t*2L.O[* ). Y] —cms

A o (LA AMRRLOMR). AR R

1[to(te(...(to (1 A ARELOMR AR ININ] = Grcons 217

If n = k then 1[t"[L.1[1] ... 1[t* 2.0t ). 41

=t L[ o (LA AFLOIAT] AR S

to(to(... (to(LA[M]. .. 1[*2LOM* 144 )))]= Gincons O™ ]-

If n > k then 1[t"7)[L.1[1] ... L[tF2].0[tF ). th- ]

—aws 1" o(LA[M] .. ATFPLOM] AN] T ‘

1[to(to(... (To(LA[t]... 1 [H*LO[H]. +471))))] %g;}cw [t o tR] = 1477
e M = (A B). Directly by the induction hypothesis.

e M = (MAA). Then
AA)[LA[] . 2RO AT = AA[L (L[] L2210 )0 1)] =g
ALL AL A - 2O 0 1) cim AILAF]AA2]. - 11104, 14, And by

the induction hypothesis we can conclude. O
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Proposition 7.5 (Completeness of pse-nfEta,)
Let M € Ag. If A\(M 1) =, N then AN(M 1) =pse-nfEta, N.

PROOF.  Here we are interpreting the de Bruijn index k in the language of Ao as usual by 1[t*]. The
proof is by induction on the structure of M.

= n. If n # 1 then on the one side, A(n 1) =, n—1. On the other side we have to that
n[0.id] = 1[1"!][0.id] o-pseudo-normalizes to n — 1. In fact, 1[1"1][0.id] —crs L[ 0(0.id)] = Asse
1172 o(1 0(0.id))] = Sisicons L1 72 o(id)] = par 1[1"*] =n — 1.

e M = (A B). For A and B without occurrences of the free de Bruijn index 1, by the condition
for the application of the n-reduction to (4 B), we have that A(A 1) =, A" and A\(B 1) =, B,
where A’ and B’ are obtained from A and B by decrementing all the free variables by one. Also,
(A B)[Q.id] = 4 A[O.id] B[$.id]. By the induction hypothesis the o-pseudo-nf of A[¢.id] and B[{.id]
corresponds respectively to A" and B'.

e M = (MA). A does not own occurrences of terms corresponding to the free de Bruijn index 2. Then
A((AA) 1) =, AA", where A" is obtained from A by decrementing all its free variables except 1 by
one. Thus applying Lemma 7.4 to the term M[{.id], we obtain the desired result. O

Lemma 7.6 Let M € Agg. Then the s.-pseudo-nf of Moy gives a term obtained from M by preserving all
free de Bruijn indices less than i unchanged, replacing the occurrences of the ith free de Bruijn index with
¢yQ and decrementing all the free occurrences of de Bruijn indices greater than i by one.

Proor. Induction on the structure of M.

e M =n. If n <ithen no'Q —, gest n. If n =i then no'Q =4 _gest ©50. If n > i then no’Q® =4 gest
n—1.

e M = (A B). (A B)o'0 =4 _app (Ad™0) (Bo'0). And by induction hypothesis we can conclude.
e M = (AA). (AM)o'O —,_x Mo, And by induction hypothesis we can conclude. O

Proposition 7.7 (Completeness of pse-nfEtas,_)
Let M € Agp. If (M 1) —, N then A\(M 1) —pse-nfEta,. N.

Proor. Induction on the structure of M.

e M =n Ifn>1then n6'Q =5 gest n — 1.

e M = (A B). For A and B without free occurrences of the de Bruijn index 1, we have that A\(4 1) —,
A" and A(B 1) —, B’', where A’ and B’ are obtained from A and B by decrementing all their free
occurrences of de Bruijn indices by one. Also, (4 B)o'Q =, _app (Ac'0) (Bat), and by the induction
hypothesis we have that (40'Q) = pta,, A’ and (Bo'Q) = pra,, B'.

e M = (MAA). For A without free occurrences of the de Bruijn index 2, A(A4) 1) =, AA", where A" is
obtained from A by decrementing all its free de Bruijn indices except 1 by one. Also, (AA)oQ —4
AAc%$. Now by Lemma 7.6 we get the desired result. O

Lemma 7.8 Let A and B be well-formed Asysp-terms and k > 0. Then the rm-normalization of the well-
formed term [A,k,k—1,Qk —2::...:: Q0 :: (B,l) :: nil] gives a term by decrementing by one all free de
Bruijn indices greater than k occurring at A, replacing the k' free variable of A with B (actualized according
to the context of the term) and keeps unchanged all other free occurrences of de Bruijn indices.

PRrROOF. Similar to the proof of Lemma 3.15. O
Proposition 7.9 (Completeness of pse—nfEtasusp)

Let M € Agp. If \(M 1) =, N then A(M 1) = pse-nfEtass V-
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PROOF. By induction on the structure of M.
e M =n. If n > 1 then [n,1,0,(¢,0) :: nil] =, [n—1,0,0,nil] =, n — 1.

e M = (A B). Similar to Lemma 7.8 using that [(A B), 1,0, (0,0)::nil] =, [4,1,0,(0,0)::nil]
[B,1,0,(0,0)::ni] and IH: [A4,1,0,,0) ::nil] = Eta,,, A" and [B,1,0,(0,0)::nil] = gta.., B'-

e M = (AA). For A without free occurrences of the de Bruijn index 2, A((A4) 1) —, AA", where A"
is obtained from A decrementing by one all its free de Bruijn indices except 1.
Now use [(AA4),1,0,(©,0) :nil] =, A[4,2,1,@0::(0,0)::nil] and Lemma 7.8. O

8 Future Work and Conclusion

[15, 3] showed that n-reduction is of great interest for adapting substitution calculi (Ao and As,) for important
practical problems like higher order unification. In this paper, we have enlarged the suspension calculus
of [37, 34] with an adequate Eta rule for n-reduction and showed that this extended suspension calculus,
named Agysp, enjoys confluence and termination of the associated substitution calculus susp (with FEta).

Additionally, we used the notion of adequacy of [26] for comparing these three calculi when simulating
one step f-reduction. We concluded that Ao and A¢ are mutually non comparable for £ € {s¢, SUSP} but that
Ase is more adequate than Agygp in simulating one step beta-reduction. After all, although Ao is a first order
calculus and the other two calculi are second order, comparing them is not unfair since the use of (built-in)
arithmetic is standard in all modern programming environments. Recently Liang and Nadathur pointed out
the importance of having the possibility to combine steps of beta-reduction in practical implementations,
which resumes to the ability of the calculus to compose substitutions [31, 35]. This results in natural
applications for Ao and the suspension calculus in contrast to the As.. Consequently, it will be of great
importance to study possible adaptations of the As. which enable this property. In particular, this would
be interesting if the work carried out for As. on HOU, can be mapped into the At [26] which is a calculus
a la As. but which updates a la Ao. That is, At does partial updating, like Ao and the suspension calculus,
whereas, s, does global updating. We leave this for future work.

Moreover, we established the correspondence of these Fta rules of the three calculi. This correspondence
means that the operational effects of applying these FEta rules over pure A-terms in the three calculi are
identical. For the three calculi in question enlarged with adequate eta rules we showed how to implement
these eta rules. For the As, we build a clean implementation of the eta rule, that is, avoiding the application
of other rules of the substitution calculi than the ones strictly involved in the verification of the n-redices.
And we proved that it is not possible to follow the same approach for the Ao and Agysp. We proved that
these implementations are complete in the sense that any 7-reduction for dealing with pure A-terms in de
Bruijn notation can be simulated by these Fta implementations. For the three treated calculi, the main
advantage of our clean eta implementation approach is that it is closer than previous implementations to
the operational semantics of the usual 7-reduction of the A-calculus. Additionally, we have pointed out that
for Asysp as well as for the Ao-calculus, in these Eta implementations, the application of rules not strictly
involved with the n-reduction is necessary, but that this is not the case for As.. We have also showed that for
the former two calculi, conditional rewriting rules whose premises are decided in linear time in the size of the
terms in normalization are necessary while for As. this is done via non conditional rules whose applicability
is decided by simple matching of their left-hand sides. Our Eta implementation is being incorporated into
an ELAN prototype for simply-typed higher order unification via As,.

An immediate work to be done is to study two open questions: whether the s.-calculus has strong
normalization (SN) [27] , and whether Agysp preserves SN. Interesting points arise in this context since: As.
is more adequate in the simulation of one step S-reduction than Asysp; As. does not preserves SN [18]; and
the substitution calculus of Agysp has SN.
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