
Set Theory and Nominalisation, Part IIJournal of Logic and Computation, 2(6), 687-707, 1992Fairouz KamareddineDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyDen Dolech 2, postbus 5135600 MB Eindhoven, the Netherlandsemail: fairouz@info.win.tue.nltel: +31 40 474319November 30, 1996AbstractIn this paper we shall meet the application of Scott domains to nominalisation andexplain its problem of predication. We claim that it is not possible to �nd a solution to sucha problem within semantic domains without logic. Frege structures are more conclusivethan a solution to domain equations and can be used as models for nominalisation. Hencewe develop a type theory based on Frege structures and use it as a theory of nominalisation.Keywords: Frege structures, Nominalisation, Logic and Type freeness.1 Frege structures, a formal introductionHaving in part I informally introduced Frege structures, I shall here �ll in all the technicaldetails and show that Frege structures exist.Consider F0, F1; : : : ; a family F of collections where F0 is a collection of objects, and(8n > 0)[Fn is a collection of n-ary functions from Fn0 to F0].De�nition 1.1 (An explicitly closed family) A family F as above is explicitly closed i�:For every expression e[x1; : : : ; xn] of the metalanguage built up in the usual way from vari-ables ranging over F0 and constants ranging over [nFn, the n-place function denoted by< e[x1; : : : ; xn]=x1; : : : ; xn > is in Fn. More formally, F is explicitly closed i� 1, 2 and 3below hold:1. Closure under constant functions: For each a in F0, the function fa is in F1, where(8x)[fa(x) = a].2. Closure under composition: For each f in Fm, for each g1; : : : ; gm in Fk, f(g1; : : : ; gm)is in Fk where (f(g1; : : : ; gm))(x1; : : : ; xk) = f(g1(x1; : : : ; xk); : : : ; gm(x1; : : : ; xk)).3. Closure under projection: For each n; i � 1; P ni is in Fn where P ni (a1; : : : ; an) = ai foreach ai in F0 and, 1 � i � n. 1

For example, if f and g are unary functions of F and h is a binary function of F, then< f � g(h(x1; x2))=x1; x2 > is a 2-ary function (i.e. in F2).In what follows, we assume such a closed family and call it F.De�nition 1.2 (F-functional) A function D : Fn1 � : : : � Fnk �! F0 is an F-functionalwith respect to the explicitly closed family F, i�: (8m � 0)(8f1 in Fm+n1) : : : (8fk in Fm+nk)[< D(< f1(�y; �x1)= �x1 >; : : : ; < fk(�y; �xk)= �xk >)=�y > is in Fm]where �y is a list of m-variables and �xi is a list of ni variables, for i = 1; : : : ; k.Note that if f1; ::; fk are 1-place functions and D : F1� : : :�F1 �! F0 then D(f1; : : : ; fk)is in F0. What is the intuitive meaning of F-functionals? We know that an F-functional is afunctional, so that it operates on functions. But once we include functionals in the structure,we need to ensure that any expression which contains functionals should actually be in thestructure. Assume for the sake of argument that D : Fn1�: : :�Fnk �! F0 is an F-functional.Assume also that for some m � 0; fi is in Fm+ni for i = 1; : : : ; k. We know that according tothe explicit closure, if �y is a list of m-variables ranging over F0 and for each i; �xi is a list ofni variables ranging over F0, then < fi(�y; �xi)=�xi > is an element of Fni for each i. Thereforeit makes sense to talk of the expression D(< f1(�y; �x1)=�x1 >; : : : ; < fk(�y; �xk)=�xk >). Thisexpression however is open in �y and if we abstract over �y in this expression are we going toobtain an element of Fm? Nothing so far in the structure ensures that this is the case, and wemust therefore impose the constraint that these functionals should have such a property. Afunctional which has this property is called an F-functional and now if D is an F-functionalthen [< D(< f1(�y; �x1)=�x1 >; : : : ; < fk(�y; �xk)=�xk >)=�y > is in Fm]. Hence we extend thede�nition of explicit closure to the following:De�nition 1.3 (A super explicitly closed family) Taking a family as above, we say that thisfamily is super explicitly closed i� for every expression e[�1; : : : ; �m] of the metalanguage,built up in the usual way from variables ranging over [nFn and constants ranging over [nFnand over F-functionals, the m-place function denoted by < e[�1; : : : ; �m]=xi1; : : : �m > is anF-functional.This notion of explicit closure is going to provide us with the full comprehension principlewe have been promising.Theorem 1.4 Any explicitly closed family which has variables for functions and objects,constants for objects, functions and F-functionals, is a super explicitly closed family. (Theproof is by an easy induction.)Example 1.5 As an example of an explicitly closed family, consider P! as described pre-viously. De�ne F0 to be the set of all subsets of ! (i.e. P!). De�ne, for each n � 0;Fnto be the set of all continuous functions from Fn0 �! F0. Using Part I, it can be easilyseen that the constant functions, the projection functions, etc are continuous. It can alsobe seen that continuity is closed under composition and that any combination e[x1; : : : ; xn]of variables for objects and constants for both functions and objects results in the functiondenoted by < e[x1; : : : ; xn]=x1; : : : ; xn > being an element of Fn. Therefore the family (Fn)njust obtained from P! (call it FE), is an explicitly closed family. Furthermore, FE is su-per explicitly closed as it can be proven not only that < e[x1; : : : ; xn]=x1; : : : ; xn > denotes acontinuous function but also that for any expression e[�1; : : : ; �n] built in the usual way out2

of variables ranging over [nFn and constants ranging over both [nFn and F-functionals,< e[�1; : : : ; �n]=�1; : : : ; �n > denotes a continuous function.So far, we have only explicit closure on our structure. But that is not enough to give alogic on the structure. In what follows, we see how to obtain such a logic.Assume an explicitly closed family F and a list of logical constants which are the followingF-functionals:: : F0 �! F0_;^;!; _= : F0 � F0 �! F08;9 : F1 �! F0De�nition 1.6 (Logical system) A logical system on a super explicitly closed family F, rela-tive to a set of logical constants as above, is < PROP;TRUTH > the set of two collectionsof objects such that TRUTH � PROP. These two collections are closed under an adoptedlogical schemata for each logical constant. The logical schemata corresponds to the externallogic and tells us, for each logical constant from the list, how to build new propositions outof other ones using the logical constant. It also gives the conditions of truth for the resultingproposition.THE LOGICAL SCHEMATA� NEGATION If a is in PROP then :a is in PROP and :a is in TRUTH i� a is notin TRUTH.� CONJUNCTION If a; b are inPROP then (a^b) is inPROP and (a^b) is in TRUTHi� a is in TRUTH and b is in TRUTH.� DISJUNCTION If a; b are in PROP then (a_b) is in PROP and (a_b) is in TRUTHi� a is in TRUTH or b is in TRUTH.� IMPLICATION If a is in PROP and b is in PROP provided that a is in TRUTHthen (a ! b) is in PROP and (a ! b) is in TRUTH i� a is in TRUTH implies b isin TRUTH.� UNIVERSAL QUANTIFICATION If f is a propositional function in F1 then 8f1 is inPROP and 8f is in TRUTH i� f(a) is in TRUTH for all objects a.� EXISTENTIAL QUANTIFICATION If f is a propositional function in F1 then 9f isin PROP and 9f is in TRUTH i� f(a) is in TRUTH for some object a.1Recall that 8; 9 and � are functions from F1 to F0 and hence f does not necessarily contain any freevariables. For example, < x=x > is the identity function and contains no free variables, � < x=x > can bewritten as �x:x. The same holds for 8 < x=x > and 9 < x=x >. This might be confusing, as it might be askedif < x=x > has no free variables, then what does � < x=x > mean? Despite the fact that < x=x > has no freevariables (let us denote < x=x > by I), it is still an element of F1. I.e. it is still a function and we need tomake it an object by nominalizing it. Therefore we turn it into an element of F0 by using �. Now �I is inF0 and app(�I; a) = I(a) = a. In fact, � does not abstract on free variables, it is < = > which does so. �just turns a function into an object preserving the comprehension axiom: app(�f; x) = f(x). When we say�x:x, we don't mean that � abstracts over x in x, rather we mean that we �rst abstract via < = > obtaining< x=x > and then we look for the nominal of < x=x >3

� EQUALITY If a; b are objects then (a _=b) is in PROP and (a _=b) is in TRUTH i�a = b2.� BI-IMPLICATION If a; b are in PROP then (a � b) is in PROP and (a � b) is inTRUTH i� (a is in TRUTH i� b is in TRUTH).From now on, we shall use a is true for a is in TRUTH, a is a proposition for a is in PROPand a is a set for a is in SET. In short, a logical system builds a logic on our structure. Butsomething is still missing: even, though we built the logical system on the top of an explicitlyclosed structure, where functional abstraction < e[x1; : : : ; xn]=x1; : : : ; xn > and applicationf(x) do exist, we still need a way of turning functions into objects (via �) and of applyingsuch objects to other objects (via app) so that app(�f; x) = f(x). We do not want to gainlogic yet lose the bijection between objects and functions. Therefore, our structure must havemore in it. The next de�nition will tell us what.De�nition 1.7 (�-system) A �-system on an explicitly closed family F is a pair of functionals< �;app > such that: � : F1 �! F0 and app : F0 � F0 �! F0 satisfy: app(�xf [x]; a) =f(a), for each f in F1 and a in F0.Example 1.8 If we take the system FE of Example 1.5, and if we de�ne � : F1 �! F0 as�f = f(n;m) : m is in f(en)g where we take (n;m) to be 1=2(n +m)(n +m + 1) +m andde�ne app : F0 � F0 �! F0 as app(a; b) = fm : en � b for some n; (n;m) is in ag;then (�;app) forms a �-system for FE.Proof: app(�f; a) = fm : en � a for some n and (n;m) is in �fg =fm : en � a for some n and m is in f(en)g =fm in f(en) : en � ag = f(a) by continuity.Therefore (�;app) is a �-system for FE. Actually, FE contains � and app and so it is a�-structure, but we leave this to the next de�nition.De�nition 1.9 (�-structure) A �-structure is an explicitly closed family F which has a �-system.Note that the �-structure contains � and app and that it is an explicitly closed family.Example 1.10 Now take the �-system FE given in Example 1.8. FE is also a �-structurehaving (�;app) as �-system, because both � and app are in FE, as FE is explicitly closed.De�nition 1.11 (Frege structures) A Frege structure is a logical system relative to a list oflogical constants on an explicitly closed family F, together with a �-system.Example 1.12 As an example of a Frege structure, take the �-structure FE given in Ex-ample 1.10 and which has a �-system (�;app). Aczel (in [Aczel 1985]) showed that each�-structure can be extended to a Frege structure. Therefore we now have an example of aFrege structure.2Note the two equal signs, _= and =. The �rst is a functional from F0 �F0 to F0 such that a _=b is alwaysa proposition and a _=b is true i� we can prove from the rules of �-calculus with logic that we are formulatingthat a = b. For example, we know from above that app(�f; x) = f(x), hence the proposition app(�f; x) _=f(x)is true. 4

Let us sketch the proof of how our particular �-structure FE can be extended to a Fregestructure. This will make the reader understand the notion of Frege structure, and get himused to working with it. Before proceeding, however, we must de�ne two missing notions:that of an independent family of F-functionals and of a primitive F-functional.De�nition 1.13 We say that a family of F-functionals is independent i� for any two F-functionals in the family, the range of values of those F-functionals are disjoint.This implies that if F and G belong to an independent family of F-functionals, then for any�f and �g such that F (�f) = G(�g), we should de�nitely have F = G. From independence onlywe cannot conclude that �f = �g. For this we need primitivity and this is the next notion wede�ne.De�nition 1.14 We say that an F-functional F : Fn1 � : : : � Fnk �! F0 is primitive i�there exists a projection Pi in Fni+1 for each 1 � i � k such that Pi(F (�f); â) = fi(â) where�f = f1; : : : ; fk is in Fn1 � : : :� Fnk and â is in Fi0.The aim of primitive F-functionals is similar to injectivity; if we have F (�f) = F (�g) then weshould be able to deduce �f = �g. It can be easily checked from the de�nition of F-primitivenessthat this is the case.The proof that we can extend any �-structure into a Frege structure is based on twotheorems. The �rst is one which asserts the existence of an independent family of primitiveF-functionals on the �-structure, which include the logical constants, ^;_ etc. It simplystates that:Theorem 1.15 If for each natural number m we let (vm1 ; : : : ; vmk) be a �nite sequence ofnatural numbers, then there is an independent family of primitive F-functionals:Fm : Fvm1 � : : :� Fvmk �! F0, for m = 0; 1; 2; : : :.The second is the well known �xed point theorem which applies to monotonic operators andhelps us to �nd the logical schema of these logical constants. This theorem simply states thefollowing:Theorem 1.16 If A is a partially ordered collection of objects such that every chain in Ahas a least upper bound then any monotonic operator Y from A to A has a �xed point. Thatis (9a 2 A)[Y (a) = a].Let us apply those two theorems to our FE and obtain out of it a Frege structure. Up to here,we know that the �-structure FE exists and Theorem 1.15 enables us to �nd all the logicalconstants needed. What remains to turn it into a Frege structure is to �nd a logical systemfor the logical constants. This is the task of Theorem 1.16. The idea is to associate witheach logical constant two predicates which will ultimately (after we get to the �xed point)give all the propositions obtained from the logical constant and all the truths respectively.The construction is well known mathematically and is similar to the one followed by Kripkein [Kripke 1963]. Now consider our �-structure FE. We can be sure from Theorem 1.15 thatwe have a list of F-functionals which includes:: : F0 �! F0_;^;!;�; _= : F0 � F0 �! F08;9 : F1 �! F0 5

But we still need to make sure that they satisfy the closure properties we want to imposeon them. I shall here try to make the construction a little easier than that described by Aczel(in [Aczel 1985]). To construct a logical schema for each constant, i.e. to de�ne the wholelogical system, we follow Aczel's intended construction but will carry an example with us atall times. The logical system is de�ned inductively. As the basis of the induction, we startwith a pair �0 = (�0p; �0t) such that �0t � �0p. Intuitively, �0p is the set of propositions atstage 0 and �0t is the set of truths at stage 0.Example 1.17 Let �0 = (�0p; �0t) = (f0; 1g; f1g). Note that both f0; 1g and f1g are in P!.Before proceeding to the induction step, we must de�ne a couple of auxiliary predicateswhich ensure that the logical constants map their arguments into appropriate values. That is,for each logical constant F , there is one predicate �F which tests whether a particular tupleof arguments has the correct status of propositionhood, and a second predicate 	F whichstates the conditions under which the tuple will be mapped into TRUTH by F . To see whywe need this, recall the logical schema for negation that we presented under NEGATIONabove:� (1) If a is inPROP then :a is inPROP, and :a is inTRUTH i� a is not inTRUTH.This is an instance of a general logical schema for those functionals F in a Frege structurewhich correspond to truth-functional connectives:� (2) If �f is in Fn1 � : : : � Fnk and C 0(F; �f), then F (�f) is in PROP; and F (�f) is inTRUTH i� C(F; �f), where C expresses F 's truth conditions and C 0 expresses F 'spropositionhood.Now it is �F which tests that the arguments �f are in PROP, while 	F does the work of Cin (2).Example 1.18 �: and 	: take arguments in ([�i)� F0 and�:(�0; x) is: x is in �0p	:(�0; x) is: x is in not �0tThus, �:(�0; x) is true of the set �0p = f0; 1g, and 	:(�0; x) is true of all elements inF0 n �0t, i.e. everything except the element 1.In order to carry out the induction step of the construction, we introduce a principle whichdetermines how the propositions and truths at stage i+1 are built from the propositions andtruths at stage i. The principle has two parts as follows:Principle 1.19 �i+1p is the collection of those F (�f) where F is a logical constant and�F (�i; �f).Principle 1.20 �i+1t is the collection of those F (�f) where F is a logical constant and both	F (�i; �f) and �F (�i; �f).In other words, given the pair (�ip; �it), we construct (�i+1p; �i+1t) in the following way:�rst, �i+1p has to contain all and only those elements F (�f) such that �f belongs to thepropositions at stage i, i.e. it is in �ip according to �F (�i; �f); and second, �i+1t must containall and only those elements F (�f) such that �f belongs to both the propositions and the truthsat stage i, i.e. it is in �ip and �it according to �F (�i; �f) and 	F (�i; �f). Notice that theprinciple guarantees that �(i+1)t � �(i+1)p. 6

Example 1.21 We wish to build �1 = (�1p; �1t) from (�0p; �0t) = (f0; 1g; f1g). By Prin-ciple 1.19, �1p is the set of objects :x such that �:(�0; x), i.e. it is the set f:0;:1g. ByPrinciple 1.20, �1t is the set of objects :x such that �:(�0; x) and 	:(�0; x), i.e. such that xbelongs to �0p but does not belong to �0t. The only thing which satis�es both these conditionsis 0, so �1t = f:0g.Example 1.22 �^ and 	^ take arguments in ([�i)� (F0 � F0) and�^(�0; (x; y)) is: x and y are in �0p	^(�0; (x; y)) is: x and y are in �0tThus, we can supplement the �1p of the previous example with the set of objects ^(x; y) suchthat (x; y) � �0p��0p, i.e. the set f0^ 0; 0^ 1; 1^ 0; : : :g. Similarly, we add to �1t the set ofobjects ^(x; y) such that (x; y) � �0p � �0t, i.e. the set f1 ^ 1g. Note that according to ourexample, the collection of objects in TRUTH at stage 1 is f1 ^ 1;:0g.Note also that :0; 1^1; 1_0 are distinct objects, even though they are all in TRUTH andall have the same truth value in Frege's terms. If we wish, we could reconstruct Frege's notionof the True and the False by forming the relevant equivalence classes, but Frege structuresgive us an intensional ontology. This is justi�ed on the grounds that objects with the sametruth value, e.g. :0 and 1 ^ 1 are equivalent in truth value but distinct.We see that the pair is being enlarged at each step starting from the �rst step wherewe take �0p = f0; 1g and �0t = f1g, with the property that for each i we have: �it � �ip.Note that we are not imposing the condition that �it � �(i+1)t or �ip � �(i+1)p; in fact ourconstruction is monotonic in another sense which we shall see below. The aim is now to keepgoing up to a certain level � where �� = (��p; ��t) is a logical system, because it is obviousthat �i at the levels we met so far are not logical systems. Take for example �0 in our exampleabove based on FE. Then �0 is not a logical system, as can be seen by taking the logicalschema for ::If a is a proposition then :a is a proposition such that :a is true i� :a is not true.�0 is not a logical system because 1 is in �0p (supposed to represent propositions) but :1is not in �0p. Nor is �1 a logical system because :1 is in �1p but ::1 is not in �1p and soon. To solve this problem, let us consider the �xed point (if it exists) of this construction. Itmay be that the �xed point is a logical system and if so, we have succeeded. Before we provethat the �xed point is a logical system, let us remind ourselves again of the construction. Theconstruction is built through an operator Y which takes us from level i to level i+1 in such away that Y (�i) = �i+1, where �i = (�ip; �it), �i+1 = (�i+1p; �i+1t), �it � �ip, �i+1t � �i+1p.Moreover �i+1p and �i+1t are obtained as follows:For any F-functional F , �i+1p is the collection of those F (�f) where F is a logical constantand �F (�i; �f) and �i+1t is the collection of those objects F (�f) where F is a logical constantand both �F (�i; �f) and 	F (�i; �f). Now we prove that any � such that � = Y (�) is a logicalsystem. To show that, we have to prove that for each logical constant F , the logical schemataof F holds in �. Let F be a logical constant whose logical schema is as follows:If �f is in Fn1 � : : :�Fnk and �F (�; �f), then F (�f) is in �p; and F (�f) is in �t i� 	F (�; �f).Let us prove that this schema holds in � where � is a �xed point, � = (�p; �t) andY (�) = (�p; �t). Let �f be in Fn1 � : : : � Fn where �F (�; �f). As �F (�; �f) then F (�f) is in�0p by de�nition, but �0p = �p (because � = Y (�)), therefore F (�f) is in �p. Now let us provethat F (�f) is in �t i� 	F (�; �f). 7

� (=)) If F (�f) is in �0t then F (�f) is in �0t. As F (�f) is in �0t then there exists an F-functional G and a sequence �g in Fn1 � : : :�Fnk such that F (�g) = G(�g) and �G(�; �g)and 	G(�; �g) by de�nition. But the logical constants are independent. Therefore F = Gand as the family is primitive, �f = �g. Therefore we have from 	G(�; �g) that 	F (�; �g).� (= Suppose 	F (�; �f), since also �F (�; �f) then F (�f) is in �0t; but �0t = �t, thereforeF (�f) is in �t. 2This implies that the logical schema of F holds in �. Now we know that if there exists a �xedpoint � then this � is a logical system. Let us �nd a �xed point.We de�ne an ordering � on (�i)i as follows: �i � �i+1 if� �ip � �i+1p, and� if x is in �ip, then x is in �it i� x is in �i+1t.With this ordering we can show that Y is monotonic. Note that the levels can be anyordinal even a trans�nite one, for if we are at a �nite ordinal i we de�ne Y (�i) := �i+1 asabove. If we are at a limit ordinal j, we de�ne Y (�j) = [�i for i < j. Applying the �xedpoint theorem we get a �xed point of Y . The reason for this is of course the monotonicityof the operator Y , as we know that the ordering relation � is a partial ordering on all thosepairs.2 Scott Domains and nominalisationThe ordering relation on Scott domains makes predication trivial. For, a predicate P is trueof all the objects in the model i� it is true of the bottom element. Both semanticians andcomputer scientists however, share an interest in quanti�cation and hence this problem ofpredication that faced Turner (in [Turner' 1984]) is a major issue for those interested in thesemantics of either computer or natural languages and who base their work on Scott domains.The problem can be described as follows: Assume a language which has both objects andfunctions and assume that w�s are built out of other ones using ^;_;8;9; : : :. If the model isa Scott domain E1 then there is no problem interpreting anything which is not a quanti�edsentence, as the interpretations of all such things are continuous functions and hence belongto the model. Let us choose the following interpretation for the quanti�ers 8 and 9[[8x�]]gwt = 8><>: 1 if for each d in D; [[�]]g[d=x]wt = 10 if for some d in D; [[�]]g[d=x]wt = 0? otherwise[[9x�]]gwt = 8><>: 1 if for some d in D; [[�]]g[d=x]wt = 10 if for each d in D; [[�]]g[d=x]wt = 0? otherwiseThen the following is a proof of the continuity of the quanti�er clause for 8 . Assumeby induction that we have [[�]] is continuous where � does not involve quanti�ers. To provethe continuity of [[8x�]] (i.e. to prove it in [ASG �! [S �! EXT]] where ASG is thecollection of assignment functions, S is the collection of states consisting of worlds and times8

and EXT is the extensional domain of values), we prove it continuous separately in each ofits arguments, according to a theorem related to semantic domains.Let us prove the continuity of [[8x�]] for g in ASG. Take an !-sequence (gn)n and provethat: [[8x�]][gnwt = [[[8x�]]gnwt.� Assume [[8x�]][gnwt = 0() by de�nition,(9d 2 D)([[�]][gn[d=x]wt = 0)() by induction,(9d 2 D)([[[�]]gn[d=x]wt = 0)() by the structure of BOOL,(9d 2 D)(9n 2 w)([[�]]gn [d=x]wt = 0)() by logical laws,(9n 2 w)(9d 2 D)([[�]]gn [d=x]wt = 0)() by de�nition,(9n 2 w)(8x[[�]]gn [d=x]wt = 0)() by the structure of Bool,[[[8x�]]gnwt = 0� Assume [[8x�]][gnwt = 1() by de�nition,(8d 2 D)([[�]][gn[d=x]wt = 1)() by induction,(8d 2 D)([[[�]]gn[d=x]wt = 1)() by the structure of BOOL,(8d 2 D)(9n 2 w)([[�]]gn [d=x]wt = 1)() u � d and monotonicity,(9n 2 w)([[�]]gn [d=x]wt = 1)() monotonicity,(9n 2 w)(8d 2 D)([[�]]gn [d=x]wt = 1)() by de�nition,(9n 2 w)(8x[[�]]gn [d=x]wt = 1)() by the structure of Bool,[[[8x�]]gnwt = 1Therefore [[8x�]] is continuous.Note that this interpretation of quanti�ers is abandoned later by Turner (in [Turner' 1984])and he decided to adopt the following clauses instead:[[8x�]]gwt = 8><>: 1 if for each d in E1 n [En; [[�]]g[d=x]wt = 10 if for some d in E1 n [En; [[�]]g[d=x]wt = 0? otherwise[[9x�]]gwt = 8><>: 1 if for some d in E1 n [En; [[�]]g[d=x]wt = 10 if for each d in E1 nEn; [[�]]g[d=x]wt = 0? otherwiseOf course working with Scott domains, you have always to check for continuity and thisis the case with the new clauses. It can easily be proved that continuity does in fact hold andso we can still think of Scott domains as models.We now describe the problem which made Turner move from the �rst de�nition of quan-ti�ers to the second one. By adopting the �rst de�nition, we had: [[8x�]]gwt = 1 i�(8d 2 D)([[�]]g[d=x]wt = 1).As [[�]] is continuous, therefore monotonic and as u � d (where, as noted above, u is theunde�ned) for each d in D then we get: (8d 2 D)([[�]]g[d=x]wt = 1) i� [[�]]g[u=x]wt = 1.This clause has serious consequences. I shall illustrate this by taking in the formal languagean element u0 which names u (I.e. [[u0]]gwt = u always). Now see what happens if we take �to be: x = u0. Applying the above clause we get:9

[[x = u0]]g[u=x]wt = 1 i� (8d 2 D)([[x = u0]]g[d=x]wt = 1) which implies:u = u i� (8d 2 D)(d = u).That is absurd. We have to do something about this and the �rst solution that one thinksof is to exclude the unde�ned element from the quanti�er clause. Therefore, instead of lettingd range over all of D, we let it range over D� (i.e. D n fug). But now Scott domains canno longer be models under this interpretation, for we no longer have [[8x�]] is continuous. Ifwe go back to the proof of continuity given above, we see that we had to use the unde�nedelement in order to prove continuity. Turner, realising this, exploits an important aspect of thestructure of Scott domains. We explained earlier the existence of �nite and in�nite elementsin E1 and said that for each element d of E1, d is the limit of (en)n where en belongs toEn and each En is the domain of �nite elements. The in�nite (or ideal elements) are thosewhich are in E1 n [En. By restricting the quanti�cation over these ideal elements only, wecan prove again the closure of Scott models. However, by so restricting quanti�cation, onlyin�nite elements can be quanti�ed over and �nite elements are ignored.3 Frege structures and nominalisationFrege structures are not only a collection of collections of functions (as in the case of E1),but they also have a certain logic which works on them, and whose availability solves also theproblem of Section 1.1 of part I. Therefore, Frege structures solve both problems of section1 of part I. In a Frege structure, quanti�ers and other connectives are built inductively stepby step so that at the �xed point one gets all these logical constants. This availability oflogic, makes Frege structures attractive candidates for the semantics of nominalisation. Theirother advantage is the type theory that can be built inside them which accommodates selfapplication. In fact, we mentioned in 2.2.1 of part I that the theory of types was not adequateto the semantics of nominalisation. The typing constraints according to Church's type theoryare too restrictive for nominalisation and we need to have functions which can apply tothemselves or to items of the same type. Abandoning Church's type theory does not implygetting rid of all the typed theories. We can still keep to typed languages but make the typingadequate to deal with nominalisation. This section will develop a type theory based on Fregestructures such that for any two types �; � the type < �; � > is subsumed by the type �. Sometypes will be circular or vacuous and they will be responsible for avoiding the paradoxes whichthreaten theories that combine type freeness and logic. Basically, our method is to allow typefreeness yet to restrict the abstraction of various formulae which belong to various types.Types can be basic or functional space types. Amongst the functional space types we havethose types which are circular or vacuous. Abstraction is restricted to those formulae whichwhen abstracted over will belong to a non circular, non vacuous type.3.1 Polymorphic typesThe set of types is the smallest set T such that1. p; t; e are in T are all distinct.2. If �; � are in T then < �; � > is in T .The types de�ned in 1 are basic types, p is the type of propositions, t is the type of thosetrue propositions (which are many according to the intensional framework) and e is the type10

of objects. Of course not every object should be a proposition and not every propositionshould be a truth. 2 gives the complex types. We impose a subsumption relation � on thetypes as follows:1. � � e2. t � p3. < �; � >� �We also require that � be a partial ordering and therefore impose the following addi-tional conditions:4. � � �5. if � � � and � � �, then � = �6. if � � � and � � � then � � �7. if � � �, then < �; � >�< �; � >8. if � � p, then < �; � >�<< �; � >; � >1- 6 are obvious. As an example of 7, take the propositional functions which are of type< e; p >; these functions are also of type < e; e >. 8 is there to capture those circular types.In fact we have the following lemma:Lemma 3.1 If � � p, then < �; � >=<< �; � >; � >=<<< �; � >; � >; � >= : : :< : : : << �; � >; � >; : : : ; � >Proof: obvious from 3, 5 and 8. 2When � � � , we say that � subsumes, or is a more general type than, �; intuitively, itmeans that any expression which is of type � is also of type � . Note that e is the maximalelement of the partial order, since it subsumes every type. We shall see that the subsumptionrelation plays a central role in polymorphism, and that there are models of such a typingsystem; that is, we will have functional domains X) Y such that (X) Y) � X.Our next task is to extend the de�nition of type so as to characterize the vacuous types,that is, the types which may be associated with empty domains. It is useful to �rst introducethe auxiliary notion of a p(ropositional)-chain type. This is de�ned inductively as follows:De�nition 3.2 (P-Chain Type)1. If � � p and � = e or � = p or � = t then < �; � > is a p-chain type.2. If � is a p-chain type, and � � p then < �; � > is a p-chain type.Example 3.3 < e; p >;< p; p >;< t; p >;<< e; p >; p > (which is equal to < e; p >),<< p; p >; p > (which is equal to < p; p >); << e; t >;< t; e >> : : : are p-chain types.Moreover, whenever � is a p-chain type, then so are < �; t >;< �; p >;< �;< t; � >> and< �;< p; � >> (for any type �).Note however that the following are not p-chain types: e;< e; e >;< e;< e; e >>; : : :Vacuous types below will be associated with empty domains.11

De�nition 3.4 (Vacuous Types) � is a vacuous type i�:1. � =< �; � > where � and � are p-chain types, and neither � � p nor � � p or2. � =< �; � > where � is a vacuous type, or3. � � � , where � is vacuous.From 2 and 3 we can conclude that a function space < �; � > is vacuous if its domain � isvacuous, using < �; � >� �.Example 3.5 The following instances of � =< �; � > are vacuous:� � =<< e; p >;< e; p >>, by clause 1, since � = � =< e; p > and not < e; p >� p.� � =<<< e; t >;< t; e >>;<< e; t >;< t; e >>>There are p-chain types which are not vacuous; for example < e; p >. There are types thatare vacuous but not p-chains. For example << e; p >;< e; p >>. There are types which areneither vacuous nor p-chains. For example, e;< e; e >; : : :.3.2 The Syntax of TpolThe basic expressions of Tpol are as follows:1. For each type �, there exists an in�nite number of constants. Constants of type � arereferred to as c�2. For each type �, there exists an in�nite number of variables. Variables of type � arereferred to as u�.Expressions of type �, are de�ned recursively as follows:1. u� : �.2. c� : �.3. If � : �; u : � and < �; � > is a type which is not vacuous nor circular, then�u:� :< �; � >.4. If � :< �; � > and � : �0, where �0 � �, then app(�; �) : � .5. If � : �; � : �0 and � � �0, then � =�0 � : p.Suppose � : p and : p then6. :� : p and :� : t i� not (� : t).7. [� _] : p and [� _] : t i� � : t or : t.8. [� ^] : p and [� ^] : t i� � : t and : t.9. [� �] : p and [� �] : t i� : t whenever � : t.12

10. [� �] : p and [� �] : t i� : t i� � : t.11. If � : p and u is a variable of any type � then 8u� : p , and 8u� : t i� �[a=u] : t forevery constant a : �.12. If � : p and u is a variable of any type � then 9u� : p , and 9u� : t i� �[a=u] : t for someconstant a : �.13. If �0 � �, then � : �0 implies � : �.Notice that we have placed a syntactic restriction of �-abstraction to ensure that abstractsnever have vacuous or circular types.3.2.1 AxiomsIn our system, self-application is only possible for those expressions which have a complextype; indeed, this is what is required by clause 4 of the syntax above.� (�) (�x:�) :< �; � >= (�y:�[y=x]) :< �; � >, where y is not free in �.� (�) app((�x:�) :< �; � >; � : �0) = �[�=x] : � , if �0 � �� (
) If �1 :< �; � >= �2 :< �; � > and �1 : � = �2 : �,then app(�1; �1) : � = app(�2; �2) : �� (�) If (�1 = �2) : � and (�1 = �3) : �, then (�2 = �3) : �� (") If app(�1; x) : � = app(�2; x) : � , then �1 :< �; � >= �2 :< �; � > wherex : � is not free in �1; �2 or any other assumption.� (�) app(�x:�1; �2) = app(�x0:�1; �2) where x : �; x0 : �0; �0 � �, and �2 is anyterm of type �0.� (�) (� : � =�0 � : �0) � (� : � =� a : �0) if �0 � �.� (�) (� : � = � : �) : tThe following version of �-conversion is derivable:If E :< �; �0 > then �x:Ex :< �; �0 >= E :< �; �0 > for x : � free in E and � �< �; �0 >Proof�x:Ex :< �;< �; �0 >>� � �< �; �0 > E :< �; �0 > y : � from (�)(�x:Ex)y : �0 = Ex[y=x] : �0 = Ey : �0 from (")�x:Ex :< �; �0 >= E :< �; �0 > 2Axioms (�); (�); (
) and (�) are standard typed �-calculus axioms. Axiom (") is theextensionality axiom. It says that if �1 and �2 give the same results for the same arguments,then they are equal. Axiom (�) says that if f : A �! B and if f=A0 is the restriction of f toA0 � A, then f and f=A0 give the same results for all elements in A0. Axiom (�) says that if� : �0 and if �0 � � then saying that � equals to itself in � is the same as saying that � isequal to itself in �0. Axiom (�) is the re
exivity of =.
13

3.2.2 Russell's and Curry's ParadoxesRussell's paradox does not occur here because paradoxical expressions of the form �x::app(x; x)are not well-formed. In fact, we have the following lemma:Lemma 3.6 If x is of type < �; p >, then �x::app(x; x) of type << �; p >; p > is notwell-formed.Proof According to the de�nition of meaningful expressions, it is enough to show that<< �; p >; p > is a circular type. This is obvious from Lemma 3.1. 2In fact, we have an even stronger lemma:Lemma 3.7 If x is of type < �; � >, where � � p, then �x::app(x; x) of type << �; � >; p >is not well-formed.Proof Exactly as that of Lemma 3.6. 2With these lemmas, if x :< �; � >, where � � p, then app(x; x) is of type � � p. Hence:app(x; x) is of type p. But �x::app(x; x) is not well-formed in Tpol, due to clause 3 in thede�nition of the expressions of a type, since its type, namely << e; p >; p >, is circular.Curry's paradox comes from the presence of (DT), (MP) and � where (DT) and (MP)are as follows:(DT) � [f�g ` implies � ` �! ,(MP) � ` �! and � ` � implies � ` ,If we take a to be the formula �x:(app(x; x)! ?), then1. app(a; a) = app(a; a)! ? by �-conversion2. app(a; a) ` app(a; a), trivial3. app(a; a) ` app(a; a)! ? by 14. app(a; a) ` ? by (MP) applied to 2 and 35. app(a; a)! ? by (DT)6. ` app(a; a) by 17. ` ? by (MP) applied to 5 and 6However, our (DT) and (MP) have the following form:(DT) � [f� : tg ` : t implies � [f� : pg ` (�!) : t(MP) � ` (�!) : t and � ` � : t implies � ` : t,If we take a to be the formula �x:(app(x; x)! ?), then1. app(a; a) = app(a; a)! ? by �-conversion2. app(a; a) : t ` app(a; a) : t, trivial3. app(a; a) : t ` (app(a; a)! ?) : t by 14. app(a; a) : t ` ? : t by (MP) applied to 2 and 35. app(a; a) : p ` (app(a; a)! ?) : t by (DT)14

6. app(a; a) : p ` app(a; a) : t by 17. app(a; a) : p ` ? : t by (MP) applied to 5 and 6However, we cannot show that app(a; a) : p. In fact �x:(app(x; x)! ?) is not well formeddue to Lemma 3.6 above as its type is << �0; p >; p >. This is because if x is of some type �,since app(x; x) has to be of type p, we can infer that � must be of the form < �0; p >. Fromthis it follows that a is of type << �0; p >; p >, which is circular.3.2.3 Models of TpolFor the present paper we shall concentrate on F0, PROP and SET (where PROP\SET =;) and then we shall construct domains inside F0 which represent the types described in ourtheory Tpol.Given domains X;Y already in the Frege structure, we build new domains as follows:(DOM) X) Y = fx 2 X : 8x0 2 X[app(x; x0) 2 Y]g.As a special case of (DOM), the domain (F0) PROP) = SET inside F0 contains thenominals of propositional functions. Now let us see if the structure of types can be capturedby the domains.Lemma 3.8 If X;Y are domains, then (X) Y) � X.Proof Obvious. 2Lemma 3.9 If X and Y are domains built as above, thenY � Y 0 implies (X) Y) � (X) Y 0).Proof If x 2 X) Y , then 8x0 2 X; app(x; x0) 2 Y , by (DOM). Since Y � Y 0, it followsthat 8x0 2 X; app(x; x0) 2 Y 0 and so x 2 X) Y 0. 2Lemma 3.10 If X and Y are domains built as above, thenX � X 0 implies (X \ (X 0) Y)) � (X) Y).Proof If x 2 X \ (X 0) Y) then x 2 X, and x 2 (X 0) Y); by (DOM), 8x0 2X 0; app(x; x0) 2 Y . Hence, we have both that x 2 X and, since X � X', 8x0 2 X; app(x; x0) 2Y . Therefore x 2 X) Y . 2We now inductively de�ne a relation � between arbitrary domains X and the domain SET.This relation is related to the notion of a p-chain type which we de�ned earlier. The relationX � SET holds i�1. X = SET, or2. X = (X 0) Y 0) where X 0 � SET and Y 0 � PROP.We say that a domain X is inductively predicable i� X � SET.Lemma 3.11 If X � SET then X � SET.Proof The proof is by an easy induction. If X = SET then the property holds. Assume byinduction that the property holds up to X 0, and show that the property holds for X = (X 0) Y)where X 0 � SET. By Lemma 3.9, (X 0) Y) � X 0, and since X 0 � SET by inductivehypothesis, we have by transitivity that X � SET. 215

The following lemma informs us that if X;Y are inductively predicable then X) Y isempty. When we give the denotation of our various types, we will �nd that the domainsassociated with vacuous types are always empty.Lemma 3.12 SET) X is empty whenever X � SET .Proof The proof is by induction on X:1. If X = SET then SET) SET is empty, for the following reason. Suppose x is inSET) SET. Then for every x0 2 SET, app(x; x0) 2 SET. But app(x; x0) is alsoin PROP, by the de�nition of x being a SET. Hence, PROP \ SET is not empty.Contradiction.2. Assume SET) X is empty for X � SET, and show that the domain Y = SET)(X) Y) is empty. Suppose Y is not empty, then if x is in SET) (X) Y), thenfor any x0 in SET, app(x; x0) is in X) Y . Hence app(x; x0) 2 X for any x0 2 SET.Hence x is in SET) X which is empty. Contradiction. 2Theorem 3.13 X) Y is empty for X;Y � SET.Proof The proof is by induction on X � SET. If X = SET then the theorem holdsaccording to Lemma 3.12. Assume the property holds for X 0 � SET, that is, the domainX 0) Y is empty for any Y � SET; we must show that (X 0) Y 0)) Y is empty forY 0 � PROP. If Z is not empty, i.e. there is some a in (X 0) Y 0)) Y , then a is also inX 0) Y 0 and for all x in X 0) Y 0, app(a; x) is in Y 0 � PROP. But for all x in X 0) Y 0,app(a; x) is in Y 0 � SET. Hence app(a; x) is in PROP \ SET which is empty, absurd. 2Example 3.14 The following domains are empty:� SET) SET� SET) (SET) PROP)� (SET) PROP)) SET and� every domain built recursively out of the above three using).3.2.4 Semantics of TypesA model M for Tpol is a quadriple < F;); C;D >, where1. F is a Frege structure in which PROP \ SET = ;,2.) is as de�ned above by (DOM),3. The function D which maps types into domains of M is de�ned as follows:� De = F0,� Dp = PROP,� Dt = TRUTH,� D<�;�> = D�) D� , where < �; � > is non-vacuous.4. C is an interpretation function which takes any constant of type � to an object in D�.16

We also assume the existence of an assigment function g which takes any variable of a non-vacuous type � to an object in D�.Lemma 3.15 D<�;�> = (D�) D�) � D� where < �; � > is non vacuous.Proof Obvious by Lemma 3.8. 2Lemma 3.16 If D� � D� then (D�) D�) � (D�) D�).Proof If a is in (D�) D�) then (a 2 D�) and [(8x 2 D�)(app(a; x) 2 D�)] then (a 2 D�)and [(8x 2 D�)(app(a; x) 2 D�)]. 2Lemma 3.17 If � � � then D� � D� .Proof by induction on � � � .1. If � = e then � = e and D� = D� .2. If � = t and � = p then D� = TRUTH and D� = PROP.3. If � =< �; � > then D� = D<�;�> � D� by Lemma 3.15.4. If � � p then D<�;�> � D<<�;�>;�>Proof (D�) D�) � D�. Hence by Lemma 3.10,(D�) D�) \ (D�) D�) � (D�) D�)) D� .Hence (D�) D�) � (D�) D�)) D� .Assume that � � � implies D� � D�. Then D<�;�> � D<�;�>, by Lemma 3.16.Note that due to Lemma 3.16, if < �; � > is circular, then D�;�> = D<<�;�>;�>. 2Lemma 3.18 If � is a p-chain type and not � � p then D� � SET .Proof The proof is by induction on �.If � =< e; � > where � � p then D� � F0) PROP = SET � SET.Take � =< �; � 0 >, where � is not � p and � is a p-chain type and property holds for � .� case 1 not � � p, then D<�;� 0> = D�) D� 0 where D� 0 � PROP and D� � SET byinductive hypothesis. Hence D<�;� 0> � SET.� case 2 � � p then < �; � 0 >� � � p. But it is not the case that < �; � 0 >� p absurd.Hence � is not � p. 2Lemma 3.19 If � is vacuous then D� is empty.Proof If � is vacuous, then � =< �; � > where � and � are p-chain types not � p or either� or � is vacuous. If either is vacuous then nothing to prove. Else, D� = D�) D� whereD� ;D� � SET according to Lemma 3.18. Hence by Theorem 3.13, D� is empty. 2
17

4 COMPARISON AND CONCLUSIONIn this part, we showed that Frege structures provide a solution to both problems; we provideda type theory where any function belongs to its domain and hence the theory is a suitableframework for nominalisation. Now we assess further the advantages one obtains with Fregestructures. We start with type freeness and the fact that SET is isomorphic to Propositionalfunctions F0 �! PROP and that SET � F0. Also, we have the two following functionals:k k1 : SET �! PF1� : PF1 �! SET.If we assume that the interpretation of verbs takes place in Fi for i � 1 and thus that[[walk]] is in F1, then we get: [[to walk]]g = �:[[walk]]g .Now it is straightforward to interpret things like to walk hurts, for: [[to walk hurts]]g =[[hurt]]g([[to walk]]g) = [[hurt]]g(�:[[walk]]g).The advantage of what we just o�ered lies in the elegance of classifying the denotationof our items. With Montague's and Turner's approaches, one has always to check whetherthe denotation of an item is in the right domain. With our approach, we do not need tocheck whether [[to walk]]g is in F0 or not using some confusing domain equations. All wehad to say was that [[walk]]g is in F1; therefore �[[walk]]g is in F0. This actually seemsto be an encouraging advantage about Frege structures: nominalisation and self referenceare a natural process inside the Frege structure. It also seems that we have real application,unlike in Scott domains where application is only through the isomorphic embedding. This isbecause instead of interpreting things as above into Fi, for i � 0, we can restrict everythingto F0 obtaining [[fun is fun]]g = pred([[fun]]g; [[fun]]g).Therefore it seems that by using Frege structures we get the following advantages overScott domains,1. Real self application2. Less cumbersome checking for the right typing than that involved with Scott domains.It is mainly checking the propositionhood of various items to obtain the type of theresulting item.3. No redundant semantic types4. Nominalisation seems to
ow naturally5. Quanti�cationFor the sake of completeness, we mention a new approach to a theory of properties pro-posed by Turner (in [Turner 1987]) which abandons completely the use of Scott domains.Turner's new theory is one which starts from Frege's comprehension principle and restrictsit in such a way that the paradox is no longer derivable. Turner starts with a �rst ordertheory which has a pairing system and adds to this theory a new operator p (to serve as thepredication operator) together with the lambda operator. Then in this case, if one assumesfull classical logic and Frege's comprehension principle, one will certainly derive the paradox;for, take a = �x::p(x; x), then p(a; a)$:p(x; x)[a=x]$:p(a; a). Contradiction.Of course, the problem does not come from contraction, i.e. p(�x:A; t)! A(t; x) is alwaystrue. But the converse implication (i.e. expansion) is problematic. This is due to negation,i.e. if A is atomic then we can accept A(t; x) ! p(�x:A; t). But we cannot accept it when18

A is like Russell's property, an atomic term proceeded by a negation sign. This is exactlywhat guides Turner in setting his theory. For the theory now will have the following axiomsreplacing Frege's comprehension principle:(E1) A(t; x)! p(�x:A; t) when A is atomic.(R) p(�x:A; t)! A(t; x).(I) p(�x:p(�y:A; t); u)! p(�y:p(�x:A; u); t)Now the abandonment of Frege's full comprehension axiom will impose the use of twologics, one inside the predication operator in addition to the usual one for w�s. This is dueto the fact that breaking the equivalence between p(�x:A; t) and A(t; x) will disconnect thereasoning about w�s and properties. To build models for T above, one uses the �xed pointoperator to turn an ordinary model of the �rst order theory into a model which will validatein it as many instances of the comprehension axiom as possible. It will of course validate onlythe safe instances whereas the paradoxical ones will oscillate in truth-values. The inductivestep to build the model should be obvious. As an example, one can start with the �rst ordermodel, and an operator PI which is empty at the beginning. Then at the next step, extendPI to also contain the pairs < [[�x:A]]; [[t]]gM > such that [[A]]g[[[t]]g=x] = 1 and so on untilone gets a limit ordinal � where PI then is to have in it all the pairs < e; d > such thatfor some ordinal smaller than this �, < e; d > belongs to all the intermediate PI's. Nowwe no longer have a full comprehension principle and we cannot do with properties whatwe can do with formulae. But there are still a great deal of things that one can identifybetween properties and w�s; for example, from P (�x:A; t) and P (�x:B; t) one can derivep(�x:A ^B; t). Turner showed however that theories of Frege structures are weaker than histheory of properties which is a fact that may stand to our advantage for the following reasons.Firstly, Turner can prove at least as much in his theory as one can in a theory based on Fregestructures. Secondly, Turner is paying a price for the strength of his theory | mainly his useof two logics (internal and external) rather than one only. On balance it seems better to usea theory based on Frege structures for properties. Doing so gains the advantages of Turnerwithout the complications.From the point of view of typing, whereas I use a type free theory, Cocchiarella uses asecond order one. There are however some similarities and di�erences in these two ways oftyping that I would like to illustrate. According to axiom (9) under 1.1.2 of Part I, we haveMEn � ME0 for all n > 1, where MEn are the meaningful expressions of any type n. Forus, we have that MEn � ME0 for any 1 � n but the pictures of both approaches are quitedi�erent. According to our approach these types are related to each other in a chain like way.That is MEn � MEn� 1 : : : � ME0. For Cocchiarella we have that each MEn � ME0for n > 1, yet no relation exists between MEn and MEm for n 6= m. Also for Cocchiarella,propositions are not included in objects, even though they can be embedded inME0 by axiom(8) under the same paragraph. Hence Cocchiarella's whole structure can be understood asa collection of objects, which has a denumerably in�nite number of subcollections calledfunctions but where propositions are outside the domain of objects and can be mapped intoit. This structure for Cocchiarella is not a structure of types in the sense that we have inthe typing structure in [Kamareddine 1988]. In fact everything that Cocchiarella has so farwe have; as can be seen in [Kamareddine 1988], a Frege structure is F0; : : : ;Fn, where F0, isthe collection of objects, Fk is the collection of k-ary functions and each of these Fk, can beembedded in F0, by �k. What we have in addition is a typing system constructed inside F0,which cannot be found in Cocchiarella's theory. Also, our system is �rst order in that thequanti�cation over objects and functions is the same, whereas Cocchiarella's system is second19

order.5 AcknowledgmentsThe author is indebted to the anonymous referees whose suggestions played a crucial role inimproving both the form and the contents of the paper.References[Aczel 1980] P. Aczel, Frege structures and the notions of proposition, truth and set; in: J. Barwise,ed., The Kleene Synposium, Studies in Logic 101, North-Holland, NewYork, 1980, pp. 31-60.[Aczel 1984] P. Aczel, Non-well founded sets, CSLI Lecture notes No 14, 1984.[Aczel 1985] P. Aczel, Properties and propositional functions, privately circulated note, ManchesterUniversity, 1985.[Barendregt 1981] H. Barendregt, The lambda calculus: its syntax and semantics, North Holland,1981.[Barendregt' 1981] H. Barendregt, The type free lambda calculus, Handbook of Mathematical logic,Ed. J.Barwise, North Holland, 1981, pp. 1091-1132.[Barwise 1987] J. Barwise and J. Etchemendy, The liar: An Essay on Truth and Circular Propositions,Oxford University Press, Oxford, 1987.[Beeson 1987] M. Beeson, Foundations of constructive Mathematics, Springer-Verlag, Berlin, 1987.[Bealer 1982] G. Bealer, Quality and concept, Clarendon press, Oxford, 1982.[Boolos 1971] G. Boolos, The iterative conception of set, Journal of Philosophy LXVIII, 1971, pp.215-231.[Church 1940] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic 5,1940, pp. 56-68.[Cocchiarella 1984] N. Cocchiarella, Frege's Double Correlation Thesis and Quine's set theories NFand ML, Journal of Philosophical Logic 13, 1984.[Cocchiarella 1986] N. Cocchiarella, Conceptualism, Rami�ed Logic and Nominalised predicates,Topoi 5, 1986, pp. 78-87.[Cocchiarella' 1986] N. Cocchiarella, Philosophical Perspectives on Formal theories of Predication,Handbook of Philosophical Logic 4, 1986.[Feferman 1975] S. Feferman, A language and axioms for explicit Mathematics, Algebra & Logic,lecture notes in mathematics 450, 1975, pp. 87-139.[Feferman 1979] S. Feferman, Constructive theories of functions and classes, Ed. M.Bo�a, Logic Col-loquium '78, North-Holland, Amsterdam, 1979, pp. 159-224.[Feferman 1981] S. Feferman, Working foundations, A revised version of a paper presented to theworkshop The present state of the problem of foundations of Mathematics, Florence, 1981.[Feferman' 1981] S. Feferman, A theory of variable types, privately circulated note, Stanford Univer-sity, 1981.[Feferman 1982] S. Feferman, Inductively presented systems and the formalisation of Meta-Mathematics, Eds. D. Lascar and J. Smiley, Logic Colloquium '80, North-Holland, Amsterdam,1982, pp. 95-128. 20

[Feferman 1983] S. Feferman, Intensional Mathematics, Logic Colloquium '83.[Feferman' 1983] S. Feferman, Between constructive and classical Mathematics, Logic Colloquium '83.[Feferman 1984] S. Feferman, Intensionality in Mathematics, Symposium on intensions and set theory,Meeting of the Paci�c Division of the American Philosophical Association, 1984.[Feferman' 1984] S. Feferman, Towards useful type-free theories I, Journal of Symbolic Logic 49, 1984,pp. 75-111.[Fraenkel 1966] A. Fraenkel, Set theory and Logic, Addison-Wesley, U.S.A, 1966.[Fraenkel 1973] A. Fraenkel, Y. Bar-Hillel and A. Levy, Foundations of set theory, North-Holland,Amsterdam, 1973.[Frege 1970] G.Frege, Translations from the philosophical writings of Frege, Ed. P. Geach and M.Black, Basil Blackwell, Oxford, 1970.[Kamareddine 1988] F. Kamareddine, A polymorphic type theory, with Ewan Klein, Talk given atTitisee conference on uni�cation, 1988.[Kamareddine 1989] F. Kamareddine, Semantics in a Frege Structure, PhD thesis, University of Ed-inburgh, 1988.[Kleene 1952] S. Kleene, Introduction to Metamathematics, D.Van Nostrand co, Princeton, 1952.[Kripke 1963] S. Kripke, Semantical considerations on Modal Logic, Ed. L. Linsky, Reference andModality, 1963.[Kripke 1975] S. Kripke, Outline of a theory of Truth, The Journal of Philosophy LXXII, 1975, pp.690-716.[Meyer 1981] A. Meyer, What is a model of the Lambda Calculus? Unpublished ms., M.I.T. Lab.,Computer Science, 1981.[Parsons 1979] T. Parsons, The theory of types and ordinary language, Eds. S. Davies and M. Mithun,Linguistics, Philosophy and Montague Grammar, 1979, University of Texas Press, Austin.[Poincar�e 1900] H. Poincar�e, Du role de l'intuition et de la logique en mathematiques, C.R. du IICongr. Intern. des Math., Paris 1900, pp. 200-202.[Quine 1969] W. Quine, Set theory and its Logic, Belknap Press, Harvard, 1969.[Russell 1908] B. Russell, Mathematical logic as based on the theory of types, American Journal ofof Math. 30, 1908, pp. 222-262.[Scott 1976] D. Scott, Data types as Lattices, Technical Monograph PRG-5, Siam Journal on Com-puting 5, 1976, pp. 522-587.[Scott 1975] D. Scott, Combinators and classes, Ed. B�ohm, �-calculus and Computer Science theory,Lecture notes in Computer Science 37, Springer, 1975.[Thomason 1974] R. Thomason, Formal Philosophy; Selected papers by Richmond Montague, YaleUniversity, 1974.[Turner 1984] R.Turner, Three Theories of Nominalized Predicates, Studia Logica XLIV2, 1984, pp.165-186.[Turner' 1984] R. Turner, Nominalization and Scott's Domains II, Notre Dame Journal of FormalLogic 26, 1984.[Turner 1987] R. Turner, A theory of properties, Journal of Symbolic Logic 52, 1987.21

