Set Theory and Nominalisation, Part II
Journal of Logic and Computation, 2(6), 687-707, 1992

Fairouz Kamareddine
Department of Mathematics and Computing Science
Eindhoven University of Technology
Den Dolech 2, postbus 513
5600 MB Eindhoven, the Netherlands
email: fairouz@info.win.tue.nl
tel: +31 40 474319

November 30, 1996

Abstract

In this paper we shall meet the application of Scott domains to nominalisation and
explain its problem of predication. We claim that it is not possible to find a solution to such
a problem within semantic domains without logic. Frege structures are more conclusive
than a solution to domain equations and can be used as models for nominalisation. Hence
we develop a type theory based on Frege structures and use it as a theory of nominalisation.

Keywords: Frege structures, Nominalisation, Logic and Type freeness.

1 Frege structures, a formal introduction

Having in part I informally introduced Frege structures, I shall here fill in all the technical
details and show that Frege structures exist.

Consider Fg, F1,..., a family F of collections where Fg is a collection of objects, and
(Vn > 0)[Fy, is a collection of n-ary functions from F§ to Fy.

Definition 1.1 (An explicitly closed family) A family F as above is explicitly closed iff:
For every expression e[xy,...,xy] of the metalanguage built up in the usual way from vari-
ables ranging over Fo and constants ranging over U,Fy, the n-place function denoted by
< elxi,...,zp)/T1,. .., 2y > is in Fy. More formally, ¥ is explicitly closed iff 1, 2 and 3
below hold:

1. Closure under constant functions: For each a in Fo, the function f, is in Fy, where

(V2)[fa(z) = a].

2. Closure under composition: For each f in Fp,, for each g1,...,9m in Fx, f(91,---,9m)
is in Fx where (f(g1,---s9m)) (@1, 2k) = flo1(x1, -y Tk)se o s gm(T1, ooy 2g))-

3. Closure under projection: For each n,i > 1, P" is in Fy, where P*(a1,...,a,) = a; for
each a; in Fg and, 1 <1 <n.

For example, if f and ¢ are unary functions of F and h is a binary function of F, then
< fog(h(zy,x2))/x1,x2 > is a 2-ary function (i.e. in Fa).
In what follows, we assume such a closed family and call it F.

Definition 1.2 (F-functional) A function D : Fy, x ... x Fn, — Fo is an F-functional
with respect to the explicitly closed family ¥, iff: (Ym > 0)(Vf1 in Fmin,) .. (Vfk in Fmyn,)
[< D(< fily,@1) /21 >, ..., < [r(y,Tk) /2 >)]y > is in Fy)

where § is a list of m-variables and x; is a list of n; variables, fori=1,... k.

Note that if f1, .., fx are 1-place functions and D : F1 x...xFy; — Fg then D(f1,..., fx)
is in Fg. What is the intuitive meaning of F-functionals? We know that an F-functional is a
functional, so that it operates on functions. But once we include functionals in the structure,
we need to ensure that any expression which contains functionals should actually be in the
structure. Assume for the sake of argument that D : F,, x...xF,,_— Fg is an F-functional.
Assume also that for some m > 0, f; is in Fiqp, for ¢ =1,..., k. We know that according to
the explicit closure, if y is a list of m-variables ranging over F¢ and for each i, z; is a list of
n; variables ranging over Fg, then < f;(y, #;)/z; > is an element of F,, for each i. Therefore
it makes sense to talk of the expression D(< fi(y,Z1)/Z1 >,...,< fe(§,ZTk)/Zr >). This
expression however is open in y and if we abstract over y in this expression are we going to
obtain an element of F,,?7 Nothing so far in the structure ensures that this is the case, and we
must therefore impose the constraint that these functionals should have such a property. A
functional which has this property is called an F-functional and now if D is an F-functional
then [< D(< fi(y,z1)/%1 >,...,< fi(y,Zx)/TK >)/y > is in Fy,]. Hence we extend the
definition of explicit closure to the following:

Definition 1.3 (A super explicitly closed family) Taking a family as above, we say that this

family is super explicitly closed iff for every expression e[y, ...,&n] of the metalanguage,
built up in the usual way from variables ranging over U,Fy and constants ranging over U,Fy
and over F-functionals, the m-place function denoted by < e[€1,...,&n]/xi1, ... &n > is an

F-functional.

This notion of explicit closure is going to provide us with the full comprehension principle
we have been promising.

Theorem 1.4 Any explicitly closed family which has wvariables for functions and objects,
constants for objects, functions and F-functionals, is a super explicitly closed family. (The
proof is by an easy induction.)

Example 1.5 As an example of an explicitly closed family, consider P, as described pre-
viously. Define Fo to be the set of all subsets of w (i.e. P,). Define, for each n > 0,Fy
to be the set of all continuous functions from ¥ — Fo. Using Part I, it can be easily
seen that the constant functions, the projection functions, etc are continuous. It can also
be seen that continuity is closed under composition and that any combination e[xy,..., ;]
of variables for objects and constants for both functions and objects results in the function
denoted by < e[xy,...,zp]/T1,...,25 > being an element of Fy. Therefore the family (Fn)p
just obtained from P, (call it FE), is an explicitly closed family. Furthermore, FE is su-
per explicitly closed as it can be proven not only that < e[zy,...,z,]/x1,...,2, > denotes a
continuous function but also that for any expression e[y, ..., &,] built in the usual way out

of variables ranging over U,Fy and constants ranging over both U,F, and F-functionals,
<el€r, ..., &)/E1, -, & > denotes a continuous function.

So far, we have only explicit closure on our structure. But that is not enough to give a
logic on the structure. In what follows, we see how to obtain such a logic.

Assume an explicitly closed family F and a list of logical constants which are the following
F-functionals:

-:Fg—Fp

V,A,—=,=:Fog xFog — Fy

V, 3: F, — Fy

Definition 1.6 (Logical system) A logical system on a super explicitly closed family F, rela-
tive to a set of logical constants as above, is < PROP, TRUTH > the set of two collections
of objects such that TRUTH C PROP. These two collections are closed under an adopted
logical schemata for each logical constant. The logical schemata corresponds to the external
logic and tells us, for each logical constant from the list, how to build new propositions out
of other ones using the logical constant. It also gives the conditions of truth for the resulting
proposition.

THE LOGICAL SCHEMATA

o NEGATION If a is in PROP then —a is in PROP and —a is in TRUTH iff ¢ is not
in TRUTH.

e CONJUNCTIONIf a,b are in PROP then (aAb) is in PROP and (aAb) is in TRUTH
iff @ is in TRUTH and b is in TRUTH.

e DISJUNCTION If a,b are in PROP then (aVb) is in PROP and (aVb) is in TRUTH
iff ¢ is in TRUTH or b is in TRUTH.

o IMPLICATION If a is in PROP and b is in PROP provided that a is in TRUTH
then (a — b) is in PROP and (a — b) is in TRUTH iff ¢ is in TRUTH implies b is
in TRUTH.

e UNIVERSAL QUANTIFICATIONIf f is a propositional function in Fy then Vf! is in
PROP and Vf is in TRUTH iff f(a) is in TRUTH for all objects a.

o EXISTENTIAL QUANTIFICATION If f is a propositional function in Fy then 3f is
in PROP and 3f is in TRUTH iff f(a) is in TRUTH for some object a.

'Recall that ¥,3 and X\ are functions from F; to Fp and hence f does not necessarily contain any free
variables. For example, < z/z > is the identity function and contains no free variables, A < z/z > can be
written as Az.z. The same holds for V < z/z > and 3 < /x >. This might be confusing, as it might be asked
if < /x > has no free variables, then what does A < z/x > mean? Despite the fact that < x/z > has no free
variables (let us denote < z/x > by I), it is still an element of F;. ILe. it is still a function and we need to
make it an object by nominalizing it. Therefore we turn it into an element of Fo by using A. Now Al is in
Fo and app(Al,a) = I(a) = a. In fact, A does not abstract on free variables, it is < / > which does so. A
just turns a function into an object preserving the comprehension axiom: app(Af,z) = f(z). When we say
Az.z, we don’t mean that A abstracts over z in z, rather we mean that we first abstract via < / > obtaining
< z/x > and then we look for the nominal of < z/z >

o EQUALITY If a,b are objects then (a=b) is in PROP and (a=b) is in TRUTH iff
a = b2

e BI-IMPLICATION If a,b are in PROP then (a = b) is in PROP and (a = b) is in
TRUTH iff (¢ is in TRUTH iff b is in TRUTH).

From now on, we shall use «a is true for a is in TRUTH, a is a proposition for a is in PROP
and a @s a set for a is in SET. In short, a logical system builds a logic on our structure. But
something is still missing: even, though we built the logical system on the top of an explicitly
closed structure, where functional abstraction < e[xi,...,z]/21,...,2, > and application
f(x) do exist, we still need a way of turning functions into objects (via) and of applying
such objects to other objects (via app) so that app(Af,x) = f(z). We do not want to gain
logic yet lose the bijection between objects and functions. Therefore, our structure must have
more in it. The next definition will tell us what.

Definition 1.7 (A-system) A \-system on an explicitly closed family F is a pair of functionals
< A,app > such that: X\ : F1 — Fg and app : Fo x Fo — Fyg satisfy: app(Azf[z],a) =
f(a), for each f in F1 and a in Fy.

Example 1.8 If we take the system FE of Example 1.5, and if we define A : F1 — Fq as
Af = {(n,m):m isin f(ey)} where we take (n,m) to be 1/2(n + m)(n +m + 1) + m and
define app : Fo x Fg — Fg as app(a,b) = {m : e, C b for some n,(n,m) is in a};
then (A, app) forms a \-system for FE.

Proof: app(Af,a) = {m : e, C a for some n and (n,m) is in A\f} =

{m : e, Ca for somen and m is in f(e,)} =

{m in f(en) : en, C a} = f(a) by continuity.

Therefore (X, app) is a A-system for FE. Actually, FE contains \ and app and so it is a
A-structure, but we leave this to the next definition.

Definition 1.9 (A-structure) A A-structure is an explicitly closed family ¥ which has a \-
system.

Note that the A-structure contains A and app and that it is an explicitly closed family.

Example 1.10 Now take the A-system FE given in Example 1.8. FE is also a A-structure
having (A, app) as \-system, because both A and app are in FE, as FE is explicitly closed.

Definition 1.11 (Frege structures) A Frege structure is a logical system relative to a list of
logical constants on an explicitly closed family F, together with o \-system.

Example 1.12 As an example of a Frege structure, take the A\-structure FE given in Ex-
ample 1.10 and which has a A-system (\,app). Aczel (in [Aczel 1985]) showed that each
A-structure can be extended to a Frege structure. Therefore we now have an example of a
Frege structure.

“Note the two equal signs, = and =. The first is a functional from Fo x Fo to Fo such that a=b is always
a proposition and a=b is true iff we can prove from the rules of A-calculus with logic that we are formulating
that a = b. For example, we know from above that app(Af,) = f(z), hence the proposition app(Af, z)=f(z)
is true.

Let us sketch the proof of how our particular A-structure F'E can be extended to a Frege
structure. This will make the reader understand the notion of Frege structure, and get him
used to working with it. Before proceeding, however, we must define two missing notions:
that of an independent family of F-functionals and of a primitive F-functional.

Definition 1.13 We say that a family of F-functionals is independent iff for any two F-
functionals in the family, the range of values of those F-functionals are disjoint.

This implies that if ' and G belong to an independent family of F-functionals, then for any
f and g such that F(f) = G(g), we should definitely have F' = G. From independence only
we cannot conclude that f = g. For this we need primitivity and this is the next notion we

define.

Definition 1.14 We say that an F-functional F' : Fn, X ... X Fn — Fo is primitive iff
there exists a projection P; in Fp, 1 for each 1 < i <k such that P;(F(f),a) = fi(a) where
f=Ffi,...,frisinFp, x...xFy_ and a is in Fy.

The aim of primitive F-functionals is similar to injectivity; if we have F'(f) = F(g) then we
should be able to deduce f = g. It can be easily checked from the definition of F-primitiveness
that this is the case.

The proof that we can extend any A-structure into a Frege structure is based on two
theorems. The first is one which asserts the existence of an independent family of primitive
F-functionals on the A-structure, which include the logical constants, A,V etc. It simply
states that:

Theorem 1.15 If for each natural number m we let (vy,,...,vm,) be a finite sequence of
natural numbers, then there is an independent family of primitive F-functionals:
F: Fy,, %...xF, — Fo, form=20,1,2,....

ml

The second is the well known fixed point theorem which applies to monotonic operators and
helps us to find the logical schema of these logical constants. This theorem simply states the
following:

Theorem 1.16 If A is a partially ordered collection of objects such that every chain in A
has a least upper bound then any monotonic operator Y from A to A has a fixed point. That
is (Ja € A)[Y (a) = a].

Let us apply those two theorems to our F'E and obtain out of it a Frege structure. Up to here,
we know that the A-structure F'E exists and Theorem 1.15 enables us to find all the logical
constants needed. What remains to turn it into a Frege structure is to find a logical system
for the logical constants. This is the task of Theorem 1.16. The idea is to associate with
each logical constant two predicates which will ultimately (after we get to the fixed point)
give all the propositions obtained from the logical constant and all the truths respectively.
The construction is well known mathematically and is similar to the one followed by Kripke
in [Kripke 1963]. Now consider our A-structure F'E. We can be sure from Theorem 1.15 that
we have a list of F-functionals which includes:

-:Fg—Fp

VoA, —,=,=:Fg xFg — Fy

V, 3: F, — Fy

But we still need to make sure that they satisfy the closure properties we want to impose
on them. I shall here try to make the construction a little easier than that described by Aczel
(in [Aczel 1985]). To construct a logical schema for each constant, i.e. to define the whole
logical system, we follow Aczel’s intended construction but will carry an example with us at
all times. The logical system is defined inductively. As the basis of the induction, we start
with a pair xo = (Xop, xor) such that xo; C xop. Intuitively, xo, is the set of propositions at
stage 0 and yq; is the set of truths at stage 0.

Example 1.17 Let xo = (xop, xot) = ({0,1},{1}). Note that both {0,1} and {1} are in P,.

Before proceeding to the induction step, we must define a couple of auxiliary predicates
which ensure that the logical constants map their arguments into appropriate values. That is,
for each logical constant F', there is one predicate ®p which tests whether a particular tuple
of arguments has the correct status of propositionhood, and a second predicate ¥ which
states the conditions under which the tuple will be mapped into TRUTH by F. To see why
we need this, recall the logical schema for negation that we presented under NEGATION
above:

e (1) Ifais in PROP then —a is in PROP, and —a is in TRUTH iff a is not in TRUTH.

This is an instance of a general logical schema for those functionals F' in a Frege structure
which correspond to truth-functional connectives:

o (2) If fis in Fp, X ... x Fy, and C'(F, f), then F(f) is in PROP; and F(f) is in
TRUTH iff C(F, f), where C expresses F’s truth conditions and C’ expresses F’s
propositionhood.

Now it is ®7 which tests that the arguments f are in PROP, while ¥z does the work of C
in (2).

Example 1.18 & and ¥, take arguments in (Ux;) x Fo and

P (xo0,2) is: x is in xop

U (xo0,) @s: x is in not ot

Thus, ®-(xo,x) is true of the set xop = {0,1}, and V- (xo,x) is true of all elements in
Fo \ xot, i-e. everything except the element 1.

In order to carry out the induction step of the construction, we introduce a principle which
determines how the propositions and truths at stage ¢ + 1 are built from the propositions and
truths at stage ¢. The principle has two parts as follows:

Principle 1.19 x;i1, is the collection of those F(f) where F is a logical constant and

Principle 1.20 x;11¢ is the collection of those F(f) where F is a logical constant and both

In other words, given the pair (xip, xit), we construct (Xi+1p, Xi+1¢) in the following way:
first, x;1+1p has to contain all and only those elements F'(f) such that f belongs to the

propositions at stage ¢, i.e. it is in y;p according to @ r(Xs, f); and second, x;4+1; must contain
all and only those elements F'(f) such that f belongs to both the propositions and the truths

at stage i, i.e. it is in x;p and x; according to ®p(x;, f) and ¥p(y;, f). Notice that the
principle guarantees that x(i11)r S X(i41)p-

Example 1.21 We wish to build x1 = (x1p, x1¢) from (Xop, xot) = ({0,1},{1}). By Prin-
ciple 1.19, x1p is the set of objects —x such that ®.(xo,x), i.e. it is the set {=0,—1}. By
Principle 1.20, x1; is the set of objects —x such that ®_(xo,z) and ¥_(xo,x), i-e. such that x
belongs to xop but does not belong to xo;. The only thing which satisfies both these conditions
is 0, so x1; = {—0}.

Example 1.22 ®, and ¥, take arguments in (Uy;) X (Fo X Fg) and
Da(x0, (®,y)) is: x and y are in Xop
U (x0, (z,y)) is: © and y are in xot

Thus, we can supplement the x1, of the previous example with the set of objects A(z,y) such
that (z,y) C xop X Xop, i-e. the set {0A0,0A1,1A0,...}. Similarly, we add to x1i; the set of
objects A(z,y) such that (z,y) C xop X xot, i.-e. the set {1 A 1}. Note that according to our
example, the collection of objects in TRUTH at stage 1 is {1 A 1,-0}.

Note also that —=0,1A1,1V0 are distinct objects, even though they are all in TRUTH and
all have the same truth value in Frege’s terms. If we wish, we could reconstruct Frege’s notion
of the True and the False by forming the relevant equivalence classes, but Frege structures
give us an intensional ontology. This is justified on the grounds that objects with the same
truth value, e.g. =0 and 1 A 1 are equivalent in truth value but distinct.

We see that the pair is being enlarged at each step starting from the first step where
we take xop = {0,1} and xo; = {1}, with the property that for each i we have: x; C x4p.
Note that we are not imposing the condition that xit C X(it1)r OF Xip € X(i+1)p; In fact our
construction is monotonic in another sense which we shall see below. The aim is now to keep
going up to a certain level o« where xo = (Xap; Xat) is a logical system, because it is obvious
that x; at the levels we met so far are not logical systems. Take for example xg in our example
above based on F'E. Then x is not a logical system, as can be seen by taking the logical
schema for —:

If a is a proposition then —a is a proposition such that —a is true iff —a is not true.

Xo is not a logical system because 1 is in o, (supposed to represent propositions) but —1
is not in xop. Nor is x1 a logical system because —1 is in X1, but =—1 is not in x1;, and so
on. To solve this problem, let us consider the fixed point (if it exists) of this construction. It
may be that the fixed point is a logical system and if so, we have succeeded. Before we prove
that the fixed point is a logical system, let us remind ourselves again of the construction. The
construction is built through an operator Y which takes us from level ¢ to level i+ 1 in such a
way that Y (xi) = Xit+1, where X; = (Xip, Xit), Xi+1 = (Xi+1ps Xi+1t); Xit C Xipy Xi+1t C Xit1p-
Moreover X1, and ;414 are obtained as follows:

For any F-functional F', x;41, is the collection of those F'(f) where F is a logical constant

and @ (y;, f) and x;41¢ is the collection of those objects F(f) where F is a logical constant

and both ®(y;, f) and ¥x(x;, f). Now we prove that any y such that y = Y () is a logical
system. To show that, we have to prove that for each logical constant F', the logical schemata
of F holds in x. Let F' be a logical constant whose logical schema is as follows:

If fisin Fy, X...x Fy, and ®p(x, f), then F(f) is in x,; and F(f) is in x; iff p(x, f)-

Let us prove that this schema holds in x where x is a fixed point, x = (xp, x:) and

Y(x) = (xp, xt)- Let f be in Fy, x ... x Fy where ®p(x, f). As ®p(x, f) then F(f) is in
Xp by definition, but x;, = x;, (because x = Y '(x)), therefore F'(f) is in x,. Now let us prove

that F'(f) is in x; iff Up(y, f).

e (=) If F(f) is in x} then F(f) is in x}. As F(f) is in y} then there exists an F-
functional G and a sequence g in Fy, x ... x Fy,_ such that F'(g) = G(g) and ®¢(x,9)
and ¥(x, g) by definition. But the logical constants are independent. Therefore F = G
and as the family is primitive, f = g. Therefore we have from V(x, g) that ¥x(x, g).

e <= Suppose Vp(x, f), since also @ (x, f) then F(f) is in x}; but x} = x¢, therefore
F(f)isin x¢ O

This implies that the logical schema of F' holds in y. Now we know that if there exists a fixed
point x then this y is a logical system. Let us find a fixed point.

We define an ordering < on (x;); as follows: x; < xiy1 if

® Xip € Xi+1p, and
e if x is in x;p, then x is in x; iff o is in x;q14.

With this ordering we can show that Y is monotonic. Note that the levels can be any
ordinal even a transfinite one, for if we are at a finite ordinal i we define Y (x;) := xit+1 as
above. If we are at a limit ordinal j, we define Y'(x;) = Ux; for ¢ < j. Applying the fixed
point theorem we get a fixed point of Y. The reason for this is of course the monotonicity
of the operator Y, as we know that the ordering relation < is a partial ordering on all those
pairs.

2 Scott Domains and nominalisation

The ordering relation on Scott domains makes predication trivial. For, a predicate P is true
of all the objects in the model iff it is true of the bottom element. Both semanticians and
computer scientists however, share an interest in quantification and hence this problem of
predication that faced Turner (in [Turner’ 1984]) is a major issue for those interested in the
semantics of either computer or natural languages and who base their work on Scott domains.
The problem can be described as follows: Assume a language which has both objects and
functions and assume that wifs are built out of other ones using A, V,V,3,.... If the model is
a Scott domain E,, then there is no problem interpreting anything which is not a quantified
sentence, as the interpretations of all such things are continuous functions and hence belong
to the model. Let us choose the following interpretation for the quantifiers V and 3

1 if foreach din D, [[9]]g(a/a)uwt = 1
[Vzd|lgwe = § 0 if for some din D, [[QS]]g[d/w}wt =0
1 otherwise

1 if for some din D, [[¢]]g(4/21we = 1
[F2¢]lgwt = ¢ 0 if foreach din D, [[¢]l4(4/a)wt =0
1 otherwise

Then the following is a proof of the continuity of the quantifier clause for V . Assume
by induction that we have [[¢]] is continuous where ¢ does not involve quantifiers. To prove
the continuity of [[Vz¢]] (i.e. to prove it in [ASG — [S — EXT]] where ASG is the
collection of assignment functions, S is the collection of states consisting of worlds and times

and EXT is the extensional domain of values), we prove it continuous separately in each of
its arguments, according to a theorem related to semantic domains.
Let us prove the continuity of [[Vz¢]] for g in ASG. Take an w-sequence (g,), and prove
that: [[Veg]lug,we = Ul[VEellg,wt-
o Assume [[V2¢||ug,wt = 0 <= by definition,
(3d € D)([[¢llugn[d/zjw: = 0) <= by induction,
3d € D)(UV[[¢llg,[d/2jwt = 0) <= by the structure of BOOL,
3d € D)(Fn € w)([[Bllg, [d/ajwt = 0) <= by logical laws,
In € w)(3d € D)([[#lly,[d/aJwt = 0) <= by definition,
In € w)(V[[@lly, (d/«]wt = 0) <= by the structure of Bool,
U[V2e]lg,we = 0

o Assume [[Va||ug,wt = 1 <= by definition,

A~ o~ o~ o~

Vd € D)([[#]]ug,[d/zjwt = 1) <= by induction,

Vd € D)(U[[#]]g, [d/ajwt = 1) <= by the structure of BOOL,

Vd € D)(3n € w)([[9llg,(d/x)wt = 1) <= u C d and monotonicity,
In € w)([[#lg,[a/a)wt = 1) <= monotonicity,

)(Vd € D)([[9llg,[d/2jwt = 1) <= by definition,

In € w)(Vx[[¢lly, [¢/2jwt = 1) <= by the structure of Bool,
U[V2ollguuwe = 1

Therefore [[Vz¢]] is continuous.
Note that this interpretation of quantifiers is abandoned later by Turner (in [Turner’ 1984])
and he decided to adopt the following clauses instead:

dn € w

(
(
(
(
(
(

1 ifforeach din Ey \ UEy, [[#]]g(d/e)uwt = 1
[Vzdllgwe = ¢ 0 if for some din Ex \ UEp, [[9]]g[d/2]we = 0
1L otherwise

1 iffor some din Eo \ UEp, [[9]lgd/2jwe = 1
[Fzdllgwe = ¢ 0 if foreach din Ex \ Ep, [¢]]gd/cjwt =0
1L otherwise

Of course working with Scott domains, you have always to check for continuity and this
is the case with the new clauses. It can easily be proved that continuity does in fact hold and
so we can still think of Scott domains as models.

We now describe the problem which made Turner move from the first definition of quan-
tifiers to the second one. By adopting the first definition, we had: [[Vzd|lgw: = 1 iff
(Vd € D)([[]lg(a/a]wt = 1)-

As [[¢]] is continuous, therefore monotonic and as u C d (where, as noted above, u is the
undefined) for each d in D then we get: (Vd € D)([[9llg[a/a)wt = 1) Hf [[]]g[u/ajuwe = 1-

This clause has serious consequences. I shall illustrate this by taking in the formal language
an element u' which names u (Le. [[u']]gu: = u always). Now see what happens if we take ¢
to be: © = u’. Applying the above clause we get:

[z = u']]gu/e)we = 1 iff (Vd € D)([[x = u']lg{4/a]wt = 1) which implies:

u=u iff (Vd € D)(d = u).

That is absurd. We have to do something about this and the first solution that one thinks
of is to exclude the undefined element from the quantifier clause. Therefore, instead of letting
d range over all of D, we let it range over Dx (i.e. D \ {u}). But now Scott domains can
no longer be models under this interpretation, for we no longer have [[Vz¢]] is continuous. If
we go back to the proof of continuity given above, we see that we had to use the undefined
element in order to prove continuity. Turner, realising this, exploits an important aspect of the
structure of Scott domains. We explained earlier the existence of finite and infinite elements
in F, and said that for each element d of E., d is the limit of (e,), where e, belongs to
E,, and each E, is the domain of finite elements. The infinite (or ideal elements) are those
which are in F, \ UE,. By restricting the quantification over these ideal elements only, we
can prove again the closure of Scott models. However, by so restricting quantification, only
infinite elements can be quantified over and finite elements are ignored.

3 Frege structures and nominalisation

Frege structures are not only a collection of collections of functions (as in the case of Ey),
but they also have a certain logic which works on them, and whose availability solves also the
problem of Section 1.1 of part I. Therefore, Frege structures solve both problems of section
1 of part I. In a Frege structure, quantifiers and other connectives are built inductively step
by step so that at the fixed point one gets all these logical constants. This availability of
logic, makes Frege structures attractive candidates for the semantics of nominalisation. Their
other advantage is the type theory that can be built inside them which accommodates self
application. In fact, we mentioned in 2.2.1 of part I that the theory of types was not adequate
to the semantics of nominalisation. The typing constraints according to Church’s type theory
are too restrictive for nominalisation and we need to have functions which can apply to
themselves or to items of the same type. Abandoning Church’s type theory does not imply
getting rid of all the typed theories. We can still keep to typed languages but make the typing
adequate to deal with nominalisation. This section will develop a type theory based on Frege
structures such that for any two types o, 7 the type < 0,7 > is subsumed by the type . Some
types will be circular or vacuous and they will be responsible for avoiding the paradoxes which
threaten theories that combine type freeness and logic. Basically, our method is to allow type
freeness yet to restrict the abstraction of various formulae which belong to various types.
Types can be basic or functional space types. Amongst the functional space types we have
those types which are circular or vacuous. Abstraction is restricted to those formulae which
when abstracted over will belong to a non circular, non vacuous type.

3.1 Polymorphic types
The set of types is the smallest set 7 such that

1. p,t,e are in T are all distinct.
2. If o,7 are in T then < 0,7 > isin 7.

The types defined in 1 are basic types, p is the type of propositions, ¢ is the type of those
true propositions (which are many according to the intensional framework) and e is the type

10

of objects. Of course not every object should be a proposition and not every proposition
should be a truth. 2 gives the complex types. We impose a subsumption relation < on the
types as follows:

1. o <e

2.t<p

3. <o,T><o
We also require that < be a partial ordering and therefore impose the following addi-
tional conditions:

4. 0 <o

5. ifo<7tand 7 <o,thenoc =71

6. fo<7Tand 7 <ptheno <p

7. if T < p, then <o, 7 ><<0,p >

8. if 7 < p, then < 0,7 ><<< 0,7 >, 7 >

1- 6 are obvious. As an example of 7, take the propositional functions which are of type
< e,p >; these functions are also of type < e,e >. 8 is there to capture those circular types.
In fact we have the following lemma:

Lemma 3.1 If 7 <p, then < 0,7 >=<< 0,7 >, 7T >=<<< 0,7 >, T >, T >=...
<L <<LZOo,T >, T >0, T >
Proof: obvious from 3, 5 and 8. O

When o < 7, we say that 7 subsumes, or is a more general type than, o; intuitively, it
means that any expression which is of type o is also of type 7. Note that e is the maximal
element of the partial order, since it subsumes every type. We shall see that the subsumption
relation plays a central role in polymorphism, and that there are models of such a typing
system; that is, we will have functional domains X = Y such that (X = Y) C X.

Our next task is to extend the definition of type so as to characterize the vacuous types,
that is, the types which may be associated with empty domains. It is useful to first introduce
the auxiliary notion of a p(ropositional)-chain type. This is defined inductively as follows:

Definition 3.2 (P-Chain Type)
1. Ifp<pandT=eorTt=por7=tthen <T,p> is a p-chain type.
2. If T is a p-chain type, and p < p then < 7,p > is a p-chain type.

Example 3.3 <e,p>,<p,p>,<t,p><<ep>p> (which is equal to < e,p >),
<< p,p >,p > (which is equal to < p,p >), << e, t >, < t,e >> ... are p-chain types.
Moreover, whenever o is a p-chain type, then so are < o,t >, < o,p >, < 0,< t,7 >> and
< o,< p,7 >> (for any type 7).

Note however that the following are not p-chain types: e, < e,e >, < e, < e, e >>,...

Vacuous types below will be associated with empty domains.

11

Definition 3.4 (Vacuous Types) o is a vacuous type iff:
1. 0 =< 71,p > where T and p are p-chain types, and neither 7 < p nor p < p or
2. o =< T1,p > where p is a vacuous type, or

3. 0 < 1, where T is vacuous.

From 2 and 3 we can conclude that a function space < o,7 > is vacuous if its domain o is
vacuous, using < 0,7 >< 0.

Example 3.5 The following instances of o0 =< 1,p > are vacuous:
o 0 =<<e,p><ep>>, by clause 1, since T = p=<e,p > and not < e,p >< p.
o g =<<< et > <te>><<et><te>>>

There are p-chain types which are not vacuous; for example < e,p >. There are types that
are vacuous but not p-chains. For example << e,p >, < e,p >>. There are types which are
neither vacuous nor p-chains. For example, e, < e,e >,....

3.2 The Syntax of Tpol

The basic expressions of Tpol are as follows:

1. For each type o, there exists an infinite number of constants. Constants of type o are
referred to as c,

2. For each type o, there exists an infinite number of variables. Variables of type o are
referred to as u,.

Expressions of type o, are defined recursively as follows:
1. uy: 0.
2. ¢, :0.

3. f a:7,u:0 and < o,7 > is a type which is not vacuous nor circular, then

Au.o < o, T >.
4. fa:< 0,7 > and B : o', where ¢’ < o, then app(a,) : 7.

5. Ifa:0,8:0" and 0 < o', then a =, [: p.

Suppose ¢ : p and 1 : p then

6. ¢ :pand —¢: ¢ iff not (¢ : £).

7. [pVel:pand [pV] tiff ¢:tor:t.

8. [pA]:pand [pAY]:tiff ¢:tand):t.

9. [D] :pand [¢p D] tiff 1 : ¢ whenever ¢ : .

12

10. [p=4]:pand [p=]:tiff:tiff ¢: ¢t

11. If ¢ : p and u is a variable of any type o then Yu¢ : p , and Yu¢ : t iff ¢la/u] : ¢ for
every constant a : o.

12. If ¢ : p and w is a variable of any type o then Ju¢ : p , and Jue : t iff pla/u] : t for some
constant a : o.

13. If o' < o, then « : ¢’ implies a : 0.

Notice that we have placed a syntactic restriction of A-abstraction to ensure that abstracts
never have vacuous or circular types.

3.2.1 Axioms

In our system, self-application is only possible for those expressions which have a complex
type; indeed, this is what is required by clause 4 of the syntax above.

e (a) (A\z.a) < 0,7 >= (\y.aly/z]) :< 0,7 >, where y is not free in «.

e (B) app((A\z.q) < o,7 >, 08:0") =a[B/z] : 7, if 0’ <o

e (v) o <orm>=ay:<o,7r>and B :0=02:0,
then app(ai, 1) : 7 = app(az, B2) : 7

e (0) If (g = a2) : 0 and (a1 = a3) : 0, then (e = a3) : 0

e (¢) If app(ay,z) : 7 = app(ag, x) : 7, then oy :< 0,7 >= g :< 0,7 > where
x : o is not free in ay, as or any other assumption.

e (¢) app(Az.aq, B2) = app(A\x’.aq, B2) where x : 0,2 : 0',0’ < o, and (33 is any
term of type o’.

e (0) (:o=pa:0)=(a:0=,a:0")ifo’ <o.

e (p) (d:o=a:0):t

The following version of n-conversion is derivable:

If E:< 0,0 > then \e.Ex :< 0,0’ >= E :< 0,0 > for z: 7 free in F and 7 << 0,0’ >

Proof

M. Er < 1,< 0,0 >><7<<0,0 > E :<o,0 > y : o from ()

(Az.Ex)y : o' = Ex[y/z] : o' = Ey : o' from (¢)

\e.Er :< o,0 >=FE:<o,0/ > 0

Axioms («), (8),(y) and (J) are standard typed A-calculus axioms. Axiom (¢) is the
extensionality axiom. It says that if oy and g give the same results for the same arguments,
then they are equal. Axiom ({) says that if f: A — B and if f/A’ is the restriction of f to
A" C A, then f and f/A’ give the same results for all elements in A’. Axiom () says that if
a : o' and if o' < o then saying that « equals to itself in o is the same as saying that « is
equal to itself in o’. Axiom (p) is the reflexivity of =.

13

3.2.2 Russell’s and Curry’s Paradoxes

Russell’s paradox does not occur here because paradoxical expressions of the form Az.—app(x,)
are not well-formed. In fact, we have the following lemma:

Lemma 3.6 If = is of type < o,p >, then \x.—app(z,x) of type << o,p >,p > is not
well-formed.

Proof According to the definition of meaningful expressions, it is enough to show that
<< a,p>,p>is a circular type. This is obvious from Lemma 3.1. O

In fact, we have an even stronger lemma:

Lemma 3.7 If x is of type < 0,7 >, where 7 < p, then Ax.—app(x,x) of type << o, 7 >,p >
15 not well-formed.
Proof Ezactly as that of Lemma 3.6. O

With these lemmas, if x :< 0,7 >, where 7 < p, then app(z,) is of type 7 < p. Hence
—app(z,x) is of type p. But Az.—app(z,) is not well-formed in Tpol, due to clause 3 in the
definition of the expressions of a type, since its type, namely << e,p >,p >, is circular.

Curry’s paradox comes from the presence of (DT'), (M P) and (3 where (DT) and (M P)
are as follows:

(DT) T U {4} F 1 implies T - ¢ — 1p,

(MP) I't¢—1and 't ¢ implies I' - 1,

If we take a to be the formula Az.(app(x,z) — L), then
1. app(a,a) = app(a,a) — L by [-conversion

2. app(a,a) - app(a,a), trivial

3. app(a,a) F app(a,a) — L by 1

4. app(a,a) = L by (M P) applied to 2 and 3

5. app(a,a) — L by (DT)

6. - app(a,a) by 1

7. F L by (MP) applied to 5 and 6

However, our (DT) and (M P) have the following form:

(DT) Fu{¢:ttr¢:¢timpliesTU{p:p}F(p—=1):t
(MP) Tk (p—e):tand Tk ¢: ¢ implies I F 4 : ¢,

If we take a to be the formula A\z.(app(z,z) — L), then
1. app(a,a) = app(a,a) — L by [-conversion
2. app(a,a) : t+ app(a,a) : t, trivial

t+ L :tby (MP) applied to 2 and 3

(a,a)
(a,a) :
3. app(a,a) : t+ (app(a,a) — L) 1 t by 1
4. app(a,a) :
(a,a) :

5. app(a,a) : p+ (app(a,a) — L) : ¢t by (DT)

14

6. app(a,a) : pt app(a,a) : t by 1
7. app(a,a) :pE L :t by (MP) applied to 5 and 6

However, we cannot show that app(a,a) : p. In fact Ax.(app(z,x) — L) is not well formed
due to Lemma 3.6 above as its type is << o',p >, p >. This is because if x is of some type o,
since app(x, z) has to be of type p, we can infer that o must be of the form < ¢’,p >. From
this it follows that a is of type << o', p >, p >, which is circular.

3.2.3 Models of Tpol

For the present paper we shall concentrate on Fo, PROP and SET (where PROPNSET =
) and then we shall construct domains inside Fg which represent the types described in our
theory Tpol.

Given domains X,Y already in the Frege structure, we build new domains as follows:

(DOM) X=Y={zreX:V2r' e X[app(z,2') € Y]}.

As a special case of (DOM), the domain (Fp = PROP) = SET inside Fy contains the
nominals of propositional functions. Now let us see if the structure of types can be captured
by the domains.

Lemma 3.8 If X,Y are domains, then (X = Y) C X.
Proof Obvious. O

Lemma 3.9 If X and Y are domains built as above, then
Y CY' implies (X =Y) C (X =Y).

Proof If x € X =Y, then Va' € X,app(xz,2') € Y, by (DOM). Since Y C Y, it follows
that Vo' € X, app(z,2') € Y and soz € X = Y'. O

Lemma 3.10 If X and Y are domains built as above, then
X C X" implies (XN(X'=Y))C (X =Y).

Proof If x € X N (X' = Y) then x € X, and z € (X' = Y); by (DOM), V2’ €
X' app(z,z') € Y. Hence, we have both that x € X and, since X C X’, Va' € X, app(x,2') €
Y. Therefore x € X =Y. O

We now inductively define a relation < between arbitrary domains X and the domain SET.
This relation is related to the notion of a p-chain type which we defined earlier. The relation
X < SET holds iff

1. X =SET, or
2. X =(X'=Y') where X' <SET and Y’ < PROP.
We say that a domain X is inductively predicable iff X < SET.

Lemma 3.11 If X < SET then X C SET.

Proof The proof is by an easy induction. If X = SET then the property holds. Assume by
induction that the property holds up to X', and show that the property holds for X = (X' = Y)
where X' < SET. By Lemma 3.9, (X' = Y) C X', and since X' C SET by inductive
hypothesis, we have by transitivity that X C SET. O

15

The following lemma informs us that if X,Y are inductively predicable then X = Y is
empty. When we give the denotation of our various types, we will find that the domains
associated with vacuous types are always empty.

Lemma 3.12 SET = X is empty whenever X < SET .
Proof The proof is by induction on X:

1. If X = SET then SET = SET is empty, for the following reason. Suppose x is in
SET = SET. Then for every ' € SET, app(x,2') € SET. But app(x,x') is also
in PROP, by the definition of x being a SET. Hence, PROP N SET 1is not empty.
Contradiction.

2. Assume SET = X is empty for X < SET, and show that the domain Y = SET =
(X =Y) is empty. Suppose Y is not empty, then if x is in SET = (X = Y), then
for any =’ in SET, app(x,z') is in X = Y. Hence app(x,z') € X for any ' € SET.
Hence z is in SET = X which is empty. Contradiction. O

Theorem 3.13 X = Y s empty for X,Y < SET.

Proof The proof is by induction on X < SET. If X = SET then the theorem holds
according to Lemma 3.12. Assume the property holds for X' < SET, that is, the domain
X' = Y is empty for any Y < SET; we must show that (X' = Y') = Y is empty for
Y'" C PROP. If Z is not empty, i.e. there is some a in (X' = Y') = Y, then a is also in
X'"=Y'" and for all z in X' = Y', app(a,z) is in Y’ C PROP. But for all z in X' =Y,
app(a,x) is in Y' C SET. Hence app(a,x) is in PROP N SET which is empty, absurd. O

Example 3.14 The following domains are empty:
¢ SET = SET
e SET = (SET = PROP)
e (SET = PROP) = SET and

o cvery domain built recursively out of the above three using =.

3.2.4 Semantics of Types
A model M for Tpol is a quadriple < F,=,C, D >, where

1. F is a Frege structure in which PROP N SET = (),
2. = is as defined above by (DOM),
3. The function D which maps types into domains of M is defined as follows:

d De = FOa
e D, = PROP,
e D, = TRUTH,

e Deygr> =Dy = Dy, where < 0,7 > is non-vacuous.

4. C is an interpretation function which takes any constant of type o to an object in D, .

16

We also assume the existence of an assigment function g which takes any variable of a non-
vacuous type o to an object in D, .

Lemma 3.15 Doy~ = (Dy = D;) C Dy where < 0,7 > is non vacuous.
Proof Obvious by Lemma 3.8. O

Lemma 3.16 If D, C D, then (D, = D;) C (Dy = D,).
Proof If a is in (Dy = D;) then (a € Dy) and [(VYx € D,)(app(a,z) € D;)] then (a € Dy)
and [(VYx € D,)(app(a,z) € D,)]. O

Lemma 3.17 If o < 7 then D, C D;.
Proof by induction on o < 7.

1. Ifco=ethenT=¢ and D, = D;.
2. If c =t and T =p then D, = TRUTH and D, = PROP.
3. If o =<T7,p> then Dy = D<; >~ C D, by Lemma 3.15.

4- If T <p then Degr> C Decorsr>
Proof (Dy = D;) C D,. Hence by Lemma 3.10,
(Ds = D;) N (Dy = D7) C (Dy = Dy) = D,.
Hence (Dy = D;) C (Dy = D;) = D;.
Assume that 7 < p implies D; C D,. Then Dy~ C D<g p>, by Lemma 3.16.

Note that due to Lemma 3.16, if < 0,7 > is circular, then Dy~ = Dccors 7> O

Lemma 3.18 If o is a p-chain type and not o < p then D, < SET .
Proof The proof is by induction on o.
If o =<e,7 > where 7 < p then D, C Fy == PROP = SET < SET.
Take o0 =< 7,7 >, where o is not < p and T is a p-chain type and property holds for T.

e case 1 not 7 < p, then Do, ~ = D; = Dy where D C PROP and D, < SET by
inductive hypothesis. Hence D, .~ < SET.

e case 2 7 < p then < 7,7 >< 7 < p. But it is not the case that < 7,7 >< p absurd.
Hence 7 is not < p. O

Lemma 3.19 If o is vacuous then D, is empty.

Proof If o is vacuous, then 0 =< 1,p > where T and p are p-chain types not < p or either
T or p s vacuous. If either is vacuous then nothing to prove. Else, Dy = D, = D, where
D.,D, < SET according to Lemma 3.18. Hence by Theorem 3.13, D, is empty. O

17

4 COMPARISON AND CONCLUSION

In this part, we showed that Frege structures provide a solution to both problems; we provided

a type theory where any function belongs to its domain and hence the theory is a suitable

framework for nominalisation. Now we assess further the advantages one obtains with Frege

structures. We start with type freeness and the fact that SET is isomorphic to Propositional

functions Fg — PROP and that SET C Fy. Also, we have the two following functionals:
|| ||1 :SET — PF1

A: PF; — SET.

If we assume that the interpretation of verbs takes place in F; for ¢ > 1 and thus that
[[walk]] is in Fyq, then we get: [[to walk]]g = A.[[walk]],.

Now it is straightforward to interpret things like to walk hurts, for: [[to walk hurts]], =
(hart])y([fto walkllg) = [[hurt]]y(\[[walk]],).

The advantage of what we just offered lies in the elegance of classifying the denotation
of our items. With Montague’s and Turner’s approaches, one has always to check whether
the denotation of an item is in the right domain. With our approach, we do not need to
check whether [[to walk]], is in Fg or not using some confusing domain equations. All we
had to say was that [[walk]]y is in Fy; therefore A[[walk]], is in Fg. This actually seems
to be an encouraging advantage about Frege structures: nominalisation and self reference
are a natural process inside the Frege structure. It also seems that we have real application,
unlike in Scott domains where application is only through the isomorphic embedding. This is
because instead of interpreting things as above into Fj, for ¢ > 0, we can restrict everything
to Fo obtaining [[fun is fun]], = pred([[fun]y, [fun]]y).

Therefore it seems that by using Frege structures we get the following advantages over
Scott domains,

1. Real self application

2. Less cumbersome checking for the right typing than that involved with Scott domains.
It is mainly checking the propositionhood of various items to obtain the type of the
resulting item.

3. No redundant semantic types
4. Nominalisation seems to flow naturally
5. Quantification

For the sake of completeness, we mention a new approach to a theory of properties pro-
posed by Turner (in [Turner 1987]) which abandons completely the use of Scott domains.
Turner’s new theory is one which starts from Frege’s comprehension principle and restricts
it in such a way that the paradox is no longer derivable. Turner starts with a first order
theory which has a pairing system and adds to this theory a new operator p (to serve as the
predication operator) together with the lambda operator. Then in this case, if one assumes
full classical logic and Frege’s comprehension principle, one will certainly derive the paradox;
for, take a = Az.—p(x, x), then p(a,a) < —p(z,x)la/z] <> —p(a,a). Contradiction.

Of course, the problem does not come from contraction, i.e. p(Ax.A,t) — A(t, z) is always
true. But the converse implication (i.e. expansion) is problematic. This is due to negation,
i.e. if A is atomic then we can accept A(t,z) — p(Az.A,t). But we cannot accept it when

18

A is like Russell’s property, an atomic term proceeded by a negation sign. This is exactly
what guides Turner in setting his theory. For the theory now will have the following axioms
replacing Frege’s comprehension principle:

(E1) A(t,z) — p(Ax.A,t) when A is atomic.
(R) p(Ax. A t) — A(t, x).
(1) p(Az.p(Ay.A,t),u) — p(Ay.p(Ax.A, u),t)

Now the abandonment of Frege’s full comprehension axiom will impose the use of two
logics, one inside the predication operator in addition to the usual one for wifs. This is due
to the fact that breaking the equivalence between p(Az.A,t) and A(t,z) will disconnect the
reasoning about wifs and properties. To build models for T" above, one uses the fixed point
operator to turn an ordinary model of the first order theory into a model which will validate
in it as many instances of the comprehension axiom as possible. It will of course validate only
the safe instances whereas the paradoxical ones will oscillate in truth-values. The inductive
step to build the model should be obvious. As an example, one can start with the first order
model, and an operator PI which is empty at the beginning. Then at the next step, extend
PI to also contain the pairs < [[Az.A]],[[t]]gm > such that [[A]]ys,/2) = 1 and so on until
one gets a limit ordinal y where PI then is to have in it all the pairs < e,d > such that
for some ordinal smaller than this y, < e,d > belongs to all the intermediate PI's. Now
we no longer have a full comprehension principle and we cannot do with properties what
we can do with formulae. But there are still a great deal of things that one can identify
between properties and wifs; for example, from P(A\z.A,t) and P(Ax.B,t) one can derive
p(Az.A A B,t). Turner showed however that theories of Frege structures are weaker than his
theory of properties which is a fact that may stand to our advantage for the following reasons.
Firstly, Turner can prove at least as much in his theory as one can in a theory based on Frege
structures. Secondly, Turner is paying a price for the strength of his theory — mainly his use
of two logics (internal and external) rather than one only. On balance it seems better to use
a theory based on Frege structures for properties. Doing so gains the advantages of Turner
without the complications.

From the point of view of typing, whereas I use a type free theory, Cocchiarella uses a
second order one. There are however some similarities and differences in these two ways of
typing that I would like to illustrate. According to axiom (9) under 1.1.2 of Part I, we have
ME, C MEy for all n > 1, where M E,, are the meaningful expressions of any type n. For
us, we have that M E, C MFEy for any 1 < n but the pictures of both approaches are quite
different. According to our approach these types are related to each other in a chain like way.
That is ME,, C MEn—1... C ME,. For Cocchiarella we have that each MFE, C ME,
for n > 1, yet no relation exists between M FE,, and M FE,, for n # m. Also for Cocchiarella,
propositions are not included in objects, even though they can be embedded in M E by axiom
(8) under the same paragraph. Hence Cocchiarella’s whole structure can be understood as
a collection of objects, which has a denumerably infinite number of subcollections called
functions but where propositions are outside the domain of objects and can be mapped into
it. This structure for Cocchiarella is not a structure of types in the sense that we have in
the typing structure in [Kamareddine 1988]. In fact everything that Cocchiarella has so far
we have; as can be seen in [Kamareddine 1988], a Frege structure is Fy,...,F,, where Fy, is
the collection of objects, Fy is the collection of k-ary functions and each of these Fy, can be
embedded in Fg, by Ax. What we have in addition is a typing system constructed inside Fy,
which cannot be found in Cocchiarella’s theory. Also, our system is first order in that the
quantification over objects and functions is the same, whereas Cocchiarella’s system is second

19

order.

5 Acknowledgments

The author is indebted to the anonymous referees whose suggestions played a crucial role in
improving both the form and the contents of the paper.

References

[Aczel 1980] P. Aczel, Frege structures and the notions of proposition, truth and set; in: J. Barwise,
ed., The Kleene Synposium, Studies in Logic 101, North-Holland, NewYork, 1980, pp. 31-60.

[Aczel 1984] P. Aczel, Non-well founded sets, CSLI Lecture notes No 14, 1984.

[Aczel 1985] P. Aczel, Properties and propositional functions, privately circulated note, Manchester
University, 1985.

[Barendregt 1981] H. Barendregt, The lambda calculus: its syntar and semantics, North Holland,
1981.

[Barendregt’ 1981] H. Barendregt, The type free lambda calculus, Handbook of Mathematical logic,
Ed. J.Barwise, North Holland, 1981, pp. 1091-1132.

[Barwise 1987] J. Barwise and J. Etchemendy, The liar: An Essay on Truth and Circular Propositions,
Oxford University Press, Oxford, 1987.

[Beeson 1987] M. Beeson, Foundations of constructive Mathematics, Springer-Verlag, Berlin, 1987.
[Bealer 1982] G. Bealer, Quality and concept, Clarendon press, Oxford, 1982.

[Boolos 1971] G. Boolos, The iterative conception of set, Journal of Philosophy LXVIII, 1971, pp.
215-231.

[Church 1940] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic 5,
1940, pp. 56-68.

[Cocchiarella 1984] N. Cocchiarella, Frege’s Double Correlation Thesis and Quine’s set theories NF
and ML, Journal of Philosophical Logic 13, 1984.

[Cocchiarella 1986] N. Cocchiarella, Conceptualism, Ramified Logic and Nominalised predicates,
Topoi 5, 1986, pp. 78-87.

[Cocchiarella’ 1986] N. Cocchiarella, Philosophical Perspectives on Formal theories of Predication,
Handbook of Philosophical Logic 4, 1986.

[Feferman 1975] S. Feferman, A language and axioms for explicit Mathematics, Algebra & Logic,
lecture notes in mathematics 450, 1975, pp. 87-139.

[Feferman 1979] S. Feferman, Constructive theories of functions and classes, Ed. M.Boffa, Logic Col-
loquium ’78, North-Holland, Amsterdam, 1979, pp. 159-224.

[Feferman 1981] S. Feferman, Working foundations, A revised version of a paper presented to the
workshop The present state of the problem of foundations of Mathematics, Florence, 1981.

[Feferman’ 1981] S. Feferman, A theory of variable types, privately circulated note, Stanford Univer-
sity, 1981.

[Feferman 1982] S. Feferman, Inductively presented systems and the formalisation of Meta-
Mathematics, Eds. D. Lascar and J. Smiley, Logic Colloguium ’80, North-Holland, Amsterdam,
1982, pp. 95-128.

20

[Feferman 1983] S. Feferman, Intensional Mathematics, Logic Colloguium ’83.
[Feferman’ 1983] S. Feferman, Between constructive and classical Mathematics, Logic Colloguium '83.

[Feferman 1984] S. Feferman, Intensionality in Mathematics, Symposium on intensions and set theory,
Meeting of the Pacific Division of the American Philosophical Association, 1984.

[Feferman’ 1984] S. Feferman, Towards useful type-free theories I, Journal of Symbolic Logic 49, 1984,
pp. 75-111.

[Fraenkel 1966] A. Fraenkel, Set theory and Logic, Addison-Wesley, U.S.A, 1966.

[Fraenkel 1973] A. Fraenkel, Y. Bar-Hillel and A. Levy, Foundations of set theory, North-Holland,
Amsterdam, 1973.

[Frege 1970] G.Frege, Translations from the philosophical writings of Frege, Ed. P. Geach and M.
Black, Basil Blackwell, Oxford, 1970.

[Kamareddine 1988] F. Kamareddine, A polymorphic type theory, with Ewan Klein, Talk given at
Titisee conference on unification, 1988.

[Kamareddine 1989] F. Kamareddine, Semantics in a Frege Structure, PhD thesis, University of Ed-
inburgh, 1988.

[Kleene 1952] S. Kleene, Introduction to Metamathematics, D.Van Nostrand co, Princeton, 1952.

[Kripke 1963] S. Kripke, Semantical considerations on Modal Logic, Ed. L. Linsky, Reference and
Modality, 1963.

[Kripke 1975] S. Kripke, Outline of a theory of Truth, The Journal of Philosophy LXXII, 1975, pp.
690-716.

[Meyer 1981] A. Meyer, What is a model of the Lambda Calculus? Unpublished ms., M.I.T. Lab.,
Computer Science, 1981.

[Parsons 1979] T. Parsons, The theory of types and ordinary language, Eds. S. Davies and M. Mithun,
Linguistics, Philosophy and Montague Grammar, 1979, University of Texas Press, Austin.

[Poincaré 1900] H. Poincaré, Du role de l'intuition et de la logique en mathematiques, C.R. du II
Congr. Intern. des Math., Paris 1900, pp. 200-202.

[Quine 1969] W. Quine, Set theory and its Logic, Belknap Press, Harvard, 1969.

[Russell 1908] B. Russell, Mathematical logic as based on the theory of types, American Journal of
of Math. 30, 1908, pp. 222-262.

[Scott 1976] D. Scott, Data types as Lattices, Technical Monograph PRG-5, Siam Journal on Com-
puting 5, 1976, pp. 522-587.

[Scott 1975] D. Scott, Combinators and classes, Ed. Bohm, A-calculus and Computer Science theory,
Lecture notes in Computer Science 37, Springer, 1975.

[Thomason 1974] R. Thomason, Formal Philosophy; Selected papers by Richmond Montague, Yale
University, 1974.

[Turner 1984] R.Turner, Three Theories of Nominalized Predicates, Studia Logica XLIV2, 1984, pp.
165-186.

[Turner’ 1984] R. Turner, Nominalization and Scott’s Domains II, Notre Dame Journal of Formal
Logic 26, 1984.

[Turner 1987] R. Turner, A theory of properties, Journal of Symbolic Logic 52, 1987.

21

