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Abstract

This article is a brief review of the type free A-calculus and its basic rewriting notions, and
of the pure type system framework which generalises many type systems. Both the type
free A-calculus and the pure type systems are presented using variable names and de Bruijn
indices. Using the presentation of the A-calculus with de Bruijn indices, we illustrate how a
calculus of explicit substitutions can be obtained. In addition, de Bruijn’s notation for the
A-calculus is introduced and some of its advantages are outlined.
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1 Introduction to Logics, Types and Rewriting

Logic existed since the ancient times, really it goes back to the consciousness of
human beings. However, in the 20th century, there has been an explosion in the
different logics introduced and in the applications that depended on logic. This ex-
plosion is due to many reasons that we will briefly touch on in this paper. This
explosion moreover, is not slowing down in the twenty first century. On the con-
trary, we will continue to see new different logics, extensions of old logics and the
study of their theory and applications will be as thrive as it was in the last cen-
tury. This is not surprising because the twentieth century was indeed a century of
complexity and this complexity will be carried to this century. The following table ex-
plains the consequences of a single machine failure both in the years 1900 and in 2000.

1900 2000
Main way information travels in society: paper electric signals, radio
Number of parts in complex machine: 10,000 (locomotive) | 1,000,000,000 (CPU)
Worst consequences of single machine failure: 100s die end of all life?
Likelihood a machine includes a computer: very low very high
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This complexity of information and the disastrous consequences of failure, lead to
the need for Automation and for establishing Correctness. Modern technological
systems are just too complicated for humans to reason about unaided, so automation
is needed. In addition, because of the increasing interdependency of systems and the
faster and more automatic travel of information, failures can have a wide impact. So
establishing correctness is important. Furthermore, because modern systems have so
many possible states, testing is often impractical. It seems that proofs are needed to
cover infinitely many situations. In other words, some kind of formalism is needed to
aid in design and to ensure safety.

But then, what kind of formalism should one develop? This is not an easy question
to answer. However, a reasoning formalism should at least be:

e Correct: Only correct statements can be “proven”.
e Adequate: Needed properties in the problem domain can be stated and proved.

e Feasible: The resources (money, time) used in stating and proving needed
properties must be within practical limits.

In addition, assuming a minimally acceptable formalism, we would also like it to be:

e Efficient: Costs of both the reasoning process and the thing being reasoned
about should be minimized.

e Supportive of reuse: Slight specification changes should not force reproving
properties for an entire system. Libraries of pre-proved statements should be
well supported.

e Elegant: The core of the reasoning formalism should be as simple as possible,
to aid in reasoning about the formalism itself.

Work on logic in the twentieth century led to the development of two related yet
complementary areas: types and rewriting. Logics, types, and rewriting have existed
in various forms since the times of the ancient Babylonians and Greeks (e.g., Euclid,
Aristotle, etc.) yet in the twentieth century, types and rewriting became explicit
theories and started to be developed as branches of their own. Logics, types, and
rewriting are able to be shown correct, are elegant as we can formulate and (automate)
clear rules of how they work (e.g., from A and A — B we can deduce B), and are
adequate as we can express a lot in these tiny formalisms.

But what are logics? What are proofs? What are types and what is rewriting?
Here is an attempt at explaining them. We start with proofs and logic.

e A proof is the guarantee of some statement provided by a rigorous expla-
nation stated using axioms (statements “for free”) and rules for combining
already proven statements to obtain more statements.

e A logic is a formalism for statements and proofs of statements.

e Why do we believe the explanation of a proof? Because a proved statement is
derived step by step from explicit assumptions using a trusted logic.



The above explanation of logic and proofs can be traced back to the times of Aristotle
(384-322 B.C.) who wanted a set of rules that would be powerful enough for most
intuitively valid proofs. Aristotle correctly stated that proof search is harder than
proof checking:

Given a proof of a statement, one can check that it is a correct proof.
Given a statement, one may not be able to find the proof.

Aristotle’s intuitions on this have been confirmed by Goédel, Turing, and others in
the twentieth century. Much later than Aristotle, Leibniz (1646-1717) conceived of
automated deduction, i.e., to find

e a language L in which arbitrary concepts could be formulated, and
e a machine to determine the correctness of statements in L.

Such a machine can not work for every statement according to Aristotle and (later
results by) Godel and Turing.

The late 1800s saw the beginnings of serious formalization: Cantor began formal-
izing set theory [6, 7] and made contributions to number theory, Peano formalized
arithmetic [39], Frege’s Begriffsschrift [13] (1879) gave the first thorough and exten-
sive formalisation of logic. Frege’s Grundgesetze der Arithmetik [14, 16], called later
by others Naive Set Theory (NST), could handle elementary arithmetic, set theory,
logic, and quantification. Frege’s NST allowed a precise definition of the vital concept
of the function. As a result, NST could include not only functions that take numbers
as arguments and return numbers as results, but also functions that can take and re-
turn other sorts of arguments, including functions. These powerful functions were the
key to the formalization of logic in NST. Frege was cautious: ordinary functions could
only take “objects” as arguments, not other functions. However, to gain important
expressive power, he allowed a way to turn a function into an object representing
its graph. Unfortunately, this led to a paradox, due to the implicit possibility of
self-application of functions. In 1902, Russell suggested [42] and Frege completed
the argument [15] that a paradox could occur in NST. First, one can define S to be
“the set of all sets which do not contain themselves”. Then, one can prove both of
these statements in NST:

Ses & S¢S

The same paradox could be encoded in the systems of Cantor and Peano (but not in
Frege’s weaker Begriffsschrift). As a result, all these systems were inconsistent —
not only could every true statement be proved but also every false one! (Three-valued
logic can solve this, but is unsatisfactory for other reasons.) Logic was in a crisis.

In 1908, Russell suggested the use of types to solve the problem [43]. It is fair to
say that types were (implicitly) used much earlier than that. For example, Euclid’s
FElements (circa 325 B.C.) begins with (see page 153 of [12]):

1. A point is that which has no part.
2. A line is breadthless length.



15. A circle is a plane figure contained by one line such that all the straight lines
falling upon it from one point among those lying within the figure are equal to
one another.

Although the above seems to merely define points, lines, and circles, it shows more im-
portantly that Euclid distinguished between them. Euclid always mentioned to which
class (points, lines, etc.) an object belonged. By distinguishing classes of objects,
Euclid prevented undesired situations, like considering whether two points (instead of
two lines) are parallel. When considering whether two objects were parallel, intuition
forced Euclid to think about the type of the objects. As intuition does not support
the notion of parallel points, he did not even ¢ry to undertake such a construction.

In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s. If you have studied geometry, then
you have some (implicit) understanding of types. The question that poses itself
then is what led to the creation of this new discipline (type theory) in the twnetieth
century. Twan Laan in his PhD thesis [33] gives an excellent survey of the evolution
of type theory. Here, we briefly use his argument to state that starting in the 1800s,
mathematical systems became less intuitive, for several reasons:

e Very complex or abstract systems.
e Formal systems.
e Something with less intuition than a human using the systems: a computer.

These situations are paradox threats. An example is Frege’s NST. In such cases,
there is not enough intuition to activate the (implicit) type theory to warn against
an impossible situation. Reasoning proceeds within the impossible situation and then
obtains a result that may be wrong or paradoxical.

To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russell pre-
scribed avoiding self-reference and self-application in his “vicious circle principle”:

Whatever involves all of a collection must not be one of the collection.

Russell implemented this in his Ramified Theory of Types (RTT) [43] which used
types and orders. Self-application was prevented by forcing functions of order k to
be applied only to arguments of order less than k. This was carried out further by
Russell and Whitehead in the famous Principia Mathematica [49] (1910-1912), which
founded mathematics on logic, as far as possible, avoiding paradoxes. For example, in
RTT, one can define a function “+” which is restricted to be applied only to integers.

Although RTT was correct, unlike NST, the types of RTT have turned out instead
to be too restrictive for mathematics and computer science where fixed points (to
mention one example) play an important role. RTT also forces duplication of the
definitions of the number system, the boolean algebra, etc., at every level.

The exploration of the middle ground between these two extremes has led to many
systems, most of them in the context of the A-calculus, the first higher-order rewriting
system. If you have studied algebra, then you know some basics in rewriting. Here is
an example of algebraic calculations which illustrates how rewriting works:



(a+b)—a by rule r+y=y+=z

(b+a)—a by rule r—y=x+ (—y)
= (b+a)+ (—a) by rule (z+y)+z=z+ (y+2)
= b+ (a+(—a)) by rule  z+4 (—z)=0
= b+0 by rule z+0=z
= b

Rewriting is the action of replacing a subexpression which is matched by an instance
of one side of a rule by the corresponding instance of the other side of the same rule.
Important properties of rewriting systems include:

e Orientation: Usually, most rules can only be used from left to right as in
x40 — z. Forward use of the oriented rules represents progress in computation.
Un-oriented rules usually do trivial work asin z +y =y + z.

e Termination: It is desirable to show that rewriting halts, i.e., to avoid infinite
sequences of the form P - P, — P, — - --.

e Confluence: The result of rewriting is independent of the order in which the
rules are used. For example, 1 + 2 + 3 should rewrite to 6, no matter how we
evaluate it.

As for types, computations (or rewriting) existed since ancient times (e.g., algebra).
However, only in the twentieth century, higher-order rewriting calculi and theories
have been extensively developed and important themes and problems identified and
studied. In this paper, we are only interested in the development of higher-order
rewriting through the A-calculus which was highly influenced by Frege’s abstraction
principle of the late 1800s. This principle states that any expression mentioning
some symbol in zero or more places can be turned into a function by abstracting over
that symbol. Introduced in the 1930s, Church’s A-calculus made function abstraction
an operator. For example, (Az.z+5) represents the (unnamed) mathematical function
which takes as input any number and returns as output the result of adding 5 to that
number. The A-calculus provides higher-order rewriting, allowing equations like:

F(O e + (1/2))5) = £(5 + (1/3)) = F(5402) = £(5.2)

The type-free A-calculus, which can be seen as a small programming language, is an
excellent theory of functions — it can represent all computable functions. Church
intended the type-free A-calculus with logical operators to provide a foundation for
mathematics. Unfortunately, Russell’s paradox could also be encoded in the type-free
A-calculus, rendering its use for logic incorrect. Church [8] and Curry [11] introduced
the simply typed A-calculus (STLC) to provide logic while avoiding Russell’s paradox
in a manner similar to RTT. Unfortunately, like RTT, the STLC is too restrictive.
The areas, Logics, Types and Rewriting converge. Heyting [20], Kolmogorov [32],
Curry and Feys [11] (improved by Howard [22]), and de Bruijn [38] all observed the
“propositions as types” or “proofs as terms” (PAT) correspondence. In PAT,
logical operators are embedded in the types of A-terms rather than in the proposi-
tions and A-terms are viewed as proofs of the propositions represented by their types.



Advantages of PAT include the ability to manipulate proofs, easier support for inde-
pendent proof checking, the possibility of the extraction of computer programs from
proofs, and the ability to prove properties of the logic via the termination of the
rewriting system.

In the present time, there is a remarkable revival of A-calculus, especially in the
versions which use types. Both logicians and computer scientists have developed
several branches of typed and untyped A-calculus. Also mathematics has benefitted
from MA-calculus, especially since the time (around 1970) where de Bruijn used his
A-calculus-based Automath for the analysis and checking of mathematical texts. In
the rest of this article, we give a brief introduction, both in the classical notation
of Church and in the de Bruijn notation, to the A-calculus and to type theory via
the pure type systems framework. Section 2 deals with the type free A-calculus and
Section 3 deals with pure type systems. In particular, we introduce in Section 2.1
some basic rewriting notions needed for the A-calculus and in Section 2.2 we give
the classical A-calculus (as is usually written) with variable names. In Section 2.3
we present the classical A-calculus with de Bruijn indices and in Section 2.4 we turn
it into a calculus of explicit substitutions. In Section 2.5 we present the A-calculus
using variable names in de Bruijn’s notation rather than in the classical one. In
this presentation, called A-calculus & la de Bruijn, the argument appears before the
function and terms are structured in a different manner to the classical A-calculus.
The A-calculus a la de Bruijn can also be written using de Bruijn indices instead of
variable names, and we refer the reader to [23] for further details. In Section 3.1 we
present the pure type systems framework in the classical notation of the A-calculus
using variable names. In Section 3.2 we present the pure type systems in classical
notation using de Bruijn indices and establish their isomorphism to the version with
variable names. We leave it as an exercise for the reader to write pure type systems
in de Bruijn’s notation (using either variable names or de Bruijn indices).

2 The Type Free A-calculus

In this section, we introduce the classical A-calculus (with variable names and with de
Bruijn indices) and the A-calculus @ la de Bruijn. Terms of the classical A-calculus are
constructed via application (as in AB) or abstraction (as in Av.A if variable names are
used, or AA if de Bruijn indices are used). Terms of the A-calculus & la de Bruijn are
also constructed using application (as in (B)A) or abstraction (as in [v]A if variable
names are used, or [JA if de Bruijn indices are used). The A-calculus & la de Bruijn is
only given using variable names, for the version using de Bruijn indices see [23].

2.1 Rewriting notions

All the systems of this paper have a common feature. First, the syntax (the set of
terms, types, substitutions, etc.) is given and then a set of rules that work on the
syntax is presented. Those rules are rewrite rules and are of the foorm A —p B
or (A,B) € R if we prefer to talk of rewrite relations. These rules take a certain
expression of the syntax (term, type, substitution, etc.) that matches the pattern
of the left hand side A of the rule and rewrite it in a way that matches the right
hand side B of the rule. This rewriting must take place inside larger formulas as



well. For example, assume that A rewrites to B, then we must also be able to rewrite
AC to BC. For this reason, an important notion for rewriting relations is that of
compatibility. We introduce this notion here for the classical A-calculus whose only
operators are application and abstraction (the syntax is given in Definitions 9 and 39):

Definition 1 (Compatibility for the classical A-calculus) We say that a binary
relation R on the classical A-calculus is compatible iff for all terms A, B of the A-
calculus and variable v, the following holds:

(A,B)eR (A,B)eR (A,B)eR (A,B)eR
(AC,BC) € R (CA,CB) € R (M.A, \v.B) € R( ) (M, AB) € R( )

(1) is in case of variable names and (2) is in case of de Bruijn indices.

This notion of compatibility will be extended according to the extra operations that
will be added to the A-calculus. For example, if we add substitution, we will have to
add an extra clause on the compatibility for the case of the substitution operator.

Definition 2 (Reduction Notations) Let S be a set and R a binary relation on
S. We call R areduction notion on S and use the following notations and definitions:

1. — g is the compatible closure of R, and (S, —g) is a reduction system.
2. Sk orjust =, is the reflexive closure =g .

3. i_»R or just 2% is the transitive closure of —R.

4. —»p or just —» is the reflexive and transitive closure of . When A —» B
we say there exists a reduction sequence from A to B.

5. =g is the reflexive, symmetric and transitive closure of —g. That is, =g is the
least equivalence relation containing — g.

6. = is syntactic identity, and A = B means A and B are syntactically identical.

7. wewrite A% B orjust A % B when the reduction sequence consists of n > 0
steps of reduction. We call n the length of the reduction sequence. Le., if n > 2,
there exists By,...,B,_1 suchthat A »r By »r -+ =g Bh_1 g B. When

n=1, A—l»RB means A —-r B. When n =0, A—O»RB means A= B.

8. When (A4, B) € R, we say that A is an R-redex. In many cases, we introduce R
as a set of rewrite rules of the form A —x B.

9. A€ S isan R-normal form (R-uf for short) if A does not contain any R-redex.

10. We say that B is an R-normal form of A or A has the R-normal form B if B
is an R-normal form and A =g B.

Expressions can be evaluated in different orders. For example, we could evaluate
2+3+4 by evaluating (2+3)+4 or 2+(3+4). We would like to get the same result
either way. The following two definitions help us describe this phenomenon:



Definition 3 (Diamond property) Let R be a binary relation on S. We say that
(S, — r) satisfies the diamond propertyif for all A,B,C € S,if A »g Band A —-r C,
then there is a D such that B —»g D and C —» g D. Pictorially this is as follows:

A
AN
B C
D
Definition 4 (Confluence and Church Rosser) Let R be a notion of reduction

on S. We define local confluence (or Weak Church Rosser WCR), confluence (or
Church Rosser CR) and strong confluence (or Strong Church Rosser SCR) as follows:

1. WCR: — g satisfies the diamond property. L.e.:
VA,B,CeS dDeS : (A-gB N A—»rC)= (B -»r D AN C —»gr D).

2. CR: —» g satisfies the diamond property. Le.:
VA,B,CeS dDeS : (A »r BANA »r C)=(B g D ANC —»g D).

3. SCR:VA,B,CeSIdD €S : (A -pr BANA —»p C)= (B —-r DANC —r D).
Lemma 5 Let R be a notion of reduction. If — 5 is SCR then —» g is also SCR.

Theorem 6 Let R be a notion of reduction that is CR. The following holds:
e If A =; B then there is a C such that A =5 C and B = C.!
e If A= B and B is in R-normal form, then A —»r B.

e If A =g B then either A and B do not have R-normal forms or A and B have
the same R-normal form.

e If A has R-normal forms B and C, then B and C are identical up to variable
renaming. Hence, we speak of the R-normal form of A and denote by R(A).

e A =p B, A and B are in R-normal forms then A and B are identical up to
variable renaming.

A second very important concern of reduction (or rewrite) systems is that of termi-
nation. We are interested in knowing if our rewriting of a particular expression will
terminate or will go indefinitely. For example, the rule n — n + 1 applied to 1 will
not terminate. Termination is a crucial property for implementation purposes. If an
expression does not always terminate in a particular reduction system, perhaps it can
terminate with some careful order of rules. Those expressions that will never termi-
nate are disastrous for computation. We set the way with the following definition.

Definition 7 (Normalisation) Let R be a reduction notion on S. We say that:

LSometimes, this is referred to as the confluence property. We have however identified Church
Rosser and Confluence.



e A term A is strongly R-normalising if there are no infinite R-reduction sequences
starting at A.

e R is strongly normalising (SN) if there is no infinite sequence (4;);-, in S such
that A; =g Asyq for all i > 0. Le. every A in S strongly R-normalises.

e R is weakly normalising (WN) if every A € S has an R-normal form.

When no confusion arises, R may be omitted and we speak simply of normal forms
or normalisation.

Strong normalisation implies weak normalisation and therefore the existence of normal
forms. The following lemma, is an important connection between strong normalisation
and confluence (its proof can be found in [3], proposition 3.1.25):

Lemma 8 (Newman) Every strongly normalising, locally confluent notion of re-
duction relation is confluent. In other words, SN + WCR = CR.

2.2 Classical \-calculus with variable names

Definition 9 (Syntax of A\-terms) The set of classical A-terms or A-expressions M
is given by: M == V| (AV.M) | (MM) where V = {z,y,z,...} is an infinite set of
term variables. We let v,v',v" - -- range over V and A, B,C - - - range over M.

Example 10 (Az.z), (Az.(zz)), (Az.(\y.2)), (Az.(Ay.(zy))), and ((\z.z)(A\z.z)) are
all classical A-expressions.

This simple language is surprisingly rich. Its richness comes from the freedom to create
and apply functions, especially higher order functions to other functions (and even
to themselves). To explain the intuitive meaning of these three sorts of expressions,
let us imagine a model where every A-expression denotes an element of that model
(which is a function). In particular, the variables denote a function in the model
via an interpretation function or an environment which maps every variable into a
specific element of the model. Such a model by the way was not obvious for more
than forty years. In fact, for a domain D to be a model of A-calculus, it requires
that the set of functions from D to D be included in D. Moreover, as the A-calculus
represents precisely the recursive functions, we know from Cantor’s theorem that the
domain D is much smaller than the set of functions from D to D. Dana Scott was
armed by this theorem in his attempt to show the non-existence of the models of the
A-calculus. To his surprise, he proved the opposite of what he set out to show. He
found in 1969 a model which has opened the door to an extensive area of research in
computer science. We will not go into the details of these models in this paper.

Definition 11 (Meaning of Terms) Here is now the intuitive meaning of each of
the three A-expressions given in the syntax:

Variables Functions denoted by variables are determined by what the variables are
bound to in the environment. Binding is done by A-abstraction.

Function application If A and B are A-expressions, then so is (AB). This expres-
sion denotes the result of applying the function denoted by A to the function
denoted by B.



Abstraction If v is a variable and A is an expression which may or may not contain
occurrences of v, then Av.A denotes the function that maps the input value B
to the output value Afv := B].

Example 12 (Az.z) denotes the identity function. (Az.(Ay.z)) denotes the function
which takes two arguments and returns the first.

As parentheses are cumbersome, we will use the following notational convention:
Definition 13 (Notational convention) We use these notational conventions:
1. Functional application associates to the left. So ABC denotes ((AB)C).

2. The body of a A is anything that comes after it. So, instead of (Av.(A1 4z ... 4,)),
we write \v.4145 ... A,.

3. A sequence of \’s is compressed to one, so Azyz.t denotes Az.(A\y.(\z.t)).
As a consequence of these notational conventions we get:
1. Parentheses may be dropped: (AB) and (Av.A) are written AB and Av.A.

2. Application has priority over abstraction: Az.yz means Az.(yz) and not (A\z.y)z.

2.2.1 Variables and Substitution

We need to manipulate A-expressions in order to get values. For example, we need to
apply (Az.z) to y to obtain y. To do so, we use the S-rule which says that (\v.A)B
evaluates to the body A where v is substituted by B, written A[v := B|. However, one
has to be careful. Look at the following example:

Example 14 Evaluating (Afz.fz)g to Az.gz is perfectly acceptable but evaluating
(Afz.fz)x to Az.zx is not. ByDefinition 11, Afz.fz and Afy. fy have the same mean-
ing and hence (Afz.fz)x and (Afy.fy)y must also have the same meaning. Moreover,
their values must have the same meaning. However, if (Afxz.fz)z evaluates to Az.zx
and (Afy.fy)x evaluates to Ay.zy, then we easily see, according to Definition 11, that
Az.zx and Ay.xy have two different meanings. The first takes a function and applies
it to itself, the second takes a function y and applies z (whatever its value) to y.

We define the notions of free and bound variables which will play an important role
in avoiding the problem above. In fact, the A is a variable binder, just like V in logic:

Definition 15 (Free and Bound variables) For a A-term C, the set of free vari-
ables FV(C), and the set of bound variables BV (C), are defined inductively as follows:

FV(v) =der {0} BV (v) =dqef 0
FV(Av.A) =45 FV(A)—{v} BV (Av.A) =45 BV(A)U{v}
FV(AB) =4 FV(A)UFV(B) BV(AB) =g BV(A)UBV(B)

10



An occurrence of a variable v in a A-expression is free if it is not within the scope of
a Av.2, otherwise it is bound. For example, in (Az.yz)(A\y.zy), the first occurrence of
y is free whereas the second is bound. Moreover, the first occurrence of x is bound
whereas the second is free. In Ay.z(Az.yx) the first occurrence of x is free whereas
the second is bound. A closed term is a Ad-term in which all variables are bound.
Free and bound variables play an important role in the A-calculus for many reasons:

1. Almost all A-calculi identify terms that only differ in the name of their bound
variables. For example, as Az.z and Ay.y have according to Definition 11 the
same meaning (the identity function), they are usually identified. We will see
more on this when we will introduce a-conversion (cf. Definition 19).

2. Substitution has to be handled with care due to the distinct roles played by
bound and free variables. After substitution, no free variable can become bound.
For example, (Az.fz)[f := z] must not return Az.zz, but Ay.xy. These two
latter terms have different meanings. Ay.zy is obtained by renaming the bound
z in Az.fz to y, and then performing the substitution. Thus (Az.fz)[f := z] is
the same as (A\y.fy)[f := z] which in its turn is the same as \y.zy.

3. There is no point in substituting for a bound variable. For example, what is the
point of turning (Az.z)[z := y] into Ay.y? Or even more strange (and not allowed
syntactically), replacing « by Ay.y due to the substitution (Az.z)[z := Ay.y].

Here is now the definition of substitution:

Definition 16 (Substitution) For any A, B, v, we define A[v := B] to be the result
of substituting B for every free occurrence of v in A, as follows:

v[v := B] = B
v'[v:= B] = v ifv#d
(AC)[v := B] = Afv:= B]Cv:= B]
(MWwA)v:=B] = M.A
(W' A)v:=B] = M'.AJv:= B
ifv' Zvand (v € FV(B) orv ¢ FV(A))
(MW A)v:=B] = W'V :=v"]v:=4]

if vy Zvand (v € FV(B) and v € FV(4))

In the last clause, v" is chosen to be the first variable ¢ FV(AB). In the case when
terms are identified modulo the names of their bound variables, then in the last clause
of the above definition, any v" ¢ FV(AB) can be taken. In implementation however,
this identification is useless and a particular choice of v" has to be made.

Example 17 Check that (Ay.yz)[z := z] = Ay.yz, that (\y.yz)[z := y] = Az.zy, and
that (\y.yz)[z := Az.z] = \y.yz.

Lemma 18 (Substitution for variable names) Let A,B,C € M, z, y, € V. For
z # y and z € FV(C), we have that: Az := B][y := C] = Ay := C][z := Bly := C]].

2Notice that the v in Av is not an occurrence of v.

11



2.2.2 Reduction

Three notions of reduction will be studied in this section. The first is a-reduction
which identifies terms up to variable renaming. The second is 8-reduction evaluates
A-terms. The third is n-reduction which is used to identify functions that return the
same values for the same arguments (extensionality). [-reduction is used in every
A-calculus, whereas n-reduction and a-reduction may or may not be used.

Definition 19 (Alpha reduction) —, is defined to be the least compatible rela-
tion closed under the axiom:

() Av.A =4 WA =] where v’ ¢ FV (A)

Example 20 Az.x—,\y.y but it is not the case that Az.xy—Ay.yy-
Moreover, Az.(Ax.x)z—»Az.(A\y.y)z.

Recall that Ax.x #Z Ay.y even though they represent the same function. They are
actually identical modulo a-conversion. Le. Ax.x =, Ay.y.

Definition 21 (Beta reduction) — 3 is defined to be the least compatible relation
closed under the axiom:

8) (\.A)B—sAfv := B]

Example 22 Check that (Azx.z)(Az.2)—gAz.z, that (Ay.(A\z.z)(Az.2))zy—»sy, and
that both Az.z and y are S-normal forms.

Here is a lemma about the interaction of S-reduction and substitution:
Lemma 23 Let A,B,C,D € M.
1. If C =3 D then Alz:=C]| —»s A[z:=D].
2. If A—p3 B then Alz :=C] —p Blz:=C].
Proof By induction on the structure of A for 1, on the derivation A —3 B for 2.

Definition 24 (Eta reduction and n-normal forms) —, is defined to be the least
compatible relation closed under the axiom:

(m) Av.Av—, A for v g FV(A)

Example 25 A\z.(Az.z)x—,\z.z but it is not the case that A\z.zz—,x.
Moreover Ay.(Az.(Az.2)x)y—»,Az.2.

We use —#3, and =g, when both 7 and 3 are used. n-conversion equates two terms
that have the same behaviour as functions and implies extensionality.

Lemma 26 (Extensionality) For v not freein A or B, if Av =g,, Bv then A =g, B.

Proof Let Av =g, Bv. By compatibility, Av.Av =g, Av.Bv. Hence A =g, B by 7.

12



2.2.3 Meta Theory

Example 27 below shows that not all expressions have normal forms (1), one may
reduce terms using different reduction orders (2), the order of reduction will affect
our reaching a normal form (3), and reducing a A-expression may even result in a
bigger expression rather than a smaller one (4). We underline the contracted redexes:

Example 27

1. (\z.zz)(A\z.zz) is not normalising (and hence is not strongly normalising).
Hence, we know that this term does not have a normal form.

2. We can reduce in different orders:
(Ay.(Az.z)(Nz.2))zy—5(A\y.Az.2)zy—3(Az.2)y— gy and
Ay.(Az.x)(Az.2))zy—p((Az.x)(Az.2))y—=5(Az.2)y— 5y

3. A term may be normalising but not strongly normalising:
(Ay.z2)(Az.zz)(Ar.ax))—p2 yet
(My.2)(Az.zz)(Az.zx))—=p(Ay.2) (A\e.xx)(Ar.zz)) =5 . ..

4. A term may grow after reduction:

(Azzzz) Ae.xzz) —p (Ar.zzz)(Az.zcor)(Az.zox)
=g (Az.zzz) A\ev.oze)(Av.azz)(Az.zox)
—p

Over expressions whose evaluation does not terminate, there is little we can do, so
let us restrict our attention to those expressions whose evaluation terminates. (-
and n-reduction can be seen as defining the steps that can be used for evaluating
expressions to values. The values are intended to be themselves terms that cannot be
reduced any further. Luckily, all orders lead to the same value (or normal form) of the
expression for R-reduction where R € {3, n}. That is, if an expression R-reduces in
two different ways to two values, then those values, if they are in R-normal form are
the same (up to a-conversion).

Example 28 Here are some ways to reduce (Azyz.zz(yz))(Az.z)(Az.z). In all cases,
the same final answer is obtained.

1. (\zyz.zz(yz))(Az.x)(Az.z)—=s(Ayz.(A\z.x)2(yz)) (Az.x)—3

- (
(Ayz.z(yz))(Az.x)—=pAz.z(A\z.x)z) > phz.22.
-

2. (Azyz.zz(yz))(Ae.x)( Ae.x)— s (Ayz.(Ar.2)z(yz)) (Az.x) =g

Az.(Ax.z)z((Az.x)2) = pAz.2((Az.x)2) > pAz.22.

3. (\ryz.zz(yz))(Azr.z)(Ae.x) =g (\yz.(Az.x)2(y2)) (Az.2) =3
Az.(Ax.z)z((Az.x)2) = pAz.(Ar.x) 22— A2 22.

We would like that if A 8- or fn-reduces to B and to C, then B and C - or n-reduce
to the same term D. Luckily, the A-calculus satisfies this property:

Theorem 29 ($- and fn-reduction are Church Rosser) For R € {f,6n}, we
have: VA,B,Ce MIADeM : (A —-»r BANA —»r C)= (B -»r DAC —»g D).
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Proof Various people have provided proofs of this theorem separately but Curry
gave the first proof in [10]. [3] provides various proofs of this theorem. A shorter and
new proof can be found in [46].

Due to this theorem (which says that the results of reductions do not depend on the
order in which they are done), we may evaluate separate redexes in parallel.

Theorem 30 (\-calculus is consistent) There are A, B such that A #5(,) B.

Proof If Azy.x =g Azy.y, then by Theorems 6 and 29, Azy.x =, Azy.y, but this is
not the case. Hence A\vy.x #5 Azy.y.

So far we have answered two important questions.
1. Terms evaluate to unique values.
2. The A-calculus is not trivial in the sense that it has more than one element.

Let us recall however from Example 27 that a term may have a normal form yet
the evaluation order we use may not find this normal form. Hence the question now
is: given a term that has a normal form, can we find this normal form? This is
an important question because to be able to compute with the A-caluclus, we must
be able to find the normal form of a term if it exists. Luckily we have a positive
result to this question. That is, if a term has a normal form then there is a reduction
strategy that finds this normal form. The positive result is given by the normalisation
theorem (Theorem 36) which tells us that blind alleys in a reduction can be avoided
by reducing the leftmost 8 or n-redex. That is, by reducing the redex whose beginning
A is as far to the left as possible. First, we need two sorts of redexes:

Definition 31 (Left-most outermost redex) The leftmost outermost redex of a
term is the redex whose A is the leftmost A of the term. More precisely:

o Imo(AB) =4.5 AB if AB is a -redex
o Imo(AB) =4ec¢ Imo(A) if AB is not a B-redex
o Imo(Av.A) =4cf Imo(A)

Definition 32 (Right-most innermost redex) The rightmost innermost redex of
a term is the redex whose A is the rightmost A of the term. More precisely:

o rmi(AB) =g4¢r rmi(B) if rmi(B) is defined
o rmi(AB) =40y AB if rmi(B) is not defined
o rmi(Av.A) =ge5 rmi(A)

Example 33

1. The leftmost outermost redex of (Ay.z)((Az.zx)(Az.zx)) is the whole term itself
and not ((Az.zz)(Az.zx)).

2. The rightmost innermost redex of (\y.z)(Az.zz)(Az.xzx)) is ((\v.zz)(A\x.zx)).
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3. Inner and outer refer to the nesting of expressions. For example, the entire
expression is the outermost redex in (Ayz.(Az.xz)z(yz))(Az.z) whereas the in-
nermost redex is the subterm (Az.z)z.

Definition 34 (Normal-order reduction) A reduction sequence is normal order
or call by name if the leftmost redex is always reduced.

Definition 35 (Applicative-order reduction) A reduction sequence is applica-
tive order or call by value if the rightmost redex is always reduced.

According to the call by value strategy, an argument is called only if it is a value (a
normal form). According to the call by name strategy, an argument is called without
first computing its value. Normal order reduction is guaranteed to reach a normal
form if it exists. Applicative order however, might get stuck forever evaluating a term
that is not strongly normalising (but may be normalising). For example, if normal
order is used, (\y.z)((Az.zz)(Ax.zz)) will yield z; it will never terminate on the other
hand, if applicative order is used. Applicative order however can reach a normal form
faster than normal order. For example, take (Az.zz)((Ay.y)(Az.2)).

1. Applicative: (Az.zz)((Ay.y)(A\z.2))—=g(Ax.2x)(A2.2)=>5(A2.2)(A2.2) =gz 2.

2. Normal: (Az.zz)((Ay.y)(Az.2)) =5 ((Ay.y)(Az.2)) (Ay.y)(Az.2)) =3
(Az2.2)(Ay.y)(Az.2))—=s(Ay.y)(Az.2) =g Az.2.

The normalisation theorem (cf. [3]) states that if a term has a normal form then it
is found by the leftmost outermost reduction strategy (which is not the most efficient):

Theorem 36 (Normalisation theorem) If A has a normal form, then iterated
contraction of the leftmost redex leads to that normal form.

2.3 Classical A-calculus with de Bruijn indices

As we have seen in the previous section, substitution can be a cumbersome operation
due to variable manipulation and renaming. There are some approaches used to avoid
either the problem or variables themselves. We mention three methods:

e The use of combinatory logic which is equivalent to the A-calculus but does not
use variable names. For example, in combinatory logic, the identity function
Az.z is written as I where Ia reduces to a. In fact, every term is a combinator
and no variables need to be introduced. It is however less intuitive to understand
what the combinators are doing especially in really large terms. We will not
touch combinators in this paper. The interested reader can refer to [21].

e The use of the Barendregt Variable Convention (VC) which makes it possible to
rewrite substitution in a way which does not deal with renaming variables. (VC)
assumes that if at some place we discuss the terms Aq, Ao, ..., A,, then all the
bound variables in these terms are different from the free ones and that never
Av...\v is used; rather, one uses Av...\v'. For example, instead of writing
(Ax.Ay.xy)x, we write (Az.Ay.zy)x.
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Due to (VC), the two clauses of Definition 16 get replaced by the single clause:
(MW" A)[v := B] = M\v'. A[v := B if o' £w

(VC) hides the problem rather than solving it. All the calculations and variable
renaming have to be done. But (VC) assumes there is some magical stick which
does all this work. Of course, we cannot use such an assumption when we do
real work with our terms especially when we are implementing them.

e The use of de Bruijn indices which avoid clashes of variable names and therefore
neither a-conversion nor Barendregt’s convention are needed. This is explained
in detail in this section.

2.3.1 Syntax

De Bruijn noted that due to the fact that terms as Az.z and Ay.y are the “same”,
one can find a A-notation modulo a-conversion. That is, following de Bruijn, one
can abandon variables and use indices instead. The idea of de Bruijn indices is to
remove all the variable indices of the A’s and to replace their occurrences in the body
of the term by the number which represents how many A’s one has to cross before
one reaches the A\ binding the particular occurrence at hand.

Example 37

1. Az.z is replaced by Al. That is, z is removed, and the z of the body x is replaced
by 1 to indicate the X it refers to.

2. Az.\y.zy is replaced by AA21. That is, the z and y of Az and Ay are removed
whereas the z and y of the body xy are replaced by 2 and 1 respectively in order
to refer back to the As that bind them.

3. Similarly, Az.(Ay.y(A\z.z))(Az.xz) is replaced by A(A1(A1))(A12).

Note that the above terms are all closed. What do we do if we had a term that has
free variables? For example, how do we write Az.zz using de Bruijn’s indices?

In the presence of free variables, a free variable list which orders the variables
must be assumed. For example, assume we take z,y, z,... to be the free variable list
where z comes before y which is before z, etc. Then, in order to write terms using
de Bruijn indices, we use the same procedure above for all the bound variables. For
a free variable however, say z, we count as far as possible the A’s in whose scope z is,
and then we continue counting in the free variable list using the order assumed. The
following example demonstrates:

Example 38 \z.zz, (Az.z2)y and (Az.zz)z translate respectively into A14, (A14)2
and (A14)1.

Now we are ready to define the classical A-calculus with de Bruijn indices.
Definition 39 We define A, the set of terms with de Bruijn indices, as follows:
Az=IN | (AN) | (MA)

As for M, we use A, B, ... to range over A. We also use m,n, ... to range over IV
(positive natural numbers). Conventions 1 and 2 of Definition 13 are used (without
the dots of course) and the consequences of that definition also hold here.
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2.3.2 Updating and Substitution

In the classical A-calculus with de Bruijn indices, variables are represented by de
Bruijn indices (natural numbers). In order to define 8-reduction, we must define the
substitution of a variable by a term B in a term A. Therefore, we must identify
amongst the numbers of a term A those that correspond to the variable that is being
substituted for and we need to update the term to be substituted in order to preserve
the correct bindings of its variables.

Example 40 Writing (AzAy.zzy)(Az.yz) =5 Au.z(Az.yz)u using de Bruijn indices,
one gets (AA521)(A31) —3 A4(A41)1. The body of AA521 is A521 and the variable
bound by the first A of AA521 is the 2. Hence, we need to replace in A521 the 2 by
A31. But if we simply replace 2 in A521 by A31 we get A5(A31)1, which is not correct.
We needed to decrease 5 as one A disappeared and to increment the free variables of
A31 as they occur within the scope of one more A.

In order to define f-reduction (AA)B —3? using de Bruijn indices. We must:
e find in A the occurrences ny,...n; of the variable bound by the A of \A.
e decrease the variables of A to reflect the disappearance of the A from A\A.

e replace the occurrences ny, . ..ny in A by updated versions of B which take into
account that variables in B may appear within the scope of extra As in A.

It will take some work to do this. Let us, in order to simplify things say that the
B-rule is (AA)B —3 A{1+ B} and let us define A{1 < B} in a way that all the
work of 1...3 above is carried out. We need counters described informally as follows:

1. We start traversing A (here A521) with a unique counter initialised at 1.

2. In arriving at an application node, we create a copy of the counter in order to
have one counter for each branch.

3. In arriving at an abstraction node, we increment the counter.
4. In arriving at a leaf (i.e. a number):

(a) If it is superior to the counter, we decrease it by 1, because there will be a
A-less between this number and the A that binds it.

(b) If the number is equal to the counter, say n, it must be replaced by B which
will be found now under n —1 X’s. We must therefore adjust the numbers
of B so that we can modify the binding relations inside B. For this we
use another family of functions that we call meta-updating functions.

(c¢) If the number is inferior to the value of the counter, then it is bound by a
A which is inside A, and hence the number must not be modified.

Let us define the meta-updating functions.
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Definition 41 The meta-updating functions U} : A — A for k > 0 and i > 1 are
defined inductively as follows:

Ui(AB) = U{(A) Ui(B) n+i—1 if n>k

U,i(n)z{n if n<k.

The intuition behind U} is the following: k tests for free variables and i — 1 is the
value by which a variable, if free, must be incremented.
Now we define the family of meta-substitution functions:

Up(AA) = AUy, (4))

Definition 42 The meta-substitutions at level i, for i > 1, of aterm B € A in a
term A € A, denoted A{i < B}, is defined inductively on a as follows:

n—1 if n>1
(A1A)fi « B} = (Afi « BY) (Aofi « BY) . _fmot o >
O i B} = MA{i+1< B} nfi < B} = { I[{O(B) " "o

The first two equalities propagate the substitution through applications and abstrac-
tions and the last one carries out the substitution of the intended variable (when
n = 1) by the updated term. If the variable is not the intended one it must be de-
creased by 1 if it is free (case n > i) because one A has disappeared, whereas if it is
bound (case n < ¢) it must remain unaltered. It is easy to check for example that
(A521) {14 (A31)} = A4(A\41)1 and hence (AA521)(A31) =5 A&(A41)1.

The following lemma establishes the properties of the meta-substitutions and
meta-updating functions. The proof of this lemma is obtained by induction on a
and can be found in [26] (the proof of 3 requires 2 with p = 0; the proof of 4 uses 1
and 3 both with k£ = 0; finally, 5 with p = 0 is needed to prove 6).

Lemma 43
1. For k <n <k+i we have: Ui(A) = U™ (A){n< B} .
2. For p <k < j+p we have: U/(UJ(A)) =Uit1(4).
3. For i <n —k we have: U (A){n< B} =Ui(Afn—1i+ 1< B}).

4. [Meta-substitution lemma] For 1 < ¢ < n we have:
Afi<Bi{nC}=A{n+ 1< C}{iBf{n—-i+1C}}.

5. For m < k+1 we have: U{, (U*(A)) = U (U ; py1—m(A)) -

6. [Distribution lemmal
For n <k+1 we have: U}(Af{n<B}) =U}, (A {n<Uj_,. . (B)}.

Case 4 is the version of Lemma 18 using de Bruijn indices.

2.3.3 Reduction

Definition 44 [-reduction is the least compatible relation on A generated by:
(B-rule) (M) B —3 A{1+ B}

The classical A-calculus with de Bruin indices, is the reduction system generated by
the only rewriting rule 3.
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We say that the A-calculi with variable names and with de Bruijn indices are iso-
morphic is there are translation functions between M and A which are inverses of
each other and which preserve -reductions. The following theorem establishes the
isomorphism of the A-calculi with variable names and de Bruijn indices (cf. [35] for a
proof). We will discuss a similar isomorphism in section 3.2.

Theorem 45 The classical A-calculus with de Bruijn indices and the classical A-
calculus with variable names are isomorphic.

Theorem 46 The classical A-calculus with de Bruijn indices is confluent.

Proof By the isomorphism stated in Theorem 45, the confluence of the classical
A-calculus with variable names (cf. [3] thm. 3.2.8) is transportable to the classical
A-calculus a la de Bruijn.

Finally, here is the version of Lemma 23 for de Bruijn indices. Note that we need
not only to ensure the good passage of the -rule through the meta-substitutions but
also through the U}.

Lemma 47 Let A, B, C, D € A.
1. If C =g D then i) U}(C) =g Ui(D) and ii) A{i<C} —»p A{i< D} .
2. If A—p3 B then A{i+C} -3 B{i«C}.

Proof 1. Case i) is by induction on C using Lemma 43.6. Case i7) is by induction
on A using 7). 2. Is by induction on A using Lemma 43.4.

2.4 From the classical \-calculus with de Bruijn indices to a
substitution calculus

Having seen in Section 2.3 the meta-updating and meta-substitution operators, an
approach to introduce explicit substitution to the A-calculus with de Bruijn indices
is to extend the syntax of Definition 39 to include new operators that internalise
updating and substitution. This is done as follows:

Definition 48 (Syntax of the As-calculus) Terms of the As-calculus are given by:
As == IN | (AsAs) | (\As) | (Aso'As) | (piAs)  where i>1, k>0.

We use the notational conventions defined earlier to get rid of unnecessary parenthesis.

Now, we need to include reduction rules that operate on the new terms built with
updating and substitutions. Definitions 41 and 42 suggest these rules. The resulting
calculus is the explicit substitution calculus As of [26] whose set of rules is given in
Figure 1. Note that these rules are nothing more than 8 written now as o-generation,
together with the rules of Definitions 41 and 42 oriented as expected.

Definition 49 The set of rules As is given in Figure 1. The As-calculus is the reduc-
tion system (As,—)s) where — s is the least compatible reduction on As generated
by the set of rules As.
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o-generation (M)B — Ao'B
o-\-transition (AM)o'B — A Aot B)
o-app-transition (A1 A)o'B  — (A, 0'B) (A2 0'B)
n—1 if n>i
o-destruction no'B —s pyB if n=i
n it n<i
p-A-transition ei(A)  — Appy A)
-app-transition Oh(A1 As)  — (oL A1) (¢l As)
i . i n+i—-1 if n>k
p-destruction YL { 0 it n <k

Figure 1: The As-rules

o -o-transition (A qu) 0']: c — (Aorj+1 C)o'(Ba™ttC) if i<j

o -p-transition 1 (ppA)o’ B — <p;;1 A it kE<j<k+i
o -p-transition 2 (prA)o’ B — (A O']_HTI B) if k+i<j
p-o-transition er(Ad’ B)  — (k1 A) 0 (@hy1; B) if j<k+1
p-p-transition 1 or (Pl A — ¢ (Pr1—; A) it I+j<k
p-p-transition 2 oi (Pl A) — ol A if I<k<l+j

Figure 2: The new rules of the As.-calculus

[26] establishes that the s-calculus (i.e., the reduction system whose rules are
those of Figure 1 excluding o-generation) is strongly normalising, that the As-calculus
is confluent, simulates g-reduction and has the property of preservation of strong
normalisation PSN (i.e., if a term terminates in the calculus with de Bruijn indices
presented in Section 2.3, then it terminates in the As-calculus). If the As-calculus
is extended with open terms (variables that range over terms), then the reduction
rules need also to be extended to guarantee confluence. This extension is essential
for implementations, see [34, 36, 37]. Adding the 6 items of Lemma 43 as oriented
rewriting rules results in the calculus As. which is confluent on open terms [28]. Like
Ao of [1], this calculus does not satisfy PSN [18].

Definition 50 (The As.-calculus) Terms of the As.-calculus are given by:
Asop := VIIN|(AsopAsop) | (AMsop) |(Asop 07 Asep) | (04 Asep) where j,i>1, k>0
and where V stands for a set of variables, over which X, Y, ... range.

The set of rules As. is obtained by adding the rules given in Figure 2 to the set
As of Figure 1. The As.-calculus is the reduction system (Asop, —>xs.) Where — 5, is
the least compatible reduction on As,, generated by the set of rules As,.
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Figure 3: Redexes in de Bruijn’s notation

2.5 The A-calculus a la de Bruijn

De Bruijn departed from the classical notation of the A-calculus that we saw so far.
Instead, he wrote the argument before the function and often used [z] instead of Az.
Here is the translation from classical notation into de Bruijn’s notation via Z.

Z(v) =def v, I(A\v.B) =qc5 [v]Z(B), I(AB) =qc5 (Z(B))I(A)

De Bruijn called items of the form (A) and [v] applicator wagon respectively ab-
stractor wagon, or simply wagon.

Example 51 Z((Az.(\y.zy))z) = (2)[z][y](y)z. The wagons are (z), [z], [y] and (y).
In de Bruijn’s notation, the f-rule (Av.A)B —3 A[v := B] becomes:
(B)[v]A =3 [v:= BJA

Note that the applicator wagon (B) and the abstractor wagon [v] occur NEXT to
each other. Here is an example which compares S-reduction in both the classical and
de Bruijn’s notation. Wagons that have the same symbol on top, are matched.

Classical Notation De Bruijn’s Notation
(e Ny 3w =D) &) B) 4 (1) (B)lz] () yllz] (D)»
s s
+ - - -+ 4 -
(Ay. Az .2D) C) A (4) (O)y] [2] (D)=
s s
(Az .zD) A (A)[=](D)z
s e
AD (D)A

The matching redexes in de Bruijn’s notation are easily seen in the Figure 3.

] + — o _
The bracketing structure in classical notation of ((Az .(Ay . Az .zD) E’) B) A), is
o + — 4+ o — — o o + + —
{1 {z {s }2 }1 }3, where {; and }; match. Whereas (4)(B)[z](C)[y][z] (D)z has the
—o o+ +—
simpler bracketing structure {{ }{ } } in de Bruijn’s notation. An applicator (A4) and

an abstractor [v] are partners when they match like { and }. Non-partnered wagons
are bachelors. A sequence of wagons is called a segment. A segment is well balanced
when it contains only partnered wagons.
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Example 52 Tn (4)(B)[+](C)[5][2] (D), the wagons (), (B), [z], (C), [y], and [¢]

_ o 4+ + —
are partnered and the wagon (D) is a bachelor. The segment (A)(B)[z](C)[y][#] is
well balanced.

The A-calculus a la de Bruijn has many advantages over the classical A-calculus. Some
of these advantages are summarised in [25]. In what follows we mention some.

A. Structure of terms Each non-empty segment 5 has a unique partitioning into
sub-segments s = 5957 - - - 55, such that

e For even i, the segment 5; is well balanced. For odd i, the segment 5; is a
bachelor segment, i.e., it contains only bachelor main items.

e All well balanced segments after 55 and all bachelor segments are non-empty.

o If 5; = [v1] - - - [un] (only abstractor wagons) and 55 = (a1) - - (ap) (only appli-
cator wagons), then ¢ < j, i.e., 5; precedes 5; in 5.

Example 53 5 = [z][y](4)[2][z'](B)(C)(D)[y'][#'|(E), has the following partitioning:
well-balanced segment 35 = 0, bachelor segment 57 = [z][y], well-balanced seg-
ment 53 = (A)[z], bachelor segment 53 = [2'](B), well-balanced segment 55z =
(C)(D)[y'][#'], bachelor segment 55 = (E).

B. Generalised Reduction Looking at Figure 3, one sees that either (A) can be
moved to the right to occur next to its partner [z] or [z] can be moved to the left to
appear next to (4). One can instead generalise 8-reduction so that the (extended)
redex based on (A) and [z] is fired before the other redexes. All these steps happen
via rules like those listed in Figure 4. These rules have been studied by many re-
searchers [24, 2, 17, 29, 30, 31, 44, 40, 48, 45, 50, 38]. De Bruijn’s notation makes
it clearer to describe generalised reduction as Figure 4 illustrates, where we assume
Barendregt’s variable conventions (see page 15).

C. Properties are easier to state in de Bruijn’s notation We illustrate this
point with the example of describing the s.-normal forms where the s.-calculus is the
reduction system (As,p, —s.) where —,_ is the least compatible reduction on As,,
generated by the set of rules of Figures 1 and 2 excluding o-generation. Theorem 54
gives the s.-normal forms in classical notation. Theorem 55 gives them in de Bruijn’s
notation. These theorems are taken from [28].

Theorem 54 A term A € As,, is an s.-normal form iff one of the following holds:
e Ac VUIN,ie. Ais a variable or a de Bruijn number.
e A= BC(, where B and C are s.-normal forms.
e A = )\B, where B is an s.-normal form.

e A= Bo/C, where C is an s.-nf and B is an s.-nf of the form X, or D ¢’ E with
j <i,or pid with j < k.

A = ¢! B, where B is an s.-nf of the form X, or C 0/d with j >k + 1, or @{C
with k£ < [.
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Name | In Classical Notation | In de Bruijn’s Notation
-+ -+ t - T+
(Az.C)B) A (A4)(B)[z]C
() I ) 7¢+
Or. &) B (B)lz)(A)C
+ + +
(Az .Ay.C) B (B)[=] [y]C
(7) i i
+ + +
Ay-(Az .C) B [v] (B)[z] C
— + -+ + - -+
(Az . Ay .C) B) A (A)(B)[z]ly] €
(9) I 4
(A\z .Cly := A]) B (B)[z] [y == A]C
— + - -+ +
(Az . Ay .C) B) A (A)(B)[x]ly] C
(ve) i i
— + - - - + +
(Ay .(Az .C) B) A (A)[y](B)[z] C

Figure 4: Generalised Reduction

Proof By analysing the structure of A.

There is a simple way to describe the s.-nf’s using de Bruijn’s notation. First, note
that in de Bruijn’s notation Ac’B and ¢} A are written respectively as: (Bo')A
and (¢})A. The parts (B o) and (p}) are called o- and ¢-wagons respectively. The
subterms B and A are the bodies of these respective wagons.
A normal op-segment 5 is a sequence of o- and p-wagons such that every pair of
adjacent wagons in 3 is of the form:
() (7) and k <1 (pi)(Bo?) and k <j—1
(Bo")(Co?)and i< j (Bo?)(¢h) and j < k
E.g., (¢3) (1) (02)(Bo®)(Ca't)(p1)(¢ls) and (Bo')(Co®)(Da*)(¢3) (06) (¢7)(Ac™)
are normal op-segments.

Theorem 55 The s.-nf’s can be described by the following syntax:
NF :=V | N | (NF)NF | [|[NF | 5V

where 5 is a normal op-segment whose bodies belong to NF.

3 Pure Type Systems

We have seen so far the type free A-calculus. Types however, aid in writing correct
and terminating programs. Another influential role that types play is in their iden-
tifications with propositions in the paradigm of propositions-as-types due to Curry,
Howard and de Bruijn. Under this paradigm, the problem of proof checking can be
reduced to the problem of type checking in a programming language.
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There are two type disciplines: the implicit and the explicit. The implicit style,
also known as typing a la Curry, does not annotate variables with types. For example,
the identity function is written as in the type-free case, as Ax.x. The type of terms
however is found using the typing rules of the system in use. The explicit style,
also known as typing a la Church, does annotate variables and the identity function
may be written as Ax : Bool.r to represent identity over booleans. In this paper,
we consider typing a la Church. We present what is known as Pure Type Systems
or PTSs. Important type systems that are PTSs include Church’s simply typed
A-calculus [8] and the calculus of constructions [9] which are also systems of the
Barendregt cube [4]. Berardi [5] and Terlouw [47] have independently generalised
the method of generating type systems into the pure type systems framework. This
generalisation has many advantages. First, it enables one to introduce eight logical
systems that are in close correspondence with the systems of the Barendregt cube.
Those eight logical systems can each be described as a PTS in such a way that the
propositions-as-types interpretation obtains a canonical system form [4]. Second, the
general setting of the PTSs makes it easier to write various proofs about the systems
of the cube.

In the following of the present paper we will briefly review the classical PTS with
variable names and those with de Bruijn indices, essentially to state their isomor-
phism. This is a result of [27] to which we refer for all omitted proofs.

3.1 Classical Pure Type Systems with variable names

Definition 56 The set of pseudo-terms T, is generated by the grammar:
Ta=VI|CI(TT)| (A:T.T)| (IIV: T.T), where V is the infinite set of variables
{z,y,2,...} and C a set of constants over which, ¢,c;,... range. We use A, B, ... to
range over 7 and v,v’,v", ... to range over V. Throughout, we take m € {\,II}.

Definition 57 (Free and Bound variables) The free and bound variables in terms
are defined similarly to those of Definition 15 with the exception that F'V(c) =gef
BV (c) =gey 0 and in the case of abstraction, F'V(rv: A.B) =gy (FV(B) \ {v}) U
FV(A) and BV (mv : A.B) =4y BV(A) U BV (B) U {v}.

We write A[z := B] to denote the term where all the free occurrences of z in A have
been replaced by B. Furthermore, we take terms to be equivalent up to variable re-
naming. We assume moreover, the Barendregt variable convention (already discussed
on page 15) which is formally stated as follows:

Convention 58 (VC: Barendregt’s Convention) Names of bound variables will al-
ways be chosen such that they differ from the free ones in a term. Moreover, different
X’s have different variables as subscript. Hence, we will not have (Az : A.z)z, but
(Ay : A.y)x instead.

The definition of compatibility of a reduction relation for PTSs is that of the type-free
calculus (given in Definition 1) but where the case of abstraction is replaced by:

(Al,AQ) €ER (Bl,Bz) €ER
(rx: Ay.B,wx: As.B) € R (mx: A.By,7x: A.Bs) € R
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Definition 59 [-reduction is the least compatible relation on 7 generated by
(8) (Az : A.B)C — Bz := (]
Now, we define some machinery needed for typing:

Definition 60
1. A statement is of the form A : B with A, B € 7. We call A is the subject and
B is the predicate of A : B.

2. A declaration is of the form z : A with A € 7 and = € V.

3. A pseudo-context is a finite ordered sequence of declarations, all with distinct
subjects. We use I', A, IV, T'1, Ty, ... to range over pseudo-contexts. The empty
context is denoted by either <> or nothing at all.

4. T =z : Aq..... Tp:ApthenT.w : B =21 : A1..... Zn : Ap.x : Band dom(T") =
{xl,...,xn}.

Definition 61 A type assignment relation is a relation between a pseudo-context and
two pseudo-terms written as I' = A : B. The rules of type assignment establish which
judgments T' = A : B can be derived. A judgement I' F A : B states that A : B can
be derived from the pseudo-context I'.

Definition 62 Let ' be a pseudo-context, A be a pseudo-term and F be a type
assignment relation.

1. I' is called legal if 3A, B € T such that ' - A : B.

2. AeTiscaledal-termif 3B € T such that ' A: BorI' - B : A.
We take I-terms = {A € 7 such that 3B € T and ' A: BVI+ B : A}.

3. A €T is called legal if 3T such that A € I'-terms.

Definition 63 The specification of a PTS is a triple S = (S, A4, R), where S is a
subset of C, called the sorts. A is a set of azioms of the form ¢ : s with ¢ € C and
s € S and R is a set of rules of the form (s1, s2, s3) with s1, s2,s3 € S.

Definition 64 The notion of type derivation, denoted I' kg A : B (or simply I'
A : B), in a PTS whose specification is S = (S, .4, R), is axiomatised by the axioms
and rules of Figure 5.

Each of the eight systems of the cube is obtained by taking § = {*,0}, A = {%,0},
and R to be a set of rules of the form (sj,s2,s2) for si,s0 € {*,0}. We de-
note rules of the form (si,s2,s2) by (s1,$2). This means that the only possible
(s1,s2) rules in the set R (in the case of the cube) are elements of the following set:
{(*,%), (x,0), (0, %), (0,0)}. The basic system is the one where (s1,s2) = (x,%) is
the only possible choice. All other systems have this version of the formation rules,
plus one or more other combinations of (x,0), (O,%) and (O,0) for (s1,s2). See
Figures 6 and 7.

Now, we list some of the properties of PTSs with variable names (see [4] for proofs).
In Section 3.2, we will establish these properties for PTSs with de Bruijn indices.
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(axioms) Fe:s if c:se A

FFA:s .

(start) m if x&F
. ''FB:C TFA:s .
(weakening) T2 AFB.C if z¢T
I'FA:s; T,z:AF B:sy .

f

(product) IT (7 - A5) 5 if (s1,82,83) €ER
(application) FFF:(Ilz:AB) T'kFC:A
PP TFFC:Blz=C]
(abstraction) Fe:AFC:B TFMx:AB):s
abstraction

'k (Az:AC):(IIz: A.B)

. 'A:B T+B':s B=3B

(conversion)

F+-A:DB

Figure 5: PTSs with variables names

A (%, %)

A2 (x,%) | (O, %)

AP (%, %) (x,0)

AP2 (x,%) | (O,%) | (x,0)

Aw (%, %) (0,0
Aw (x,%) | (8,%) (0,0
APw (%, %) (x,0) | (3,0
APw = XC | (x,%) | (OQ,%) | (x,0) | (3dO,0)

Figure 6: Different type formation condition
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Figure 7: The cube

Lemma 65 let A,B e T.If A—g B then FV(B) C FV(A).

Theorem 66 (The Church Rosser Theorem for PTSs with variable names)
If A—»3 B and A —3 C then there exists D such that B =3 D and C' =3 D.

Lemma 67 (Free variable lemma) Let I' =z, : 4,,...,2, : A, such that
I' - B : C. The following hold (proof is by induction on the derivation I' - B : C):

1. The z4,...,z, are all distinct.
2. FV(B),FV(C) C{z1,...,zn}.
3. FV(A;) C{x1,...,zi1}for 1 <i <.

Theorem 68 (Subject Reduction SR, for PTSs with variable names)
IfI'FA:Band A—»g A' then'F A" : B.

3.2 Classical Pure Type Systems with de Bruijn indices

In this section, we will introduce pure type systems with de Bruijn indices and estab-
lish the isomorphism between them and those with variable names. All this section
is taken from [27] where all the proofs can be found in detail.

Definition 69 We define T, the set of pseudo-terms with de Bruijn indices, by the
syntax: T == IN | C | (TT) | (\T.T) | (IIT.T"), where C is a set of constants over
which ¢, ¢y, ... range. We use A, B, ... to range over 7" and m, n, ... to range over IV
(positive natural numbers). Again, we take 7 € {II, A}.

Definition 70 The updating functions U} : T — T for k > 0 and i > 1 are defined
as in Definition 41 for the case of the type free A-calculus, but with the addition of a
clause for constants and the replacement of the abstraction rule as follows:

Uilc)=c for ceC and Ul(rA.B) = tUL(A).(Ui,4(B))

Definition 71 The meta-substitutions at level j,for 7 > 1, of aterm B € T in a
term A € T, denoted A{j + B}, is defined inductively on A as in Definition 42 for
the case of the type free A-calculus, but with the addition of a clause for constants
and the replacement of the abstraction rule as follows:

fjeBY=c for ceC and (rA.C){j « B} = rA{j«< B}).(C{j+ 1« BY)
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Definition 72 [-reduction is the least compatible reduction on T" generated by:

(8)  (AM.C)B =5 C{1+ B}

Remark that we use =3 to denote both, S-reduction on 7 and f-reduction on 7.
The context will always be clear enough to determine the intended reduction.

We now define the set of free variables of a term with de Bruijn indices. We write
N\ ktomean {n —k:n¢€ N,n > k}.

Definition 73 The set of free variables of a term with de Bruijn indices is defined
by induction as follows:

FV(c) =gey ¢ for ceC FV(AB) =4¢y FV(A)UFV(B)

FV(n) =gey {n} FV(rA.C) =gey FV(A) U (FV(C)\1) for m € {\,II}

The following lemma on T' corresponds to Lemma 65 on 7.
Lemma 74 Let A,BeT. If A—3 B then FV(B) C FV(A).

Definition 60 for PTSs with variable names changes when de Bruijn indices are
used as follows:

A (de Bruijn) pseudo-context I' becomes a finite ordered sequence of de Bruijn
terms. We write it simply as I' = A;,..., A,. Statements, subject and predicate
remain unchanged, and declarations disappear.

Definitions 61, 62 and 63 are the same for de Bruijn indices (except that 7 changes
to T'). Now, we can give the definition of PTSs using de Bruijn indices:

Definition 75 The notion of type derivation, denoted I" Fyg A : B (or simply I' -
A : B), in a PTS whose specification is S = (S, A, R), is axiomatised by the axioms
and rules of Figure 8.

Remark that in the rules (start), (weakening), (product), (abstraction) the position
of A with respect to I is reversed with respect to its position in the corresponding
rules of the classical setting. However, we have chosen this presentation following the
tradition of type systems in de Bruijn notation (cf. [1, 41]).

Remark also the role played by the updating UZ in the rules (start), (weaken-
ing). This function increases with 1 the de Bruijn indices which correspond to free
variables and its occurrence in these two rules is reasonable since the corresponding
environments have been augmented by the addition of a new component. For ex-
ample, * - 1 : %, Hence, 1,* - 1 : 2. Moreover, 1,x - 1 : 2 and * - 1 : %, hence
#,1,xF2=U2(1):3=UZ(2).

The following lemma (cf. [27]) is the equivalent for de Bruijn indices, of Lemma 67.

Lemma 76 Let A;,..., A, F B : C then FV(B),FV(C) C {1,...,n} and, for
0<i<n—-1,FV(A,_;) C{L,...,i}.

In the rest of this paper, we present the isomorphism between PTSs written using
variable names and PTSs written using de Bruijn indices. The method is as follows:
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(axioms) Fc:s if c:seA
(start) LAS
ATH1:U2(A)
(weakening) '-B:C TFA:s
weakenin
&  ATFUB):U2(C)
'FA:s; ATHFB:ss .
f
(product) TT (AD) s it (s1,s2,s3) €ER
(application) 'FF:lIAB) TFHC:A
appiication TFFC:B{1<C}
(bstraction) L FCiB TFHAB) s
'k (MA.C): (IIA.B)
( ion) 'rA:B TFB':s DB=ghB
conversion TE A

Figure 8: PTSs with de Bruijn indices

1. We translate each term A and each environment I written using variable names,
into a term ¢;(A4) and an environment ¢(I') written with de Bruijn indices. We
then prove that these translations preserve g-reduction (if in 7, A —g B then
in T, t1(A) —p t1(B)) and type assignment (if in 7, I' - A : B then in T,
t(I) Ft1(A) : t1(B)).

2. We define translations u; and w in the other sense and also prove preservation
of B-reduction and type assignment.

3. We prove that these translations are inverses of each other.

In the rest of this paper, [z1,...,2y] stands for the ordered list of x1,...,zp.

3.2.1 Translating 7 to T

Definition 77 (The translation ¢) For every term A € 7 such that FV(A) C
{w1,..., .} we define t[,, . .1(A) by induction on A as follows:

¢) =gey ¢ for ceC

LETO

AB) =dacf tzy,wa) (Dt z) (B)
7z : B.A) =ge5 ﬂ-t[zl,...,zn](B)'t[z7z1,...7zn](A) for m € {II, \}

RTINS,

(

tlay,....0n] (Vi) =dey min{j such that v; = x;}
(
(

t[zh...,zn]
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Let ' =1 : Ay,...,z, : A, be alegal context. We define:
t(0) =def ten_1,er)(An)s tan_orar) (An—1)s - 2y (A2), T (AL).

Remark that Definition 77 is a good definition thanks to Lemma 67.

Lemma 78 Let A, B € T such that FV(A) C {z1,...2,} and A =3 B.
Then t[$1’...7zn](A) —)g t[mh...,mn](B)'

Theorem 79 Let ' =z, : Ay,...,z, : A, such that T+ A : B.
Then t(F) + t[zm...,wl](A) . t[$n,---7I1](B)'

3.2.2 Translating 7' to T

Definition 80 (The translation u) Let A € T such that FV(A4) C{1,...,n} and
let @1,...,7, be distinct variables of V. We define u[,, .. ,,)(A) by induction on A:

u[xm___m](c) =gef ¢ for ceC u[wm___m](i) =def T
u[acn,...,am](A B) =def u[acn,...,zl](A)u[xn,...,m](B)
ULy, (TBA) =dep TT U, 0](B) Up, . 2,,2)(A) with o & {21,...,2,}

Remark that Definition 80 is correct since FV (rB.A)C{1,...,n}implies FV (A) C
{1,...,n+1}. Furthermore, [27] proves that the definition for abstractions and prod-
ucts does not depend on the choice of the variable z.

Definition 81 Let I' = Ay,..., A, be a legal context. We define:
u(l) = w1 s up)(An),ve 2 U, (An—1),- -, Vn Uy, v, 1] (A1)

Definition 81 is correct thanks to Lemma 76.

Lemma 82 Let A, B € T such that FV(A) C{1l,...n} and A =3 B.
Then u[$n,---7z1](A) —)5 U,[ (B)

E—

Theorem 83 Let ' = A;,..., A, suchthat ' - A : B.
Then u(T") + “[vl,...7vn](A) : u[vh...,vn](B)'

3.2.3 t and u are inverses

We need to check that in some sense tou = I'd and uwot = Id. We begin by studying
t o u, which as expected is exactly the identity. We prove first the following lemma:

Lemma 84 Let A € T such that FV(A4) C {1,...,n} and let x;,...,z, be distinct
variables. Then [, ..1(Ue,.. .2, (4)) = A.

Proposition 85 Let I' = A;,..., A, such that ' H A : B. Then the derivations
F'EA:Band t(u(l)) &t o)Wy ,.00) (A) 2t 00] (Uoy,...0,] (B)) are exactly
the same.

We study now u o t. We cannot expect to have exactly the identity now, since
when we translate de Bruijn derivations we choose the variables in the declarations
of the context in a determined way: v, vs, etc. Therefore we are going to end up
with a derivation which differs from the original one in the choice of these variables.
We say that these derivations are equivalent and this notion of equivalence is defined
precisely as follows:
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Definition 86 For any context I' and any term A € T we define n[". A, for # € {II, A}
by induction on the length of the context as follows:

T<> . A=qys A and 7T,z : B).A =gy 7Tz : B.A

We say that the derivations ' A : B and I' - A’ : B’ are equivalent when
ALA=AIV.A" and II.B = IIIV.B’.

Lemma 87 Let A € 7 such that FV (A

C{x1,...,zn} and 21, ..., x, are distinct
variables. Then up,, . 2,1tz 2.](4)) = A.

Proposition 88 Let ' =1 : Ay,..., 2, : A, and A, B € T. The derivations
LEA:Band u(t(l)) F ... o0 (tan,a1](A) 2 Uy v0] (o .0 (B)) are equiva-
lent in the sense of Definition 86.

With the above isomorphism, we can now establish Theorems 66 and 68 for PTSs
with de Bruijn indices.

Theorem 89 (The Church Rosser Theorem for PTSs with de Bruijn indices)
InT,if A—3 B and A =3 C then there exists D such that B =3 D and C =3 D.

Proof Assume FV(A) C {1,...,n} and let zy,...,2z, be distinct variables of V.
By Lemma 82, u[zn,...7z1](A) -3 U[gvm...ﬁl](B) and U[zn7...7z1](A) -3 U[gEm...Jl](C).
Hence, by Theorem 66, 3D such that up,, . . .,j(B) —#s D and up,, . .1(C) —
—p D. Note that FV(u,, . (=) € {z1,...,2,} for — € {B,C} and hence by
Lemma 78 we get t[y, . v,](Ue,,...e1](—)) =8 tar,....0n)(D) for — € {B,C}. Then,
Lemma 74 sorts out the free variable condition for Lemma 84, and the latter gives
— —»g t[$1,...7wn](D) for — € {B,C}.

Theorem 90 (Subject Reduction SR, for PTSs with de Bruijn indices)
InT,if’'-A:Band A —»g A then ' A" : B.

Proof First, we use Theorem 83 and Lemma 82 to obtain the conditions of Theo-
rem 68 in 7. Then, we use Theorem 79 and Proposition 85 to obtain SR in T'.
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