
Reviewing the
lassi
al and the de Bruijn notationfor �-
al
ulus and pure type systemsFairouz Kamareddine�February 22, 2001Abstra
tThis arti
le is a brief review of the type free �-
al
ulus and its basi
 rewriting notions, andof the pure type system framework whi
h generalises many type systems. Both the typefree �-
al
ulus and the pure type systems are presented using variable names and de Bruijnindi
es. Using the presentation of the �-
al
ulus with de Bruijn indi
es, we illustrate how a
al
ulus of expli
it substitutions
an be obtained. In addition, de Bruijn's notation for the�-
al
ulus is introdu
ed and some of its advantages are outlined.Keywords: Types, Rewriting, �-
al
ulus and de Bruijn's notation.1 Introdu
tion to Logi
s, Types and RewritingLogi
 existed sin
e the an
ient times, really it goes ba
k to the
ons
iousness ofhuman beings. However, in the 20th
entury, there has been an explosion in thedi�erent logi
s introdu
ed and in the appli
ations that depended on logi
. This ex-plosion is due to many reasons that we will brie
y tou
h on in this paper. Thisexplosion moreover, is not slowing down in the twenty �rst
entury. On the
on-trary, we will
ontinue to see new di�erent logi
s, extensions of old logi
s and thestudy of their theory and appli
ations will be as thrive as it was in the last
en-tury. This is not surprising be
ause the twentieth
entury was indeed a
entury of
omplexity and this
omplexity will be
arried to this
entury. The following table ex-plains the
onsequen
es of a single ma
hine failure both in the years 1900 and in 2000.1900 2000Main way information travels in so
iety: paper ele
tri
 signals, radioNumber of parts in
omplex ma
hine: 10,000 (lo
omotive) 1,000,000,000 (CPU)Worst
onsequen
es of single ma
hine failure: 100s die end of all life?Likelihood a ma
hine in
ludes a
omputer: very low very high�Department of Computing and Ele
tri
al Engineering, Heriot-Watt University, Ri

arton, Edin-burgh EH14 4AS, S
otland, email: fairouz�
ee.hw.a
.uk1

This
omplexity of information and the disastrous
onsequen
es of failure, lead tothe need for Automation and for establishing Corre
tness. Modern te
hnologi
alsystems are just too
ompli
ated for humans to reason about unaided, so automationis needed. In addition, be
ause of the in
reasing interdependen
y of systems and thefaster and more automati
 travel of information, failures
an have a wide impa
t. Soestablishing
orre
tness is important. Furthermore, be
ause modern systems have somany possible states, testing is often impra
ti
al. It seems that proofs are needed to
over in�nitely many situations. In other words, some kind of formalism is needed toaid in design and to ensure safety.But then, what kind of formalism should one develop? This is not an easy questionto answer. However, a reasoning formalism should at least be:� Corre
t: Only
orre
t statements
an be \proven".� Adequate: Needed properties in the problem domain
an be stated and proved.� Feasible: The resour
es (money, time) used in stating and proving neededproperties must be within pra
ti
al limits.In addition, assuming a minimally a

eptable formalism, we would also like it to be:� EÆ
ient: Costs of both the reasoning pro
ess and the thing being reasonedabout should be minimized.� Supportive of reuse: Slight spe
i�
ation
hanges should not for
e reprovingproperties for an entire system. Libraries of pre-proved statements should bewell supported.� Elegant: The
ore of the reasoning formalism should be as simple as possible,to aid in reasoning about the formalism itself.Work on logi
 in the twentieth
entury led to the development of two related yet
omplementary areas: types and rewriting. Logi
s, types, and rewriting have existedin various forms sin
e the times of the an
ient Babylonians and Greeks (e.g., Eu
lid,Aristotle, et
.) yet in the twentieth
entury, types and rewriting be
ame expli
ittheories and started to be developed as bran
hes of their own. Logi
s, types, andrewriting are able to be shown
orre
t, are elegant as we
an formulate and (automate)
lear rules of how they work (e.g., from A and A ! B we
an dedu
e B), and areadequate as we
an express a lot in these tiny formalisms.But what are logi
s? What are proofs? What are types and what is rewriting?Here is an attempt at explaining them. We start with proofs and logi
.� A proof is the guarantee of some statement provided by a rigorous expla-nation stated using axioms (statements \for free") and rules for
ombiningalready proven statements to obtain more statements.� A logi
 is a formalism for statements and proofs of statements.� Why do we believe the explanation of a proof? Be
ause a proved statement isderived step by step from expli
it assumptions using a trusted logi
.2

The above explanation of logi
 and proofs
an be tra
ed ba
k to the times of Aristotle(384{322 B.C.) who wanted a set of rules that would be powerful enough for mostintuitively valid proofs. Aristotle
orre
tly stated that proof sear
h is harder thanproof
he
king:Given a proof of a statement, one
an
he
k that it is a
orre
t proof.Given a statement, one may not be able to �nd the proof.Aristotle's intuitions on this have been
on�rmed by G�odel, Turing, and others inthe twentieth
entury. Mu
h later than Aristotle, Leibniz (1646{1717)
on
eived ofautomated dedu
tion, i.e., to �nd� a language L in whi
h arbitrary
on
epts
ould be formulated, and� a ma
hine to determine the
orre
tness of statements in L.Su
h a ma
hine
an not work for every statement a

ording to Aristotle and (laterresults by) G�odel and Turing.The late 1800s saw the beginnings of serious formalization: Cantor began formal-izing set theory [6, 7℄ and made
ontributions to number theory, Peano formalizedarithmeti
 [39℄, Frege's Begri�ss
hrift [13℄ (1879) gave the �rst thorough and exten-sive formalisation of logi
. Frege's Grundgesetze der Arithmetik [14, 16℄,
alled laterby others Naive Set Theory (NST),
ould handle elementary arithmeti
, set theory,logi
, and quanti�
ation. Frege's NST allowed a pre
ise de�nition of the vital
on
eptof the fun
tion. As a result, NST
ould in
lude not only fun
tions that take numbersas arguments and return numbers as results, but also fun
tions that
an take and re-turn other sorts of arguments, in
luding fun
tions. These powerful fun
tions were thekey to the formalization of logi
 in NST. Frege was
autious: ordinary fun
tions
ouldonly take \obje
ts" as arguments, not other fun
tions. However, to gain importantexpressive power, he allowed a way to turn a fun
tion into an obje
t representingits graph. Unfortunately, this led to a paradox, due to the impli
it possibility ofself-appli
ation of fun
tions. In 1902, Russell suggested [42℄ and Frege
ompletedthe argument [15℄ that a paradox
ould o

ur in NST. First, one
an de�ne S to be\the set of all sets whi
h do not
ontain themselves". Then, one
an prove both ofthese statements in NST:S 2 S , S =2 SThe same paradox
ould be en
oded in the systems of Cantor and Peano (but not inFrege's weaker Begri�ss
hrift). As a result, all these systems were in
onsistent |not only
ould every true statement be proved but also every false one! (Three-valuedlogi

an solve this, but is unsatisfa
tory for other reasons.) Logi
 was in a
risis.In 1908, Russell suggested the use of types to solve the problem [43℄. It is fair tosay that types were (impli
itly) used mu
h earlier than that. For example, Eu
lid'sElements (
ir
a 325 B.C.) begins with (see page 153 of [12℄):1. A point is that whi
h has no part.2. A line is breadthless length.... 3

15. A
ir
le is a plane �gure
ontained by one line su
h that all the straight linesfalling upon it from one point among those lying within the �gure are equal toone another.Although the above seems to merely de�ne points, lines, and
ir
les, it shows more im-portantly that Eu
lid distinguished between them. Eu
lid always mentioned to whi
h
lass (points, lines, et
.) an obje
t belonged. By distinguishing
lasses of obje
ts,Eu
lid prevented undesired situations, like
onsidering whether two points (instead oftwo lines) are parallel. When
onsidering whether two obje
ts were parallel, intuitionfor
ed Eu
lid to think about the type of the obje
ts. As intuition does not supportthe notion of parallel points, he did not even try to undertake su
h a
onstru
tion.In this manner, types have always been present in mathemati
s, although theywere not noti
ed expli
itly until the late 1800s. If you have studied geometry, thenyou have some (impli
it) understanding of types. The question that poses itselfthen is what led to the
reation of this new dis
ipline (type theory) in the twnetieth
entury. Twan Laan in his PhD thesis [33℄ gives an ex
ellent survey of the evolutionof type theory. Here, we brie
y use his argument to state that starting in the 1800s,mathemati
al systems be
ame less intuitive, for several reasons:� Very
omplex or abstra
t systems.� Formal systems.� Something with less intuition than a human using the systems: a
omputer.These situations are paradox threats. An example is Frege's NST. In su
h
ases,there is not enough intuition to a
tivate the (impli
it) type theory to warn againstan impossible situation. Reasoning pro
eeds within the impossible situation and thenobtains a result that may be wrong or paradoxi
al.To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russell pre-s
ribed avoiding self-referen
e and self-appli
ation in his \vi
ious
ir
le prin
iple":Whatever involves all of a
olle
tion must not be one of the
olle
tion.Russell implemented this in his Rami�ed Theory of Types (RTT) [43℄ whi
h usedtypes and orders. Self-appli
ation was prevented by for
ing fun
tions of order k tobe applied only to arguments of order less than k. This was
arried out further byRussell and Whitehead in the famous Prin
ipia Mathemati
a [49℄ (1910-1912), whi
hfounded mathemati
s on logi
, as far as possible, avoiding paradoxes. For example, inRTT, one
an de�ne a fun
tion \+" whi
h is restri
ted to be applied only to integers.Although RTT was
orre
t, unlike NST, the types of RTT have turned out insteadto be too restri
tive for mathemati
s and
omputer s
ien
e where �xed points (tomention one example) play an important role. RTT also for
es dupli
ation of thede�nitions of the number system, the boolean algebra, et
., at every level.The exploration of the middle ground between these two extremes has led to manysystems, most of them in the
ontext of the �-
al
ulus, the �rst higher-order rewritingsystem. If you have studied algebra, then you know some basi
s in rewriting. Here isan example of algebrai

al
ulations whi
h illustrates how rewriting works:4

(a+ b)� a by rule x+ y = y + x= (b+ a)� a by rule x� y = x+ (�y)= (b+ a) + (�a) by rule (x+ y) + z = x+ (y + z)= b+ (a+ (�a)) by rule x+ (�x) = 0= b+ 0 by rule x+ 0 = x= bRewriting is the a
tion of repla
ing a subexpression whi
h is mat
hed by an instan
eof one side of a rule by the
orresponding instan
e of the other side of the same rule.Important properties of rewriting systems in
lude:� Orientation: Usually, most rules
an only be used from left to right as inx+0! x. Forward use of the oriented rules represents progress in
omputation.Un-oriented rules usually do trivial work as in x+ y = y + x.� Termination: It is desirable to show that rewriting halts, i.e., to avoid in�nitesequen
es of the form P ! P1 ! P2 ! � � �.� Con
uen
e: The result of rewriting is independent of the order in whi
h therules are used. For example, 1 + 2 + 3 should rewrite to 6, no matter how weevaluate it.As for types,
omputations (or rewriting) existed sin
e an
ient times (e.g., algebra).However, only in the twentieth
entury, higher-order rewriting
al
uli and theorieshave been extensively developed and important themes and problems identi�ed andstudied. In this paper, we are only interested in the development of higher-orderrewriting through the �-
al
ulus whi
h was highly in
uen
ed by Frege's abstra
tionprin
iple of the late 1800s. This prin
iple states that any expression mentioningsome symbol in zero or more pla
es
an be turned into a fun
tion by abstra
ting overthat symbol. Introdu
ed in the 1930s, Chur
h's �-
al
ulus made fun
tion abstra
tionan operator. For example, (�x:x+5) represents the (unnamed) mathemati
al fun
tionwhi
h takes as input any number and returns as output the result of adding 5 to thatnumber. The �-
al
ulus provides higher-order rewriting, allowing equations like:f((�x: x+ (1=x))5) = f(5 + (1=5)) = f(5 + 0:2) = f(5:2)The type-free �-
al
ulus, whi
h
an be seen as a small programming language, is anex
ellent theory of fun
tions | it
an represent all
omputable fun
tions. Chur
hintended the type-free �-
al
ulus with logi
al operators to provide a foundation formathemati
s. Unfortunately, Russell's paradox
ould also be en
oded in the type-free�-
al
ulus, rendering its use for logi
 in
orre
t. Chur
h [8℄ and Curry [11℄ introdu
edthe simply typed �-
al
ulus (STLC) to provide logi
 while avoiding Russell's paradoxin a manner similar to RTT. Unfortunately, like RTT, the STLC is too restri
tive.The areas, Logi
s, Types and Rewriting
onverge. Heyting [20℄, Kolmogorov [32℄,Curry and Feys [11℄ (improved by Howard [22℄), and de Bruijn [38℄ all observed the\propositions as types" or \proofs as terms" (PAT)
orresponden
e. In PAT,logi
al operators are embedded in the types of �-terms rather than in the proposi-tions and �-terms are viewed as proofs of the propositions represented by their types.5

Advantages of PAT in
lude the ability to manipulate proofs, easier support for inde-pendent proof
he
king, the possibility of the extra
tion of
omputer programs fromproofs, and the ability to prove properties of the logi
 via the termination of therewriting system.In the present time, there is a remarkable revival of �-
al
ulus, espe
ially in theversions whi
h use types. Both logi
ians and
omputer s
ientists have developedseveral bran
hes of typed and untyped �-
al
ulus. Also mathemati
s has bene�ttedfrom �-
al
ulus, espe
ially sin
e the time (around 1970) where de Bruijn used his�-
al
ulus-based Automath for the analysis and
he
king of mathemati
al texts. Inthe rest of this arti
le, we give a brief introdu
tion, both in the
lassi
al notationof Chur
h and in the de Bruijn notation, to the �-
al
ulus and to type theory viathe pure type systems framework. Se
tion 2 deals with the type free �-
al
ulus andSe
tion 3 deals with pure type systems. In parti
ular, we introdu
e in Se
tion 2.1some basi
 rewriting notions needed for the �-
al
ulus and in Se
tion 2.2 we givethe
lassi
al �-
al
ulus (as is usually written) with variable names. In Se
tion 2.3we present the
lassi
al �-
al
ulus with de Bruijn indi
es and in Se
tion 2.4 we turnit into a
al
ulus of expli
it substitutions. In Se
tion 2.5 we present the �-
al
ulususing variable names in de Bruijn's notation rather than in the
lassi
al one. Inthis presentation,
alled �-
al
ulus �a la de Bruijn, the argument appears before thefun
tion and terms are stru
tured in a di�erent manner to the
lassi
al �-
al
ulus.The �-
al
ulus �a la de Bruijn
an also be written using de Bruijn indi
es instead ofvariable names, and we refer the reader to [23℄ for further details. In Se
tion 3.1 wepresent the pure type systems framework in the
lassi
al notation of the �-
al
ulususing variable names. In Se
tion 3.2 we present the pure type systems in
lassi
alnotation using de Bruijn indi
es and establish their isomorphism to the version withvariable names. We leave it as an exer
ise for the reader to write pure type systemsin de Bruijn's notation (using either variable names or de Bruijn indi
es).2 The Type Free �-
al
ulusIn this se
tion, we introdu
e the
lassi
al �-
al
ulus (with variable names and with deBruijn indi
es) and the �-
al
ulus �a la de Bruijn. Terms of the
lassi
al �-
al
ulus are
onstru
ted via appli
ation (as in AB) or abstra
tion (as in �v:A if variable names areused, or �A if de Bruijn indi
es are used). Terms of the �-
al
ulus �a la de Bruijn arealso
onstru
ted using appli
ation (as in (B)A) or abstra
tion (as in [v℄A if variablenames are used, or [℄A if de Bruijn indi
es are used). The �-
al
ulus �a la de Bruijn isonly given using variable names, for the version using de Bruijn indi
es see [23℄.2.1 Rewriting notionsAll the systems of this paper have a
ommon feature. First, the syntax (the set ofterms, types, substitutions, et
.) is given and then a set of rules that work on thesyntax is presented. Those rules are rewrite rules and are of the form A !R Bor (A;B) 2 R if we prefer to talk of rewrite relations. These rules take a
ertainexpression of the syntax (term, type, substitution, et
.) that mat
hes the patternof the left hand side A of the rule and rewrite it in a way that mat
hes the righthand side B of the rule. This rewriting must take pla
e inside larger formulas as6

well. For example, assume that A rewrites to B, then we must also be able to rewriteAC to BC. For this reason, an important notion for rewriting relations is that of
ompatibility. We introdu
e this notion here for the
lassi
al �-
al
ulus whose onlyoperators are appli
ation and abstra
tion (the syntax is given in De�nitions 9 and 39):De�nition 1 (Compatibility for the
lassi
al �-
al
ulus) We say that a binaryrelation R on the
lassi
al �-
al
ulus is
ompatible i� for all terms A;B of the �-
al
ulus and variable v, the following holds:(A;B) 2 R(AC;BC) 2 R (A;B) 2 R(CA;CB) 2 R (A;B) 2 R(�v:A; �v:B) 2 R (1) (A;B) 2 R(�A; �B) 2 R (2)(1) is in
ase of variable names and (2) is in
ase of de Bruijn indi
es.This notion of
ompatibility will be extended a

ording to the extra operations thatwill be added to the �-
al
ulus. For example, if we add substitution, we will have toadd an extra
lause on the
ompatibility for the
ase of the substitution operator.De�nition 2 (Redu
tion Notations) Let S be a set and R a binary relation onS . We
all R a redu
tion notion on S and use the following notations and de�nitions:1. !R is the
ompatible
losure of R, and (S;!R) is a redu
tion system.2. �!R or just �! , is the re
exive
losure !R .3. +!!R or just +!! is the transitive
losure of !R .4. !!R or just !! is the re
exive and transitive
losure of !R . When A !! Bwe say there exists a redu
tion sequen
e from A to B .5. =R is the re
exive, symmetri
 and transitive
losure of !R. That is, =R is theleast equivalen
e relation
ontaining !R.6. � is synta
ti
 identity, and A � B means A and B are synta
ti
ally identi
al.7. we write A n!!R B or just A n!! B when the redu
tion sequen
e
onsists of n � 0steps of redu
tion. We
all n the length of the redu
tion sequen
e. I.e., if n � 2 ,there exists B1; : : : ; Bn�1 su
h that A!R B1 !R � � � !R Bn�1 !R B . Whenn = 1 , A 1!!RB means A!R B . When n = 0 , A 0!!RB means A � B .8. When (A;B) 2 R, we say that A is an R-redex. In many
ases, we introdu
e Ras a set of rewrite rules of the form A!R B.9. A 2 S is an R-normal form (R-nf for short) if A does not
ontain any R-redex.10. We say that B is an R-normal form of A or A has the R-normal form B if Bis an R-normal form and A =R B.Expressions
an be evaluated in di�erent orders. For example, we
ould evaluate2+3+4 by evaluating (2+3)+4 or 2+(3+4). We would like to get the same resulteither way. The following two de�nitions help us des
ribe this phenomenon:7

De�nition 3 (Diamond property) Let R be a binary relation on S. We say that(S;!R) satis�es the diamond property if for all A;B;C 2 S, if A!R B and A!R C,then there is a D su
h that B !!R D and C !!R D. Pi
torially this is as follows:B CA���	 ���RR RD��R ��	��R ��	De�nition 4 (Con
uen
e and Chur
h Rosser) Let R be a notion of redu
tionon S . We de�ne lo
al
on
uen
e (or Weak Chur
h Rosser WCR),
on
uen
e (orChur
h Rosser CR) and strong
on
uen
e (or Strong Chur
h Rosser SCR) as follows:1. WCR: !R satis�es the diamond property. I.e.:8A;B;C 2 S 9D 2 S : (A!R B ^ A!R C)) (B !!R D ^ C !!R D) :2. CR: !!R satis�es the diamond property. I.e.:8A;B;C 2 S 9D 2 S : (A !!R B ^ A !!R C)) (B !!R D ^ C !!R D) :3. SCR: 8A;B;C 2 S 9D 2 S : (A !R B^A !R C)) (B !R D^C !R D) :Lemma 5 Let R be a notion of redu
tion. If !R is SCR then !!R is also SCR.Theorem 6 Let R be a notion of redu
tion that is CR. The following holds:� If A =R B then there is a C su
h that A!!R C and B !!R C.1� If A =R B and B is in R-normal form, then A!!R B.� If A =R B then either A and B do not have R-normal forms or A and B havethe same R-normal form.� If A has R-normal forms B and C, then B and C are identi
al up to variablerenaming. Hen
e, we speak of the R-normal form of A and denote by R(A).� A =R B, A and B are in R-normal forms then A and B are identi
al up tovariable renaming.A se
ond very important
on
ern of redu
tion (or rewrite) systems is that of termi-nation. We are interested in knowing if our rewriting of a parti
ular expression willterminate or will go inde�nitely. For example, the rule n ! n + 1 applied to 1 willnot terminate. Termination is a
ru
ial property for implementation purposes. If anexpression does not always terminate in a parti
ular redu
tion system, perhaps it
anterminate with some
areful order of rules. Those expressions that will never termi-nate are disastrous for
omputation. We set the way with the following de�nition.De�nition 7 (Normalisation) Let R be a redu
tion notion on S . We say that:1Sometimes, this is referred to as the
on
uen
e property. We have however identi�ed Chur
hRosser and Con
uen
e. 8

� A term A is strongly R-normalising if there are no in�nite R-redu
tion sequen
esstarting at A.� R is strongly normalising (SN) if there is no in�nite sequen
e (Ai)i�0 in S su
hthat Ai !R Ai+1 for all i � 0 . I.e. every A in S strongly R-normalises.� R is weakly normalising (WN) if every A 2 S has an R-normal form.When no
onfusion arises, R may be omitted and we speak simply of normal formsor normalisation.Strong normalisation implies weak normalisation and therefore the existen
e of normalforms. The following lemma is an important
onne
tion between strong normalisationand
on
uen
e (its proof
an be found in [3℄, proposition 3.1.25):Lemma 8 (Newman) Every strongly normalising, lo
ally
on
uent notion of re-du
tion relation is
on
uent. In other words, SN + WCR =) CR.2.2 Classi
al �-
al
ulus with variable namesDe�nition 9 (Syntax of �-terms) The set of
lassi
al �-terms or �-expressionsMis given by: M ::= V j (�V :M) j (MM) where V = fx; y; z; : : :g is an in�nite set ofterm variables. We let v; v0; v00; � � � range over V and A;B;C � � � range overM.Example 10 (�x:x), (�x:(xx)), (�x:(�y:x)), (�x:(�y:(xy))), and ((�x:x)(�x:x)) areall
lassi
al �-expressions.This simple language is surprisingly ri
h. Its ri
hness
omes from the freedom to
reateand apply fun
tions, espe
ially higher order fun
tions to other fun
tions (and evento themselves). To explain the intuitive meaning of these three sorts of expressions,let us imagine a model where every �-expression denotes an element of that model(whi
h is a fun
tion). In parti
ular, the variables denote a fun
tion in the modelvia an interpretation fun
tion or an environment whi
h maps every variable into aspe
i�
 element of the model. Su
h a model by the way was not obvious for morethan forty years. In fa
t, for a domain D to be a model of �-
al
ulus, it requiresthat the set of fun
tions from D to D be in
luded in D. Moreover, as the �-
al
ulusrepresents pre
isely the re
ursive fun
tions, we know from Cantor's theorem that thedomain D is mu
h smaller than the set of fun
tions from D to D. Dana S
ott wasarmed by this theorem in his attempt to show the non-existen
e of the models of the�-
al
ulus. To his surprise, he proved the opposite of what he set out to show. Hefound in 1969 a model whi
h has opened the door to an extensive area of resear
h in
omputer s
ien
e. We will not go into the details of these models in this paper.De�nition 11 (Meaning of Terms) Here is now the intuitive meaning of ea
h ofthe three �-expressions given in the syntax:Variables Fun
tions denoted by variables are determined by what the variables arebound to in the environment. Binding is done by �-abstra
tion.Fun
tion appli
ation If A and B are �-expressions, then so is (AB). This expres-sion denotes the result of applying the fun
tion denoted by A to the fun
tiondenoted by B. 9

Abstra
tion If v is a variable and A is an expression whi
h may or may not
ontaino

urren
es of v, then �v:A denotes the fun
tion that maps the input value Bto the output value A[v := B℄.Example 12 (�x:x) denotes the identity fun
tion. (�x:(�y:x)) denotes the fun
tionwhi
h takes two arguments and returns the �rst.As parentheses are
umbersome, we will use the following notational
onvention:De�nition 13 (Notational
onvention) We use these notational
onventions:1. Fun
tional appli
ation asso
iates to the left. So ABC denotes ((AB)C).2. The body of a � is anything that
omes after it. So, instead of (�v:(A1A2 : : : An)),we write �v:A1A2 : : : An.3. A sequen
e of �'s is
ompressed to one, so �xyz:t denotes �x:(�y:(�z:t)).As a
onsequen
e of these notational
onventions we get:1. Parentheses may be dropped: (AB) and (�v:A) are written AB and �v:A.2. Appli
ation has priority over abstra
tion: �x:yz means �x:(yz) and not (�x:y)z.2.2.1 Variables and SubstitutionWe need to manipulate �-expressions in order to get values. For example, we need toapply (�x:x) to y to obtain y. To do so, we use the �-rule whi
h says that (�v:A)Bevaluates to the body A where v is substituted by B, written A[v := B℄. However, onehas to be
areful. Look at the following example:Example 14 Evaluating (�fx:fx)g to �x:gx is perfe
tly a

eptable but evaluating(�fx:fx)x to �x:xx is not. ByDe�nition 11, �fx:fx and �fy:fy have the same mean-ing and hen
e (�fx:fx)x and (�fy:fy)y must also have the same meaning. Moreover,their values must have the same meaning. However, if (�fx:fx)x evaluates to �x:xxand (�fy:fy)x evaluates to �y:xy, then we easily see, a

ording to De�nition 11, that�x:xx and �y:xy have two di�erent meanings. The �rst takes a fun
tion and appliesit to itself, the se
ond takes a fun
tion y and applies x (whatever its value) to y.We de�ne the notions of free and bound variables whi
h will play an important rolein avoiding the problem above. In fa
t, the � is a variable binder, just like 8 in logi
:De�nition 15 (Free and Bound variables) For a �-term C, the set of free vari-ables FV (C), and the set of bound variablesBV (C), are de�ned indu
tively as follows:FV (v) =def fvg BV (v) =def ;FV (�v:A) =def FV (A) � fvg BV (�v:A) =def BV (A) [fvgFV (AB) =def FV (A) [FV (B) BV (AB) =def BV (A) [BV (B)
10

An o

urren
e of a variable v in a �-expression is free if it is not within the s
ope ofa �v:2, otherwise it is bound. For example, in (�x:yx)(�y:xy), the �rst o

urren
e ofy is free whereas the se
ond is bound. Moreover, the �rst o

urren
e of x is boundwhereas the se
ond is free. In �y:x(�x:yx) the �rst o

urren
e of x is free whereasthe se
ond is bound. A
losed term is a �-term in whi
h all variables are bound.Free and bound variables play an important role in the �-
al
ulus for many reasons:1. Almost all �-
al
uli identify terms that only di�er in the name of their boundvariables. For example, as �x:x and �y:y have a

ording to De�nition 11 thesame meaning (the identity fun
tion), they are usually identi�ed. We will seemore on this when we will introdu
e �-
onversion (
f. De�nition 19).2. Substitution has to be handled with
are due to the distin
t roles played bybound and free variables. After substitution, no free variable
an be
ome bound.For example, (�x:fx)[f := x℄ must not return �x:xx, but �y:xy. These twolatter terms have di�erent meanings. �y:xy is obtained by renaming the boundx in �x:fx to y, and then performing the substitution. Thus (�x:fx)[f := x℄ isthe same as (�y:fy)[f := x℄ whi
h in its turn is the same as �y:xy.3. There is no point in substituting for a bound variable. For example, what is thepoint of turning (�x:x)[x := y℄ into �y:y? Or even more strange (and not allowedsynta
ti
ally), repla
ing x by �y:y due to the substitution (�x:x)[x := �y:y℄.Here is now the de�nition of substitution:De�nition 16 (Substitution) For any A;B; v, we de�ne A[v := B℄ to be the resultof substituting B for every free o

urren
e of v in A, as follows:v[v := B℄ � Bv0[v := B℄ � v if v 6� v0(AC)[v := B℄ � A[v := B℄C[v := B℄(�v:A)[v := B℄ � �v:A(�v0:A)[v := B℄ � �v0:A[v := B℄if v0 6� v and (v0 62 FV (B) or v 62 FV (A))(�v0:A)[v := B℄ � �v00:[v0 := v00℄[v := A℄if v0 6� v and (v0 2 FV (B) and v 2 FV (A))In the last
lause, v00 is
hosen to be the �rst variable 62 FV (AB). In the
ase whenterms are identi�ed modulo the names of their bound variables, then in the last
lauseof the above de�nition, any v00 62 FV (AB)
an be taken. In implementation however,this identi�
ation is useless and a parti
ular
hoi
e of v00 has to be made.Example 17 Che
k that (�y:yx)[x := z℄ � �y:yz, that (�y:yx)[x := y℄ � �z:zy, andthat (�y:yz)[x := �z:z℄ � �y:yz.Lemma 18 (Substitution for variable names) Let A;B;C 2 M, x; y; 2 V . Forx 6= y and x 62 FV(C), we have that: A[x := B℄[y := C℄ � A[y := C℄[x := B[y := C℄℄.2Noti
e that the v in �v is not an o

urren
e of v.11

2.2.2 Redu
tionThree notions of redu
tion will be studied in this se
tion. The �rst is �-redu
tionwhi
h identi�es terms up to variable renaming. The se
ond is �-redu
tion evaluates�-terms. The third is �-redu
tion whi
h is used to identify fun
tions that return thesame values for the same arguments (extensionality). �-redu
tion is used in every�-
al
ulus, whereas �-redu
tion and �-redu
tion may or may not be used.De�nition 19 (Alpha redu
tion) !� is de�ned to be the least
ompatible rela-tion
losed under the axiom:(�) �v:A!� �v0:A[v := v0℄ where v0 62 FV (A)Example 20 �x:x!��y:y but it is not the
ase that �x:xy!��y:yy.Moreover, �z:(�x:x)x!!��z:(�y:y)x.Re
all that �x:x 6� �y:y even though they represent the same fun
tion. They area
tually identi
al modulo �-
onversion. I.e. �x:x =� �y:y.De�nition 21 (Beta redu
tion) !� is de�ned to be the least
ompatible relation
losed under the axiom: (�) (�v:A)B!�A[v := B℄Example 22 Che
k that (�x:x)(�z:z)!��z:z, that (�y:(�x:x)(�z:z))xy!!�y, andthat both �z:z and y are �-normal forms.Here is a lemma about the intera
tion of �-redu
tion and substitution:Lemma 23 Let A;B;C;D 2M.1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof By indu
tion on the stru
ture of A for 1, on the derivation A!� B for 2.De�nition 24 (Eta redu
tion and �-normal forms) !� is de�ned to be the least
ompatible relation
losed under the axiom:(�) �v:Av!�A for v 62 FV (A)Example 25 �x:(�z:z)x!��z:z but it is not the
ase that �x:xx!�x.Moreover �y:(�x:(�z:z)x)y!!��z:z.We use !!�� and =�� when both � and � are used. �-
onversion equates two termsthat have the same behaviour as fun
tions and implies extensionality.Lemma 26 (Extensionality) For v not free in A or B, if Av =�� Bv then A =�� B.Proof Let Av =�� Bv. By
ompatibility, �v:Av =�� �v:Bv. Hen
e A =�� B by �.12

2.2.3 Meta TheoryExample 27 below shows that not all expressions have normal forms (1), one mayredu
e terms using di�erent redu
tion orders (2), the order of redu
tion will a�e
tour rea
hing a normal form (3), and redu
ing a �-expression may even result in abigger expression rather than a smaller one (4). We underline the
ontra
ted redexes:Example 271. (�x:xx)(�x:xx) is not normalising (and hen
e is not strongly normalising).Hen
e, we know that this term does not have a normal form.2. We
an redu
e in di�erent orders:(�y:(�x:x)(�z:z))xy!�(�y:�z:z)xy!�(�z:z)y!�y and(�y:(�x:x)(�z:z))xy!�((�x:x)(�z:z))y!�(�z:z)y!�y3. A term may be normalising but not strongly normalising:(�y:z)((�x:xx)(�x:xx))!�z yet(�y:z)((�x:xx)(�x:xx))!�(�y:z)((�x:xx)(�x:xx))!� : : :4. A term may grow after redu
tion:(�x:xxx)(�x:xxx) !� (�x:xxx)(�x:xxx)(�x:xxx)!� (�x:xxx)(�x:xxx)(�x:xxx)(�x:xxx)!� : : :Over expressions whose evaluation does not terminate, there is little we
an do, solet us restri
t our attention to those expressions whose evaluation terminates. �-and �-redu
tion
an be seen as de�ning the steps that
an be used for evaluatingexpressions to values. The values are intended to be themselves terms that
annot beredu
ed any further. Lu
kily, all orders lead to the same value (or normal form) of theexpression for R-redu
tion where R 2 f�; ��g. That is, if an expression R-redu
es intwo di�erent ways to two values, then those values, if they are in R-normal form arethe same (up to �-
onversion).Example 28 Here are some ways to redu
e (�xyz:xz(yz))(�x:x)(�x:x). In all
ases,the same �nal answer is obtained.1. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!�(�yz:z(yz))(�x:x)!��z:z((�x:x)z)!��z:zz.2. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!��z:(�x:x)z((�x:x)z)!��z:z((�x:x)z)!��z:zz.3. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!��z:(�x:x)z((�x:x)z)!��z:(�x:x)zz!��z:zz.We would like that if A �- or ��-redu
es to B and to C, then B and C �- or ��-redu
eto the same term D. Lu
kily, the �-
al
ulus satis�es this property:Theorem 29 (�- and ��-redu
tion are Chur
h Rosser) For R 2 f�; ��g, wehave: 8A;B;C 2 M 9D 2M : (A !!R B ^A !!R C)) (B !!R D^C !!R D) :13

Proof Various people have provided proofs of this theorem separately but Currygave the �rst proof in [10℄. [3℄ provides various proofs of this theorem. A shorter andnew proof
an be found in [46℄.Due to this theorem (whi
h says that the results of redu
tions do not depend on theorder in whi
h they are done), we may evaluate separate redexes in parallel.Theorem 30 (�-
al
ulus is
onsistent) There are A;B su
h that A 6=�(�) B.Proof If �xy:x =� �xy:y, then by Theorems 6 and 29, �xy:x =� �xy:y, but this isnot the
ase. Hen
e �xy:x 6=� �xy:y.So far we have answered two important questions.1. Terms evaluate to unique values.2. The �-
al
ulus is not trivial in the sense that it has more than one element.Let us re
all however from Example 27 that a term may have a normal form yetthe evaluation order we use may not �nd this normal form. Hen
e the question nowis: given a term that has a normal form,
an we �nd this normal form? This isan important question be
ause to be able to
ompute with the �-
alu
lus, we mustbe able to �nd the normal form of a term if it exists. Lu
kily we have a positiveresult to this question. That is, if a term has a normal form then there is a redu
tionstrategy that �nds this normal form. The positive result is given by the normalisationtheorem (Theorem 36) whi
h tells us that blind alleys in a redu
tion
an be avoidedby redu
ing the leftmost � or �-redex. That is, by redu
ing the redex whose beginning� is as far to the left as possible. First, we need two sorts of redexes:De�nition 31 (Left-most outermost redex) The leftmost outermost redex of aterm is the redex whose � is the leftmost � of the term. More pre
isely:� lmo(AB) =def AB if AB is a �-redex� lmo(AB) =def lmo(A) if AB is not a �-redex� lmo(�v:A) =def lmo(A)De�nition 32 (Right-most innermost redex) The rightmost innermost redex ofa term is the redex whose � is the rightmost � of the term. More pre
isely:� rmi(AB) =def rmi(B) if rmi(B) is de�ned� rmi(AB) =def AB if rmi(B) is not de�ned� rmi(�v:A) =def rmi(A)Example 331. The leftmost outermost redex of (�y:z)((�x:xx)(�x:xx)) is the whole term itselfand not ((�x:xx)(�x:xx)).2. The rightmost innermost redex of (�y:z)((�x:xx)(�x:xx)) is ((�x:xx)(�x:xx)).14

3. Inner and outer refer to the nesting of expressions. For example, the entireexpression is the outermost redex in (�yz:(�x:x)z(yz))(�x:x) whereas the in-nermost redex is the subterm (�x:x)z.De�nition 34 (Normal-order redu
tion) A redu
tion sequen
e is normal orderor
all by name if the leftmost redex is always redu
ed.De�nition 35 (Appli
ative-order redu
tion) A redu
tion sequen
e is appli
a-tive order or
all by value if the rightmost redex is always redu
ed.A

ording to the
all by value strategy, an argument is
alled only if it is a value (anormal form). A

ording to the
all by name strategy, an argument is
alled without�rst
omputing its value. Normal order redu
tion is guaranteed to rea
h a normalform if it exists. Appli
ative order however, might get stu
k forever evaluating a termthat is not strongly normalising (but may be normalising). For example, if normalorder is used, (�y:z)((�x:xx)(�x:xx)) will yield z; it will never terminate on the otherhand, if appli
ative order is used. Appli
ative order however
an rea
h a normal formfaster than normal order. For example, take (�x:xx)((�y:y)(�z:z)).1. Appli
ative: (�x:xx)((�y:y)(�z:z))!� (�x:xx)(�z:z)!�(�z:z)(�z:z)!��z:z.2. Normal: (�x:xx)((�y:y)(�z:z))!� ((�y:y)(�z:z))((�y:y)(�z:z))!�(�z:z)((�y:y)(�z:z))!�(�y:y)(�z:z)!��z:z.The normalisation theorem (
f. [3℄) states that if a term has a normal form then itis found by the leftmost outermost redu
tion strategy (whi
h is not the most eÆ
ient):Theorem 36 (Normalisation theorem) If A has a normal form, then iterated
ontra
tion of the leftmost redex leads to that normal form.2.3 Classi
al �-
al
ulus with de Bruijn indi
esAs we have seen in the previous se
tion, substitution
an be a
umbersome operationdue to variable manipulation and renaming. There are some approa
hes used to avoideither the problem or variables themselves. We mention three methods:� The use of
ombinatory logi
 whi
h is equivalent to the �-
al
ulus but does notuse variable names. For example, in
ombinatory logi
, the identity fun
tion�x:x is written as I where Ia redu
es to a. In fa
t, every term is a
ombinatorand no variables need to be introdu
ed. It is however less intuitive to understandwhat the
ombinators are doing espe
ially in really large terms. We will nottou
h
ombinators in this paper. The interested reader
an refer to [21℄.� The use of the Barendregt Variable Convention (VC) whi
h makes it possible torewrite substitution in a way whi
h does not deal with renaming variables. (VC)assumes that if at some pla
e we dis
uss the terms A1; A2; : : : ; An, then all thebound variables in these terms are di�erent from the free ones and that never�v : : : �v is used; rather, one uses �v : : : �v0. For example, instead of writing(�x:�y:xy)x, we write (�z:�y:zy)x. 15

Due to (VC), the two
lauses of De�nition 16 get repla
ed by the single
lause:(�v0:A)[v := B℄ � �v0:A[v := B℄ if v0 6� v(VC) hides the problem rather than solving it. All the
al
ulations and variablerenaming have to be done. But (VC) assumes there is some magi
al sti
k whi
hdoes all this work. Of
ourse, we
annot use su
h an assumption when we doreal work with our terms espe
ially when we are implementing them.� The use of de Bruijn indi
es whi
h avoid
lashes of variable names and thereforeneither �-
onversion nor Barendregt's
onvention are needed. This is explainedin detail in this se
tion.2.3.1 SyntaxDe Bruijn noted that due to the fa
t that terms as �x:x and �y:y are the \same",one
an �nd a �-notation modulo �-
onversion. That is, following de Bruijn, one
an abandon variables and use indi
es instead. The idea of de Bruijn indi
es is toremove all the variable indi
es of the �'s and to repla
e their o

urren
es in the bodyof the term by the number whi
h represents how many �'s one has to
ross beforeone rea
hes the � binding the parti
ular o

urren
e at hand.Example 371. �x:x is repla
ed by �1. That is, x is removed, and the x of the body x is repla
edby 1 to indi
ate the � it refers to.2. �x:�y:xy is repla
ed by ��21. That is, the x and y of �x and �y are removedwhereas the x and y of the body xy are repla
ed by 2 and 1 respe
tively in orderto refer ba
k to the �s that bind them.3. Similarly, �z:(�y:y(�x:x))(�x:xz) is repla
ed by �(�1(�1))(�12).Note that the above terms are all
losed. What do we do if we had a term that hasfree variables? For example, how do we write �x:xz using de Bruijn's indi
es?In the presen
e of free variables, a free variable list whi
h orders the variablesmust be assumed. For example, assume we take x; y; z; : : : to be the free variable listwhere x
omes before y whi
h is before z, et
. Then, in order to write terms usingde Bruijn indi
es, we use the same pro
edure above for all the bound variables. Fora free variable however, say z, we
ount as far as possible the �'s in whose s
ope z is,and then we
ontinue
ounting in the free variable list using the order assumed. Thefollowing example demonstrates:Example 38 �x:xz, (�x:xz)y and (�x:xz)x translate respe
tively into �14, (�14)2and (�14)1.Now we are ready to de�ne the
lassi
al �-
al
ulus with de Bruijn indi
es.De�nition 39 We de�ne �, the set of terms with de Bruijn indi
es, as follows:� ::= IN j (��) j (��)As for M, we use A;B; : : : to range over �. We also use m;n; : : : to range over IN(positive natural numbers). Conventions 1 and 2 of De�nition 13 are used (withoutthe dots of
ourse) and the
onsequen
es of that de�nition also hold here.16

2.3.2 Updating and SubstitutionIn the
lassi
al �-
al
ulus with de Bruijn indi
es, variables are represented by deBruijn indi
es (natural numbers). In order to de�ne �-redu
tion, we must de�ne thesubstitution of a variable by a term B in a term A. Therefore, we must identifyamongst the numbers of a term A those that
orrespond to the variable that is beingsubstituted for and we need to update the term to be substituted in order to preservethe
orre
t bindings of its variables.Example 40 Writing (�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u using de Bruijn indi
es,one gets (��521)(�31) !� �4(�41)1. The body of ��521 is �521 and the variablebound by the �rst � of ��521 is the 2. Hen
e, we need to repla
e in �521 the 2 by�31. But if we simply repla
e 2 in �521 by �31 we get �5(�31)1, whi
h is not
orre
t.We needed to de
rease 5 as one � disappeared and to in
rement the free variables of�31 as they o

ur within the s
ope of one more �.In order to de�ne �-redu
tion (�A)B !�? using de Bruijn indi
es. We must:� �nd in A the o

urren
es n1; : : : nk of the variable bound by the � of �A.� de
rease the variables of A to re
e
t the disappearan
e of the � from �A.� repla
e the o

urren
es n1; : : : nk in A by updated versions of B whi
h take intoa

ount that variables in B may appear within the s
ope of extra �s in A.It will take some work to do this. Let us, in order to simplify things say that the�-rule is (�A)B !� Aff1 Bgg and let us de�ne Aff1 Bgg in a way that all thework of 1 : : : 3 above is
arried out. We need
ounters des
ribed informally as follows:1. We start traversing A (here �521) with a unique
ounter initialised at 1.2. In arriving at an appli
ation node, we
reate a
opy of the
ounter in order tohave one
ounter for ea
h bran
h.3. In arriving at an abstra
tion node, we in
rement the
ounter.4. In arriving at a leaf (i.e. a number):(a) If it is superior to the
ounter, we de
rease it by 1, be
ause there will be a�-less between this number and the � that binds it.(b) If the number is equal to the
ounter, say n, it must be repla
ed by B whi
hwill be found now under n� 1 �'s. We must therefore adjust the numbersof B so that we
an modify the binding relations inside B. For this weuse another family of fun
tions that we
all meta-updating fun
tions.(
) If the number is inferior to the value of the
ounter, then it is bound by a� whi
h is inside A, and hen
e the number must not be modi�ed.Let us de�ne the meta-updating fun
tions.
17

De�nition 41 The meta-updating fun
tions U ik : � ! � for k � 0 and i � 1 arede�ned indu
tively as follows:U ik(AB) � U ik(A)U ik(B)U ik(�A) � �(U ik+1(A)) U ik(n) � � n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i� 1 is thevalue by whi
h a variable, if free, must be in
remented.Now we de�ne the family of meta-substitution fun
tions:De�nition 42 The meta-substitutions at level i , for i � 1 , of a term B 2 � in aterm A 2 � , denoted Affi Bgg , is de�ned indu
tively on a as follows:(A1A2)ffi Bgg � (A1ffi Bgg) (A2ffi Bgg)(�A)ffi Bgg � �(Affi+ 1 Bgg) nffi Bgg � 8<: n� 1 if n > iU i0(B) if n = in if n < i :The �rst two equalities propagate the substitution through appli
ations and abstra
-tions and the last one
arries out the substitution of the intended variable (whenn = i) by the updated term. If the variable is not the intended one it must be de-
reased by 1 if it is free (
ase n > i) be
ause one � has disappeared, whereas if it isbound (
ase n < i) it must remain unaltered. It is easy to
he
k for example that(�521)ff1 (�31)gg � �4(�41)1 and hen
e (��521)(�31)!� �4(�41)1.The following lemma establishes the properties of the meta-substitutions andmeta-updating fun
tions. The proof of this lemma is obtained by indu
tion on aand
an be found in [26℄ (the proof of 3 requires 2 with p = 0; the proof of 4 uses 1and 3 both with k = 0; �nally, 5 with p = 0 is needed to prove 6).Lemma 431. For k < n � k + i we have: U ik(A) � U i+1k (A)ffn Bgg .2. For p � k < j + p we have: U ik(U jp (A)) � U j+i�1p (A) :3. For i � n� k we have: U ik(A)ffn Bgg � U ik(Affn� i+ 1 Bgg) :4. [Meta-substitution lemma℄ For 1 � i � n we have:Affi Bggffn Cgg � Affn+ 1 Cggffi Bffn� i+ 1 Cgggg.5. For m � k + 1 we have: U ik+p(Ump (A)) � Ump (U ik+p+1�m(A)) .6. [Distribution lemma℄For n � k + 1 we have: U ik(Affn Bgg) � U ik+1(A)ffn U ik�n+1(B)gg :Case 4 is the version of Lemma 18 using de Bruijn indi
es.2.3.3 Redu
tionDe�nition 44 �-redu
tion is the least
ompatible relation on � generated by:(�-rule) (�A)B !� Aff1 BggThe
lassi
al �-
al
ulus with de Bruijn indi
es, is the redu
tion system generated bythe only rewriting rule �. 18

We say that the �-
al
uli with variable names and with de Bruijn indi
es are iso-morphi
 is there are translation fun
tions between M and � whi
h are inverses ofea
h other and whi
h preserve �-redu
tions. The following theorem establishes theisomorphism of the �-
al
uli with variable names and de Bruijn indi
es (
f. [35℄ for aproof). We will dis
uss a similar isomorphism in se
tion 3.2.Theorem 45 The
lassi
al �-
al
ulus with de Bruijn indi
es and the
lassi
al �-
al
ulus with variable names are isomorphi
.Theorem 46 The
lassi
al �-
al
ulus with de Bruijn indi
es is
on
uent.Proof By the isomorphism stated in Theorem 45, the
on
uen
e of the
lassi
al�-
al
ulus with variable names (
f. [3℄ thm. 3.2.8) is transportable to the
lassi
al�-
al
ulus �a la de Bruijn.Finally, here is the version of Lemma 23 for de Bruijn indi
es. Note that we neednot only to ensure the good passage of the �-rule through the meta-substitutions butalso through the U ik.Lemma 47 Let A; B; C; D 2 �.1. If C !� D then i) U ik(C)!� U ik(D) and ii)Affi Cgg !!� Affi Dgg .2. If A!� B then Affi Cgg !� Bffi Cgg .Proof 1. Case i) is by indu
tion on C using Lemma 43.6. Case ii) is by indu
tionon A using i). 2. Is by indu
tion on A using Lemma 43.4.2.4 From the
lassi
al �-
al
ulus with de Bruijn indi
es to asubstitution
al
ulusHaving seen in Se
tion 2.3 the meta-updating and meta-substitution operators, anapproa
h to introdu
e expli
it substitution to the �-
al
ulus with de Bruijn indi
esis to extend the syntax of De�nition 39 to in
lude new operators that internaliseupdating and substitution. This is done as follows:De�nition 48 (Syntax of the �s-
al
ulus) Terms of the �s-
al
ulus are given by:�s ::= IN j (�s�s) j (��s) j (�s �i�s) j ('ik�s) where i � 1 ; k � 0 :We use the notational
onventions de�ned earlier to get rid of unne
essary parenthesis.Now, we need to in
lude redu
tion rules that operate on the new terms built withupdating and substitutions. De�nitions 41 and 42 suggest these rules. The resulting
al
ulus is the expli
it substitution
al
ulus �s of [26℄ whose set of rules is given inFigure 1. Note that these rules are nothing more than � written now as �-generation,together with the rules of De�nitions 41 and 42 oriented as expe
ted.De�nition 49 The set of rules �s is given in Figure 1. The �s-
al
ulus is the redu
-tion system (�s;!�s) where !�s is the least
ompatible redu
tion on �s generatedby the set of rules �s. 19

�-generation (�A)B �! A�1 B�-�-transition (�A)�iB �! �(A�i+1 B)�-app-transition (A1 A2)�iB �! (A1 �iB) (A2 �iB)�-destru
tion n�iB �! 8<: n� 1 if n > i'i0B if n = in if n < i'-�-transition 'ik(�A) �! �('ik+1 A)'-app-transition 'ik(A1 A2) �! ('ik A1) ('ik A2)'-destru
tion 'ik n �! � n+ i� 1 if n > kn if n � kFigure 1: The �s-rules�-�-transition (A�iB)�j C �! (A�j+1 C) �i (B �j�i+1 C) if i � j�-'-transition 1 ('ik A)�j B �! 'i�1k A if k < j < k + i�-'-transition 2 ('ik A)�j B �! 'ik(A�j�i+1B) if k + i � j'-�-transition 'ik(A�j B) �! ('ik+1A)�j ('ik+1�j B) if j � k + 1'-'-transition 1 'ik ('jl A) �! 'jl ('ik+1�j A) if l+ j � k'-'-transition 2 'ik ('jl A) �! 'j+i�1l A if l � k < l+ jFigure 2: The new rules of the �se-
al
ulus[26℄ establishes that the s-
al
ulus (i.e., the redu
tion system whose rules arethose of Figure 1 ex
luding �-generation) is strongly normalising, that the �s-
al
ulusis
on
uent, simulates �-redu
tion and has the property of preservation of strongnormalisation PSN (i.e., if a term terminates in the
al
ulus with de Bruijn indi
espresented in Se
tion 2.3, then it terminates in the �s-
al
ulus). If the �s-
al
ulusis extended with open terms (variables that range over terms), then the redu
tionrules need also to be extended to guarantee
on
uen
e. This extension is essentialfor implementations, see [34, 36, 37℄. Adding the 6 items of Lemma 43 as orientedrewriting rules results in the
al
ulus �se whi
h is
on
uent on open terms [28℄. Like�� of [1℄, this
al
ulus does not satisfy PSN [18℄.De�nition 50 (The �se-
al
ulus) Terms of the �se-
al
ulus are given by:�sop ::= VjIN j(�sop�sop)j(��sop)j(�sop �j�sop)j('ik�sop) where j; i � 1 ; k � 0and where V stands for a set of variables, over whi
h X , Y , ... range.The set of rules �se is obtained by adding the rules given in Figure 2 to the set�s of Figure 1. The �se-
al
ulus is the redu
tion system (�sop;!�se) where !�se isthe least
ompatible redu
tion on �sop generated by the set of rules �se.20

�(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D) zFigure 3: Redexes in de Bruijn's notation2.5 The �-
al
ulus �a la de BruijnDe Bruijn departed from the
lassi
al notation of the �-
al
ulus that we saw so far.Instead, he wrote the argument before the fun
tion and often used [x℄ instead of �x.Here is the translation from
lassi
al notation into de Bruijn's notation via I.I(v) =def v; I(�v:B) =def [v℄I(B); I(AB) =def (I(B))I(A)De Bruijn
alled items of the form (A) and [v℄ appli
ator wagon respe
tively ab-stra
tor wagon, or simply wagon.Example 51 I((�x:(�y:xy))z) = (z)[x℄[y℄(y)x. The wagons are (z), [x℄, [y℄ and (y).In de Bruijn's notation, the �-rule (�v:A)B !� A[v := B℄ be
omes:(B)[v℄A !� [v := B℄ANote that the appli
ator wagon (B) and the abstra
tor wagon [v℄ o

ur NEXT toea
h other. Here is an example whi
h
ompares �-redu
tion in both the
lassi
al andde Bruijn's notation. Wagons that have the same symbol on top, are mat
hed.Classi
al Notation De Bruijn's Notation(Æ�x :(+�y : ��z :zD) +C) ÆB) �A �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z#� #�((+�y : ��z :zD) +C) �A �(A) +(C) +[y℄ �[z℄ (D)z#� #�(��z :zD) �A �(A) �[z℄(D)z#� #�AD (D)AThe mat
hing redexes in de Bruijn's notation are easily seen in the Figure 3.The bra
keting stru
ture in
lassi
al notation of ((Æ�x :(+�y : ��z :zD) +C) ÆB) �A), isÆf1 +f2 �f3 +g2 Æg1 �g3, where fi and gi mat
h. Whereas �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z has thesimpler bra
keting stru
ture �fÆf Æg+f +g�g in de Bruijn's notation. An appli
ator (A) andan abstra
tor [v℄ are partners when they mat
h like f and g. Non-partnered wagonsare ba
helors. A sequen
e of wagons is
alled a segment. A segment is well balan
edwhen it
ontains only partnered wagons. 21

Example 52 In �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z, the wagons (A), (B), [x℄, (C), [y℄, and [z℄are partnered and the wagon (D) is a ba
helor. The segment �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ iswell balan
ed.The �-
al
ulus �a la de Bruijn has many advantages over the
lassi
al �-
al
ulus. Someof these advantages are summarised in [25℄. In what follows we mention some.A. Stru
ture of terms Ea
h non-empty segment s has a unique partitioning intosub-segments s = s0s1 � � � sn su
h that� For even i, the segment si is well balan
ed. For odd i, the segment si is aba
helor segment, i.e., it
ontains only ba
helor main items.� All well balan
ed segments after s0 and all ba
helor segments are non-empty.� If si = [v1℄ � � � [vm℄ (only abstra
tor wagons) and sj = (a1) � � � (ap) (only appli-
ator wagons), then i < j, i.e., si pre
edes sj in s.Example 53 s � [x℄[y℄(A)[z℄[x0℄(B)(C)(D)[y0℄[z0℄(E), has the following partitioning:well-balan
ed segment s0 � ;, ba
helor segment s1 � [x℄[y℄, well-balan
ed seg-ment s2 � (A)[z℄, ba
helor segment s3 � [x0℄(B), well-balan
ed segment s4 �(C)(D)[y0℄[z0℄, ba
helor segment s5 � (E).B. Generalised Redu
tion Looking at Figure 3, one sees that either (A)
an bemoved to the right to o

ur next to its partner [z℄ or [z℄
an be moved to the left toappear next to (A). One
an instead generalise �-redu
tion so that the (extended)redex based on (A) and [z℄ is �red before the other redexes. All these steps happenvia rules like those listed in Figure 4. These rules have been studied by many re-sear
hers [24, 2, 17, 29, 30, 31, 44, 40, 48, 45, 50, 38℄. De Bruijn's notation makesit
learer to des
ribe generalised redu
tion as Figure 4 illustrates, where we assumeBarendregt's variable
onventions (see page 15).C. Properties are easier to state in de Bruijn's notation We illustrate thispoint with the example of des
ribing the se-normal forms where the se-
al
ulus is theredu
tion system (�sop;!se) where !se is the least
ompatible redu
tion on �sopgenerated by the set of rules of Figures 1 and 2 ex
luding �-generation. Theorem 54gives the se-normal forms in
lassi
al notation. Theorem 55 gives them in de Bruijn'snotation. These theorems are taken from [28℄.Theorem 54 A term A 2 �sop is an se-normal form i� one of the following holds:� A 2 V [IN , i.e. A is a variable or a de Bruijn number.� A � BC, where B and C are se-normal forms.� A � �B, where B is an se-normal form.� A � B �jC, where C is an se-nf and B is an se-nf of the form X , or D�iE withj < i, or 'ikd with j � k.� A � 'ikB, where B is an se-nf of the form X , or C �jd with j > k + 1, or 'jlCwith k < l. 22

Name In Classi
al Notation In de Bruijn's Notation((��x : +C) �B) +A +(A) �(B) �[x℄+C(�) # #(��x : +C+A) �B �(B) �[x℄ +(A)+C(+�x :�y:C) +B +(B) +[x℄ [y℄C(
) # #�y:(+�x :C) +B [y℄ +(B) +[x℄ C((��x : +�y :C) �B) +A +(A) �(B) �[x℄ +[y℄ C(g) # #(��x :C[y := A℄) �B �(B) �[x℄ [y := A℄C((+�x : ��y :C) +B) �A �(A) +(B) +[x℄ �[y℄ C(
C) # #(��y :(+�x :C) +B) �A �(A) �[y℄ +(B) +[x℄ CFigure 4: Generalised Redu
tionProof By analysing the stru
ture of A.There is a simple way to des
ribe the se-nf's using de Bruijn's notation. First, notethat in de Bruijn's notation A�iB and 'ikA are written respe
tively as: (B �i)Aand ('ik)A. The parts (B �i) and ('ik) are
alled �- and '-wagons respe
tively. Thesubterms B and A are the bodies of these respe
tive wagons.A normal �'-segment s is a sequen
e of �- and '-wagons su
h that every pair ofadja
ent wagons in s is of the form:('ik)('jl) and k < l ('ik)(B �j) and k < j � 1(B �i)(C �j) and i < j (B �j)('ik) and j � kE.g., ('23)('14)('67)(B�9)(C�11)('211)('516) and (B�1)(C�3)(D�4)('25)('16)('47)(A�10)are normal �'-segments.Theorem 55 The se-nf's
an be des
ribed by the following syntax:NF ::= V j IN j (NF)NF j [℄NF j sVwhere s is a normal �'-segment whose bodies belong to NF .3 Pure Type SystemsWe have seen so far the type free �-
al
ulus. Types however, aid in writing
orre
tand terminating programs. Another in
uential role that types play is in their iden-ti�
ations with propositions in the paradigm of propositions-as-types due to Curry,Howard and de Bruijn. Under this paradigm, the problem of proof
he
king
an beredu
ed to the problem of type
he
king in a programming language.23

There are two type dis
iplines: the impli
it and the expli
it. The impli
it style,also known as typing �a la Curry, does not annotate variables with types. For example,the identity fun
tion is written as in the type-free
ase, as �x:x. The type of termshowever is found using the typing rules of the system in use. The expli
it style,also known as typing �a la Chur
h, does annotate variables and the identity fun
tionmay be written as �x : Bool:x to represent identity over booleans. In this paper,we
onsider typing �a la Chur
h. We present what is known as Pure Type Systemsor PTSs. Important type systems that are PTSs in
lude Chur
h's simply typed�-
al
ulus [8℄ and the
al
ulus of
onstru
tions [9℄ whi
h are also systems of theBarendregt
ube [4℄. Berardi [5℄ and Terlouw [47℄ have independently generalisedthe method of generating type systems into the pure type systems framework. Thisgeneralisation has many advantages. First, it enables one to introdu
e eight logi
alsystems that are in
lose
orresponden
e with the systems of the Barendregt
ube.Those eight logi
al systems
an ea
h be des
ribed as a PTS in su
h a way that thepropositions-as-types interpretation obtains a
anoni
al system form [4℄. Se
ond, thegeneral setting of the PTSs makes it easier to write various proofs about the systemsof the
ube.In the following of the present paper we will brie
y review the
lassi
al PTS withvariable names and those with de Bruijn indi
es, essentially to state their isomor-phism. This is a result of [27℄ to whi
h we refer for all omitted proofs.3.1 Classi
al Pure Type Systems with variable namesDe�nition 56 The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T) j (�V : T :T) j (�V : T :T), where V is the in�nite set of variablesfx; y; z; : : :g and C a set of
onstants over whi
h,
;
1; : : : range. We use A;B; : : : torange over T and v; v0; v00; : : : to range over V . Throughout, we take � 2 f�;�g.De�nition 57 (Free and Bound variables) The free and bound variables in termsare de�ned similarly to those of De�nition 15 with the ex
eption that FV (
) =defBV (
) =def ; and in the
ase of abstra
tion, FV (�v : A:B) =def (FV (B) n fvg) [FV (A) and BV (�v : A:B) =def BV (A) [BV (B) [fvg.We write A[x := B℄ to denote the term where all the free o

urren
es of x in A havebeen repla
ed by B. Furthermore, we take terms to be equivalent up to variable re-naming. We assume moreover, the Barendregt variable
onvention (already dis
ussedon page 15) whi
h is formally stated as follows:Convention 58 (V C: Barendregt's Convention) Names of bound variables will al-ways be
hosen su
h that they di�er from the free ones in a term. Moreover, di�erent�'s have di�erent variables as subs
ript. Hen
e, we will not have (�x : A:x)x, but(�y : A:y)x instead.The de�nition of
ompatibility of a redu
tion relation for PTSs is that of the type-free
al
ulus (given in De�nition 1) but where the
ase of abstra
tion is repla
ed by:(A1; A2) 2 R(�x : A1:B; �x : A2:B) 2 R (B1; B2) 2 R(�x : A:B1; �x : A:B2) 2 R24

De�nition 59 �-redu
tion is the least
ompatible relation on T generated by(�) (�x : A:B)C ! B[x := C℄Now, we de�ne some ma
hinery needed for typing:De�nition 601. A statement is of the form A : B with A;B 2 T . We
all A is the subje
t andB is the predi
ate of A : B.2. A de
laration is of the form x : A with A 2 T and x 2 V .3. A pseudo-
ontext is a �nite ordered sequen
e of de
larations, all with distin
tsubje
ts. We use �;�;�0;�1;�2; : : : to range over pseudo-
ontexts. The empty
ontext is denoted by either <> or nothing at all.4. If � = x1 : A1: : : : :xn : An then �:x : B = x1 : A1: : : : :xn : An:x : B and dom(�) =fx1; : : : ; xng.De�nition 61 A type assignment relation is a relation between a pseudo-
ontext andtwo pseudo-terms written as � ` A : B. The rules of type assignment establish whi
hjudgments � ` A : B
an be derived. A judgement � ` A : B states that A : B
anbe derived from the pseudo-
ontext �.De�nition 62 Let � be a pseudo-
ontext, A be a pseudo-term and ` be a typeassignment relation.1. � is
alled legal if 9A;B 2 T su
h that � ` A : B.2. A 2 T is
alled a �-term if 9B 2 T su
h that � ` A : B or � ` B : A.We take �-terms = fA 2 T su
h that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is
alled legal if 9� su
h that A 2 �-terms.De�nition 63 The spe
i�
ation of a PTS is a triple S = (S;A;R), where S is asubset of C,
alled the sorts. A is a set of axioms of the form
 : s with
 2 C ands 2 S and R is a set of rules of the form (s1; s2; s3) with s1; s2; s3 2 S.De�nition 64 The notion of type derivation, denoted � `�S A : B (or simply � `A : B), in a PTS whose spe
i�
ation is S = (S;A;R), is axiomatised by the axiomsand rules of Figure 5.Ea
h of the eight systems of the
ube is obtained by taking S = f�;�g, A = f�;�g,and R to be a set of rules of the form (s1; s2; s2) for s1; s2 2 f�;�g. We de-note rules of the form (s1; s2; s2) by (s1; s2). This means that the only possible(s1; s2) rules in the set R (in the
ase of the
ube) are elements of the following set:f(�; �); (�;�); (�; �); (�;�)g. The basi
 system is the one where (s1; s2) = (�; �) isthe only possible
hoi
e. All other systems have this version of the formation rules,plus one or more other
ombinations of (�;�), (�; �) and (�;�) for (s1; s2). SeeFigures 6 and 7.Now, we list some of the properties of PTSs with variable names (see [4℄ for proofs).In Se
tion 3.2, we will establish these properties for PTSs with de Bruijn indi
es.25

(axioms) `
 : s if
 : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 �(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 �(produ
t) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appli
ation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstra
tion) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(
onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 5: PTSs with variables names
�! (�; �)�2 (�; �) (�; �)�P (�; �) (�;�)�P2 (�; �) (�; �) (�;�)�! (�; �) (�;�)�! (�; �) (�; �) (�;�)�P! (�; �) (�;�) (�;�)�P! = �C (�; �) (�; �) (�;�) (�;�)Figure 6: Di�erent type formation
ondition

26

t t
t t

-
-6 6t t

t t
-
-6 6

�����
�����

�����
�����

�!
�2

�P
�P2�! �P!

�! �C
Figure 7: The
ubeLemma 65 let A;B 2 T . If A!� B then FV (B) � FV (A).Theorem 66 (The Chur
h Rosser Theorem for PTSs with variable names)If A!!� B and A!!� C then there exists D su
h that B !!� D and C !!� D.Lemma 67 (Free variable lemma) Let � = x1 : A1; : : : ; xn : An su
h that� ` B : C. The following hold (proof is by indu
tion on the derivation � ` B : C):1. The x1; : : : ; xn are all distin
t.2. FV (B); FV (C) � fx1; : : : ; xng.3. FV (Ai) � fx1; : : : ; xi�1g for 1 � i � n.Theorem 68 (Subje
t Redu
tion SR, for PTSs with variable names)If � ` A : B and A!!� A0 then � ` A0 : B.3.2 Classi
al Pure Type Systems with de Bruijn indi
esIn this se
tion, we will introdu
e pure type systems with de Bruijn indi
es and estab-lish the isomorphism between them and those with variable names. All this se
tionis taken from [27℄ where all the proofs
an be found in detail.De�nition 69 We de�ne T , the set of pseudo-terms with de Bruijn indi
es, by thesyntax: T ::= IN j C j (T T) j (�T:T) j (�T:T), where C is a set of
onstants overwhi
h
;
1; : : : range. We use A;B; : : : to range over T and m;n; : : : to range over IN(positive natural numbers). Again, we take � 2 f�; �g.De�nition 70 The updating fun
tions U ik : T ! T for k � 0 and i � 1 are de�nedas in De�nition 41 for the
ase of the type free �-
al
ulus, but with the addition of a
lause for
onstants and the repla
ement of the abstra
tion rule as follows:U ik(
) �
 for
 2 C and U ik(�A:B) � �U ik(A):(U ik+1(B))De�nition 71 The meta-substitutions at level j , for j � 1 , of a term B 2 T in aterm A 2 T , denoted Affj Bgg , is de�ned indu
tively on A as in De�nition 42 forthe
ase of the type free �-
al
ulus, but with the addition of a
lause for
onstantsand the repla
ement of the abstra
tion rule as follows:
ffj Bgg �
 for
 2 C and (�A:C)ffj Bgg � �Affj Bgg):(Cffj+ 1 Bgg)27

De�nition 72 �-redu
tion is the least
ompatible redu
tion on T generated by:(�) (�A:C)B !� Cff1 BggRemark that we use !� to denote both, �-redu
tion on T and �-redu
tion on T .The
ontext will always be
lear enough to determine the intended redu
tion.We now de�ne the set of free variables of a term with de Bruijn indi
es. We writeN n k to mean fn� k : n 2 N;n > kg.De�nition 73 The set of free variables of a term with de Bruijn indi
es is de�nedby indu
tion as follows:FV (
) =def � for
 2 C FV (AB) =def FV (A) [FV (B)FV (n) =def fng FV (�A:C) =def FV (A) [(FV (C) n 1) for � 2 f�;�gThe following lemma on T
orresponds to Lemma 65 on T .Lemma 74 Let A;B 2 T . If A!� B then FV (B) � FV (A).De�nition 60 for PTSs with variable names
hanges when de Bruijn indi
es areused as follows:A (de Bruijn) pseudo-
ontext � be
omes a �nite ordered sequen
e of de Bruijnterms. We write it simply as � = A1; : : : ; An. Statements, subje
t and predi
ateremain un
hanged, and de
larations disappear.De�nitions 61, 62 and 63 are the same for de Bruijn indi
es (ex
ept that T
hangesto T). Now, we
an give the de�nition of PTSs using de Bruijn indi
es:De�nition 75 The notion of type derivation, denoted � `�S A : B (or simply � `A : B), in a PTS whose spe
i�
ation is S = (S;A;R), is axiomatised by the axiomsand rules of Figure 8.Remark that in the rules (start), (weakening), (produ
t), (abstra
tion) the positionof A with respe
t to � is reversed with respe
t to its position in the
orrespondingrules of the
lassi
al setting. However, we have
hosen this presentation following thetradition of type systems in de Bruijn notation (
f. [1, 41℄).Remark also the role played by the updating U20 in the rules (start), (weaken-ing). This fun
tion in
reases with 1 the de Bruijn indi
es whi
h
orrespond to freevariables and its o

urren
e in these two rules is reasonable sin
e the
orrespondingenvironments have been augmented by the addition of a new
omponent. For ex-ample, � ` 1 : �. Hen
e, 1; � ` 1 : 2. Moreover, 1; � ` 1 : 2 and � ` 1 : �, hen
e�; 1; � ` 2 = U20 (1) : 3 = U20 (2).The following lemma (
f. [27℄) is the equivalent for de Bruijn indi
es, of Lemma 67.Lemma 76 Let A1; : : : ; An ` B : C then FV (B); FV (C) � f1; : : : ; ng and, for0 � i � n� 1, FV (An�i) � f1; : : : ; ig.In the rest of this paper, we present the isomorphism between PTSs written usingvariable names and PTSs written using de Bruijn indi
es. The method is as follows:28

(axioms) `
 : s if
 : s 2 A(start) � ` A : sA;� ` 1 : U20 (A)(weakening) � ` B : C � ` A : sA;� ` U20 (B) : U20 (C)(produ
t) � ` A : s1 A;� ` B : s2� ` (�A:B) : s3 if (s1; s2; s3) 2 R(appli
ation) � ` F : (�A:B) � ` C : A� ` F C : Bff1 Cgg(abstra
tion) A;� ` C : B � ` (�A:B) : s� ` (�A:C) : (�A:B)(
onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 8: PTSs with de Bruijn indi
es1. We translate ea
h term A and ea
h environment � written using variable names,into a term t1(A) and an environment t(�) written with de Bruijn indi
es. Wethen prove that these translations preserve �-redu
tion (if in T , A !� B thenin T , t1(A) !� t1(B)) and type assignment (if in T , � ` A : B then in T ,t(�) ` t1(A) : t1(B)).2. We de�ne translations u1 and u in the other sense and also prove preservationof �-redu
tion and type assignment.3. We prove that these translations are inverses of ea
h other.In the rest of this paper, [x1; : : : ; xn℄ stands for the ordered list of x1; : : : ; xn.3.2.1 Translating T to TDe�nition 77 (The translation t) For every term A 2 T su
h that FV (A) �fx1; : : : ; xng we de�ne t[x1;:::;xn℄(A) by indu
tion on A as follows:t[x1;:::;xn℄(
) =def
 for
 2 Ct[x1;:::;xn℄(vi) =def minfj su
h that vi = xjgt[x1;:::;xn℄(AB) =def t[x1;:::;xn℄(A)t[x1;:::;xn℄(B)t[x1;:::;xn℄(�x : B:A) =def �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(A) for � 2 f�; �g29

Let � = x1 : A1; : : : ; xn : An be a legal
ontext. We de�ne:t(�) =def t[xn�1;:::;x1℄(An); t[xn�2;:::;x1℄(An�1); : : : ; t[x1℄(A2); t[℄(A1).Remark that De�nition 77 is a good de�nition thanks to Lemma 67.Lemma 78 Let A;B 2 T su
h that FV (A) � fx1; : : : xng and A!� B.Then t[x1;:::;xn℄(A)!� t[x1;:::;xn℄(B).Theorem 79 Let � = x1 : A1; : : : ; xn : An su
h that � ` A : B.Then t(�) ` t[xn;:::;x1℄(A) : t[xn;:::;x1℄(B).3.2.2 Translating T to TDe�nition 80 (The translation u) Let A 2 T su
h that FV (A) � f1; : : : ; ng andlet x1; : : : ; xn be distin
t variables of V . We de�ne u[xn;:::;x1℄(A) by indu
tion on A:u[xn;:::;x1℄(
) =def
 for
 2 C u[xn;:::;x1℄(i) =def xiu[xn;:::;x1℄(AB) =def u[xn;:::;x1℄(A)u[xn;:::;x1℄(B)u[xn;:::;x1℄(�B:A) =def �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(A) with x 62 fx1; : : : ; xngRemark that De�nition 80 is
orre
t sin
e FV (�B:A)�f1; : : : ; ng implies FV (A) �f1; : : : ; n+1g. Furthermore, [27℄ proves that the de�nition for abstra
tions and prod-u
ts does not depend on the
hoi
e of the variable x.De�nition 81 Let � = A1; : : : ; An be a legal
ontext. We de�ne:u(�) = v1 : u[℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)De�nition 81 is
orre
t thanks to Lemma 76.Lemma 82 Let A;B 2 T su
h that FV (A) � f1; : : : ng and A!� B.Then u[xn;:::;x1℄(A)!� u[xn;:::;x1℄(B).Theorem 83 Let � = A1; : : : ; An su
h that � ` A : B.Then u(�) ` u[v1;:::;vn℄(A) : u[v1;:::;vn℄(B).3.2.3 t and u are inversesWe need to
he
k that in some sense t Æ u = Id and u Æ t = Id. We begin by studyingt Æ u, whi
h as expe
ted is exa
tly the identity. We prove �rst the following lemma:Lemma 84 Let A 2 T su
h that FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distin
tvariables. Then t[x1;:::;xn℄(u[xn;:::;x1℄(A)) � A.Proposition 85 Let � = A1; : : : ; An su
h that � ` A : B. Then the derivations� ` A : B and t(u(�)) ` t[vn;:::;v1℄(u[v1;:::;vn℄(A)) : t[vn;:::;v1℄(u[v1;:::;vn℄(B)) are exa
tlythe same.We study now u Æ t. We
annot expe
t to have exa
tly the identity now, sin
ewhen we translate de Bruijn derivations we
hoose the variables in the de
larationsof the
ontext in a determined way: v1, v2, et
. Therefore we are going to end upwith a derivation whi
h di�ers from the original one in the
hoi
e of these variables.We say that these derivations are equivalent and this notion of equivalen
e is de�nedpre
isely as follows: 30

De�nition 86 For any
ontext � and any term A 2 T we de�ne ��:A, for � 2 f�; �gby indu
tion on the length of the
ontext as follows:� <> :A =def A and �(�; x : B):A =def ��:�x : B:AWe say that the derivations � ` A : B and �0 ` A0 : B0 are equivalent when��:A � ��0:A0 and ��:B � ��0:B0.Lemma 87 Let A 2 T su
h that FV (A) � fx1; : : : ; xng and x1; : : : ; xn are distin
tvariables. Then u[xn;:::;x1℄(t[x1;:::;xn℄(A)) � A.Proposition 88 Let � = x1 : A1; : : : ; xn : An and A; B 2 T . The derivations� ` A : B and u(t(�)) ` u[v1;:::;vn℄(t[xn;:::;x1℄(A)) : u[v1;:::;vn℄(t[xn;:::;x1℄(B)) are equiva-lent in the sense of De�nition 86.With the above isomorphism, we
an now establish Theorems 66 and 68 for PTSswith de Bruijn indi
es.Theorem 89 (The Chur
h Rosser Theorem for PTSs with de Bruijn indi
es)In T , if A!!� B and A!!� C then there exists D su
h that B !!� D and C !!� D.Proof Assume FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distin
t variables of V .By Lemma 82, u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(B) and u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(C).Hen
e, by Theorem 66, 9D su
h that u[xn;:::;x1℄(B) !!� D and u[xn;:::;x1℄(C) !!� D. Note that FV (u[xn;:::;x1℄(�)) � fx1; : : : ; xng for � 2 fB;Cg and hen
e byLemma 78 we get t[x1;:::;xn℄(u[xn;:::;x1℄(�)) !!� t[x1;:::;xn℄(D) for � 2 fB;Cg. Then,Lemma 74 sorts out the free variable
ondition for Lemma 84, and the latter gives�!!� t[x1;:::;xn℄(D) for � 2 fB;Cg.Theorem 90 (Subje
t Redu
tion SR, for PTSs with de Bruijn indi
es)In T , if � ` A : B and A!!� A0 then � ` A0 : B.Proof First, we use Theorem 83 and Lemma 82 to obtain the
onditions of Theo-rem 68 in T . Then, we use Theorem 79 and Proposition 85 to obtain SR in T .A
knowledgementsWithout the thorough reading and editing of Mariangiola Dezani, this review wouldnot have been what it is now. I am extremely grateful for her work on this arti
leand for her ex
ellent re
ommendations. I am also very grateful for Joe Wells for hisextensive and invaluable
ontributions to Se
tion 1 of this review. The in
uen
e ofthe work of Henk Barendregt, N.G. de Bruijn and Jan Willem Klop is evident in thisreview; their high standards and de
ent and warm personalities make this s
hool ofthought a very
hallenging and enjoyable pla
e. I would like to warmly thank RobNederpelt and Alejandro R��os for the valuable
ollaboration I've had with them. This
ollaboration is evident in this review. This work was partially supported by EPSRCgrant numbers GR/L36963 and GR/L15685.
31

Referen
es[1℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expli
it Substitutions.Journal of Fun
tional Programming, 1(4):375{416, 1991.[2℄ Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A
all byneed lambda
al
ulus. 22nd ACM Symposium on Prin
iples of ProgrammingLanguages, 1995.[3℄ H. Barendregt. The Lambda Cal
ulus : Its Syntax and Semanti
s (revised edi-tion). North Holland, 1984.[4℄ H. Barendregt. Lambda
al
uli with types, Handbook of Logi
 in ComputerS
ien
e, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., OxfordUniversity Press, 1992.[5℄ S. Berardi. Towards a mathemati
al analysis of the Coquand-Huet
al
ulusof
onstru
tions and the other systems in Barendregt's
ube. Te
hni
al re-port, Dept. of Computer S
ien
e, Carnegie-Mellon University and DipartimentoMatemati
a, Universita di Torino, 1988.[6℄ G. Cantor. Beitr�age zur Begr�undung der trans�niten Mengenlehre (Erster Ar-tikel). Mathematis
he Annalen, 46:481{512, 1895.[7℄ G. Cantor. Beitr�age zur Begr�undung der trans�niten Mengenlehre (Zweiter Ar-tikel). Mathematis
he Annalen, 49:207{246, 1897.[8℄ A. Chur
h. A formulation of the simple theory of types. The Journal of Symboli
Logi
, 5:56{68, 1940.[9℄ T. Coquand and G. Huet, The
al
ulus of
onstru
tions, Information and Com-putation 76, 95-120, 1988.[10℄ H. B. Curry. A Theory of Formal Dedu
ibility. Notre Dame Mathemati
al Le
-tures, 6. Notre Dame University Press, 1950.[11℄ H. B. Curry and R. Feys. Combinatory Logi
 I. Studies in Logi
 and the Foun-dations of Mathemati
s. North-Holland, Amsterdam, 1958.[12℄ Eu
lid. The thirteen books of Eu
lid's elements. Volume 1 (books I and II).Translated with introdu
tion and
ommentary by Sir Thomas L. Heath. Se
ondedition unabridged 1925. Reprinted by Dover.[13℄ G. Frege. Begri�ss
hrift, eine der arithmetis
hen na
hgebildete Formelspra
hedes reinen Denkens. Nebert, Halle, 1879. Also in [19℄, pages 1{82.[14℄ G. Frege. Grundgesetze der Arithmetik, begri�s
hriftli
h abgeleitet, volume I.Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).[15℄ G. Frege. Letter to Russell. English translation in [19℄, pages 127{128, 1902.[16℄ G. Frege. Grundgesetze der Arithmetik, begri�s
hriftli
h abgeleitet, volume II.Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).32

[17℄ P. de Groote. The
onservation theorem revisited. In International Conferen
eon Typed Lambda Cal
uli and Appli
ations, LNCS, volume 664. Springer-Verlag,1993.[18℄ B. Guillaume. Un
al
ul des substitutions ave
 etiquettes. PhD thesis, Universit�ede Savoie, Chamb�ery, 1999.[19℄ J. van Heijenoort, editor. From Frege to G�odel: A Sour
e Book in Mathemati
alLogi
, 1879{1931. Harvard University Press, Cambridge, Massa
husetts, 1967.[20℄ A. Heyting. Mathematis
he Grundlagenfors
hung. Intuitionismus. Beweistheo-rie. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin,1934.[21℄ R.J. Hindley and J.P. Seldin Introdu
tion to Combinators and �-
al
ulus, Cam-bridge Univeristy Press, 1986.[22℄ W. A. Howard. The formulaes-as-types notion of
onstru
tion. In Jonathan P.Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on CombinatoryLogi
, Lambda Cal
ulus, and Formalism, pages 479{490. A
ademi
 Press, 1980.An earlier version was privately
ir
ulated in 1969.[23℄ F. Kamareddine and R.P. Nederpelt. On stepwise expli
it substitution. Interna-tional Journal of Foundations of Computer S
ien
e 4(3), 197-240, 1993.[24℄ F. Kamareddine and R.P. Nederpelt. Generalising redu
tion in the �-
al
ulus.Journal of Fun
tional Programming 5 (4), 637-651, 1995.[25℄ F. Kamareddine and R.P. Nederpelt. A useful �-notation. Theoreti
al ComputerS
ien
e 155, 85-109, 1996.[26℄ F. Kamareddine and A. R��os. A �-
al
ulus �a la de Bruijn with expli
it substitu-tions. In Pro
eedings of Programming Languages Implementation and the Logi
of Programs PLILP'95, volume 982 of Le
ture Notes in Computer S
ien
e, pages45{62. Springer-Verlag, 1995.[27℄ F. Kamareddine and A. R��os. Pure Type Systems with de Bruijn indi
es. http://www.
ee.hw.a
.uk/~fairouz/papers/resear
h-reports/ptsdebruijn.ps[28℄ F. Kamareddine and A. R��os. Extending a �-
al
ulus with Expli
it Substitutionwhi
h preserves Strong Normalisation into a Con
uent Cal
ulus on Open Terms.Journal of Fun
tional Programming, 7(4):395{420, 1997.[29℄ M. Karr. Delayability in proofs of strong normalizability in the typed �-
al
ulus. In Mathemati
al Foundations of Computer Software, LNCS, volume185. Springer-Verlag, 1985.[30℄ A.J. Kfoury and J.B. Wells. New notions of redu
tions and non-semanti
 proofsof �-strong normalisation in typed �-
al
uli. LICS, 1995.[31℄ J. W. Klop. Combinatory Redu
tion Systems. Mathemati
al Center Tra
ts, 27,1980. CWI. 33

[32℄ A. N. Kolmogorov. Zur Deutung der Intuitionistis
hen Logik. Mathematis
hesZeits
hrift, 35:58{65, 1932.[33℄ T. Laan. The Evolution of Type Theory in Logi
 and Mathemati
s. PhD thesis,Eindhoven University of Te
hnology, 1997.[34℄ E. Magnusson. The implementation of ALF - a proof editor based on MartinL�of 's Type Theory with expli
it substitutions. PhD thesis, Chalmers, 1995.[35℄ M. Mauny. Compilation des langages fon
tionnels dans les
ombinateurs
at�e-goriques. Appli
ation au langage ML. PhD thesis, Universit�e Paris VII, 1985.[36℄ C. Mu~noz. Proof representation in type theory: State of the art. In Pro
eedingsof the XXII Latin-Ameri
an Conferen
e of Informati
s CLEI Panel 96, Santaf�ede Bogot�a, Colombia, June 1996.[37℄ C. Mu~noz. Proof synthesis via expli
it substitutions on open terms. In Pro
.International Workshop on Expli
it Substitutions, Theory and Appli
ations,WESTAPP 98, Tsukuba (Japan), April 1998.[38℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Sele
ted papers on Automath.North-Holland, Amsterdam, 1994.[39℄ G. Peano. Arithmeti
es prin
ipia, nova methodo exposita. Bo

a, Turin, 1889.English translation in [19℄, pages 83{97.[40℄ L. Regnier. Une �equivalen
e sur les lambda termes. Theoreti
al Computer S
i-en
e, 126:281{292, 1994.[41℄ A. R��os. Contribution �a l'�etude des �-
al
uls ave
 substitutions expli
ites. PhDthesis, Universit�e de Paris 7, 1993.[42℄ B. Russell. Letter to Frege. English translation in [19℄, pages 124{125, 1902.[43℄ B. Russell. Mathemati
al logi
 as based on the theory of types. Ameri
an Journalof Mathemati
s, 30:222{262, 1908. Also in [19℄, pages 150{182.[44℄ A. Sabry and M. Felleisen. Reasoning about programs in
ontinuation-passingstyle. Pro
eedings of the 1992 ACM Conferen
e on LISP and Fun
tional Pro-gramming, pages 288{298, 1992.[45℄ M. M. S�rensen. Strong normalisation from weak normalisation in typed �-
al
uli. Information and Computation, 133(1), 1997.[46℄ M. Takahashi. Parallel redu
tion in �-
al
ulus. Information and Computation,118(1):120-127, 1995.[47℄ J. Terlouw. Een nadere bewijstheoretis
he analyse van GSTT's. Te
hni
al report,Department of Computer S
ien
e, University of Nijmegen, 1989.[48℄ D. Vidal. Nouvelles notions de r�edu
tion en lambda
al
ul. PhD thesis, Universit�ede Nan
y 1, 1989. 34

[49℄ A.N. Whitehead and B. Russell. Prin
ipia Mathemati
a, volume I, II, III. Cam-bridge University Press, 19101, 19272. All referen
es are to the �rst volume,unless otherwise stated.[50℄ H. Xi. On weak and strong normalisations. Te
hni
al Report 96-187, CarnegieMellon University, 1996.

35

