Postponement, Conservation and Preservation of
Strong Normalisation for Generalised Reduction

Fairouz Kamareddine*

Abstract

Postponement of Sx-contractions and the conservation theorem do not hold for ordinary
but have been established by de Groote for a mixture of 8 with another reduction relation.
In this paper, de Groote’s results are generalised for a single reduction relation . which
generalises 3. We show morever, that 8. has the Preservation of Strong Normalisation
property.

Keywords: Generalised (-reduction, Postponement of K-contractions, Gener-
alised Conservation, Preservation of Strong Normalisation.

1 The A-calculus with generalized reduction

In the term ((A;.Ay.N)P)Q, the abstraction starting with A, and the argument P
form the redex (A;.A,.IN)P. When this redex is contracted, the abstraction starting
with A, and @ will in turn form a redex. It is important to note that @ (or some
residual of @) is the only argument that the abstraction (or some residual of the
abstraction) starting with A, can ever have. This fact has been exploited by many
researchers. Reduction has been extended so that the implicit redex based on the
matching A, and () is given the same priority as the intervening redex.

An initial attempt to generalize the notion of redex might be to define a rule like
the following:

(e Ay-N)PQ = (A Nly=Q]) P

It quickly becomes evident that this is not sufficient as the following example shows:

Example 1 The proposed rule does not allow directly reducing the binding of y to
@ in the term A = (\;.(Az.A\y.N)P)RQ.

We shall exploit the notion of a well balanced segment (sometimes known as a 3-
chain), which is the special case of one-hole contexts given by this grammar:

S = [o] | (S[Aa-[o])M | S[S]

*Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edin-
burgh EH14 4AS, Scotland, email: fairouzQcee.hw.ac.uk, fax + 44 141 451 3327.

Using balanced segments, generalized reduction is then given by this rule:
S A MIN — S[M[z:=N]]

We find the above definition of well-balanced segments and generalised reduction
rather cumbersome and believe that a more elegant definition can be given. In order
to do so, we change from the classical notation to the itemn notation. Instead of
writing A\, .M, we write [z]M and instead of M N we write (N)M.! Item notation has
many advantages as shown in [7, 8]. Let us illustrate here with term A of Example 1,
which we write in item notation as in Figure 1. We see immediately that the redexes

@ (&) [() [bl N

Figure 1: Redexes in item notation in term A

originate from the couples (Q)[y], (R)[#] and (P)[z]. Moreover, (Q)(R)[z](P)[z][y]
is a well-balanced segment. This natural matching was not present in the classical
notation. We call items of the form (P) and [z], application and abstraction items
respectively. With item notation, generalised reduction is written as:

(M)3s[z]N —4p S{N[z := M]}or 5 well-balanced.

(Here, { and } are used for grouping purposes so that no confusion arises.) For
example:

(@) B)[](P)[]ly]N =g (R)[z](P)[z{N]y := QI}
Surely this is clearer than writing (\..(Az.A\y.N)P)RQ — 43 (A;.(Az.N[y := Q]P)R.

2 An overview of generalised reduction in the liter-
ature

Generalized reduction was first introduced by Nederpelt in 1973 to aid in proving the
strong normalization of AUTOMATH [19]. Kamareddine and Nederpelt have shown
how generalised reduction makes more redexes visible, allowing flexibility in reducing
a term [7]. Bloo, Kamareddine, and Nederpelt show that with generalised reduction
one may indeed avoid size explosion without the cost of a longer reduction path and
that simultaneously the A-calculus can be elegantly extended with definitions which
result in shorter type derivations [5]. Generalised reduction is strongly normalising [5]
for all systems of the A-cube [3].
An alternative approach to generalized reduction which has been followed by many

researchers is to use one of these two local transformations:

(9) (Ae-N)PQ — (\..NQ)P

(7)) (A Ay.N)P = Xy.(Az.N)P

INote that putting the argument before the function was first introduced by de Bruijn in his
Automath project [20] and has been used by many researchers since. For example, Krivine in [17]
also puts the argument before the function.

These rules transform terms to make more redexes visible to the ordinary notion of
B-reduction. For example, both the v and 6 rules make sure that A, and @ in the term
A of Example 1 can form a redex before the redex based on A\, and P is contracted.
That is:

(Oc) (Aa-(Ay-N))PQ = (Ae-(Ay-N)Q)P

(ve) (Az-Ay-N)PQ — (Ay.(A2-N)P)Q
Hence both # and v put Ay next to its matching argument. The 6 rule moves the
argument next to its matching A whereas v moves the A next to its matching argument.

Obviously, € and ~ are related to generalised reduction. In fact, § and ~ trans-

form terms in order to make more potential redexes visible and then conventional
[B-reduction can be used to contract those newly visible redexes. Generalised reduc-
tion on the other hand, performs reduction on the potential redexes without having
to bother to make them into classical redexes. The following example illustrates:

Example 2 Take again the term A = (A;.(A;.\y.N)P)R(Q. With generalised reduc-
tion we got: (A;.(As.A\y.N)P)RQ —43 (A:.(Az Ny := Q])P)R. We illustrate how 6
and vy work:

0 (Az.(Az.Ay.N)P)RQ —¢ (Az.(Az.Ay.N)PQ)R —9
O‘zO‘zO‘yN)Q)P)R —p O‘z-O‘z-N[y = Q])P)R

v (A~ Ay-N)PYRQ — (A= Ay (Ae.N)P)RQ —,
Ay(Az.(Az.N)P)R)Q =3 (A\..(A\e Ny := Q) P)R
Note that in item notation it is easier to describe 6 and . We illustrate with 6.

Example 3 We can reshuffle (Q)(R)[z](P)[z][y]N to (R)[z](P)[z](Q)[y]N in order
to transform the bracketing structure {{ }{ }} into { }{ }{ }, where all the redexes
correspond to adjacent ‘{’ and ‘}’. Figure 1 can be redrawn using the f-reduction

twice in Figure 2.

(R) [z] () [s] (@ DBl N

Figure 2: #-normal forms in item notation for term A

The @ rule can be applied to both explicitly and implicitly typed systems. However,
the transfer of v to explicitly typed systems is not straightforward, since in these
systems the type of y in the term A may be affected by the reducible pair of A, and
P. For example, it is fine to write ((Ag:x-Ay:z-¥)2)u =9 (Ag:x-(Ay:z-y)u)z but not to
write ((Agpie-Ayiz-9)2)u = Ayiz-(Agis-y)2)u?

Local transformations like v and 6 began to appear in the literature during the
eighties. (See [15] for a summary). Regnier [21] introduces the notion of a premier
redez which is similar to the redex based on A, and () above (which we call a gen-
eralised redex). Later, he uses 6 and v (and calls the combination o) to show that

2An alternative is to apply v to the type erasure of the term, which may be quite complicated to
express in terms of the type-annotated term.

the perpetual reduction strategy finds the longest reduction path when the term is
Strongly Normalising (SN) [22]. Vidal also introduces similar reductions [25]. Kfoury,
Tiuryn, and Urzyczyn use € (and other reductions) to show that typability in ML is
equivalent to acyclic semi-unification [12]. Sabry and Felleisen describe a relationship
between a reduction similar to 6 and a particular style of CPS [23]. De Groote [6]
uses # and Kfoury and Wells [14] use v to reduce the problem of (-strong normal-
isation to the problem of weak normalisation (WN) for related reductions. Kfoury
and Wells use € and v to reduce typability in the rank-2 restriction of system F to
the problem of acyclic semi-unification [13]. Klop, Sgrensen, and Xi [16, 26, 24] use
related reductions to reduce SN to WN. Finally, Ariola, Felleisen, Maraist, Odersky
and Wadler use 0 (called “let-C”) in [1], as a part of an analysis of how to represent
sharing in a call-by-need language implementation in a formal calculus.

All the research mentioned above is a living proof for the importance and useful-
ness of generalised reduction (from now on, §.). For this reason, properties of this
reduction must be studied. Confluence of 3, is a direct consequence of the fact that
M =3 N & M =3, N. Subject reduction for 8. has been established in [5] (with the
condition that ezplicit definitions must be added for some systems of the cube). And,
as we mentioned earlier, Strong Normalisation of 3, has been established for the whole
Cube and type derivation paths have been analysed. Other important properties of
B¢ have however remained unanswered. Those properties are:

1. Preservation of Strong Normalisation PSN. This property is: if M is strongly
normalising for ordinary (-reduction (written M is 8-SN), then M remains
strongly normalising for generalised reduction 3. (i.e. M is also (.-SN). PSN
makes . a useful extension of 4. This parallels the work on extending A-calculi
with explicit substitutions which satisfy the PSN property.

2. Conservation of (-reduction. This property is: if a term is f.r-normalisable
(i.e. Be-normalisable reducing only redexes that don’t erase their arguments,
so called I-redexes, or strict redexes), then it is strongly normalisable. This is
interesting in view of the ongoing interest of showing that strong normalisation
can be reduced to weak normalisation [16, 24, 26].

3. Postponement of K -reduction. Generalised reduction allows the postponement
of K-reduction (which discards their arguments) after I-reductions (which use
their arguments in at least one place). Hence, generalised reduction allows
unnecessary K-redexes to be bypassed. From the implementation point of view,
this results in flexibility in work. Unnecessary work can be delayed or even
avoided completely.

In this paper, we show these three properties for the generalised reduction 3.. We
use item notation to be able to write generalised reduction in a really general way
and to be able to describe proofs and proof objects elegantly. We believe that if this
paper was written in classical notation, then the proofs would have been cumbersome
to present.

3 Contributions of this paper and related work

Because we still have not introduced all the machinery of item notation, we shall use
classical notation in this section.

Let us recall the three basic reduction rules of the A-calculus (FV (M) stands for
the free variables of M):

(B) (Ae-M)N — M|z := N]
(Br) (A\e. M)N — M[z := N] ifz € FV(M)
(Bk) (Ae- M)N — M if v ¢ FV (M)

Redexes based on the O rule are called fr- or I-redexes. Similarly, those based on
the Bk rule are called Sx- or K-redexes. For any relation r, we write rx and r; for
the corresponding K- and I-reductions.

In this paper, we show that the generalised reduction . satisfies PSN, the post-
ponement of K-contractions and conservation. Of course the latter two properties fail
for ordinary 3 as shown by the following example:

Example 4 (\,.(\;.2))MN —p, (Az.x)N =3, N and it is impossible to Br-reduce
(Ay.(Az.2)) M N. Moreover, ((Az.Ay.y(A:.22))u)A; .22 is Br-normalising but not strongly
[B-normalising.

Attempts have been made at establishing some reduction relations for which post-
ponement of K-contractions and conservation hold ([2] and [6]). The picture is as
follows (-N stands for normalising and r € {f8;,0k} where (0) was defined earlier):

(B -postponement for r) If M =3, N =, O then 3P such that M —»EIGK P —»3, O
(Conservation for 8r) If M is 8;-N then M is 8;-SN
(Conservation for 3 + 6) If M is B10x-N then M is -SN

Conservation for gy is found in [2]. Conservation for 3 + 6 and Bk-postponement for
r € {01,0K} are established by de Groote in [6]. However, de Groote does not produce
these results for a single reduction relation, but for 4 in which another relation (6) is
used. This paper establishes Sx-postponement and conservation for a single relation
B¢ and is hence the first to do so. Moreover, the relation 6 is more restrictive than
the generalised reduction of this paper.

Let us now list the postponement and conservation properties for f:

(Ber-postponement for 8.) If M —p_, N —p_, O then 3P such that M —4_, P —»Z{eK 0
(Conservation for) If M is Be;-N then M is (.-SN

These two properties are important because here we have the first reduction relation
which generalises 3 (yet M =g N <& M =g, N) and which satisfies them.

Now we come to the PSN property which is as follows:
(PSN for 8.) M is B-SN & M is 3.-SN.

PSN not only means that 3. does not change the set of 3-SN terms, but also that
we can actually use 3. with explicit substitution. In fact, explicit substitution is an
important topic of research and PSN is an important property for any A-calculus

extended with explicit substitution. In fact, lately, much research has been carried
out ([4, 9]) in order to find systems of explicit substitution which are both confluent
and have the PSN property (if M is 8-SN then M is As-SN where A4 is the lambda
calculus extended with explicit substitution). This is the reason for our interest
in PSN of 8, (which is confluent by the way). After all, generalised reductions &
la B, have been extensively used as we saw in Section 2 for both theoretical and
practical reasons. Furthermore, systems of explicit substitution have been the subject
of much recent research. Both generalised reduction and explicit substitution are
of practical importance and combining them both in one system may turn out to
be very useful. The main benefits of these concepts are similar: both emphasize
flexibility in the ordering of operations. In particular, both generalized reduction and
explicit substitution allow the postponement of work, but in different, complementary
ways. On one side, generalized reduction always allows unnecessary K-redexes to be
bypassed. Explicit substitution will not in general allow this, since reducing the K-
redex might be necessary to expose an essential I-redex. Similarly, on the other side,
explicit substitution allows bypassing any work inside a subterm that will be discarded
later. However, generalized reduction does not provide any means for performing
only those parts of a substitution that will be used later. Thus, we can see that their
benefits are complementary.

We claim that a system with the combination of generalized reduction and explicit
substitution is more advantageous than a system with each concept separately. Obvi-
ously, if the benefits of both are desired simultaneously, it is important to study the
combination, a task which this paper performs. Before the combination can be safely
used, it must be checked that this combination is sound and safe exactly like it has
been checked that each of explicit substitutions and generalised reductions separately
are sound and safe.

Once PSN is established we can study extending the A-calculus with both ex-
plicit substitution and generalised reduction. This means that we can combine the
advantages of the two different extensions in one system [10, 11].

We had established in [9] property (1) below, and in [10, 11] property (2) below
(Ag.s stands for the lambda calculus extended with explicit substitution and gener-
alised reduction and for reasons of uniformity, we write A\-SN for 8-SN and Az, -SN
for f.-SN):

(1) M is -SN & M is A\s-SN
(2) M is \;-SN & M is Ag_s-SN

The proofs for (1) and (2) are similar. Now with PSN, we get (3) below and then (4)
comes for free.

(3) Mis ASN & M is \g,-SN
(4) M is)\ge—SN & Mis)\ges—SN

Hence, one gets: M is A-SN & M is Ag,-SN & M is Ag, s-SN & M is A,-SN.

Based on the above discussion, this article shows 8.k postponement (Section 5),
the generalised conservation for 3. (Section 6), and the PSN property for 8. (Sec-
tion 7).

4 The formal machinery
We assume the reader familiar with the A-calculus whose terms are
A == V(AN (Ay.A)

We take terms modulo a-conversion and use the variable convention VC (as in [3])
which avoids any clash of variables. We use z, vy, z, ©1, 2, ... and M, N, P, Q,
A, B, Ay, ... to range over V and A respectively. We assume the usual definition of
substitution and use FV (M) for the set of free variables of M. Because we need to
see redexes (ordinary and generalised) we shall write terms in item notation (see [8]
or [7]). In this notation, A, is written as [z] and (M N) is written (N)M (note that
following de Bruijn, we put the argument before the function). [z] and (V) are called
items. A sequence of items is called a segment. We use I, I, ... to range over items
and S, 8571, 5s,... to range over segments. A well-balanced segment (w.b for short) is
defined as the empty segment or (P)S;[z]S2 where S; and S are w.b. Note that the
concatenation of w.b segments is a well-balanced segment.

One particular advantage of this notation is that redexes are more clear than in
the usual notation. For example, y¢ of Section 2 becomes:

(o) (@) (P)[z][y]N = (Q)y](P)[«]N

where it is clear that (P) matches [z] and (@) matches [y]. So, an ordinary redex
starts with a () adjacent to []. A generalised redex starts with ().S[] where S is w.b.
When S = {), a generalised redex is an ordinary redex. In (Q)(P)[z][y] N, we say that
(P), [z], (@) and [y] are partnered, (P) is the partner of [z] (or [z] is the partner of
(P)) and (Q) is the partner of [y]. (P) and [z] are also said to be S-partnered whereas
(Q) and [y] are B.-partnered. In general, we say that (P) (or [z]) is partnered in M
if:

e M = (P)S[z]N where S is w.b (in this case (P) and [z] are partners), or
e M = [y]N and (P) (or [z]) is partnered in N, or
e M = (N1)Ny and (P) is either partnered in N or in Ns.

We may also talk of 8-, Ber-, Bk-, Bek-partnered items with the obvious meaning.
Note that if S1(A)Sz[z]S3 is w.b where (A) and [z] are partnered then S; and S;S3
are w.b.

If an item is not partnered in a term we say that it is bachelor (and may talk of §-,
Ber-, Bk-, Bex-, Bi- and [B.-bachelor items). A segment consisting of bachelor items
only is called bachelor. Note that a term will always be written as I1 I5...I,z. Each
I; is said to be a main-item in M. A main item can of course have items inside it but
these will not be main in M. For example, ((y)[z]z)[z]z has the main items ((y)[z]z)
and [z]. The redex ((y)[z]z)[z]z is said to be a main-redex. The other redex (y)[z]z
is not main. The weight of a segment is defined to be the number of its main items.
We write [x := N]M instead of M[z := N] which stands for substituting N for the
free occurrences of x in M.

We assume the reader familiar with the basic machinery of reduction ([2], p. 50-
59). In particular, if R is a binary relation C A x A, and (M,N) € R, we call M
the R-redex and N the contractum of M. Given R C A x A, we define —g to be
the least compatible relation containing R, =g to be its reflexive transitive closure
and =g to be its reflexive, symmetric and transitive closure. A term M is said to be
in R-normal form (R-nf) iff there is no N such that M —r N. M is said to have
a R-nf, iff there is N in R-nf such that M —r N. We say M is R-normalising or
is R-N iff M has a R-nf. We say that M is strongly R-normalising and write M is
R-SN iff there is no infinite R-reduction path starting at /. We may use M —»5 N
to indicate the existence of one or more steps from M to N and M —»% N to mean
that there are n reduction steps. Ordinary -, 8;- and Si-reduction are defined as
the reduction relations generated by the corresponding rules below:

(8) (N)[z]M — [x:= N|M
(8r) (N)[z]M — [z := N]M ifx € FV(M)
(Bk) (N)[z]M — M if z ¢ FV(M)

As explained in Example 4, postponement of K-contractions and conservation do not
hold for B. De Groote in [6] introduces different reduction relations for which he
establishes these properties. First, [6] uses

(6x) (O)(N)[z]M — (N)[z](O) M if © ¢ FV (M)

Note that by VC, in 0k, x ¢ FV(0). Then, de Groote moves (O) to the right of
(N)[z] so that it can eventually occur adjacent to its partner in M if it exists. De
Groote establishes the following two results (r € {8r,0k}):

(Bx-postponement for r) If M =3, N =, O then 3P such that M —»gIGK P —»3, O
(Conservation for 3 + 6) If M is B10x-N then M is $-SN.

In this paper, we will improve both results. We will define a (.-reduction relation
(see Definition 5) whose .; and S,k stand for its I and K-reductions. We shall show
that:

(Bex-postponement for Bc) If M —3,, N —p., O then 3P such that M —3_, P —»;'QK 0

(Conservation for) If M is Ber-N then M is [B.-SN.

Definition 5 (Generalised g-reduction 3.) We generalise 3, 8; and Sk to the reduc-
tion relations generated by the corresponding rules of what follows:

(Be) (N)S[z)M — S[z := N]M if Sis w.b
(Ber) (N)S[z)M — Sz := N]M if Sisw.band z € FV(M)
(Bex) (N)S[z]M — SM if Sisw.band z ¢ FV(M)

Note that (. is more generalised than the reduction relation introduced by com-
bining de Groote’s 8 + 0. In fact, B, is not restricted to K-redexes and one
unique step can do the work of many in Groote’s sense. For example, if S =
(A1)[z1](A2)[z2] ... (An)[zn] and all the redexes starting with (A;), (As),...(A,)
are K-redexes in S[z]M, then (N)S[z]M —p5, Slr := NIM iff (N)S[z]M —»5x
S(N)[z]M —p S[x := N]M.

Now, here is a basic lemma about terms:

Lemma 6

1. Let 7 € {Be, Ber, Bex }- If (A) is r-bachelor in (A)M then (B) is also r-bachelor
in (B)(A)M.

2. If M isin B-nf, then M = [z1][z2] ... [zn](A1)(A2) ... (A))2z wheren > 0,m > 0
and Vi, 1 <i<m = A; is in f-nf.

3. If A -, A’ then SA —, SA’ for any segment S and any reduction relation
S {ﬂ:ﬂ[:ﬂK:ﬂeaﬂelaﬂeK}-

Proof

1. If (B) was r-partnered, then (B)(A)M = (B)(A)S[z]N where (A)S is w.b (and
hence (4)S = (A4)S;1[y]S2 where Si, Sy are w.b) contradicting the fact that (A)
is r-bachelor.

2. By induction on the structure of M.

3. By induction on the weight of S.

In order to show the Preservation of Strong Normalisation for 3., we need a reduction
strategy where a Sx-redex (M)[z]N is contracted only if M is in S-nf. This strategy
is actually the perpetual strategy (see [2] and [22]):

Definition 7 We define the perpetual strategy F' as follows:

F([x]M) = F(M)

F((M)N) = F(N if N # [z]P and N is not in S-nf
F(M)N) = F(M) if N#[z]P and N is in f-nf
F((M)[z]N) = (M)[z]N ifze FV(N)or M is in S-nf
F((M)[z]N) = FM if x ¢ FV(N) and M is not in 8-nf

We call perpetual reduction the reduction associated with this strategy. When M
B-reduces to N by contracting F (M), we write, M —p N. This strategy has been
shown in [22] to give the longest path for a SN term. It was moreover, shown in [2]
that M is B-SN iff its perpetual reduction terminates. With the result of this paper,
it will also be the case that M is (3.-SN iff its perpetual path terminates.

The following lemma is informative about where F-reduction takes place in a term
in the case of K-redexes:

Lemma 8 If M —p N where F(M) is a Bx-redex, then one of the following holds:
1. M = [z1][z2] - [2m](A1)(A2) ... (A)(A)[z] P and
N = [z1][z2] - . [2m] (A1) (As) ... (A, P
where ¢ FV(P), A is in 8-nf, n > 0 and m > 0.
2. M = [z][z2] - - - [#m](41)(A2) . .. (Ap)(A)[z] P and
N = [z1][z2] - . - [2m] (A1) (As) ... (An) (A))[z]) P
where ¢ FV(P), A is not in S-nf, A -p A’, n >0 and m > 0.

3. M = [z][z2] ... [zm](A1)(A2) ... (A,)(A)(B1)(Bs) ... (B;)z and
N = [z1][z2] - - - [2m] (A1) (A2) ... (An)(A)(B1)(Bs) ... (By)z and
Aisnotin f-nf, A »p A',n>0,m>0and r > 0and Vi,1 <i <r, B;isin
(B-nf.

Proof By induction on M —p N where F(M) is a Bk-redex.

5 Postponement of S.x-reduction

In this section, we establish in lemma 10 the postponement of (. x-reduction. The
proof of postponement is similar to that of de Groote. For us, however, we can get
away with only one step 3.; reduction in the postponement lemma (Lemma 10). De
Groote, had to have many steps in order to accommodate the slow process of moving
an item () next to its matching [] (see for example his proof of Lemma 11, (c) ii). We
could also in Lemma 10, replace ek with ordinary Bg in P —»zgeK O but we won’t

bother doing so in this paper as it is not needed.

The following lemma establishes that substitution preserves g, k-reduction.
Lemma 9 If M —3_, N then the following hold:

1. [z := M]P —»g,_, [z := N]|P.

2. If ¢ € FV(P) then [z := M]P _»;3:1([z := N]P.

3. [x :== P|M —p,, [z := P]N.

Proof Use induction on the structure of P for 1 and 2, and on the derivation of
M =g, N for 3.

Now we come to the postponement lemma. Note that in this lemma, P —»;ﬁK O and
not P —3_, O nor P —3_, O. This is due to Lemma 9.

Lemma 10 If M —4,, N —g,, O then 3P such that M —5,, P —»} 0.

Proof By induction on the derivation of M —g_, N.

o Case (A)S[z]B —p,, SB, S w.b, z ¢ FV(B), check where in SB the f.;-redex
appears (note that if S;1S2S3 and Sy are w.b, then S; S5 is w.b).
We only treat the case where S = S;(A4;1)S2[y]Ss with S; w.b and
S1(A1)S2[y]SsB —p,, S1.5:{[y := A1]Ss}[y := A1]B.
Then (A)S1(A1)S2[y]Ss[x]B —p,, (A)S1524[y := A1]Ss}zl{[y := A1|B} =5,
S15:{[y .= A1]SsH{ly := A1|B} as ¢ € FV([y := A;1]B) due to VC.

o Case [z]M —p,, [z]N —3,, O, then O = [z]Q. Use IHon M —p_, N =3, Q.

e Case (A)B —4., (A)B —3,, O, investigate how (A")B —3., O. We only treat
the case where (A")B = (A")S[x]B1 —3,, S|z := A’'|B;. Then
(A)B = (A)S[z]B1 —p,; Slx := AlB; —»EaK Sl := A'|B; by Lemma 9.

10

e Case (A)B —p,, (A)B'" =4, O, we only treat the case where B' = S[z]C, S
is w.b, and O = S[z := A|C. Le. (A)B =g, (A)S[z]C —4,, S[z := A]C (note
that it cannot occur that B = (Q)S[z][y]C — .. S[z]([y := Q]C)). Then one
of the following holds:

— Case B = S[z]C1 and Cy —p,, C, then

(A)S[z]C1 —p.,; S|z := A]C1 —a,, S[r := A]C by Lemma 9, case 3.
— Case B = S1[z]C and the f.k-redex is in Sy, i.e.

(A)S1[x]C =g, (A)S[z]C —4,, S|z := A]C, then

(A)S1[x]C —p,, Si[z := A]C =4, S[z := A]C by VC.

6 The generalised conservation for (.

In this section, we establish in Theorem 28, the generalised conservation for J., the
same relation for which we established in the previous section, the postponement
of its K-reduction. This is an extension of de Groote’s work which established the
postponement and conservation properties for two different relations. We start by
defining the set of labelled terms which will help us in establishing the generalised
conservation. Labels will used as counters to record the number of contracted redexes
when reducing a term.

Definition 11 The set VA of labelled A-terms is inductively defined as follows:
l.neIN;x €V ="z e NA.
2.neN,xeV,M e NA="z]M e VA,
3.ne N,M,N e VA ="(M)N e VA

We take M, N,0O, A, B, ... to range over labelled A-terms. We use "M to stress that
the outermost label of a A-term M is n. Hence, M and "M stand for the same
labelled A-term. We write 7™M for the labelled A-term obtained by adding m to the
outermost label of a labelled A-term M. Hence if the outermost label of M is n then
Tm A denotes "t M.

For M € N A, we write | M| for the (unlabelled) A-term in A obtained by erasing all
labels in M. Moreover, if M € A, we identify M with M’ in VA such that |[M'| = M
and all labels in M’ are 0. Hence, A C TVA.

We use in this section, the notations and techniques of de Groote adapted however
to our generalised reduction. Basically the idea is as follows:

1. Church Rosser CR: We introduce a labelled reduction relation — g+ which
el
we prove Church Rosser. — gt 1s shown CR by showing that a related reduction
el

relation —; is CR. Hence, if a labelled term M has a ﬂjl—nf, it must be unique.

2. Increasing property Inc: We then introduce the weight of a term M, O[M],
which is used to limit the length of ﬂj,—reductions starting at normalising terms.
That is, the length of any sequence of ﬂ;}—reductions starting at a normalising
term M is bounded by O[M'] — O[M] where M’ is the (unique) B/;-nf of M.
This implies that any ,B;FI—N term is ,BZFI—SN. This will be extended to B.; by
showing that any B¢r-N term is Ber-SN.

11

3. Weak Normalisation = Strong Normalisation (WN = SN) Next we
show that if M is B.;-N then it is 3.-SN by using the fact that M is (¢r-SN,
postponement and that there can only be a finite 8. x-redexes. This establishes
the generalised conservation.

Note that the structure of our proof can be seen as: CR+Inc+WN = SN. This is
as we said a generalisation of the proof of de Groote. One could however use Corollary

5.19 in Klop’s thesis [16] which states that WCR+Inc+WN = SN & CR where WCR
is Weak Church Rosser. We leave this alternative to the reader to establish.

Here is the definition of substitution on labelled terms:

Definition 12 Let M, N € NVA. [z := N]M is defined as follows:

[:U .]m = n+mN

[z :="N]"y = My fzzy

[z := ”N]m(P) = "([z:="N]P)[z :="N]Q
[¢:="N]"ylM = "y][z:="NIM

Now we define — g+ which will be used to show conservation.
Definition 13 M —g+ Nis defined inductively as follows:
el
L "(*N)S°lal! M — g+ trHoHS[e = ‘NP M if © € FV(M), S, w.b.
el

2. It M gt N then "[z]|M — gt "[z]N, "(M)P — gt "(N)P and
"(P)M gt "(P)N

gt is defined as the transitive reflexive closure of — Bt
We define — for which CR is easier to show than for gt
Definition 14 M —; N is defined inductively as follows:

1. M -1 M

2. If M —; N then "[z]M —; "[z]N

3. If M -, O and N —; P then "(M)N —, "(O)P

4. If SP[z)|M —; S'z]O, N —; P, S,S" w.b, and x € FV (M) then
"(N)SP[z]M —, TnHetl Sz .= PJO.

—»1 is defined as the transitive reflexive closure of —.

The following lemma shows that labels can be increased for both —; and — gt

Lemma 15 Let M,N € A and r € {1,3/;}. If M —, N then T"M —, T"N.
Proof By induction on the derivation M —, N.

The following lemma shows that —; and — g+ are closed under substitution.
el

12

Lemma 16 Let M,N,P,O € VA. The following hold:
1. If M —1 N, then [z := M]"O —; [z := N]™O.
2. If M =4+ N, then [z := M]"O =4+ [z := N]™O.
el el
3. If M -1 N and O — P then [z := O]M —; [z := P]N.
4. If M =4+ N and O =5+ P then [z := O]M —»5+ [z := P]N.
el el el

Proof 1 and 2 are similar and are by induction on the structure of O. 3 and 4 are
by induction on the derivation M —, N where r is the corresponding reduction.

Here is the relationship between —; and —gt
el

Lemma 17 M —»; N iff M — 5+ N.
el

Proof =) By induction on the derivation of M —; N show that:
M- N=>M g+ N.
el
<) By induction on the derivation M —;+ N, show that M —4+ N = M —; N.
el el

The following two lemmas enable us to establish that —; is CR.

Lemma 18 If S, S’ w.b, none of the binding variables of S[z] occurs free in N, none
of the binding variables of S'[z] occurs free in P, none of the binding variables of N
are free in M and none of the binding variables of P are free in O, SP[x]M —; S"[z]O
and N — P then TPS[z := N|M —; T1S'[z := P]O.

Proof Note that if weight(S) = weight(S’) then p = ¢, M —; O and if (4;) and
(A]) are the ith main application items of S and S’ respectively, then 4; —; Al

(3
Hence the result is shown by Lemmas 15 and 16 and the def. of —;.
If weight(S) > weight(S'), then we prove the lemma by induction on weight(S).

Lemma 19 Let M,N,0O € MA such that M —; N and M —; O then 3P € VA
such that N —; P and O —; P.

Proof By induction on the derivation of M —; N.

Now we have the Church Rosser property for —:

Corollary 20 (Church Rosser of —1) Let M,N,O € MA such that M —»; N
and M —»; O then 3P € VA such that N —»; P and O —»; P.

Hence, the first part of this section (CR of — g+) is done:
el

Lemma 21 (Church Rosser of —>6+) Let M,N,O € NA such that M g+ N
el el
and M —» 5+ O then 3P € M A such that N — ;4 P and O —» 4+ P.
el el el

Proof By Corollary 20 and Lemma 17.

In order to show Lemma 25, we introduce the following definition:

13

Definition 22 The weight ©[M] of a labelled A-term M is defined as follows:

O["z] = n
O"'[y]M] = n+O[M]
O (M)N] = n+ O[M]+ O[N]

The following two lemmas enable us to establish that the weight as we defined will
help us to measure terminating reductions:

Lemma 23 If z € FV(M) then O[[x := N]M] > O[M] + O[N].
Proof By induction on the structure of M showing first that O[*™M] = m + ©[M].

Lemma 24 Let M,N € VA and M —»;+ N then O[M] < O[N].

el

Proof By induction on the derivation M —»;Jr N using Lemma 23.

el

Now, ﬁz}—N and 6:'I—SN are the same:

Lemma 25 If M is ,8:}—N then M is ,BQ'I—SN.

Proof Since M is 8/,-N, and since 3, is Church Rosser by Lemma 21, then M
has a unique ﬂj,—nf M'. According to Lemma 24, the length of any sequence of
B;-reduction starting at M is bounded by O[M'] — O[M].

Here is the relationship between —3_and — 5+ :
el

Lemma 26 Let M, N € A such that M —4_, N, then there exist M', N' € VA such
that [M'| = M, |N'[= N and M' =4+ N'. Furthermore, if N is in Be;-nf then N' is
el

in ﬂfz’}—nf.

Proof Easy. Put the right labels on M and N obtaining M’, N’ where M' gt N'.
Now, we generalise Lemma 25 to —3,,.

Theorem 27 If M is B.;-N then M is Bes-SN.

Proof M f;-N =Lemma 26 ypgt N = Lemma 25 Nrgt SN = M f3.;-SN (otherwise
there exists an infinite 6;1—path).

Finally, from the above theorem and postponement of K-contractions, we can estab-
lish conservation:

Theorem 28 (Conservation) If M is 8.;-N then M is 3.-SN.

Proof If M is not B.-SN then there is an infinite f.-path starting at M. But by
postponement of B.x redexes, and by the fact that there can only be a finite Bex-
contractions, there must be an infinite §.;-path. But M is B.;-N and so it is Be;-SN
by Theorem 27. Contradiction.

14

7 Preservation of Strong Normalisation

To show PSN, we show that if M —»p N (using the perpetual strategy of Definition 7)
and if N is B.;-N then M is B.;-N. Now, we take M which is 8-SN, and its perpetual
path to its normal form N. As N is B.7-N, then M is B.;-N and hence by conservation,
M is B¢-SN. It is possible however to show PSN in many different ways and without
using conservation. For example, one may use a result of Regnier in [22] which states
that the length of the longest reduction of a term is invariant by o-equivalence noting
that the B-reduction modulo o-equivalence is isomorphic to the B.-reduction.?

In this section, we will use the already available conservation theorem and following
Theorem 27, we interchange [.7-SN and fB.r-N at liberty. We shall show PSN of j,.
Note that the derivation:

M B-SN = M B3-N = M B.;-N = M [.-SN

is incorrect because M -N # M (.;-N. For example, (\,.y)Q is 8-N but not S.;-N
for @ = (\;.22)(A;.22). To show PSN, we take M that is 3-SN. Then M —»r N where
N is the B-nf of M and —» is the perpetual strategy. As N is in 8-nf, then N is B;-
N. But the inverse of —»p preserves [.;-N. Hence, M is (.;-N and by conservation,
M is [3,-SN.

In order to establish that the inverse of —»p preserves (./-normalisation (Theo-
rem 33), we need the following three lemmas which will be combined with the three
forms of perpetual reduction for K-redexes as in Lemma, 8.

Lemma 29 If (A;)...(4,)(A)[z]P has Bcr-nf, © ¢ FV(P), then its fr-nf is of the
form (By)...(B;)(A")[z]Q where A’ is the Ber-nf of A, 0 < j < n, B; is the B¢r-nf of
some A; for 1 < i < n. Moreover, (A;1)...(A4,)P has (B1)...(B;)Q as its Ber-nf.

Proof By induction on n > 0.
e n =0, the Bcr-nf is (A’)[x]Q where Q is the S.r-nf of P.

e Assume the property holds for n > 0.
As (A1) ... (4,)(Apt1)(A)[z]P has Ber-nf, then it is 3.;-SN and so
(A2) ... (An)(Ant1)(A)[z]P and A; have fBr-nf. Call the SBer-nf of Ay, Aj.
Now, by IH, (B1)...(B;)(A")[z]Q is the Ber-nf of (As)...(An)(Ant1)(A4)[z]P
and (By)...(B;)Q is the Ber-nf of (As) ... (An)(Ans1)P.

— If (A) is Ber-bachelor in (A})(Bi)...(Bj)(A")[z]Q (and hence it is bach-
elor in (A})(B1) ... (B;)®), then:
(A1) (B1) ... (B;j)(A")[z]Q and (A})(B1) ... (B;)Q are the fr-nfs required.
— If (A}) is Ber-partnered in (A7)(B1)...(B;)(A")[z]Q then all (B,),...(B;)
start fex-redexes and @ = [zj]...[z1][y]R. Now, for B the f.r-nf of
[y := A]]R we have:
(A1) - (An) (An 1) (A)[2] P =5,
(A1) (B1) .- (Bj)(A))[z][z;] . . . [21][y] R =5,
(B1) .. (Bj)(A)[z][zj] ... [#a]ly := AR =5,

3Thanks for an anonymous referee who drew my attention to this point.

15

(BL)...(B)(A)fallz] .. [m]B.

Moreover, (A1) .- (An) (Ans1)P g, (AD)(B1) ... (B))[ay]. .. @1]IR —5,,
(Bl) . (Bj)[.’l,'j] . [:cl][y = AII]R —»BeI (Bl) PN (BJ)[.’IJJ] PN [:cl]B NOW,
we are done (note that B, ... B, start Bk -redexes).

Lemma 30 If (4;)...(A,)P and A have S.;-nf, z & FV((A1)...(A4,)(A)P), then:
(A1) ...(Ap)(A)[z]P has Ber-nf.

Proof By induction on n > 0.

e Case n =0, P and A have P' and A’ as f.r-nfs, then (A)[z]P has (A')[z]P' as
Ber-nf.

e Assume the property holds for n > 0. Let (A1) ...(An)(An+1)P have Ber-nf,
hence it is B1-SN and so (Az)...(Ap4+1)P has Ber-nf and A; has A as fBer-
nf. By IH, (A2)...(Apt1)(A)[z]P has Ber-nf which is by Lemma 29, M =
(B1)...(Bj)(A)[z]Q and (A3)...(Apt1)P has (B1)...(B;)Q as its Ber-nf.

— If (A)) is Bes-bachelor in (A})M then
(A])M is the Bey-nf of (A1) ... (Ans1)(A)[z]P.
— If (A}) is Ber-partnered in (A])M then Q = [z;] ... [z1][y]R. Now,
(A1) - (An)(Aps1) P >, (AD)(B)-.. (By)lzy) . [z]Iyl >,
(B1) ... (By)[w]...[a)ly = AR,
Hence [y := AR is Ber-SN as (A1) ... (Aps1)P is.
Let B be the Ser-nf of [y := A]]R. Now,
(A1) - (A) (A []P =55, (A (BL) . (B)AY el [)s)R s,
(B1) - (By)(A)falley]. . [o1]ly = AR —p.s
(B1) ... (Bj)(A)[z][z;]...[z1]B which is in Se;-nf.

Lemma 31 If A,‘ — Bk B,‘, (Al) . (Ai—l)(Bi)(AH-l) . (An)Z and A,‘ have ﬂe[—nf
then (Al) . (Ai—l)(Ai)(AH-l) . (An)Z has ﬂe[—nf.

Proof Al, . Ai—laAi; Ai—i—l: - An all have ﬂe[—nf, All, . A;_l,Aé,A2+1, . A{n
Hence, (A1) ... (Aj—1) (A0)(Ais1) .- (An)z =g, (AD) .. (AL) (AD(AL,) .. (A])2
which is in S.;-nf.

Lemma 32 If M —r N using a Sx-redex, and N has a (.;-nf, then M has (.;-nf.

Proof By induction on the depth of the F-redex (following Lemma 8).

o If M = [z1][z2]. .. [zm](A1)(A2) ... (An)(A)[z]P, where z ¢ FV(P), Ais in
B-nf and m > 0, and if N = [z1][z2]. .. [zm](A1)(A42) ... (A,)P where n > 0,
use Lemma 30 (4 in S-nf = A in S.r-nf).

o Let S = [z1][zo] ... [tm](A1)(A2) ... (4y). If M = S(A)[z]P, N = S(A")[z]P
where ¢ FV(P), Aisnot in 8-nf, A -»p A", n >0 and m > 0. Use IH to de-
duce that A has B.;-nf. As N has B.;-nf, then [z1][z2] . . . [2m](A1)(A2) ... (A,)P
has fer-nf by Lemma 29. Hence, [z1][z2] ... [2m](A1)(A42) ... (A,)(A)[z]P has
Ber-nf by Lemma 30.

16

o If M = [z1][zs] ... [em] (A1) (A2) . .. (A0) (A)(B1)(Bs) ... (B,)z,
N = [m1][22] ... [2m] (A1) (A2) . .. (A) (A)(B1)(Bs) ... (B,)# where

Aisnotin 8-nf, A »p A\, n>0,m>0and r > 0and Vi,1 <i <r B;isin
B-nf. As N has (B.;-nf, so does A" and by IH, so does A. By Lemma 31, M has
ﬂe[—nf.

Now, here is the key theorem to PSN:

Theorem 33 (The inverse of 5 preserves (.;-N)
If M -p N and N is B.r-N, then M is (¢;-N.

Proof We show it for M —p N. Note that if M —p N and F(M) is a Bj-redex,
then the theorem is obvious as a fOr-redex is a (.;-redex. Hence, we only need to
prove the theorem for the case when F(M) is a Bk-redex. But this is already done
in Lemma 32.

Finally, here is the PSN result.

Corollary 34 (Preservation of Strong Normalisation)

If M is B-SN then M is B.-SN.

Proof As M is 8-SN, the perpetual strategy of M terminates. Let M —»p N where
N isin B-nf. As N has no B-redexes, N is B.;-N. Hence, by Theorem 33, M is B.;-N.
So, by Theorem 28 M is [.-SN.

8 Conclusion

In this paper, we established that there is indeed a reduction relation which satisfies
both postponement of K-contractions and conservation. This reduction relation is
a generalisation of the ordinary S-reduction and has been extensively used since '73
for theoretical and practical reasons (see Section 2). We showed moreover that this
generalised reduction (called 3.) is indeed a desirable generalisation of S-reduction
by showing that (. preserves strong normalisation in the sense that if M is §-SN
then M is B.-SN. Preservation of Strong Normalisation (PSN) is a property that has
to be established for any extension of a reduction relation in the sense that: if a
term is strongly normalising for a reduction relation, then it must remain strongly
normalising for its extension. For example, a lot of research has been carried out
lately to establish PSN for S-reduction extended with explicit substitution (see [4],
[9] and [18]). The results of this paper establish that 3, is indeed a safe extension of

It is worth noting that we used item notation in this paper in order to reach the
results desired. There is a reason for this. In the usual notation, generalised redexes
are not easily visible whereas they are in item notation (see [8]). For example, in
OOTIOL], we can clearly see that the leftmost () matches the rightmost[]. Using
item notation enables us to write the proofs clearly. Compare with [6] who used a
more restricted generalised reduction but it was still hard to discuss where generalised
redexes occurs in a term. For more information on the simplicity and usefulness of
item notation, the reader is referred to [8]. It should be noted moreover, that using

17

item notation is not restrictive and that the results of this paper would still hold if
we used the classical notation. Only the proofs will be cumbersome to write as the
classical notation cannot easily enable us to express generalised redexes.

The following is an itemised summary of this paper:

1.
2.

Postponement and conservation are shown for the same reduction relation [.

This reduction relation is a generalisation of that presented in de Groote’s article
and of many of the existing generalisations of g-reduction. Because of this, it
enables greater flexibility in the ordering of evaluation.

The fact that this reduction relation preserves strong normalisation and en-
ables the postponement of some work allowing unnecessary K-redexes to be
bypassed, means that one can investigate a programming language evaluation
strategy based on this reduction together with explicit substitutions (which al-
low bypassing any work inside a subterm that will be discarded later). This
means that one can combine the advantages of the complementary ways of
postponing work due to both explicit substitutions and generalised reduction.
Hence, one can achieve an even greater flexibility in the order of reduction and
evaluation, something very welcome in the implementation and compilation of
programming languages.

The syntax of this paper may well be the answer to the existence of a syntax
that realises Regnier’s o-reduction. We leave this for future explorations.

It is our belief that automating proofs written in this fashion may be more
efficient than automating the proofs written using o-equivalence (which was
said to need a good syntax to describe it in [22]).

Acknowledgements

I am grateful to Joe Wells and the anonymous referees for for their comments on the
paper. This work is supported by EPSRC grants number GR/L15685 and GR/L36963.
Anonymous referees provided useful comments for which I am grateful.

References

[1]

[2]

[3]

Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky and P. Wadler. A call by need
lambda calculus. ACM Symposium on Principles of Programming Languages,
1995.

H. Barendregt. Lambda Calculus: its Syntaz and Semantics. North-Holland,
1984.

H. Barendregt. Lambda calculi with types. Handbook of Logic in Computer
Science, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford
University Press, 1992.

18

[4]

[9]

[10]

[16]

[17]

Z. Benaissa, D. Briaud, P. Lescanne and J. Rouyer-Degli. T Av, a calculus of
explicit substitutions which preserves strong normalisation. Functional Program-
ming, 6(5):699-722, September 1996.

R. Bloo, F. Kamareddine and R. Nederpelt. The Barendregt Cube with Defini-
tions and Generalised Reduction. Information and Computation 126(2), 123-143,
1996.

P. de Groote. The conservation theorem revisited. International Conference
on Typed Lambda Calculi and Applications. Lecture Notes in Computer Science
LNCS 664, 163-178, Springer-Verlag, 1993.

F. Kamareddine and R.P. Nederpelt. Generalising reduction in the A-calculus.
Journal of Functional Programming 5 (4), 637-651, 1995.

F. Kamareddine and R.P. Nederpelt. A useful A-notation. Theoretical Computer
Science 155, 85-109, 1996.

F. Kamareddine and A. Rios, A-calculus a la de Bruijn & explicit substitution.
Lecture Notes in Computer Science 982, 7th international symposium on Pro-
gramming Languages: Implementations, Logics and Programs, PLILP 95, 45-62,
Springer-Verlag, 1995.

F. Kamareddine and A. Rios, Generalised f.-reduction and explicit substitu-
tion. Lecture Notes in Computer Science 1140, 8th international symposium on
Programming Languages: Implementations, Logics and Programs, PLILP 96,
378-392, Springer-Verlag, 1996.

F. Kamareddine, A. Rios, and J.B. Wells. Calculi of Generalised 8-Reduction
and Explicit Substitutions: The Type free and Simply Typed Versions. Journal
of Functional and Logic Programming, Volume 1998, ISSN 1080-5230, MIT Press

A.J. Kfoury, J. Tiuryn and P. Urzyczyn. An analysis of ML typability. Journal
of the ACM 41(2), 368-398, 1994.

A.J. Kfoury and J.B. Wells. A direct algorithm for type inference in the rank-2
fragment of the second order A-calculus. Proceedings of the 1994 ACM Conference
on LISP in Functional Programming, 1994.

A.J. Kfoury and J.B. Wells. New notions of reductions and non-semantic proofs
of B-strong normalisation in typed A-calculi. IEEE Logic In Computer Science,
1995.

A.J. Kfoury and J.B. Wells. Addendum to new notions of reduction and non-
semantic proofs of f-strong normalisation in typed A-calculi. Technical report,
Boston University.

J.W. Klop. Combinatory Reduction Systems. Number 127 in Mathematical
Centre Tracts. Mathematisch Centrum, Amsterdam, 1980.

J.L. Krivine. Lambda-calcul, types et modéles. Masson, 1990.

19

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Muiioz. Confluence and preservation of strong normalisation in an explicit
substitution calculus. Rapport de Recherche No 2762, INRIA.

R.P. Nederpelt. Strong normalisation in a typed lambda calculus with lambda
structured types. Ph.D. thesis, Eindhoven University of Technology, Department
of Mathematics and Computer Science, 1973. Also appears in [20].

R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer, eds., Selected Papers on Au-
tomath. North Holland, 1994.

L. Regnier. Lambda calcul et réseauz. These de doctorat de 'université Paris 7,
1992.

L. Regnier. Une équivalence sur les lambda termes. Theoretical Computer Science
126, 281-292, 1994.

A. Sabry, and M. Felleisen. Reasoning about programs in continuation-passing
style. Proc. 1992 ACM Conf. LISP Funct. Program., 288-298, 1992.

M.H. Sgrensen. Strong normalization from weak normalization in typed A-calculi.
Journal of Information and Comuptation 133(1), 35-71, 1997.

D. Vidal. Nouvelles notions de réduction en lambda calcul. These de doctorat,
Université de Nancy 1, 1989.

H. Xi. On weak and strong normalizations. Technical Report 96-187, Carnegie
Mellon University, 1996.

20

