
Postponement, Conservation and Preservation ofStrong Normalisation for Generalised Redu
tionFairouz Kamareddine�Abstra
tPostponement of �K -
ontra
tions and the 
onservation theorem do not hold for ordinary �but have been established by de Groote for a mixture of � with another redu
tion relation.In this paper, de Groote's results are generalised for a single redu
tion relation �e whi
hgeneralises �. We show morever, that �e has the Preservation of Strong Normalisationproperty.Keywords: Generalised �-redu
tion, Postponement of K-
ontra
tions, Gener-alised Conservation, Preservation of Strong Normalisation.1 The �-
al
ulus with generalized redu
tionIn the term ((�x:�y :N)P )Q, the abstra
tion starting with �x and the argument Pform the redex (�x:�y:N)P . When this redex is 
ontra
ted, the abstra
tion startingwith �y and Q will in turn form a redex. It is important to note that Q (or someresidual of Q) is the only argument that the abstra
tion (or some residual of theabstra
tion) starting with �y 
an ever have. This fa
t has been exploited by manyresear
hers. Redu
tion has been extended so that the impli
it redex based on themat
hing �y and Q is given the same priority as the intervening redex.An initial attempt to generalize the notion of redex might be to de�ne a rule likethe following: (�x:�y:N)PQ! (�x:N [y:=Q℄)PIt qui
kly be
omes evident that this is not suÆ
ient as the following example shows:Example 1 The proposed rule does not allow dire
tly redu
ing the binding of y toQ in the term A � (�z :(�x:�y:N)P )RQ.We shall exploit the notion of a well balan
ed segment (sometimes known as a �-
hain), whi
h is the spe
ial 
ase of one-hole 
ontexts given by this grammar:S ::= [�℄ j (S[�x:[�℄℄)M j S[S℄�Department of Computing and Ele
tri
al Engineering, Heriot-Watt University, Ri

arton, Edin-burgh EH14 4AS, S
otland, email: fairouz�
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.uk, fax + 44 141 451 3327.1



Using balan
ed segments, generalized redu
tion is then given by this rule:S[�x:M ℄N ! S[M [x:=N ℄℄We �nd the above de�nition of well-balan
ed segments and generalised redu
tionrather 
umbersome and believe that a more elegant de�nition 
an be given. In orderto do so, we 
hange from the 
lassi
al notation to the item notation. Instead ofwriting �x:M , we write [x℄M and instead ofMN we write (N)M .1 Item notation hasmany advantages as shown in [7, 8℄. Let us illustrate here with term A of Example 1,whi
h we write in item notation as in Figure 1. We see immediately that the redexes
(Q) (R) [z℄ (P ) [x℄ [y℄ NFigure 1: Redexes in item notation in term Aoriginate from the 
ouples (Q)[y℄, (R)[z℄ and (P )[x℄. Moreover, (Q)(R)[z℄(P )[x℄[y℄is a well-balan
ed segment. This natural mat
hing was not present in the 
lassi
alnotation. We 
all items of the form (P ) and [x℄, appli
ation and abstra
tion itemsrespe
tively. With item notation, generalised redu
tion is written as:(M)s[x℄N !g� sfN [x :=M ℄gfor s well-balan
ed:(Here, f and g are used for grouping purposes so that no 
onfusion arises.) Forexample: (Q)(R)[z℄(P )[x℄[y℄N !g� (R)[z℄(P )[x℄fN [y := Q℄gSurely this is 
learer than writing (�z :(�x:�y:N)P )RQ!g� (�z :(�x:N [y := Q℄P )R.2 An overview of generalised redu
tion in the liter-atureGeneralized redu
tion was �rst introdu
ed by Nederpelt in 1973 to aid in proving thestrong normalization of AUTOMATH [19℄. Kamareddine and Nederpelt have shownhow generalised redu
tion makes more redexes visible, allowing 
exibility in redu
inga term [7℄. Bloo, Kamareddine, and Nederpelt show that with generalised redu
tionone may indeed avoid size explosion without the 
ost of a longer redu
tion path andthat simultaneously the �-
al
ulus 
an be elegantly extended with de�nitions whi
hresult in shorter type derivations [5℄. Generalised redu
tion is strongly normalising [5℄for all systems of the �-
ube [3℄.An alternative approa
h to generalized redu
tion whi
h has been followed by manyresear
hers is to use one of these two lo
al transformations:(�) (�x:N)PQ! (�x:NQ)P(
) (�x:�y :N)P ! �y:(�x:N)P1Note that putting the argument before the fun
tion was �rst introdu
ed by de Bruijn in hisAutomath proje
t [20℄ and has been used by many resear
hers sin
e. For example, Krivine in [17℄also puts the argument before the fun
tion. 2



These rules transform terms to make more redexes visible to the ordinary notion of�-redu
tion. For example, both the 
 and � rules make sure that �y and Q in the termA of Example 1 
an form a redex before the redex based on �x and P is 
ontra
ted.That is: (�C) (�x:(�y:N))PQ! (�x:(�y :N)Q)P(
C) (�x:�y :N)PQ! (�y :(�x:N)P )QHen
e both � and 
 put �y next to its mat
hing argument. The � rule moves theargument next to its mat
hing � whereas 
 moves the � next to its mat
hing argument.Obviously, � and 
 are related to generalised redu
tion. In fa
t, � and 
 trans-form terms in order to make more potential redexes visible and then 
onventional�-redu
tion 
an be used to 
ontra
t those newly visible redexes. Generalised redu
-tion on the other hand, performs redu
tion on the potential redexes without havingto bother to make them into 
lassi
al redexes. The following example illustrates:Example 2 Take again the term A � (�z :(�x:�y:N)P )RQ. With generalised redu
-tion we got: (�z :(�x:�y:N)P )RQ !g� (�z :(�x:N [y := Q℄)P )R. We illustrate how �and 
 work:� (�z :(�x:�y :N)P )RQ!� (�z :(�x:�y :N)PQ)R!�(�z :(�x:(�y :N)Q)P )R!� (�z :(�x:N [y := Q℄)P )R
 (�z :(�x:�y :N)P )RQ!
 (�z :�y(�x:N)P )RQ!
(�y(�z :(�x:N)P )R)Q!� (�z :(�x:N [y := Q℄)P )RNote that in item notation it is easier to des
ribe � and 
. We illustrate with �.Example 3 We 
an reshu�e (Q)(R)[z℄(P )[x℄[y℄N to (R)[z℄(P )[x℄(Q)[y℄N in orderto transform the bra
keting stru
ture ff gf gg into f gf gf g, where all the redexes
orrespond to adja
ent `f' and `g'. Figure 1 
an be redrawn using the �-redu
tiontwi
e in Figure 2. (R) [z℄ (P ) [x℄ (Q) [y℄ NFigure 2: �-normal forms in item notation for term AThe � rule 
an be applied to both expli
itly and impli
itly typed systems. However,the transfer of 
 to expli
itly typed systems is not straightforward, sin
e in thesesystems the type of y in the term A may be a�e
ted by the redu
ible pair of �x andP . For example, it is �ne to write ((�x:�:�y:x:y)z)u !� (�x:�:(�y:x:y)u)z but not towrite ((�x:�:�y:x:y)z)u!
 (�y:x:(�x:�:y)z)u.2Lo
al transformations like 
 and � began to appear in the literature during theeighties. (See [15℄ for a summary). Regnier [21℄ introdu
es the notion of a premierredex whi
h is similar to the redex based on �y and Q above (whi
h we 
all a gen-eralised redex). Later, he uses � and 
 (and 
alls the 
ombination �) to show that2An alternative is to apply 
 to the type erasure of the term, whi
h may be quite 
ompli
ated toexpress in terms of the type-annotated term. 3



the perpetual redu
tion strategy �nds the longest redu
tion path when the term isStrongly Normalising (SN) [22℄. Vidal also introdu
es similar redu
tions [25℄. Kfoury,Tiuryn, and Urzy
zyn use � (and other redu
tions) to show that typability in ML isequivalent to a
y
li
 semi-uni�
ation [12℄. Sabry and Felleisen des
ribe a relationshipbetween a redu
tion similar to � and a parti
ular style of CPS [23℄. De Groote [6℄uses � and Kfoury and Wells [14℄ use 
 to redu
e the problem of �-strong normal-isation to the problem of weak normalisation (WN) for related redu
tions. Kfouryand Wells use � and 
 to redu
e typability in the rank-2 restri
tion of system F tothe problem of a
y
li
 semi-uni�
ation [13℄. Klop, S�rensen, and Xi [16, 26, 24℄ userelated redu
tions to redu
e SN to WN. Finally, Ariola, Felleisen, Maraist, Oderskyand Wadler use � (
alled \let-C") in [1℄, as a part of an analysis of how to representsharing in a 
all-by-need language implementation in a formal 
al
ulus.All the resear
h mentioned above is a living proof for the importan
e and useful-ness of generalised redu
tion (from now on, �e). For this reason, properties of thisredu
tion must be studied. Con
uen
e of �e is a dire
t 
onsequen
e of the fa
t thatM =� N ,M =�e N . Subje
t redu
tion for �e has been established in [5℄ (with the
ondition that expli
it de�nitions must be added for some systems of the 
ube). And,as we mentioned earlier, Strong Normalisation of �e has been established for the wholeCube and type derivation paths have been analysed. Other important properties of�e have however remained unanswered. Those properties are:1. Preservation of Strong Normalisation PSN. This property is: if M is stronglynormalising for ordinary �-redu
tion (written M is �-SN), then M remainsstrongly normalising for generalised redu
tion �e (i.e. M is also �e-SN). PSNmakes �e a useful extension of �. This parallels the work on extending �-
al
uliwith expli
it substitutions whi
h satisfy the PSN property.2. Conservation of �e-redu
tion. This property is: if a term is �eI -normalisable(i.e. �e-normalisable redu
ing only redexes that don't erase their arguments,so 
alled I-redexes, or stri
t redexes), then it is strongly normalisable. This isinteresting in view of the ongoing interest of showing that strong normalisation
an be redu
ed to weak normalisation [16, 24, 26℄.3. Postponement of K-redu
tion. Generalised redu
tion allows the postponementof K-redu
tion (whi
h dis
ards their arguments) after I-redu
tions (whi
h usetheir arguments in at least one pla
e). Hen
e, generalised redu
tion allowsunne
essary K-redexes to be bypassed. From the implementation point of view,this results in 
exibility in work. Unne
essary work 
an be delayed or evenavoided 
ompletely.In this paper, we show these three properties for the generalised redu
tion �e. Weuse item notation to be able to write generalised redu
tion in a really general wayand to be able to des
ribe proofs and proof obje
ts elegantly. We believe that if thispaper was written in 
lassi
al notation, then the proofs would have been 
umbersometo present.
4



3 Contributions of this paper and related workBe
ause we still have not introdu
ed all the ma
hinery of item notation, we shall use
lassi
al notation in this se
tion.Let us re
all the three basi
 redu
tion rules of the �-
al
ulus (FV (M) stands forthe free variables of M):(�) (�x:M)N !M [x := N ℄(�I ) (�x:M)N !M [x := N ℄ if x 2 FV (M)(�K) (�x:M)N !M if x 62 FV (M)Redexes based on the �I rule are 
alled �I - or I-redexes. Similarly, those based onthe �K rule are 
alled �K- or K-redexes. For any relation r, we write rK and rI forthe 
orresponding K- and I-redu
tions.In this paper, we show that the generalised redu
tion �e satis�es PSN, the post-ponement of K-
ontra
tions and 
onservation. Of 
ourse the latter two properties failfor ordinary � as shown by the following example:Example 4 (�y :(�x:x))MN !�K (�x:x)N !�I N and it is impossible to �I -redu
e(�y:(�x:x))MN . Moreover, ((�x:�y:y(�z :zz))u)�z:zz is �I -normalising but not strongly�-normalising.Attempts have been made at establishing some redu
tion relations for whi
h post-ponement of K-
ontra
tions and 
onservation hold ([2℄ and [6℄). The pi
ture is asfollows (-N stands for normalising and r 2 f�I ; �Kg where (�) was de�ned earlier):(�K -postponement for r) If M !�K N !r O then 9P su
h that M !!+�I�K P !!�K O(Conservation for �I) If M is �I -N then M is �I -SN(Conservation for � + �) If M is �I�K-N then M is �-SNConservation for �I is found in [2℄. Conservation for �+ � and �K-postponement forr 2 f�I ; �Kg are established by de Groote in [6℄. However, de Groote does not produ
ethese results for a single redu
tion relation, but for � in whi
h another relation (�) isused. This paper establishes �K-postponement and 
onservation for a single relation�e and is hen
e the �rst to do so. Moreover, the relation � is more restri
tive thanthe generalised redu
tion of this paper.Let us now list the postponement and 
onservation properties for �e:(�eK -postponement for �e) If M !�eK N !�eI O then 9P su
h that M !�eI P !!+�eK O(Conservation for �e) If M is �eI -N then M is �e-SNThese two properties are important be
ause here we have the �rst redu
tion relationwhi
h generalises � (yet M =� N ,M =�e N) and whi
h satis�es them.Now we 
ome to the PSN property whi
h is as follows:(PSN for �e) M is �-SN , M is �e-SN.PSN not only means that �e does not 
hange the set of �-SN terms, but also thatwe 
an a
tually use �e with expli
it substitution. In fa
t, expli
it substitution is animportant topi
 of resear
h and PSN is an important property for any �-
al
ulus5



extended with expli
it substitution. In fa
t, lately, mu
h resear
h has been 
arriedout ([4, 9℄) in order to �nd systems of expli
it substitution whi
h are both 
on
uentand have the PSN property (if M is �-SN then M is �s-SN where �s is the lambda
al
ulus extended with expli
it substitution). This is the reason for our interestin PSN of �e (whi
h is 
on
uent by the way). After all, generalised redu
tions �ala �e have been extensively used as we saw in Se
tion 2 for both theoreti
al andpra
ti
al reasons. Furthermore, systems of expli
it substitution have been the subje
tof mu
h re
ent resear
h. Both generalised redu
tion and expli
it substitution areof pra
ti
al importan
e and 
ombining them both in one system may turn out tobe very useful. The main bene�ts of these 
on
epts are similar: both emphasize
exibility in the ordering of operations. In parti
ular, both generalized redu
tion andexpli
it substitution allow the postponement of work, but in di�erent, 
omplementaryways. On one side, generalized redu
tion always allows unne
essary K-redexes to bebypassed. Expli
it substitution will not in general allow this, sin
e redu
ing the K-redex might be ne
essary to expose an essential I-redex. Similarly, on the other side,expli
it substitution allows bypassing any work inside a subterm that will be dis
ardedlater. However, generalized redu
tion does not provide any means for performingonly those parts of a substitution that will be used later. Thus, we 
an see that theirbene�ts are 
omplementary.We 
laim that a system with the 
ombination of generalized redu
tion and expli
itsubstitution is more advantageous than a system with ea
h 
on
ept separately. Obvi-ously, if the bene�ts of both are desired simultaneously, it is important to study the
ombination, a task whi
h this paper performs. Before the 
ombination 
an be safelyused, it must be 
he
ked that this 
ombination is sound and safe exa
tly like it hasbeen 
he
ked that ea
h of expli
it substitutions and generalised redu
tions separatelyare sound and safe.On
e PSN is established we 
an study extending the �-
al
ulus with both ex-pli
it substitution and generalised redu
tion. This means that we 
an 
ombine theadvantages of the two di�erent extensions in one system [10, 11℄.We had established in [9℄ property (1) below, and in [10, 11℄ property (2) below(��es stands for the lambda 
al
ulus extended with expli
it substitution and gener-alised redu
tion and for reasons of uniformity, we write �-SN for �-SN and ��e -SNfor �e-SN): (1) M is �-SN , M is �s-SN(2) M is �s-SN , M is ��es-SNThe proofs for (1) and (2) are similar. Now with PSN, we get (3) below and then (4)
omes for free. (3) M is �-SN , M is ��e -SN(4) M is ��e -SN , M is ��es-SNHen
e, one gets: M is �-SN , M is ��e-SN , M is ��es-SN , M is �s-SN.Based on the above dis
ussion, this arti
le shows �eK postponement (Se
tion 5),the generalised 
onservation for �e (Se
tion 6), and the PSN property for �e (Se
-tion 7). 6



4 The formal ma
hineryWe assume the reader familiar with the �-
al
ulus whose terms are� ::= Vj(��)j(�V :�)We take terms modulo �-
onversion and use the variable 
onvention VC (as in [3℄)whi
h avoids any 
lash of variables. We use x, y, z, x1, x2, : : : and M , N , P , Q,A, B, A1, : : : to range over V and � respe
tively. We assume the usual de�nition ofsubstitution and use FV (M) for the set of free variables of M . Be
ause we need tosee redexes (ordinary and generalised) we shall write terms in item notation (see [8℄or [7℄). In this notation, �x is written as [x℄ and (MN) is written (N)M (note thatfollowing de Bruijn, we put the argument before the fun
tion). [x℄ and (N) are 
alleditems. A sequen
e of items is 
alled a segment. We use I; I1; : : : to range over itemsand S; S1; S2; : : : to range over segments. A well-balan
ed segment (w.b for short) isde�ned as the empty segment or (P )S1[x℄S2 where S1 and S2 are w.b. Note that the
on
atenation of w.b segments is a well-balan
ed segment.One parti
ular advantage of this notation is that redexes are more 
lear than inthe usual notation. For example, 
C of Se
tion 2 be
omes:(
C) (Q)(P )[x℄[y℄N ! (Q)[y℄(P )[x℄Nwhere it is 
lear that (P ) mat
hes [x℄ and (Q) mat
hes [y℄. So, an ordinary redexstarts with a ( ) adja
ent to [ ℄. A generalised redex starts with ( )S[ ℄ where S is w.b.When S = ;, a generalised redex is an ordinary redex. In (Q)(P )[x℄[y℄N , we say that(P ), [x℄, (Q) and [y℄ are partnered, (P ) is the partner of [x℄ (or [x℄ is the partner of(P )) and (Q) is the partner of [y℄. (P ) and [x℄ are also said to be �-partnered whereas(Q) and [y℄ are �e-partnered. In general, we say that (P ) (or [x℄) is partnered in Mif: � M � (P )S[x℄N where S is w.b (in this 
ase (P ) and [x℄ are partners), or� M � [y℄N and (P ) (or [x℄ ) is partnered in N , or� M � (N1)N2 and (P ) is either partnered in N1 or in N2.We may also talk of �I -, �eI -, �K-, �eK -partnered items with the obvious meaning.Note that if S1(A)S2[x℄S3 is w.b where (A) and [x℄ are partnered then S2 and S1S3are w.b.If an item is not partnered in a term we say that it is ba
helor (and may talk of �-,�eI -, �K-, �eK -, �I - and �e-ba
helor items). A segment 
onsisting of ba
helor itemsonly is 
alled ba
helor. Note that a term will always be written as I1I2 : : : Inx. Ea
hIi is said to be a main-item in M . A main item 
an of 
ourse have items inside it butthese will not be main in M . For example, ((y)[x℄x)[z℄z has the main items ((y)[x℄x)and [z℄. The redex ((y)[x℄x)[z℄z is said to be a main-redex. The other redex (y)[x℄xis not main. The weight of a segment is de�ned to be the number of its main items.We write [x := N ℄M instead of M [x := N ℄ whi
h stands for substituting N for thefree o

urren
es of x in M . 7



We assume the reader familiar with the basi
 ma
hinery of redu
tion ([2℄, p. 50-59). In parti
ular, if R is a binary relation � � � �, and (M;N) 2 R, we 
all Mthe R-redex and N the 
ontra
tum of M . Given R � � � �, we de�ne !R to bethe least 
ompatible relation 
ontaining R, !!R to be its re
exive transitive 
losureand =R to be its re
exive, symmetri
 and transitive 
losure. A term M is said to bein R-normal form (R-nf) i� there is no N su
h that M !R N . M is said to havea R-nf, i� there is N in R-nf su
h that M !!R N . We say M is R-normalising oris R-N i� M has a R-nf. We say that M is strongly R-normalising and write M isR-SN i� there is no in�nite R-redu
tion path starting at M . We may use M !!+R Nto indi
ate the existen
e of one or more steps from M to N and M !!nR N to meanthat there are n redu
tion steps. Ordinary �-, �I - and �K-redu
tion are de�ned asthe redu
tion relations generated by the 
orresponding rules below:(�) (N)[x℄M ! [x := N ℄M(�I ) (N)[x℄M ! [x := N ℄M if x 2 FV (M)(�K) (N)[x℄M !M if x 62 FV (M)As explained in Example 4, postponement of K-
ontra
tions and 
onservation do nothold for �. De Groote in [6℄ introdu
es di�erent redu
tion relations for whi
h heestablishes these properties. First, [6℄ uses(�K) (O)(N)[x℄M ! (N)[x℄(O)M if x 62 FV (M)Note that by VC, in �K , x 62 FV (O). Then, de Groote moves (O) to the right of(N)[x℄ so that it 
an eventually o

ur adja
ent to its partner in M if it exists. DeGroote establishes the following two results (r 2 f�I ; �Kg):(�K -postponement for r) If M !�K N !r O then 9P su
h that M !!+�I�K P !!�K O(Conservation for � + �) If M is �I�K-N then M is �-SN:In this paper, we will improve both results. We will de�ne a �e-redu
tion relation(see De�nition 5) whose �eI and �eK stand for its I and K-redu
tions. We shall showthat:(�eK -postponement for �e) If M !�eK N !�eI O then 9P su
h that M !�eI P !!+�eK O(Conservation for �e) If M is �eI -N then M is �e-SN:De�nition 5 (Generalised �-redu
tion �e) We generalise �, �I and �K to the redu
-tion relations generated by the 
orresponding rules of what follows:(�e) (N)S[x℄M ! S[x := N ℄M if S is w.b(�eI ) (N)S[x℄M ! S[x := N ℄M if S is w.b and x 2 FV (M)(�eK) (N)S[x℄M ! SM if S is w.b and x 62 FV (M)Note that �e is more generalised than the redu
tion relation introdu
ed by 
om-bining de Groote's � + �K . In fa
t, �e is not restri
ted to K-redexes and oneunique step 
an do the work of many in Groote's sense. For example, if S �(A1)[x1℄(A2)[x2℄ : : : (An)[xn℄ and all the redexes starting with (A1); (A2); : : : (An)are K-redexes in S[x℄M , then (N)S[x℄M !�e S[x := N ℄M i� (N)S[x℄M !!n�KS(N)[x℄M !� S[x := N ℄M .Now, here is a basi
 lemma about terms:8



Lemma 61. Let r 2 f�e; �eI ; �eKg. If (A) is r-ba
helor in (A)M then (B) is also r-ba
helorin (B)(A)M .2. IfM is in �-nf, thenM � [x1℄[x2℄ : : : [xn℄(A1)(A2) : : : (Am)z where n � 0, m � 0and 8i, 1 � i � m) Ai is in �-nf.3. If A !r A0 then SA !r SA0 for any segment S and any redu
tion relationr 2 f�; �I ; �K ; �e; �eI ; �eKg.Proof1. If (B) was r-partnered, then (B)(A)M � (B)(A)S[x℄N where (A)S is w.b (andhen
e (A)S � (A)S1[y℄S2 where S1; S2 are w.b) 
ontradi
ting the fa
t that (A)is r-ba
helor.2. By indu
tion on the stru
ture of M .3. By indu
tion on the weight of S.In order to show the Preservation of Strong Normalisation for �e, we need a redu
tionstrategy where a �K-redex (M)[x℄N is 
ontra
ted only if M is in �-nf. This strategyis a
tually the perpetual strategy (see [2℄ and [22℄):De�nition 7 We de�ne the perpetual strategy F as follows:F ([x℄M) = F (M)F ((M)N) = F (N) if N 6� [x℄P and N is not in �-nfF ((M)N) = F (M) if N 6� [x℄P and N is in �-nfF ((M)[x℄N) = (M)[x℄N if x 2 FV (N) or M is in �-nfF ((M)[x℄N) = F (M) if x 62 FV (N) and M is not in �-nfWe 
all perpetual redu
tion the redu
tion asso
iated with this strategy. When M�-redu
es to N by 
ontra
ting F (M), we write, M !F N . This strategy has beenshown in [22℄ to give the longest path for a SN term. It was moreover, shown in [2℄that M is �-SN i� its perpetual redu
tion terminates. With the result of this paper,it will also be the 
ase that M is �e-SN i� its perpetual path terminates.The following lemma is informative about where F -redu
tion takes pla
e in a termin the 
ase of K-redexes:Lemma 8 If M !F N where F (M) is a �K-redex, then one of the following holds:1. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)Pwhere x 62 FV (P ), A is in �-nf, n � 0 and m � 0.2. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)[x℄Pwhere x 62 FV (P ), A is not in �-nf, A!F A0, n � 0 and m � 0.9



3. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)(B1)(B2) : : : (Br)z andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)(B1)(B2) : : : (Br)z andA is not in �-nf, A !F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in�-nf.Proof By indu
tion on M !F N where F (M) is a �K-redex.5 Postponement of �eK-redu
tionIn this se
tion, we establish in lemma 10 the postponement of �eK -redu
tion. Theproof of postponement is similar to that of de Groote. For us, however, we 
an getaway with only one step �eI redu
tion in the postponement lemma (Lemma 10). DeGroote, had to have many steps in order to a

ommodate the slow pro
ess of movingan item () next to its mat
hing [ ℄ (see for example his proof of Lemma 11, (
) ii). We
ould also in Lemma 10, repla
e �eK with ordinary �K in P !!+�eK O but we won'tbother doing so in this paper as it is not needed.The following lemma establishes that substitution preserves �eK -redu
tion.Lemma 9 If M !�eK N then the following hold:1. [x :=M ℄P !!�eK [x := N ℄P .2. If x 2 FV (P ) then [x :=M ℄P !!+�eK [x := N ℄P .3. [x := P ℄M !�eK [x := P ℄N .Proof Use indu
tion on the stru
ture of P for 1 and 2, and on the derivation ofM !�eK N for 3.Now we 
ome to the postponement lemma. Note that in this lemma, P !!+�eK O andnot P !!�eK O nor P !�eK O. This is due to Lemma 9.Lemma 10 If M !�eK N !�eI O then 9P su
h that M !�eI P !!+�eK O.Proof By indu
tion on the derivation of M !�eK N .� Case (A)S[x℄B !�eK SB, S w.b, x 62 FV (B), 
he
k where in SB the �eI -redexappears (note that if S1S2S3 and S2 are w.b, then S1S3 is w.b).We only treat the 
ase where S � S1(A1)S2[y℄S3 with S2 w.b andS1(A1)S2[y℄S3B !�eI S1S2f[y := A1℄S3g[y := A1℄B.Then (A)S1(A1)S2[y℄S3[x℄B !�eI (A)S1S2f[y := A1℄S3g[x℄f[y := A1℄Bg !�eKS1S2f[y := A1℄S3gf[y := A1℄Bg as x 62 FV ([y := A1℄B) due to VC.� Case [x℄M !�eK [x℄N !�eI O, then O � [x℄Q. Use IH on M !�eK N !�eI Q.� Case (A)B !�eK (A0)B !�eI O, investigate how (A0)B !�eI O. We only treatthe 
ase where (A0)B � (A0)S[x℄B1 !�eI S[x := A0℄B1. Then(A)B � (A)S[x℄B1 !�eI S[x := A℄B1 !!+�eK S[x := A0℄B1 by Lemma 9.10



� Case (A)B !�eK (A)B0 !�eI O, we only treat the 
ase where B0 � S[x℄C, Sis w.b, and O � S[x := A℄C. I.e. (A)B !�eK (A)S[x℄C !�eI S[x := A℄C (notethat it 
annot o

ur that B � (Q)S[x℄[y℄C !�eK S[x℄([y := Q℄C)). Then oneof the following holds:{ Case B � S[x℄C1 and C1 !�eK C, then(A)S[x℄C1 !�eI S[x := A℄C1 !�eK S[x := A℄C by Lemma 9, 
ase 3.{ Case B � S1[x℄C and the �eK-redex is in S1, i.e.(A)S1[x℄C !�eK (A)S[x℄C !�eI S[x := A℄C, then(A)S1[x℄C !�eI S1[x := A℄C !�eK S[x := A℄C by VC.6 The generalised 
onservation for �eIn this se
tion, we establish in Theorem 28, the generalised 
onservation for �e, thesame relation for whi
h we established in the previous se
tion, the postponementof its K-redu
tion. This is an extension of de Groote's work whi
h established thepostponement and 
onservation properties for two di�erent relations. We start byde�ning the set of labelled terms whi
h will help us in establishing the generalised
onservation. Labels will used as 
ounters to re
ord the number of 
ontra
ted redexeswhen redu
ing a term.De�nition 11 The set IN� of labelled �-terms is indu
tively de�ned as follows:1. n 2 IN; x 2 V ) nx 2 IN�.2. n 2 IN; x 2 V ;M 2 IN�) n[x℄M 2 IN�.3. n 2 IN;M;N 2 IN�) n(M)N 2 IN�We take M;N;O;A;B; : : : to range over labelled �-terms. We use nM to stress thatthe outermost label of a �-term M is n. Hen
e, M and nM stand for the samelabelled �-term. We write +mM for the labelled �-term obtained by adding m to theoutermost label of a labelled �-term M . Hen
e if the outermost label of M is n then+mM denotes n+mM .ForM 2 IN�, we write jM j for the (unlabelled) �-term in � obtained by erasing alllabels in M . Moreover, if M 2 �, we identify M with M 0 in IN� su
h that jM 0j �Mand all labels in M 0 are 0. Hen
e, � � IN�.We use in this se
tion, the notations and te
hniques of de Groote adapted howeverto our generalised redu
tion. Basi
ally the idea is as follows:1. Chur
h Rosser CR: We introdu
e a labelled redu
tion relation !�+eI whi
hwe prove Chur
h Rosser. !�+eI is shown CR by showing that a related redu
tionrelation !1 is CR. Hen
e, if a labelled term M has a �+eI -nf, it must be unique.2. In
reasing property In
: We then introdu
e the weight of a term M , �[M ℄,whi
h is used to limit the length of �+eI -redu
tions starting at normalising terms.That is, the length of any sequen
e of �+eI -redu
tions starting at a normalisingterm M is bounded by �[M 0℄ � �[M ℄ where M 0 is the (unique) �+eI -nf of M .This implies that any �+eI -N term is �+eI -SN. This will be extended to �eI byshowing that any �eI -N term is �eI -SN.11



3. Weak Normalisation ) Strong Normalisation (WN ) SN) Next weshow that if M is �eI -N then it is �e-SN by using the fa
t that M is �eI -SN,postponement and that there 
an only be a �nite �eK -redexes. This establishesthe generalised 
onservation.Note that the stru
ture of our proof 
an be seen as: CR+In
+WN ) SN. This isas we said a generalisation of the proof of de Groote. One 
ould however use Corollary5.19 in Klop's thesis [16℄ whi
h states that WCR+In
+WN) SN & CR where WCRis Weak Chur
h Rosser. We leave this alternative to the reader to establish.Here is the de�nition of substitution on labelled terms:De�nition 12 Let M;N 2 IN�. [x := N ℄M is de�ned as follows:[x := nN ℄mx � n+mN[x := nN ℄my � my if x 6� y[x := nN ℄m(P )Q � m([x := nN ℄P )[x := nN ℄Q[x := nN ℄m[y℄M � m[y℄[x := nN ℄MNow we de�ne !�+eI whi
h will be used to show 
onservation.De�nition 13 M !�+eI N is de�ned indu
tively as follows:1. n(iN)So[x℄jM !�+eI +n+o+1S[x := iN ℄jM if x 2 FV (M); S, w.b.2. If M !�+eI N then n[x℄M !�+eI n[x℄N , n(M)P !�+eI n(N)P andn(P )M !�+eI n(P )N!!�+eI is de�ned as the transitive re
exive 
losure of !�+eI .We de�ne !1 for whi
h CR is easier to show than for !�+eI .De�nition 14 M !1 N is de�ned indu
tively as follows:1. M !1 M2. If M !1 N then n[x℄M !1 n[x℄N3. If M !1 O and N !1 P then n(M)N !1 n(O)P4. If Sp[x℄M !1 S0q [x℄O, N !1 P , S; S0 w.b, and x 2 FV (M) thenn(N)Sp[x℄M !1 +n+q+1S0[x := P ℄O.!!1 is de�ned as the transitive re
exive 
losure of !1.The following lemma shows that labels 
an be in
reased for both !1 and !�+eI .Lemma 15 Let M;N 2 IN� and r 2 f1; �+eIg. If M !r N then +nM !r +nN .Proof By indu
tion on the derivation M !r N .The following lemma shows that !1 and !�+eI are 
losed under substitution.12



Lemma 16 Let M;N;P;O 2 IN�. The following hold:1. If M !1 N , then [x :=M ℄mO !1 [x := N ℄mO.2. If M !�+eI N , then [x :=M ℄mO !!�+eI [x := N ℄mO.3. If M !1 N and O !1 P then [x := O℄M !1 [x := P ℄N .4. If M !�+eI N and O !�+eI P then [x := O℄M !!�+eI [x := P ℄N .Proof 1 and 2 are similar and are by indu
tion on the stru
ture of O. 3 and 4 areby indu
tion on the derivation M !r N where r is the 
orresponding redu
tion.Here is the relationship between !1 and !�+eI :Lemma 17 M !!1 N i� M !!�+eI N .Proof )) By indu
tion on the derivation of M !1 N show that:M !1 N ) M !!�+eI N .() By indu
tion on the derivation M !�+eI N , show that M !�+eI N )M !1 N .The following two lemmas enable us to establish that !1 is CR.Lemma 18 If S; S0 w.b, none of the binding variables of S[x℄ o

urs free in N , noneof the binding variables of S0[x℄ o

urs free in P , none of the binding variables of Nare free inM and none of the binding variables of P are free in O, Sp[x℄M !1 S0q[x℄Oand N !1 P then +pS[x := N ℄M !1 +qS0[x := P ℄O.Proof Note that if weight(S) = weight(S0) then p = q, M !1 O and if (Ai) and(A0i) are the ith main appli
ation items of S and S0 respe
tively, then Ai !1 A0i.Hen
e the result is shown by Lemmas 15 and 16 and the def. of !1.If weight(S) > weight(S0), then we prove the lemma by indu
tion on weight(S).Lemma 19 Let M;N;O 2 IN� su
h that M !1 N and M !1 O then 9P 2 IN�su
h that N !1 P and O !1 P .Proof By indu
tion on the derivation of M !1 N .Now we have the Chur
h Rosser property for !1:Corollary 20 (Chur
h Rosser of !1) Let M;N;O 2 IN� su
h that M !!1 Nand M !!1 O then 9P 2 IN� su
h that N !!1 P and O !!1 P .Hen
e, the �rst part of this se
tion (CR of !�+eI ) is done:Lemma 21 (Chur
h Rosser of !�+eI ) Let M;N;O 2 IN� su
h that M !!�+eI Nand M !!�+eI O then 9P 2 IN� su
h that N !!�+eI P and O !!�+eI P .Proof By Corollary 20 and Lemma 17.In order to show Lemma 25, we introdu
e the following de�nition:13



De�nition 22 The weight �[M ℄ of a labelled �-term M is de�ned as follows:�[nx℄ = n�[n[y℄M ℄ = n+�[M ℄�[n(M)N ℄ = n+�[M ℄ + �[N ℄The following two lemmas enable us to establish that the weight as we de�ned willhelp us to measure terminating redu
tions:Lemma 23 If x 2 FV (M) then �[[x := N ℄M ℄ � �[M ℄ + �[N ℄.Proof By indu
tion on the stru
ture ofM showing �rst that �[+mM ℄ = m+�[M ℄.Lemma 24 Let M;N 2 IN� and M !!+�+eI N then �[M ℄ < �[N ℄.Proof By indu
tion on the derivation M !!+�+eI N using Lemma 23.Now, �+eI -N and �+eI -SN are the same:Lemma 25 If M is �+eI -N then M is �+eI -SN.Proof Sin
e M is �+eI -N, and sin
e �+eI is Chur
h Rosser by Lemma 21, then Mhas a unique �+eI -nf M 0. A

ording to Lemma 24, the length of any sequen
e of�+eI -redu
tion starting at M is bounded by �[M 0℄��[M ℄.Here is the relationship between !�eIand !�+eI :Lemma 26 Let M;N 2 � su
h that M !�eI N , then there exist M 0; N 0 2 IN� su
hthat jM 0j �M; jN 0j � N and M 0 !�+eI N 0. Furthermore, if N is in �eI -nf then N 0 isin �+eI -nf.Proof Easy. Put the right labels onM and N obtainingM 0; N 0 whereM 0 !�+eI N 0.Now, we generalise Lemma 25 to !�eI .Theorem 27 If M is �eI -N then M is �eI -SN.Proof M �eI -N)Lemma 26 M�+eI -N)Lemma 25 M�+eI -SN)M�eI -SN (otherwisethere exists an in�nite �+eI -path).Finally, from the above theorem and postponement of K-
ontra
tions, we 
an estab-lish 
onservation:Theorem 28 (Conservation) If M is �eI -N then M is �e-SN.Proof If M is not �e-SN then there is an in�nite �e-path starting at M . But bypostponement of �eK redexes, and by the fa
t that there 
an only be a �nite �eK -
ontra
tions, there must be an in�nite �eI -path. But M is �eI -N and so it is �eI -SNby Theorem 27. Contradi
tion. 14



7 Preservation of Strong NormalisationTo show PSN, we show that ifM !!F N (using the perpetual strategy of De�nition 7)and if N is �eI -N then M is �eI -N. Now, we takeM whi
h is �-SN, and its perpetualpath to its normal formN . AsN is �eI -N, thenM is �eI -N and hen
e by 
onservation,M is �e-SN. It is possible however to show PSN in many di�erent ways and withoutusing 
onservation. For example, one may use a result of Regnier in [22℄ whi
h statesthat the length of the longest redu
tion of a term is invariant by �-equivalen
e notingthat the �-redu
tion modulo �-equivalen
e is isomorphi
 to the �e-redu
tion.3In this se
tion, we will use the already available 
onservation theorem and followingTheorem 27, we inter
hange �eI -SN and �eI -N at liberty. We shall show PSN of �e.Note that the derivation:M �-SN ) M �-N ) M �eI -N ) M �e-SNis in
orre
t be
ause M �-N 6) M �eI -N. For example, (�x:y)
 is �-N but not �eI -Nfor 
 � (�z :zz)(�z:zz). To show PSN, we takeM that is �-SN. ThenM !!F N whereN is the �-nf ofM and!!F is the perpetual strategy. As N is in �-nf, then N is �eI -N. But the inverse of !!F preserves �eI -N. Hen
e, M is �eI -N and by 
onservation,M is �e-SN.In order to establish that the inverse of !!F preserves �eI -normalisation (Theo-rem 33), we need the following three lemmas whi
h will be 
ombined with the threeforms of perpetual redu
tion for K-redexes as in Lemma 8.Lemma 29 If (A1) : : : (An)(A)[x℄P has �eI -nf, x 62 FV (P ), then its �eI -nf is of theform (B1) : : : (Bj)(A0)[x℄Q where A0 is the �eI -nf of A, 0 � j � n, Bj is the �eI -nf ofsome Ai for 1 � i � n. Moreover, (A1) : : : (An)P has (B1) : : : (Bj)Q as its �eI -nf.Proof By indu
tion on n � 0.� n = 0, the �eI -nf is (A0)[x℄Q where Q is the �eI -nf of P .� Assume the property holds for n � 0.As (A1) : : : (An)(An+1)(A)[x℄P has �eI -nf, then it is �eI -SN and so(A2) : : : (An)(An+1)(A)[x℄P and A1 have �eI -nf. Call the �eI -nf of A1, A01.Now, by IH, (B1) : : : (Bj)(A0)[x℄Q is the �eI -nf of (A2) : : : (An)(An+1)(A)[x℄Pand (B1) : : : (Bj)Q is the �eI -nf of (A2) : : : (An)(An+1)P .{ If (A01) is �eI -ba
helor in (A01)(B1) : : : (Bj)(A0)[x℄Q (and hen
e it is ba
h-elor in (A01)(B1) : : : (Bj)Q), then:(A01)(B1) : : : (Bj)(A0)[x℄Q and (A01)(B1) : : : (Bj)Q are the �eI -nfs required.{ If (A01) is �eI -partnered in (A01)(B1) : : : (Bj)(A0)[x℄Q then all (B1); : : : (Bj)start �eK -redexes and Q � [xj ℄ : : : [x1℄[y℄R. Now, for B the �eI -nf of[y := A01℄R we have:(A1) : : : (An)(An+1)(A)[x℄P !!�eI(A01)(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y := A01℄R!!�eI3Thanks for an anonymous referee who drew my attention to this point.15



(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄B.Moreover, (A1) : : : (An)(An+1)P !!�eI (A01)(B1) : : : (Bj)[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)[xj ℄ : : : [x1℄[y := A01℄R !!�eI (B1) : : : (Bj)[xj ℄ : : : [x1℄B. Now,we are done (note that B1; : : : Bj start �eK -redexes).Lemma 30 If (A1) : : : (An)P and A have �eI -nf, x 62 FV ((A1) : : : (An)(A)P ), then:(A1) : : : (An)(A)[x℄P has �eI -nf.Proof By indu
tion on n � 0.� Case n = 0, P and A have P 0 and A0 as �eI -nfs, then (A)[x℄P has (A0)[x℄P 0 as�eI -nf.� Assume the property holds for n � 0. Let (A1) : : : (An)(An+1)P have �eI -nf,hen
e it is �eI -SN and so (A2) : : : (An+1)P has �eI -nf and A1 has A01 as �eI -nf. By IH, (A2) : : : (An+1)(A)[x℄P has �eI -nf whi
h is by Lemma 29, M �(B1) : : : (Bj)(A0)[x℄Q and (A2) : : : (An+1)P has (B1) : : : (Bj)Q as its �eI -nf.{ If (A01) is �eI -ba
helor in (A01)M then(A01)M is the �eI -nf of (A1) : : : (An+1)(A)[x℄P .{ If (A01) is �eI -partnered in (A01)M then Q � [xj ℄ : : : [x1℄[y℄R. Now,(A1) : : : (An)(An+1)P !!�eI (A01)(B1) : : : (Bj)[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)[xj ℄ : : : [x1℄[y := A01℄R.Hen
e [y := A01℄R is �eI -SN as (A1) : : : (An+1)P is.Let B be the �eI -nf of [y := A01℄R. Now,(A1) : : : (An+1)(A)[x℄P !!�eI (A01)(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y := A01℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄B whi
h is in �eI -nf.Lemma 31 If Ai !�K Bi, (A1) : : : (Ai�1)(Bi)(Ai+1) : : : (An)z and Ai have �eI -nfthen (A1) : : : (Ai�1)(Ai)(Ai+1) : : : (An)z has �eI -nf.Proof A1; : : : Ai�1; Ai; Ai+1; : : : An all have �eI -nf, A01; : : : A0i�1; A0i; A0i+1; : : : A0n.Hen
e, (A1) : : : (Ai�1)(Ai)(Ai+1) : : : (An)z !!�eI (A01) : : : (A0i�1)(A0i)(A0i+1) : : : (A0n)zwhi
h is in �eI -nf.Lemma 32 If M !F N using a �K-redex, and N has a �eI -nf, then M has �eI -nf.Proof By indu
tion on the depth of the F -redex (following Lemma 8).� If M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P , where x 62 FV (P ), A is in�-nf and m � 0, and if N � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)P where n � 0,use Lemma 30 (A in �-nf ) A in �eI -nf).� Let S � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An). If M � S(A)[x℄P , N � S(A0)[x℄Pwhere x 62 FV (P ), A is not in �-nf, A!F A0, n � 0 and m � 0. Use IH to de-du
e thatA has �eI -nf. AsN has �eI -nf, then [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)Phas �eI -nf by Lemma 29. Hen
e, [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P has�eI -nf by Lemma 30. 16



� If M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)(B1)(B2) : : : (Br)z,N � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)(B1)(B2) : : : (Br)z whereA is not in �-nf, A !F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in�-nf. As N has �eI -nf, so does A0 and by IH, so does A. By Lemma 31, M has�eI -nf.Now, here is the key theorem to PSN:Theorem 33 (The inverse of !!F preserves �eI-N)If M !!F N and N is �eI -N, then M is �eI -N.Proof We show it for M !F N . Note that if M !F N and F (M) is a �I -redex,then the theorem is obvious as a �I -redex is a �eI -redex. Hen
e, we only need toprove the theorem for the 
ase when F (M) is a �K-redex. But this is already donein Lemma 32.Finally, here is the PSN result.Corollary 34 (Preservation of Strong Normalisation)If M is �-SN then M is �e-SN.Proof AsM is �-SN, the perpetual strategy ofM terminates. LetM !!F N whereN is in �-nf. As N has no �-redexes, N is �eI -N. Hen
e, by Theorem 33, M is �eI -N.So, by Theorem 28 M is �e-SN.8 Con
lusionIn this paper, we established that there is indeed a redu
tion relation whi
h satis�esboth postponement of K-
ontra
tions and 
onservation. This redu
tion relation isa generalisation of the ordinary �-redu
tion and has been extensively used sin
e '73for theoreti
al and pra
ti
al reasons (see Se
tion 2). We showed moreover that thisgeneralised redu
tion (
alled �e) is indeed a desirable generalisation of �-redu
tionby showing that �e preserves strong normalisation in the sense that if M is �-SNthen M is �e-SN. Preservation of Strong Normalisation (PSN) is a property that hasto be established for any extension of a redu
tion relation in the sense that: if aterm is strongly normalising for a redu
tion relation, then it must remain stronglynormalising for its extension. For example, a lot of resear
h has been 
arried outlately to establish PSN for �-redu
tion extended with expli
it substitution (see [4℄,[9℄ and [18℄). The results of this paper establish that �e is indeed a safe extension of�. It is worth noting that we used item notation in this paper in order to rea
h theresults desired. There is a reason for this. In the usual notation, generalised redexesare not easily visible whereas they are in item notation (see [8℄). For example, in( )( )[ ℄( )[ ℄[ ℄, we 
an 
learly see that the leftmost ( ) mat
hes the rightmost[ ℄. Usingitem notation enables us to write the proofs 
learly. Compare with [6℄ who used amore restri
ted generalised redu
tion but it was still hard to dis
uss where generalisedredexes o

urs in a term. For more information on the simpli
ity and usefulness ofitem notation, the reader is referred to [8℄. It should be noted moreover, that using17



item notation is not restri
tive and that the results of this paper would still hold ifwe used the 
lassi
al notation. Only the proofs will be 
umbersome to write as the
lassi
al notation 
annot easily enable us to express generalised redexes.The following is an itemised summary of this paper:1. Postponement and 
onservation are shown for the same redu
tion relation �e.2. This redu
tion relation is a generalisation of that presented in de Groote's arti
leand of many of the existing generalisations of �-redu
tion. Be
ause of this, itenables greater 
exibility in the ordering of evaluation.3. The fa
t that this redu
tion relation preserves strong normalisation and en-ables the postponement of some work allowing unne
essary K-redexes to bebypassed, means that one 
an investigate a programming language evaluationstrategy based on this redu
tion together with expli
it substitutions (whi
h al-low bypassing any work inside a subterm that will be dis
arded later). Thismeans that one 
an 
ombine the advantages of the 
omplementary ways ofpostponing work due to both expli
it substitutions and generalised redu
tion.Hen
e, one 
an a
hieve an even greater 
exibility in the order of redu
tion andevaluation, something very wel
ome in the implementation and 
ompilation ofprogramming languages.4. The syntax of this paper may well be the answer to the existen
e of a syntaxthat realises Regnier's �-redu
tion. We leave this for future explorations.5. It is our belief that automating proofs written in this fashion may be moreeÆ
ient than automating the proofs written using �-equivalen
e (whi
h wassaid to need a good syntax to des
ribe it in [22℄).A
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