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Abstract. We provide a syntax and a derivation system for a formal language of mathematics
calledWeak Type TheofVTT). We give the metatheory of W and a number of illustrative
examples. WT is a refinement of de Bruijn’s Mathematical Vernacular (MV) and hence:

— WTT s faithful to the mathematician’s language yet is formal and avoids ambiguities.
— WTTis close to the usual way in which mathematicians express themselves in writing.

— WTT has a syntax based on linguistic categories instead of set/type theoretic constructs.

More so than MV however, Wr has a precise abstract syntax whose derivation rules resemble
those of modern type theory enabling us to establish important desirable propertiesrof W
such as strong normalisation, decidability of type checking and subject reduction. The deriva-
tion system allows one to establish that a book written inmié well-formed following the
syntax of WI'T, and has great resemblance with ordinary mathematics books.

WTT (like MV) is weak as regards correctness: the rules ofVénly concernlinguistic
correctness, its types are purely linguistic so that the formal translation into ig/satis-
factory as a readable, well-organized texh WTT, logico-mathematical aspects truth are
disregarded. This separates concerns and means ttiat W

— can be easily understood by either a mathematician, a logician or a computer scientist.

— acts as an intermediary between the language of mathematicians and that of logicians.

Keywords. Mathematics, Formal Language, Mathematical Vernacular, Weak Type Theory.

1. Introduction

The way in which mathematical ideas are usually expressed in writing (books,
papers, etc.) imformal, in the sense that there exists no prescribed syntax for
the presentation of mathematical contents. We give the ri@onemon Math-
ematical LanguagéCwmL) to this linguistic machinery which mathematicians
preferably use to express mathematical content and to communicate with their
fellow mathematicians. We concentratewritten specimens of @L

Itis useful to also havef@rmallanguage for the same communication pur-
poses. Such a language may act as a substitutenar. @/e propose aVeak

* We are grateful for the anonymous referees for their useful suggestions.
T Contact author. Address as above. Tel: +44 131 451 3868. Fax: +44 131 451 8179.
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Type TheoryWTT), intended to be a formal language for expressing math-
ematical content. WT aims to keep as much as possible of the advantages,
and to remove as much as possible of the disadvantagesiof C

1.1. ACOMPARISON BETWEENCML AND WTT

We start with a list of what we see as the most salleDVANTAGE®f CML:

ExpressiveCML is suited for expressing all kinds of mathematical men-
tal constructs, ranging from mathematical entities and relations, to math-
ematical reasonings and theories. It also permits relevant mathematico-
linguistic categories, such as definitions, theorems and proofs.

Time-honouredML has a long tradition and is refined by intensive use.

SatisfactoryCmL is approved by a large community of mathematicians,
and still proves to be an adequate communication medium.

UniversalCmMmL is used world wide and offers a standard format to users.

FlexibleNot only can GiL accommodate many branches of mathemat-
ics, but it is also easily adaptable to new developments in mathematics.

However, there are aldBISADVANTAGE®Sf CML:

Informal Since GaL is based on natural language — mixed with math-
ematical symbols and formulas — it has no well-defined formal basis,
suffers of imprecision, and relies on the understanding of the user.

AmbiguousCML inherits the ambiguities of natural language, such as
unspecified anaphoric relationdigcourse referencgsand overloading

of frequently used words. It also introduces new ambiguities in the math-
ematical extensions to the natural language, as usedin C

Incompleteln CML, much is left implicit, the writer making appeal to
the intuition or common sense of the mathematical reader.

Poorly organisedA common mathematical text is only partly structured
in textual units. Many structural aspects are omitted or only hinted at.

Automation-unfriendince a GiL-text is a plain text, its mathematical
content cannot be exploited by invoking computer assistance.

We revisit the above comparing W and QuL. First, OuL’s advantages:

Expressivelhe expressivity of WT is comparable to that of 1@L.

Time-honouredVTT is novel, but it respects the mathematical traditions.
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— SatisfactoryThough the authors have ample experience withTWts
satisfactory usability of course still has to be demonstrated.

— UniversalAt the moment only potentially.

— FlexibleWTT is not as flexible as @L. CmL allows both language and
meta-language whereas™ only allows language. So meta-language
must be pushed to the language level, which may not be possible.

As regards the disadvantages:

— Formal The main gain of WT over QuL is its formality. WI'T has a
well-defined syntax which provides for uniformity of expression.

— UnambiguousVost of the ambiguities in the /L -texts disappear in the
translation to WT. For example, the anaphoric obscurities imiCare
resolved in WI'T by the strict context management.

— IncompleteA text in WTT is still incomplete, but less so thanmC.
Moreover, WI'T can be translated further into more complete theories.

— Clearly organisedA WTT-text is clearly organized.

— Automation-friendlWWTT is fit for computerization. In translating W
into stronger versions, the potentials for automation grow fast.

1.2. FEATURES OFWTT

In our design of WT, we keep close to the Common Mathematical Lan-
guage. Our main reason for doing thiséiability: it is of uttermost impor-
tance that the formal Wr-version of a piece of mathematics covers exactly
the intended contents of the originaliC-version. Since the latter is informal

— already in the mind of the mathematician who devised it, but still in the
written version — it is impossible to have an objective check on the correspon-
dence between the original and the formalized text. Hence it is necessary to
invoke ahumanjudgement on this correspondence, for each piece of math-
ematics under consideration. This judgement can be optimally trustworthy
(albeit never for one hundred percent) if the formal version is as close as
possible to the informal one. We call this trediability criterion.

As soon as areliable formal translation of a piece of informal mathematical
text has been made, we are on solid ground. Such a translation will still
be far from complete, but since it is formal, it is possible to define further
translations into more complete versions. Since these subsequent translations
are from formal texts to formal texts, it is much easier to check reliability:
one only needs to check the reliability of the translafiocedure

We list some useful features of W as a formal language for mathematics:

revised. tex; 15/12/2003; 10:08; p.3



4 Kamareddine and Nederpelt

— WTT respects all linguistic categories which a mathematician usually
employs, so not only the notiosgetandelementof a set, but alsmoun
and adjective already present imatural language and amply used in
CwMmL. This brings a W T-text nearer to the intuition of a mathematician,
since the fine details of mathematics are better accounted for in a mixture
of mathematical and natural language, than in a set-theoretic setting.

— Although the linguistic categoriasunandadjectiveseem superfluous,
they help to minimize communication losses in this first formalisation
step (from GaL to WTT) and aid the connection with computational
linguistic systems.Sieving superfluous ingredients can happen at a later
stage (e.g., in a further translation into type theory).

— WTT avoids the purely set-theoretic setting because mathematicians do
not have a purely set-theoretic view on mathematics! A collective notion
(atyp® is not always identifiable with aetand the notion-subnotion
differs from the set-subset. Also, although predicates can be identified
with subsets, there are subtle differences between the two.

— Ambiguities in QuL are detectable and solvable inTw/
— WTT also accommodates all sortstwhders(such agj or 5).

— WTT has basic notions likassumptiondeclaration of a fresh variable
definition statementincludingtheoremandstep in a prooj.

— WTT is consistently structured and usemntexts which are lists of as-
sumptions and variable declaratiosistting the stagéor a statement or
a definition. These contexts reflect the introductory statements usually
expressed in mathematics as é.gt ... or Assume . ...

— The overall form of a text in WT is a so-callecbook being a sequence
of so-calledines, which are statements and definitions, each embedded
in their own context. Each Wr-line can be seen as the translation of a
mathematical expression stating that sometliolgisin a certain con-
text. Hence, one finds in a book a —probably connected- fragment of
mathematical knowledge, consisting of lines expressing mathematical
facts (like theorems, lemma’s, but also steps in a reasoning or in a proof)
and lines expressing definitions (possibly in a context).

1 It may be argued that we concentrate irrWon adjectives and nouns, and not on other
linguistic phenomena like anaphors and ellipses that carry structurelin @e prefer how-
ever to concentrate on the incompleteness aspecttf Worder to illustrate the usefulness
of this style compared with the usually assumed theorem proving style of full formalizations
of mathematics.
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Of course, we do not expect that mathematicians convert to using &x-
clusively. On the contrary, the common mathematical language, as found in
books and papers, is good enough and, moreover, usable and familiar to a high
degree. However, Wr is formal and so close to the usual linguistic format
used by mathematicians, that it can easily be adopted by mathematiceans as
second languagéT his can be advantageous for the following reasons:

In complex situations, theecond languag®/T1T can help the mathe-
matician to identify the (logico-mathematical) structure where he works.

It can also help a person (an expert, a teacher or a student) to be fully
aware of the complexity of a mathematical notion, structure or reason-
ing, in order to better understand the situation.

WTT provides an excellent basis for communication: it enables that
many persons work productively on the same task and that the text
administration of a mathematical project gets a firm basis.

WTT may act as dingua francaor a mathematical vernacul&rfor
mathematicians, since it enables a mathematician to express mathemat-
ics in a uniform way. As WT is clearly structured, it forces the math-
ematics writer to think about the interdependencies of the notions used
such as contexts and instantiations of constants.

WTT can act aspecification languagér mathematics, since it enables
the mathematician to explicitly specify which mathematical notions, def-
initions, statements, theorems and proofs he/she likes to use. In this
respect, WT resembles specification languages in computer science,
which enable one to formally represent tregjuirementsin computer
science, a specificationiisalizedin a computer program. In mathemat-
ics, a WIT-book can beealizedin atype-theoretic programa sequence

of lines obeying the rules of some system of type theory.

A WTT-book acts as #mathematical) discourse representation struc-
ture, bringing a number of @L-implicit structural relations to surface.

WTT is easy to use, as shown by experiences with mathematics and
computer science students at Eindhoven University of Technology. This
started in 1979 when de Bruijn developed a course on the mathematical
vernacular. This course became part of the curriculum for mathematics
teachers. After de Bruijn’s retirement, Nederpelt took the course and
continues to teach it today using instead of MV.

2 The namenathematical vernaculawas coined by de Bruijn, who was the first to develop
sucha language for mathematidsee F3 of [14]) upon which this work is basédernacu-
lar meansthe language of a particular groufin this case: the mathematicians). The word
mathematical vernaculas now used for all kinds afinguages for mathematics
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1.3. AUTOMATH-RELATED MATHEMATICAL VERNACULARS

De Bruijn intended Automath (quote from [6], cf. [14] p. 201 and 248)just

[...] as a technical system for verification of mathematical texts, it was rather
a life style with its attitudes towards understanding, developing and teaching
mathematicsHe addedThe way mathematical material is to be presented

to the system should correspond to the usual way we write mathematics. The
only things to be added should be details that are usually omitted in standard
mathematicsThis paper is based on de Bruijn’s ideas.

— A direct source of inspiration for Wr was the mathematical language
WOT (Wiskundige OmgangsTaal mathematical everyday language)
[8] devised by de Bruijn. The description of WOT has always been quite
general and descriptive. The language WMs based on ideas employed
in WOT, but it is independent and worked out into details.

— We also take ideas from de Bruijn’s languages SEMIPAL and PAL [7]
used to represent tredministrative structur@f mathematical texts. In
both languages one can account for contexts, parameter lists and vari-
ables (in PAL also types). However, these languages are by nature insuf-
ficient to represent mathematical contents and they miss the expressivity
necessary to comply with the reliability criterion.

— Similarly, we take ideas from thmathematical language AutomdgtH.
However, the latter requires mathematical content to be completely for-
malized in order to enable immediateeorem checkingBy its amount
of details, it is far too complex to obey the reliability criterion.

The greatest influence however is MV which accommodates de Bruijn’s ideas
for a language of mathematics. De Bruijn presented his MV in two rounds
(we quote F3 of [14], p. 868)In the first round we express the general
framework of organization of mathematical texts. It is about books and lines,
introduction of variables, assumptions, definitions, axioms and theorems [...].
In the second round we get the rules about validitig division in two rounds
corresponds in WT to our abstract syntax as round 1 and our derivation rules
as round 2. But MV accommodates more logic than is found in mathematical
texts and hence MV does not comply with the reliability criterion.

Similarly to adopting his rounds, we adopted inmrWde Bruijn’s wish not
to take sets as the primitive vehicles for describing elementiiedaf [14],
Section 1.12). De Bruijn looked at (imaginary) substantivesdi&misemitri-
angle but also well-known ones gmint, number, function,.He did not want
to use sets only. In F3, Section 1.15, he s&ysr. effort in describing a large
part of the language in terms of both substantives and sets, instead of sets
only, gives some duplication in the language rules that might be considered
as superfluous. We of course would like to try to eliminate one of the two, and
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deal with sets only, or with substantives only. Both can be done, of course, but
none of the two seems to give anything that looks more satisfactory than what
we have in our M\De Bruijn talks abousubstantivesnamesandadjectives.

In WTT, we also use substantives (which we ¢allingd and adjectives.

Similarly, we will adopt de Bruijn’s notions of high- and low-typing. We
will use the meta-typing (high-typing) in W itself (rather than in the meta-
language) and will keep the usual low typing. An example of high-typing in
MV is A:: substantive whereas: A is a low-typing. These correspond in
WTT to the high-typingA :: A’ and the low-typinga: A.

In MV, many logical and mathematical choices are made, whictmr W
still postpones. Moreover, MV incorporates certain correctness requirements,
there is for example a hierarchy of types corresponding with sets and subsets.
Therefore, MV is suited for a partial formalization of mathematical content,
but it is alreadyon its wayto a full formalization, while W T is not. Hence,

WTT is closer toa given informal mathematical content than f1V.

De Bruijn said in F3 of [14] (p. 865)tt is quite conceivable that MV, or
variations of it, can have an impact on computing science. A thing that comes
at once into mind, is the use of MV as an intermediate language in expert
systems. Another possible use might be formal or informal specification lan-
guage for computer program®ur WTT may open the possibility for the
mathematician to get computer help in the development of his ideas. E.qg.:

— Verificationof mathematical theories, e.g. by a type-theoretic computer
program. This requires translating, in one or more stepsya-fext into
type theory and the use of a typechecker. This translation is greatly tech-
nical and may be done by a type theory expert, not the mathematician
who wrote the W T-text. This leads tseparation of concerneeliev-
ing the mathematician from the cumbersome task of filling the (possi-
bly uninteresting) details. Another possibility is that a clever computer
program does (part of) the translation, in interaction with either the
mathematician who wrote the YW-text or with a type theory expert.

— Documentatiorof bodies of checked mathematical texts in an archive
or a database which is publicly accessible. One of \iesvs for the
inspection of such a database could b&tV

— Computer assistance in tkevelopmenodf mathematics. A mathemati-
cian may use WT as arough formal language in which he expresses
ideas and conjectures. A computer program translates ttre-Mkt into
type theory, in communication with the mathematician, keeping track of
all holes(open places in the reasoning) gordof obligations

3 Itis worth while to investigate whether MV (or a variant thereof) is suited as a next stage
of intermediate language in the direction of a full formalization.
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8 Kamareddine and Nederpelt
1.4. AN OVERVIEW OF THE PAPER

— In Section 2 we give the abtract syntax oftwwhich describes the
build-up of a book from its atoms (variables, constants, binders), via
phrases (terms, sets, nouns and adjectives) and sentences (statements
and definitions) up to (WT-)contexts, (W T-)lines and (W T-)books.

— In Section 3 we give a derivation system fortwfollowing the syntax
described in Section 2. The derivation system allows one to establish that
a book written in Wi T is well-formed following the syntax of Wr, and
has great resemblance with ordinary mathematics books.

— In Section 4 we establish the metatheory of Wand the properties of
its derivation system. We show that weak type checking is decidable,
enjoys subject reduction with respect to the unfolding of definitions in a
book and that the unfolding of definitions is strongly normalising.

— In Section 5 we give a number of examples.

— In Section 6, we compare with other work and we conclude.

2. Theabstract syntax for WTT

We present a syntax for Weak Type Theory, based on linguistic categories.
Constants and binders (likge and|J) are taken agirst-class citizensThe
categories include nouns and adjectives, which are not usually present in
formalizations of mathematics (apart from Mizar [1, 17]). With a view to
these categories, we introduce a number of binders, to facilitate linguistic
constructions. Definitions play a prominent role inrfwand reflect the math-
ematicians’s habit to use the definition-mechanism. As in type theory, con-
texts are important in WT, giving the immediate background for statements
and definitions by listing their free variables together with their types. The
notion ofline expresses a statement or a definition together with its context.
The final entity in the WT-syntax is thébook being a sequence of lines. The
book is the formal counterpart ofraathematical text

2.1. LINGUISTIC CATEGORIES

In Weak Type Theory (or WT) we have the following linguistic categories:

— On theatomiclevel: variables constantsandbinders

— On thephrasé level: terms7, setsS, nouns?\_ andadjectives4,

4 According to the Concise Oxford Dictionary, a phraseigroup of words forming a
conceptual unit, but not a senteneediscourse ia connected series of utterances
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A formal language of mathematics 9

— On thesentencdevel: statements anddefinitionsD,
— On thediscoursdevel: contextdr , lines| andbooksB.

There is a hierarchy between these levels: atoms are part of phrases; atoms
and phrases are part of sentences; and discourses are built from sentences.

The syntax given below, establishegll-formednessonditions for these
categories. We assume that the sets of variables, constants and binders are
fixed, given beforehand, and mutually disjoint. For convenience, we suppress
the wordwell-formedin the syntactic description of all categories.

2.2. ABSTRACT SYNTAX

We use abstract syntax for the description of the various syntactic categories.
For example, in Section 2.11 we describe the collection of all boBk#
abstract syntax a8 = 0 | Bol to express that a book is eithétre empty
bookor a bookB followed by a linel. By convention@o | is written asl.

We make use of bindeBs(e.g.5 orV), in the abstract forma,(£), where
the subscriptz is adeclarationintroducing a (bound) variable and its type,
e.g.x € N (see Section 2.7.1). Expressiofsare given in Section 2.5.

—  Yxe{0l1,.,10} (x%) andVyen (x > 0) are examples of formulas with binders.

— The binding symbol for set comprehensidn,. |...}, fits in this format
after a slight modification. E.g., writex € R|X > 5} asSetycr(X > 5).
For uniformity, our standard for set notation will be the latter one.

Figures 1 and 2 give a list of the syntactic categories and their abstract syntax,
followed by metasymbolor our various categories. We note:

— Expressionare used in Section 2.5 and represent the various categories
that can follow a binder. An expression is a kindooilectivecategory.
So after a binder we may find a term, a set, a houn or a statement.

— Parametergsee Section 2.4) represent the categories on which constants
may depend. Parameters have a collective character.

— Typingsanddeclarationsare special statements, see Section 2.7.1.

NOTATION 2.1. In the abstract syntax, upper indices and lower indices play
different rolesUpper indicesare part of the symbol, bubwer indicesbelong

to the abstract syntax. For example, wimﬁ(z), we mean all constructs
composed of a binder in the % (e.g.lim), subscripted with a declaration
from Z (e.g. ne N) and followed by an expression if (e.g.%) between
parentheses. The superscriptattached t®B says that the binders i are
term-forming HenceJimyen (%) is atermbelonging tB% (E).
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level Main abstract syntax Meta-
category symbol
atomic | variables | v=Vv7|vS|vS
constants | ¢ =c7|cS|cN|c?|cS c
binders B = B7 [B%|BY|B|B° b
phrase | terms T:CT(E)|BZ(Z)|VT t
sets S = ¢5(2)[BL(E) |V s
RN
nouns N = cN(p)|BY(E)| AN n
adjectives | 4= Cﬂ($)|B§(£) a
sentence| statements | § = C5(§)|B~;(£)|V5 S
definitions | D= D¥| DS D
— —
D¢ =cT(V):=T|c5(V) =S|
— —
(V) := AJch(V) =4
%
DS =C5(V) =S
discourse| contexts r=0|NnLz|Is r
lines | =TesS|T>D I
books B= 0|Bol B
Figure 1. Main categories of syntax
Other category abstract syntax Meta-
symbol
expressions | = T|S|NS | E |
parameters P="TIS|S (note:@ is a list of Ps) P
typings T=S: SET|S: STAT|T :S|T :N|7T:A4 T
declarations | Z= VS: SET|VS: STAT [VT :SV7 : ¢ z

Figure 2. Categories of syntax
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A formal language of mathematics 11
2.3. VARIABLES

The set = V7 |[v3|v¥ is fixed, infinite, and divided into three disjoint subsets:
(v7) Variables ranging oveterms
(V) Variables ranging ovesets

(v9) Variables ranging ovestatements

2.4. CONSTANTS

Constants play an important role in mathematical language. They are either
primitive® or they act as an abbreviation. In the latter case a constant is intro-
duced in the left hand side ofdefinition being a special kind of sentence
(see Section 2.8). Both primitive and defined constants cansed after
having been introduce®oing mathematicsvithoutconstants (hence without
definitions) is theoretically possible but practically unfeasible [14].
The setc = ¢7|cS|c|c?|cS is fixed, infinite and is disjoint from the set

of variables ¢ is divided into the following five disjoint subsets:

(c7) Constants foterms (c%) Constants fosets

(cX) Constants fonouns (¢?) Constants foadjectives

(¢%) Constants fostatements

A constant is always followed by@arameter list We denote this as@).
This list has for each constant a fixed lengttD, thearity of the constant.
Parameters are either terms, sets or statemerts= 7'|S|S5

(If the parameter list is empty we writeinstead ofc( ).)

REMARK 2.2. We often ussugaredversions of the combinatioconstant
followed by parameter listFor example, instead ahe centrgC) we write
the centre oC, and instead oft-(3,6) we write the infix formuleB + 6.

We also often write things like & N instead of x N. In doing this, we
confusds element ofwith has type Again, this is for easy understanding.

These sugarings are not part of the synta¥¥fT and should beindone
whenever formal accuracy is at stake. We do not incorporate sugaring for-
mally in WTT, since we want to keey/ TT simple: it is not easy to decide
wheresugars useful and adding rules for sugaring introduces arbitrariness.
We are aware that this policy of ours undermines our claim thatr is as
close as possible t&@ML. We leave this dilemma to further research.

5 Primitive constants are introduced axiomatically, they are not defined in terms of other
notions. E.g., the primitive s&f of the natural numbers, the primitive functisr{successor
from N to N or the primitive element O iiN.

6 We use a list format for the parameters (un-Curried), because this is usual in Automath-
like systems and also because this is how mathematicians use parameters.
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12 Kamareddine and Nederpelt

EXAMPLE 2.3. For each kind of constants, we give examples of constants
with parameter lists and then state what the constants resp. the parameters
are.

(c7) Constants for terms with parameter lists:

11, the centre o, 3+ 6, the arithmetic mean of 3 and @(x,y), Of.
The constants arear, the centre-+, the arithmetic meard and(l.
The parameter lists are(:), (C), (3,6), (3,6), (x,y) and(f), resp.

(c%) Constants for sets with parameter list$; A°, V — W, AUB.
(where A is the complement of A). The constants a¥e®, —, U.
The parameter lists areg(:), (A), (V,W), (A,B).

(cX) Constants for nouns with parameter liststriangle
an eigenvalue oA, an edge oNABC,a reflection oV with respect td.

The constants area triangle an eigenvalugan edgea reflection
The parameter lists arg(:), (A), (AABC), (V,1).

(c) Constants for adjectives with parameter lisfgime, surjective
Abelian, continuous orja, b|.

The constants argrime, surjective Abelian continuous
The parameter lists are(:), (), (), ([a,b]).

(¢c%) Constants for statements with parameter lists:
P lies betweerQ andR,5 > 3, pAQ, —Vyen(X > 0).

The constants ardies between>, A, —.
The parameter lists argP,Q,R), (5,3), (p,q), (Vxen (X > 0)).’

2.4.1. Special constants
We introduce two special constants in order to switch between the two cat-
egoriesnounandset These categories are both present and frequently used
in CML and it turns out to be useful to be able to easily change from the
one to the other. Note that nouns and sets are in a sense interchangeable
and one could restrict oneself to only one of these categories, without losing
expressive power (as is actually done in the set-theoretic formalization).

The first constant ig, of categoryc®. The second one i, of category
¢, They have complementary roles. The unary constdifis a noun to the
corresponding set, does the opposite. Here are examples of these constants:

7 Note that the parameters in parameter lists are eiérensor sets Only in the case of
statements the parameters mayskstementsis well, as is shown in the last two examples.
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(¢) (a natural numbet = N, (a divisor of 41 = {1,2,4}8
(Nounyeg (X > 5))T = Setyer (X > 5).

(cN) Z| is an integer (Setycp2(|X| = 1)) iS Nouny g2 (|X| = 1) or
a point on the unit circle

2.5. BINDERS

As a third set given beforehand and infinite, we have the sbimafers This
set is disjoint from both the set of variables and the set of constants. We
divide the seB of binders into five subcategories, depending on the resulting
category of the bound expressiap(‘£) in which the binder occurs (recall
that Z is a declaration, e.gc: N). Hence B = B” |BS|B|B?|BS where:
(B7) Binders givingterms (B%) Binders givingsets
(B?) Binders givingadjectives (B°) Binders givingstatements
(B) Binders givingnouns
In Bz(E), the bodyZ is one of four categorie€ = T|S|A(|S. The next
examples list bound expressions according to the category of the binder:

— BZ(E) =minz(T)| Y (T)llim z(T)| [(T)Az(T)Az(S)1z(S)]...
— BZ(E) =Setz(S)|Uz(S)Iz(S)].

— BY(E) = Nounz(S)|Abst z(T)|Abst 5(S)|Abst (N()]. ..

— BA(E) =Adj5(S)]..

— BL(E)=Vz(S)]...

Some of these binders are given in what follows @et, see Section 2.2).

2.5.1. TheA-binder

The format of an expression bound by Churckebinder is:A;(‘7/S). Here
Az(7T) is a term-valued function ank;(S) is a set-valued function. Exam-
ples:

(E =T) The termAr (X%) denotes the squaring function on the reals.

(E=S) The termA cnSetken(k < n) sends a natural numbaerto the set
{0,1,...,n}.

8 Here again, we used sugaring. We wrif@, 2,4} for Setpen(N=1Vn=2VvVn=4),
However, the notation witBet is the onlyofficial WTT-format.
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14 Kamareddine and Nederpelt

2.5.2. Thel-binder

Russell's is used for adefinite descriptionthe such and such, such that .. ..
The general format for an expression bound with itender is:iz(S). The
result of the binding of a sentence by means cdn either be a term or a set
(therefore we find () both in theB” - and in theB®-list). For example:

— The termipen(2 < n < 1) describes natural number 3.

— The setiy: se7(3 € U A |U| = 1) describes the singleton séB} (or
Seten(n=3) in unsugared format). (The declaratidn SET expresses
thatU is a set See also Section 2.7.1.)

2.5.3. TheNoun-binder

Since nouns (indefinite noun phrases) are first-class citizensrin, Wey are
treated similarly to sets. Consequently, next to set comprehension, we allow
noun comprehensigne. the construction of a noun. For noun comprehension
we introduce the binde¥oun. It is used for arindefinite descriptiona such

and such, such that .. Hence, the general format of a phrase witun-
binder is:Noun(.$), i.e.a houn saying ofZ that.s. Examples include:

— The nounNounycr (5 < X < 10) is a real number between 5 and.10

— Nouny. sg7(|V| = 2) is a set with two elements

2.5.4. TheAbst-binder
The Abst-binderabstractsfrom a term7’, a sefS or a nounA’ and delivers a
noun. It is the formal counterpart of the modiffer some ... One may read
Abst (T /S/N) asatermT, or a setS, or a noun4/, for someZ.

Here are examples of the three kinds of noabstz (7 /S/N\):

(E =T) Abstnen(n?) represents term 1§ for some natural number, .e.
the square of some natural number

(‘E =9S) AbstpenSetxer(X > n) representsa set{x € R|x > n} for some
natural number ni.e.an interval of the fornm(n, ), with n € N.

(E = N) AbstpenNounyer(10n < x < 10n+ 1) represents real number in
the interval[10n,10n+ 1) for some ni.e. a non-negative real number
which, written in decimal notation, has a zero at the position just before
the decimal point
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REMARK 2.4.

1. TheAbst-binder is useful and compact. It enables one to put the ab-

straction quantification on the outside of the expression. However, a noun

constructed with thabst-binder can always be rewritten without it. We
show this by rewriting the examples in a form withaust, viz.:

(Z: = T) AbStneN(nz) s NolmkeNaneN(k — nz),
(Z: = S) AbStneNsetxeR(x> n) 2 Noun\/: SETHneN(V — SetxeR(X> n)),

In all these examples, ansided takes the role of theutsideAbst.

2. In the third case, thébst-binder, transforming a noun into a noun, corre-
sponds to theJ-binder, transforming a set into a set. This can be expressed
by the abstract transformatioriabstz(A))T = Uz((A))T ). See the third
exampleJncn Setxer (100 < X < 10n+ 1) is the set of all real numbers
in some interva[10n,10n+ 1). This set can also be written without
Unen Setxer (100 < x < 10N+ 1) ~ SetyerInen(10n < x < 10n+1).

Note again thenside3, this time in the place of theutsidd J.

2.5.5. TheAdj-binder

Adjectives, being first-class citizens as well, can be constructed witkdtie
binder. One can reatldj ,(.$) as:the adjective saying of that S E.g.:

Adjpen (Gken(n = k2 + 1)) is an adjective saying of a natural number that it
is a square plus 1. One could give this adjective a nhamepgassquareand
hence say things likB is oversquar®r Let m be an oversquare number

2.6. RHRASES
Phrases can be terms, sets, nouns or adjectives:

T =c7(p >|BT( )|v7 S =c5(
N =cN(p)BX(E) AN a=c(

?)[BS(E)|v°
o\ RA
P)[BZ(E)-
H - -

Examples ot (), ¢5(2), ¢(#) andc? () were given in Example 2.3,
examples oBL(E), B} (E), BUZ‘C( £) andBZ () in Section 2.5.

The combinationZ4 gives a (new) noun which is a combination of an
adjective and a noun. E.gsosceles triangleconvergent series

Note that, as in Section 2.3, variables ranging over nouns or adjectives are

missing in this scheme: such variables are not required in eithier@ WTT.
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16 Kamareddine and Nederpelt

2.7. STATEMENTS

Abstract syntax for the category sfatementss: S = CS(E)|B~;(£)|V5.

Examples ofC5(?P) were given in Example 2.3. An example Bi(f)
(with the V-binder forB®) was given in Section 2.5.

2.7.1. Typings and declarations

A typing statemenor typing, expresses the relation between something and
its type. In WI'T we have five kinds of typings, depending on the nature of
the type. This type can besET (the type of all sets)STAT (the type of all
statements), a set, a noun or an adjective. Each of these typing statements
relates asubject(the left hand side) with itsype/predicatgthe right hand
side). The abstract syntax for the Sktof typing statementsT( C S) is:

T =S: SET|S: STAT|T :S|T : N[|7 : A. Here,s: SET, S: STAT,t:s,
t:nandt: astand fors is a setS is a statement is an element of,$ is nand

t is a Examples of these cases incluget,en(N < 2) @ SET, pAQ: STAT,

3¢ N,° AB : an edge oNABC, Ak (X?) : differentiable

Clearly, T is a subcollection 06}5(5), the set of relational statements, with
symbol “” as special element i&¥. See also Section 3.7.
At its turn, a subcollection of the typings is formed by theclarations zZ,
where the subjectis avariabi®e: z = v5: seT|vS: STAT VT :S|v7 : 4.
Here the variabla®, v¥ or v7 is theintroducedor declaredvariable.
Subscripts of binders (Section 2.5) can be taken fitom

2.8. DEFINITIONS

The categoryD = D?|DS of definitionsintroduces new constants. We dis-
tinguish betweemphrase definitiong® andstatement definition®’. Phrase
definitions fix a constant representing a phrase. Statement definitions intro-
duce a constant embedded in a statement. In definitions, the defined constant
is separated from the phrase or statement it represents by the symbol “

REMARK 2.5. We have decided not to include definitions for binders. How-
ever, it is not very hard to include binder definitions in the syntax using an

abstract syntax like?? = BZ/S/N/Q/S(E) =T/S/N/A/S.

9 As this example shows, we often replacesbyt € s, with abuse of notation.
10 There are no declarations with an adjective as type. This seems strange, at first sight, since
itis usual to write things likeLet f be differentiableSuch a sentence however, is used either:
(1) as an elliptic version of the introduction of a new variable withoain (not an adjective)
as typelet f be a differentiable functigror (2) as arassumptiorabout anf which is already
known (not new), and hence as a typing statenmastta declaration.
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2.8.1. Phrase definitions
We takeD? = CT(V):i=T|CS(V):=S|cN(V) = (| Cﬂ(qj) =4

The newlydefined constantrec?, ¢S, ¢ or ¢?, respectively.

Note that the parameters occurring after ¢thie the left hand side of each
definition must bevariables The reason is of course, that a definition should
be as general as possible and hence dependon a list of variables. Later,
whenusing the definition in a certain situation, all these variables must be
instantiatedaccording to that situation. Examples of phrase definitions are:

(¢ =c7) the arithmetic meanf aandb := g (2= 3(a+b)),

(C =% R* :=Setyer(x>0),

(c = cX) a unitof G with respect to := Nounecg(Vacg(a-e=e-a= a))*,
(c=c?) prime:= Adjpcn(N> LAVkjen(N=k:1 = k=1VI=1))12

The variable lists in the four examples ate;b), ( ), (G,), (). These vari-
ables must be introducedéclared in a context (see Section 2.9). For the
first definition, such a context can be eag.R, b : R. For the third definition
the contextisG: SET, - : G— G. Both contexts consist afeclarationsonly.
However, definitions may also depend assumptionsThis is reflected in
Section 2.9, where it is stated that a context consists of a list of declarations
andassumptions. For an example, take the definition of the natural logarithm
(this is again case = ¢7): IN(X) = lyer (&Y = X).
Here variable<has to be declared in a context, exg.R, x > 0 which declares
x of type R and assumesis positive.
In general, definitions are not complete without such a context. That is to
say, theground has to be prepardaefore the actual definition is stated.

In Section 3 we see that iweakly well-typeddefinitions, the variables

in variable listv of a definition are the same as the declared variables in
the context, and listed in the same order. (Hssumption®ccurring in the
context are not accounted for in the parameter list of arwonstant!§ E.g.,

the parameter list othe arithmetic meais (a,b), which is the same as the
list of the declared variables occurring in the contaext R, b € R

An instantiationof a defined notion is theseof a defined constant, thereby
replacing the variables occurring in the variable list, by actual terms or sets.

Examples of instantiations of the first example definition drearithmetic
mean of3 and 6, or, for givenx: the arithmetic mean of x and.x

11 Of coursea-e=e-a=ais a sugared version ofe.g:e=ane-a=a.

12 Here obviouslyvk ¢y - .. acts as a syntactic sugaringggnviey-. - -

13 |n type theory, however, variabl@shabitingassumptions are added to the variable list.

14 Since such a parameter list can be reconstructed from the context in which the definition
is embedded, these parameter lists (or parts of it) are often omitted, just as in Automath.
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18 Kamareddine and Nederpelt

2.8.2. Statement definitions

DS = CS(\7) = S is the category of statement definitiotisfining constant
¢S. For example (note again that to make the definition self-contained, we
need a context likea: alingb: aline (i.e.,Let a and b be ling3:

(C=c%) aisparalleltob:= =3p. 5 point P lies onaA P lies onb).

The notionis parallel to can only be considered as a two-plaeétion,
and hence its definition must be a statement definition. In other cases, things
are not so clear and the W-user has to make a choice. For example, the
definition ofx is the opposite of gan be treated as a statement definition:

(1) x is the opposite of y= x+y=0,

with context consisting of e.g.: R,y : R. Here we have the case= ¢°.

But it is possible to define the same notion iplaase(term) definition:

(2) the opposite of y= Ixer (X = —Y).

Now the context is only : R and we have the cage= ¢7.

The difference is whether one considés) the opposite ofo be arelation
or aconstant The latter choice allows more freedom, since a phrase definition
can be used as part of a sentence, but not the other way round.

E.g., if one chooses for (2), then it is possible to instantiate this definition:

— in a phrasethe opposite 05,
— but also in a sentence:5 = the opposite 0b.

Likewise, it is more flexible to define the phrase (in this case: the nawum)t
of (G,-) than to define the statememts a unit of(G, -).

2.9. CONTEXTS

A context” is a list of declarationg and statements: I = 0|l Z|T,S.
A declaration in a context represents theoduction of a variablef a known
type. A statement in a context stands forassumptiot® For example we
give the contexk : R, x > 0, as well as the contexst: a lineb: aline.

2.10. LINES

A line | contains either a statement or a definition, relative to a context:
| = I'>5 | I'>9D. The symbob is a separation marker between the context
and the statement or definition. Here are two examples of lines:

A statement line: X:Ny:Nx<ynp ¥ <y?,

15 According to our syntax, such an assumption can also be a declaration — being a statement
with a variable as subject. However, the typing rules for contexts given in Section 3, will
ensure that there is mewlyintroduced variable in an assumption, so itis always clear whether
a context statement represents the introduction of a new variable, or an assumption.
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A definition line: X:R, x>0 In(X) = lyer (6 =X) .
2.11. Books
A book Bis a list of lines: B = 0|Bol.

A simple example of a book consisting of two lines is the following:
X:R,x>00p In(X) :=lycr (€Y =X) o
0> InE’)=3.

3. A derivation system for WTT

A WTT-book constructed with our derivation system must obey the syntax
given in the previous section, and is hence well-formed. However, the deriva-
tion rules only give asubsef the well-formed constructs obtained with the
abstract syntax of Section 2, since the rules enforce that those constructs
obey certain (weakjyping requirementsConstructs obtained by repeated
application of the derivation rules, are hence callezbkly well-typedThe
overall properties of weakly well-typed constructs are summarized by:

— All constructs obtained with the derivation system have a weak type,
which corresponds with a linguistic category.

— The derivation system syntax-drivenn the sense that for each (sub)goal
in a derivation, only one rule is applicable.

A book which has been constructed with our derivation system is transpar-
ently structured. Yet, it has a great resemblance with an ordinary mathemati-
cal text: see the examples in Section 5. Therefore, a weakly well-typed book
can be seen as a natural formalization of mathematics, highlighting a number
of characteristic features of mathematical texts. Among these features are:

— A WTT-book reflects the line-for-line development of the original math-
ematical text, in the order of the lines which form therWwbook.

— The important role of contexts, both for (mathematical) statements and
for (mathematical) definitions, is made explicit in artWbook .

— There is an important role for defined constants with parameter lists.

— Binders of different sorts are incorporated.
One can also consider a W-text to be a first step towards a complete

formalization into type theory. Type theory is a natural formalism for such a
formalization as is shown by many examples: think e.g. of Automath [14],
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being defined in the late sixties and applied to express numerous mathemat-
ical subject matters. Other examples include theorem provers like Coq ([2])
developed in the nineties and firmly embedded into type theory.

However, note that the type restrictions ofTware only weak. Conse-
guently, a successful formalization of a mathematical text intor\Woes not
at all guarantee that its mathematical content is in any seresmingful A
prerequisite for the construction of a sensiblertext is that the person
writing this text has a mathematical subject in mind, which he chooses to ex-
press in this formalism, as faithfully as possible. But only a further translation
into type theory will give a complete picture, which still has tosaghorized
by the original text writerThis is (or is not) what | had in mind

In this section, we discuss weak types andphefaceof a bookB, meant
to establish weak type information about all constants occurririgjbnt not
explicitly defined inB. Then we follow the construction of the various weak
types bottom up, assuming that we have already a weakly well-typed®ook
and a weakly well-typed contekt relative toB. We start with variables and
constants relative t8 andl". Next, we discuss the construction of phrases
beginning with a binder and of phrases in general. Finally, we give derivation
rules for sentences (statements and definitions) and for contexts and books.

3.1. WEAK TYPES

Our derivation rules enable one to extend a weakly well-typed ti®uolth
a linel, in order to form a new weakly well-typed bodko|. This is the
case if the added linkeobeys certain weak well-typedness requirements itself,
relative to the boolB. Since a lind always has the forrh >Sor I' > D, with
statemen§or definitionD (see Section 2.10), we also have to consider weak
well-typedness of a contektrelative to a book Band weak well-typedness
of a statemen$ or a definitionD relative to a book B and a contekt

For establishing weak well-typedness, we need a notiowesdk typing
between an entity and its weak type. This relation is denoted by a bold-faced
double colon (: ). As weak types, denoted By, we use an eight element
subset of our linguistic categories of Section 2M.:= B, T, T, S, A/, 4, S,
D. These stand fdnooks contextsterms sets nouns adjectivesstatements
anddefinitions

E.g.,B :: B expresses that the weak type Bfis B (or: B is a weakly
well-typed book) andh :: A expresses that the weak typerois A/.

We also introduce a notiort of (relative) derivability We distinguish
between three formats for derivability, in the form of so-calji@dgements

(1) Bis aweakly well-typed bookt- B :: B.
(2) T is aweakly well-typed context relative to bo8B T :: T.

(3) tis aweakly well-typed term, etc., relative to boBlkand context :
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Brt: T, B;lks::S, B;r'kn:: A,
B;l''a:: A4, B;,l'S:. S, Bi,r'+=D: D

NOTATION 3.1. We abbreviate-B:: B, BFT :: T, by: OK(B;I).

3.2. THE PREFACE

DEFINITION 3.2.

— We say that k B if | is one of the lines constituting B. If line | is a
definition, it contains exactly one defined constant (see Section 2.8.1).

— Letl e B be adefinition lind >D where D is of the form(e, ... , X)) :=
A. Then the defined constant of the definition lined@fcons(D), is c.

— defcons(B) = {defcons(D)|l>D is a line ofB, for somerl" }. We
call these constants the internally defined or internal constants of B.

Parameterized constants occurring in a b8adutside a definition, represent
defined notions with instantiated parameter lists. Such constants may not be
internally definedB is usually a textragment part of a larger text, the rest of
which is omitted. So, a parameterized constant occurring in a Bood&eds

not have a corresponding definition as part of a limgde B Such constants

are calledexternally definear externalconstants (relative tB).

EXAMPLE 3.3.

— In many books the constaritsand R will be used without definition.
(BothN and R are parameterized constants with empty parameter list.)

— One also uses many other well-known constants without defining them,
such as/. (This constant needs a parameter list of length one &5).,

— Another well-known constant is, which will be an external constant
for WTT-books. It has one declared variable in its context. The cor-
responding definition line, which may not occur in the book B under
consideration, is for example,&R, x>0 > In(x) = er(€' =X),

with declaration xe R, so x is the declared variabfe A prerequisite

for this definition ofln is, that e has already been defined. When using
the constantn we need a parameter list of length one, elg(5). Note
that5 matches with x as it belongs to the same linguistic collecfion

16 x> 0isan assumption, i.e. a statement which is not a declaration, see Section 2.8.
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In order to judge weak well-typedness of tidernallydefined constants, we
extend a boolB on the front with gpreface(a kind ofsignaturg, consisting

of a list of constants, together with the weak types of its parameters and the
resulting weak type of the constant. It is not essential how the externally
defined constant is exactly defined, we can suffice with a description of the
weak types connected with such a constant.

DEFINITION 3.4. We denote a preface for a book B jyef (B). The con-
stants listed in this preface, are gatheredpnefcons(B). If c € pref(B),

if K1,...,Kp is the list of the weak types of the parameters of c, and
the resulting weak type of the full construgt .c), then we attach the type
K1 X...XKy—>KtocC.

EXAMPLE 3.5. A preface for a book B could look like:

| constant name weak type || constant name weak type

R S U SxS—S
i T T > TxT—S8
+ IxT—T A SXS—=8

R has no parameters and is a set.
— 4/ is a constant with one parameter, a term, delivering a term.

— > is aconstant with two parameters, terms, delivering a statement.

prefcons(B) = {R,v/,+,U,>,A}.

We assume that a preface for a boBkdescribing the weak types for all
externally defined constants Bf is constructed by the book-writer himself
and that each booR is extended with an appropriate prefgasf(B).

REMARK 3.6. When translating a given mathematical text il#a 7, it may

be good practice to also add two columns on either side W ar-book B,

one with useful labels labeling lines in B, and another with comments going
with specific lines. This makes it much easier for the translator @fwer-

book into type theory who does not have access to the original text. (See the
example in Section 5.4.) This also helps since the original text possibly has
interestinglabelsattached to paragraphs or to subtexts, suclTagsorem 5.2

or Proof Moreover, the original text may have many intermediate statements
about interdependencies in the text, which are very useful when translating
further into type theory. Think @ommentsuch asuse Theorem 5,2y the
definition ofc or using formula 2.1
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3.3. VARIABLES

We definedvar(I") which collects all subject variables déclarationsin I,
in their order of appearance iR’ ignoring the possible subject variables
occurring inassumptionén I'. (See Sections 2.8 and 2.9.)

DEFINITION 3.7. The listdvar of declared variables of a contektis:
(1) If I =0, thendvar(l') = 0.
(2a) Ifr =T, x: Aand x¢ dvar(l''), thendvar(I') = dvar(I"'),x.
(2b) Otherwise, if =T",S, thendvar(l') = dvar(['').

Now the derivation rule fovariablesis (recall Notation 3.1 foOK(B;I")):
OK(B;I), xeVvZ/5/5, xedvar(l)

(var)
Bir-x::T/S/S

NOTATION 3.8. Here and in the rest of the paper, we combine two or more
cases, distinguished by the slaghin the first case of the abovear) rule,

x € VT, the conclusion is: B + x:: 7. In the second case, ¥, we get:

B;I - x:: S.In the third case, x V¥, we get: Bl - x:: .

3.4. CONSTANTS

Constants defined internally B are divided in four kinds ophrase defini-
tions for terms, sets, nouns and adjectives, and alstdatement definitions
See Section 2.8. We define, for paramedeerithe weak typest of P with
respect td andl as:wtg.r (P) =W iff B;[" - P:: W. The derivation rule for
internal constants is:
OK(B;l), =D € B,
dvar(l') = {xy,...,X,}, defcons(D)=ce ¢7/S/N/A/S,
wtgr(P) =wtgr(X), foralli=1,... n.

B;l F c(Py,...,Py) 1t T/S/N/A/S

Note that the list of declared variables®f viz. xq,. .., X,, is the same as
the variable list following the defined constamnin the definition linel” >D
(this follows from the rulgint—def), see Section 3.8). Otherwise saltl:=
c(X1,...,%) :=... . Hence, the above derivation rule determines how such a
c(xq,...,Xn) can be instantiated, with reswltR,, ..., P,). The rule expresses

(int—cons

17 Theorder in thedvar list of a context” is reflected in the order of the variables in the
variable list going with any constant defined with respedt tSee Section 3.4.
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| binder name| weak type | binder namg weak type |

min T—T U S—S
s T—T Set S—S
lim T—T Noun S—N
S T—-T Abst T/SIN — N
A T—T Adj S—A4
l S—T/S/S v S—=S

Figure 3. Binding symbols and their weak types

that an instantiation is only allowed if each variaklbecomes replaced by a
formula P, of the same weak typ@d/ asx (see example 3.3).

If cis anexternalconstant ofB, then it has a weak type as given in the
preface ofB. For such constants we have the following derivation rule:

OK(B;I'), cexternaltoB, c::KjXx...XKn—K,
B HFR:k (i=1,...,n)

(ext—cong
B;l' - c(Py,...,Py) 1K

A special kind of external constants is the paiand] (see Section 2.4.1).
They also have weak types, given in the following list:

| constant namé weak type|

T AN —S
} S— N

We assume that this list is always part of the preface of a ibd#ence,
expressions with or | can also be derived with the ru{ext—cong above.

3.5. BINDERS

Binders have fixed weak types. For example, bindseee Section 2.5.2) takes
a statement and delivers a term or a set (the subsgriptnot important, in
this respect). Figure 3 lists all the weak types corresponding to all binding
symbols used in Section 2.5.

For expressions constructed by means of a binder we have a derivation
rule:

OK(B;I',Z), beB, b:: k1 — Ky, BIIZ F E:1 Kk

(bind)
B;l' - bz(E) :: K2
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constant name weak types |

. SET S—S
. STAT S—S
TXS/N/A— S

Figure 4. A basic list in a standard preface

Note the subscripZ: sinceE may depend on the subject variable of the
declarationzZ, we require thaB;I",Z F E :: Ky, i.e.,E is correct with respect
to book B and context extended with declaration.4This shift of Z from
the context to the subscript is also present in the formation and abstraction
rules of type theory, with whichlz(E) andA z(E) are formed and typed.)

3.6. PHRASES

The derivation rule of the combinatiod?\_ of an adjective and a noun is:

Brn:a, Br-a: 4

(ad j—noun
B;l - an:: N[

3.7. SIATEMENTS

The derivation rules given above also suffice for the constructs given in the
abstract syntax for statements (see Section 2.7). This includes condtants
for statements, as well as logical quantifiers covered by the con%r(um.

For typings there are two kinds of derivations, dependent onlével of
the statement: the first kind is for a statement of the fetnseT or S: STAT,
saying thatsis a set or thaSis a statement, the second is for statements of
the formt : s/n/a, expressing that ternhas type ses, nounn or adjectivea.

Both kinds can be treated with the above r(gst—cong provided we take
the list given in Figure 4 in our standard preface.

For the first kind of typing, for example: SET, we let : SET be aunary
constant, wittS — § as weak type. This unary behaviour is necessary since
SET is not covered by our linguistic categorization. For the second kind of
statement we use : adary constant.
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3.8. DEFINITIONS

For internal definitions, we have the so-call@at—de f) derivation rule:
B;I' F t/s/n/a/S:: T/S/N/A/S,
dvar(l) = {x1,...,%}, c€ CT/5N/A/S ¢ ¢ prefcons(B)Udefcons(B)

B;I' F c(x1,...,%) :=t/s/n/a/S:: D

REMARK 3.9. Sometimes (as a form of sugaring), the initial part of the
parameter list of a defined constant is omitted, since it can be reconstructed
by listing the declared variables (see Section 3.3) of the context.

3.9. CONTEXTS

Empty contexts are typable adéclarationsandassumptionsnay be added.
FB::B

(emp-cont)

BFO:T

OK(B;T), x € V5/5, x ¢ dvar(I)

(set/stat—decl)
BF Ix: SET/STAT =i T

OK(B;l), B;l - s/n::S/N, xe€ V7T, x¢dvar(l)

(term—decl)
BF Ix:s/n:T

OK(B;I), Bl - S::.§
(assumpt8

BFT,S:T

3.10. Books

Books are lists of lines, containing either a definition or a statement in a
context. The empty book is derivable and every weakly well-typed line, with
respect to a booB, may lead to a weakly well-typed extensionkf

(emp-book)
FO0:B

18 Note that the statemeBtcan be a typing : A but thatx cannot benewwith respect td™,
sinceB; - S:: § (by Lemma 4.5(2)). Hence S cannot be aleclaration
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B.;l - S/D::S/D

(book—ext)
FBol>S/D::B

4. Themetatheory and properties of the derivation system

4.1. FORMAL MACHINERY

We useformula (denotedA, ®) to refer to either a sentence, a phrase or a
declaration.

DEFINITION 4.1. Free variables for formulas are defined as follo¥®s:

FV/(%) = {x}

FV(c(Py,...,Pn)) =FV(P)U...UFV(P,)

FV(bz(E)) = (FV(Z)UFV(E)) \ {x} if Zis of the form x —
FV(an) =FV(a)UFV(n)

FV(c(X1,...,%) :=u) =FV(U)U{Xq,...,%} ifue T/S/N/A/S
FV(x:s/n) =FV(s/n)

FV(x: SET/STAT) =0

Free variables for contexts/lines/books are defined by:
(Contexts) F(0) =0, FV(I',Z/S) =FV(I)UFV(Z/S).
(Lines) FV('>S/D) = FV (I UFV(S/D).

(Books) FM0) =0and FV(B o |) =FV(B)UFV(l).

DEFINITION 4.2. Free constants for formulas are defined as follows:

FC(x) =0

FC(c(Py,...,Pn)) = {C}UFC(P)U...UFC(Py)
FC(bz(E)) = FC(Z)UFC(E)

FC(an) = FC(a)UFC(n)
FC(c(Xy,...,Xn) :==U) = FC(u) ifue T/S/N/A/S
FC(x:s/n) = FC(s/n)

FC(x: SET/STAT) =0

Free constants for contexts/lines/books are defined by:
(Contexts) F@0) =0, FC(I',Z/S) = FC(I") UFC(Z/9).
(Lines) FQT »>S/D) = FC(I') UFC(S/D).

19 In the second clause(Py, . .., Py) is an instantiation, not the left hand side of a definition.
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(Books) FQ0) =0and FCB o |) =FC(B)UFC(l).

DEFINITION 4.3. Subformulas of formulas are defined as follows:

subfor(X) = {x}
subfor(c(Py,...,Pn)) ={c(Pi,...,Py)} Usubfor(P;)U...Usubfor(P,)
subfor(bz(E)) = {bz(E)}Usubfor(Z)Usubfor(E)
subfor(an) = {an} Usubfor(a) Usubfor(n)
subfor(C(Xi,...,%) :=U) = {C(X,...,Xn) ;= u}Usubfor(u)
subfor(X:s/n) = subfor(s/n)

(

subfor(X: SET/ STAT) 0

Subformulas of contexts/lines/books are defined by:
(Contexts)subfor(0) = 0, subfor(l,Z/S) = subfor(l') Usubfor(Z/S).
(Lines) subfor(I>S/D) = subfor(lN) Usubfor(S/D).

(Books) subfor(0) = 0, subfor(B o |) = subfor(B) Usubfor(l).

The next convention is needed (e.g., in the proof of Lemma 4.10).

CONVENTION 4.4. We assume a version of the Barendregt Convention
where names of free variables are distinct from bound ones and in the same
book/context/line/formula, we use different names for bound variables. For
example, if Bl - bz(E) :: Kz then we assume that the declared variable in

Z is different from any declared variable In If this is not the case then we
rename the declared variable of Z ip(ke) to a name of a fresh variable.

LEMMA 4.5 (Free Variables).

(1) If BET :: T, then the declared variables hare distinct.

(2) IfB;I - A:: W then FV(A) C dvar(IN).

(3) If BT :: Twherel =T, (x: A)/AT", then FMA) C dvar(l").

Proof: (1) By induction on the derivatioB+ T :: T.
(2) By induction on the derivatioB; I - A:: W.
(3) By induction on the derivatioB - I" :: T using (1). X

DEFINITION 4.6.
(B' is asubbookof B) We say BC B if there exists 8: B=B' o B".

(I is asubcontexbf ) We sayl” C T if there existd™” : T =" I"".
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(compatibility with a book) Let B be a book ane-=Il" >D be a line. A def-
inition ¢(xy,...,Xn) :=t/s/n/a/S is compatible with B (resp. with I) if
¢ ¢ prefcons(B) Udefcons(B) (resp. c# defcons(D)). The line | is
compatible with B ilefcons(l) ¢ (prefcons(B) Udefcons(B)).

LEMMA 4.7 (Presence of definitions)T'he following hold:

1. If B;T A :: W then either A is free of definitions, or A is the only
definition (i.e. of the form(a, ..., Xn) := A') in A.

2. If BET :: TthenTl is free of definitions. That is, A is free of definitions
for every x Aor Ainr.

Proof: By induction on the derivationB;I" - A:: WandBF-T :: T. X

The next lemma studies typability inside a weakly well-typed book.
LEMMA 4.8 (Subcontext).lf BT :: Tandl" CT thenB-T':: T.
Proof: By induction on the derivatioB - T :: T. X
LEMMA 4.9 (Subbook).If +B:: Band BC Bthent B :: B.
Proof: Corollary of the generation lemma below. X

4.2. FROPERTIES ORWEAK TYPING

LEMMA 4.10 (Thinning/Weakening).

(1) LetBFT :: Tandl" CT. If B;I"~A:: W and A is not a definition,
then Bl - A1 W.

(2) Let -Bol:: B, FBoB :: B, and | compatible with BB'. Then:

(2a) +BoloB'::B.

(2b) IfBoB';I' - A:: W where if A is a definition then A is compatible
with | then BoloB';T - A:: W.

(2c) 1fBoB T :: T, thenBoloB T :: T.
(3) Let - B:: Band B C B. We have:

(3a) IfB;I = A:: W where if Ais a definition then it is compatible with
B,thenBlr - A:: W,

(3b) IfBFT:: T thenB-T:T.
(4) LetB-T. " T,BET,I'":: T, anddvar(l") Ndvar(l'") = 0.
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(4a)BFT,I,I" 2 T,
(4b) LetBI',I'" - A:: W and A is not a definition. & ,",T" - A:: W.

Proof (1)..(4) by induction on the length of derivations. Use Lemma 4.
LEMMA 4.11 (Generation).
(1) IfB;I Fx:: W then OKB;I"), xe€ dvar(l') and

(la) W = 7 and xc V7, or
(1b) W =S and xe V5, or
(1c) W = 5 and xe V5.

(2) IfB;I  c(Py,...,Py) :: Wthen OKB;I") and

(2a) eitherW =T /S/N/A/S, there is DI, xq,...,X, where
dvar(l"') = {X1,...,%}, defcons(D) = c e ¢T/S/N/A/S,
M>D € B,andforallie {1,...,n} :wtgr(R) = wtg.r (%),

(2b) or cis external to B, and there ig, .. .,K, such that
CiiKiX...xKn—=WandBl - R::kj (i=1,...,n).

(3) If B;'  bz(A) :: k2 then OKB;I",Z) and there isk; such that
b::ki—Ky,and BIlN,Z - A:: Ki.

4 IFB;Ir + an:: W thenW = 4/, OK(B;I'), B;I - n:: A’ and
B:;I' - a:: 4.
(5) If B;I' + c(xq,...,%) :=t/s/n/a/S:: W thenW = D, OK(B;I"),

ce CT/SMNIALS ¢ ¢ prefcons(B) Udefcons(B), dvar(l) =
{X1,...,xnyand Bl + t/s/n/a/S:: T/S/N/A/S.

(6) IfBF I::Tthen - B:: Bandifl #0then

(6a) ifr =", x:WthenBF I'":: T, x¢ dvar(l"') and
if W = SET/ STAT then xe v5/v$
else if W =s/nthen BI" I s/n::S/A/, and x€ V7.

(6b) fr =r",SthenBr I::T,and BI'" + S:: S.

(7) If - B:: Bthen either B=0or there isl", B and D such that
B=B o '>S/D, OK(B';l),and B;l + S/D:: S/D.

Proof Take a derivation in one of the above cases. We follow the derivation
until the typed construct on the left of first appears. This is done by:

(var), (int—cong, (ext—cong, (bind), (ad j—noun), (int—def), (emp-cont),
(set/stat—decl), (term—decl), (assump, (emp-book and (book-ext) for
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(1), (2a), (2b), (3), (4), (5), (6) wherel' =0, (6a) andW = SET/ STAT,

(6a) andW = s/n, (6b), (7) whereB =0 and(7) whereB # 0 respectively.

The lemma follows by inspection of the used rule. We need Lemma 4.8 for
(ad j—noun and Lemma 4.7 fotint—def). X

LEMMA 4.12 (Free Constants).
(1) If -+ B:: B, then the defined constants in B are distinct.
(2) If Bl = ®:: W, then FG®) C prefcons(B) Udefcons(B).

(3) FBET :: Twherel =" x: Al or T =" AT, then FGA) C
prefcons(B)Udefcons(B).

Proof (1) By induction on the size ds.
(2) We prove by induction on the length of the derivations thB{if - A:: W
orBFT,A/x:A:: TthenFV(A) C prefcons(B) Udefcons(B).
(3) We show by induction on the derivatidt I :: T that for anyl”,I'" A
suchthal =" x: AT orl =", AT", we have=C(A) C prefcons(B) U
defcons(B). We use the following property we showed in (2):
M if BET,A::TorBFT,x:A:: lthen
FC(A) C prefcons(B) Udefcons(B). X

LEMMA 4.13 (Uniqueness of Types).
IfB;l'-A::Wiand BI' - A:: W5, thenW, = Wo.

Proof: This is now a simple corollary of the generation lemma. X
LEMMA 4.14 (Context). If B;T - A:: Wthen BT :: T.

Proof: By induction on the derivatioB;I - A :: W using, asl' C I',Z,
Lemma 4.8 in thébind) rule whereB;" - bz (E) :: k2 comes from
B+ I,Z :: T amongst other things. X

LEMMA 4.15 (Subformula). The following hold:

(1) If BT :: I'then for every subformula A 6, there exist&V andI”
wherelr C T’ such that B[ - A W.

(2) If B;I - A:: W then for every subformula’ Af A, there exist&V,
andl™ wherelr C I’ such that B - A" :: W.

Proof: By simultaneous induction on the length of the derivation. X
LEMMA 4.16 (Subformula property)!f -B:: Band B=Bol >AoB":
@ B+r:T.
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(2 B;r-A::5/D.

(3) Let A be a subformula of eithdr or of A.
There exisW andl™” suchthat" CTI" : B ;" A :: W.

Proof: (1) + (2) are shown together by induction on the lengti@of

e CaseB” = 0 then by the generation lemn@K(B; ")
(henceB' T :: N andB';l - A:: §/D. We are done.
e CaseB=Bol>AcB]ol">A,
then by the generation lemmaB ol >AoBf :: B
hence by IHB' T :: TandB;I - A:: S/D.

(3): By (1) + (2) we haveB T :: T andB;' - A :: $/D. Hence, by
Lemma 4.15 we have the desired (3). X

DEFINITION 4.17. We define substitution in a formula as follows:

X[X:=A] =A

yx:=A =y for x#y

C(Pr,...,Py)[x:=A] =c(P[x:=A],....P[x:=A))

(bz(E))[x:= A = by n(E[x = A])

(an)[x:=A] =a[x:=Anx:=A]

(C(X1,.. ., %) == U)[X:=A] =cC(X1,...,%) ‘= u[X:=A] for X ¢ {x,...,%n}
(y:s/n)[x:=A] =y:sx:=A]/nXx:=A]

(y: SET/ STAT)[x:=A] =Yy: SET/ STAT

(ContextsPx:=A] =0and(l,Z/9[x:=A] =T[x:=A],Z[x:=A]/Fx:=A].
(Lines) (FT'>S/D)[x:= Al =T[x:=A]>9Yx:= A]/D[x:=A.
(Books)O[x:=Aj=0and(B o I)[x:=A] =B[x:=A] o I[x:=A].

LEMMA 4.18 (Substitution).
If B;l,x:AFx::7T/S/Sand Bl - A :: T/S/S then:

(D) FB;I,x: A/ AF®:: W, and® is not a definition, then
Bl AX:=A]F®Px:=A]:: W.

(2) IBFT,x: AA:: T, then B-T,Ax:=A]:: T.

Proof By simultaneous induction on the length of the derivations. X

LEMMA 4.19 (Condensing).The following hold:
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(D) F B x: AAF® :: W, @ is not a definition, and ¥ A, ®, then
B, AF®::W.

(2) fBFT,x:AA::Tand x¢ A, thenB-T,A:: T.

Proof Show (1) and (2) simultaneously by induction on the length of the
derivation. X

The generation lemma implies that in order to verify that a certain construct
has a certain weak type, there is at most one derivation rule applicable. Hence
it is easy to check weak typing. Our derivations are syntax-driven:

THEOREM 4.20 (Syntax-driven Derivationslperivations are syntax-driven.

COROLLARY 4.21 (Decidability of weak type checking and weak typability).

(1) Weak type checking is decidable: there is a decision procedure for the
question Bl - ®:: W 2.

(2) Weak typability is computable: there is a procedure deciding whether
an answer exists for;B - @ :: ?and if so, delivering the answer.

Proof (1) By induction on the number of symbols on the right and leftof
using Lemma 4.11. (2) is also by induction on the number of symbols on the
right and left of - using (1). X

LEMMA 4.22 (Swap). The following hold:

— IfB;I,x:Ay:AAF®:: Wand x¢ FV(A') then
B;l,y:A,x:AAF®:: W.

— fBFT,x:Ay:A,A::Tand x¢ FV(A) thenB-T,y: A x: AA:: T
Proof By induction on the length of the derivations using Lemma 4.1(

DEFINITION 4.23 (Context Restriction).
Let FV(®P) = {x1,...Xp} andll =T1,X3 : P1,T 2, %21 Po, ... Ty Xn 0 Poy Mgt
We defind” | FV(®) to bel1,x1 : P, l2,%2 1 Po, ..., X0 & P

Note thatl” | FV(®) C T and if FV(®d) C FV(d') then
FLFV(P)CT RV (D).

LEMMA 4.24 (Context Restriction).
IfB;l'®:: Wthen Bl [FV(®) - ®:: W.

Proof By induction onB;I' - ® :: W using Lemmas 4.8, 4.10, 4.5, 4.22
and 4.7. X
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LEMMA 4.25 (Simultaneous Substitution)l.et dvar(ly) = {X1....,X}. If
B;l,Makx::7T/S/Sand Bl =R :: 7/S/S then:

(D) IfB;I1,I2, T3+ @ :: W, and® is not a definition, then
B;l1,M3[X :=PR]F®[x :=R]:: W.

(2) fBFTq,I,F3:: T thenB-T1,M3)x :=R]:: T.

Proof We show both (1) and (2) by induction on the length of the derivation
B;lM,lp, M3 ®::WandBFTM1,Io,3:: T. Use Lemmas 4.8, 4.7 and 4.10.
X

4.3. DEFINITIONAL REDUCTION

We use symbolg for the reductional relation oflefinition unfolding Its
definition is as expected. First, we define compatibility:
DEFINITION 4.26. We define compatibility in the usual way as follows:
F‘.—5>Pi’ for1<i<n
¢(Pr,...,P,....P) S c(Pr,...,P,....Py)

forcecandR e P

) ! ) !
Z—6>Z E_S*E forZe 2,E€ Eand be B
bz(E) — bzr(E) bz(E) — bz(El)
! /
a—a =N forae4andne N\
an— an an— an
u—u
3
C(Xq,. .., Xn) i= U= C(X,..., %) = U
s/n>d/m

5 forse Sorse Al
y:s/n—y:s/n

DEFINITION 4.27. Let =B :: Bandl >c(Xy,...,X3) ;= ® aline in B.2

is the compatiblerelation on subterms of B generated b§Rg...,P) LN

®[x := R], provided that the occurrence of the latter constant c is not the
defining occurrencén the defining line mentioned. ARsreduction depends

on the book in question, we writetBc(R, ..., Py) 2 d[x :=R].
®[x := R] stands for the simultaneous substitutionddy R in ®.

THEOREM 4.28 (Subject Reduction).
IfB;l' =& :: W and B~ <D—5>W,then Br=w: w.

Proof DefineB F I 2 I iff I andl” are exactly the same except for either
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— onex:AinT which appears as: A'in I'" with B A2 A or

— oneSin T which appears aS in " with B+ sig.

By simultaneous induction on the derivation we show using Lemmas 4.16,
4.11,4.7,4.10 and 4.25 that:

(1) If the derivation iB;I" - ® :: W andB +- o2 Y, thenB, T W :: W.

(2) If the derivation isB;I - @ :: W andB - r3r thenB; - ®:: W
else if the derivation i8 T :: TandB - F—6> MthenBFI Tl X

In what follows we establish the Church Rosser and Strong Normalisation
properties o®d-reduction by adapting the lines of [19].

The next definition (which is independent of contexts) gives for each for-
mula, its corresponding formula where all definitions of a book are unfolded.

DEFINITION 4.29. Take a book B, and a formuk. We define®|g as:
X8 =X

|c(P1,...,Py)lB = |®D|g[x := |R|g] if "'>C(Xq,...,X) := Pis aline of B.
Ic(Pr,...,P)ls =c(|P1|g,---,|Pn|s) if c is external constant (ipref(B))
bz(E)ls = bz, (IE[8)

|C(Xla"-axn) = u|B :C(Xla"-axn) ::|U|B

lan/g = |als[nls

IX:Alg =X:|Alg

We definei(7)|5 = 0, |F,x:A|B = |F|B,x: |A|B and|l’,S|B = |F|B,|S|B.

LEMMA 4.30. If B;[ F & :: W then B & -3 0.

Proof: By induction on the number of symbols . The interesting case
is when® is c(Py,...,P,) and I >c(xq,..., %) ;= @ is a line of B. Then
IH

3 3
BEc(Py,...,P)—=®[x :=R]— |¥|g[x :=]|R|g] = |c(P1,...,P)|s. K
LEMMA 4.31. For1<i<n: |®[x :=PR]|g=|P|s[X :=|R|g].

Proof: By induction on the structure ab. X
LEMMA 4.32. IfBF ® 3 o then|®|g = |D'|g.

Proof: By induction on the structure @b. The only interesting case is when
®is (c(Py,...,Py) wherel">c(xg,...,Xn) := @ is aline ofB

andBt c(Py,...,P) 3 @®'[x := R]. In this case use Lemma 4.31. X

THEOREM 4.33 (Church Rosser forreduction). If B - CD—5» &, and
B-® —5» @, then there exist®; such that B- &, —5» ®3 and B- @, —6» 3.
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Proof: By Lemma 4.30B+ ® 3 [®g, B @1 -3 |dy]g, andBF ®, 3
|Po|g. AsBF @ LN ®; then by Lemma 4.320|g = |P4|g. Similarly, as
BF® 2 @, then || = |dy]s. Hence Takeds = |d|g = |®y]s. Now
Bl ®; 3 dzandB - &, -3 ds. X

DEFINITION 4.34. LetBT - & :: W. We say tha® is in d-normal form in
the book B if there is n@ such that B- ® 2 .

THEOREM 4.35. Let BT - @ :: W. Then® is in 6-normal form in B iff
FC(®) Ndefcons(B) = 0.

Proof: By induction on the structure ab. X

COROLLARY 4.36 (Weak Normalisation fa-reduction).
LetB I F @ :: W. Then|®|g is thed-nf of ®.

Proof: It is easy to show theC(|®P|g) Ndefcons(B) = 0. Hence by Theo-

rem 4.35|®|g is in &-normal form. But by Lemma 4.3B - o3 |®|g and
by Church Rosser Theorem 4.33 ih@ormal form is unique. Henc@g is
the &-normal form of®. X

In order to establish strong normalisation ®fwe introduce a measure
function M which decreases witd-reduction.

DEFINITION 4.37. LetM : B x ® — N be defined as follows:

MB(X) =1 .
Ma(C(P, ..., Pn)) 1+ 521 Ma(u) Ma(R)
ifB=Bol">c(x,...,%) :=UoB"

Ms(c(Py,...,Pn)) = J=NMp(P) if ¢ is an external constant
MB(a ) = MB(a)+MB(n)

Mp(C(Xy, .-, Xn) :=U) = Mp(U)

Mg(bz(E)) = Mg(Z) + Ma(E)

LEMMA 4.38. Let BI' =@ :: W. If wtgr(X) = wtgr(P) for 1 <i <n,
then Mp(®[x; := R]) < =) Mp(P) Mp(P).

Proof: By induction on the structure @b.

— Cased=x,1<i<nthen _
Mp(P[x :=R]) = Mg(R) < ZZiMp(R) = ZZ]Mp (%) Ma(R).

— Case®d=x#x,1<i<nthen _
Mg (P[x = R]) = Mp(x) = L < ZZ)Mp(R) = ZZI M(X) Ma(R).
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— Case® = anthenMg(®P[x := R]) = Mp(alx := R]n[x :=R]) =
Ma(alx :=R]) + Ma(n[x =R} <"
3= Mp(a) Mp () + ZiZ]Mp(n) M (R) = Z=1 Mg (an) Mz (R).

— Case® =c(Py,...,P,) wherecis external toB andm > 1 then
Mp(P[x = R]) = Mp(c(Py, .., Pn)[x :=R]) =

M (C(P{[x :=R],...,Phx = R])) = Z) T (Pi[x == R]) <
TS 0Me (P Ma(P) = SI=(E =T Me(P)) Ma(P) =
Z=0 M (C(P, ..., Ph)) Ma(P).

— Cased =c(Py,...,P,) wherem> 1 andF’Dc(xl, Xm) :=uis aline
in BthenMg(®[x := R]) = M(c(Py,...,PL)[X = P])

Ma(c(Pi[x = PR],...,Pylx == P])) =

1+ 2 27'"Me(u) Ma(Pi[x; := R]) <

1+ 2120 (u) S0 M (P) Ma(R) <

SIZ0Mp(R) + 21 M (U) S0 M (P Ma(R) =

SI=0Me(R) (1+ Z=TMp (W= Me(P))) =

SI=0Mg () Ma(c(PY, ..., P). X

LEMMA 4.39. B ® > @' thenMg(d) > Ma(®').

Proof: By induction onB o2,

— CaseBF c(Py,...,P) > ®[x := P] then

Ma(c(Py,...,Pn) = 1+ Z=0Mg(P) M (R) >
SZNMp (D) Mp(R) >Hemma 3t afg(d]x; == RY).

— The compatibility cases are a straightforward application of IH. X

Finally, definition unfolding inside well-typed books is well-founded:

THEOREM 4.40 (Strong Normalisation).et + B :: B. For all subformu-

las W occurring in B, relation2 is strongly normalizing (i.e., definition
unfolding inside a well-typed book is a well-founded procedure).

Proof: This is a corollary of Lemma 4.39. X
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5. Examples

5.1. EXaAMPLE 1

Our first example is a simple phrase, taken from a mathematical text:
[*1] the square root of the third power of a natural number

We give two possible translatiodslandl.2into WTT:

1.1: NounggInn(X=Vn3) 1.2: Abstpn(Vn®)

Note that translation.1 is more informative in that it gives the final type of
the noun (vizR), but that translation.2 is more compact. It is easy to verify
that both translations return a weakly well-typed noun. We check this for
translation 12. We start with a preface incorporating all external constants:

| | constant namé weak type

(i) 3 T—T

(i) Vv T—T

(iii ) N S

(iv) Abst T—N
We also give the categories of the phrase in translati@gn 1
| subexp| category|| subexp| category| subexp | category
|n | T | n | T | Abstan(vn®) | A0 |
L L L | |
MANEa LN | |

We need to derivé3;I" - Abstn;N(\/F) ;2 A for someB and . But it
is clear thatB = I' = 0. We assume that belongs to the set” which we
postulate as{x) n e v”. The desired derivation is given in Figure 5.1 where
numbersi, ii, iii andiv refer to the above preface. This derivation is given

in the format offorward reasoning we start with smaller subexpressions
and build larger ones. The derivation can also be developed in the format
of backward reasoning.e., in thegoal-directedmanner where we start with
thegoal (line (8)) and investigate how it can be reached. The only applicable
rule to get line (8) is(bind). This gives new goals, generated by the main
symbol @bst) and(iv). These goals are the judgements in lines (1), (4) and
(7), and so forth. Note that our derivation systensysitax-driverwhere for
each goalpnly onerule is applicable.

We vary a bit on this example and look at the followistgtement

[*2] 8 is the square root of the third power of a natural number
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1) F 0:B (emp-book

(2) 0O F 0T (emp-cont 1)

3 00 + N:S (ext—cons 1,2, iii )
4) 0 F n:N:=T (term—decl 1,2,3,x)
®G)|on:N +F nuT (var, 1,4, x)

6) | on:N +F noT (ext—cons1,4,i,5)
M |on:N + VT (ext—cons 1,4,ii,6)
(8) 0;0 + Abston(Vd): AL | (bind,1,4,iv,7)

Figure 5. Derivation thatibstn.y(v'n3) is a noun

For the translation, the easiest thing is to use our previous example, obtaining
for translation®2.1 and2.2the relational statements:

2.1: 8:NounyrInn(X=Vn3) 2.2: 8:Abstnn(VNe)

But in this case, there is a shorter and more elegant translation possible,
viz. the logical statementanslation 2.3:  F,n(vn3 = 8)

REMARK 5.1. This example shows, that tledinary mathematical for-
mulas (so without our extension with nouns and adjectives) are often good
enough for translations of a mathematical text in formal form. In the case
above, translatior2.3 is quite satisfactory, albeit that translatior’s1 and

2.2 are, in a senseg;loserto the original text. However, when definitions enter
the stage, then the extension with nouns and adjectives, and hendwuith
Abst, Adj, etc, is more appropriate. See Examples 5.2 and 5.3.

Now look at [*3] below for which we can uselor 12 to get 31 and 32:
[*3] The square root of the third power of a natural number is positive
Translation 3.1:  Vyr(y: NouncgInn(X= vn3) =y > 0)
Translation 3.2:  Vyg(y: Abstnn(VN3) =y > 0)
Again, a mordraditional translation is translatioB.3: Vn;N(\/@ >0)

REMARK 5.2. The above examples show, that the translation of a mathe-
matical text intoWTT is notcompositionalLook at the indefinite articlain
the phrasg*1]: the square root of the third power of a natural numbesr
translation isNoun, Abst or 3, see 1.1, 1.2 and 1.3. When embeddirig
into statemenft2] , aagain can play each of these three roles. However, when
embedding it in statemefit3], none of these roles can be maintained: in all
three cases 3.1, 3.2 and 3.3, the translatiom &f changed into/.

This non-compositionality is present in several places in the translation
process. The indefinite artickeis an especially versatile word. It may have
rolesNoun, Abst, 3 or V, as shown above, but also other roles, in particular:
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the introduction of a variable in the context of a definition. For the latter, see
Section 5.3. Theersatility of the definite articléheis hardly less.

5.2. BEXAMPLE 2

Our second example concerns a text with a definition and its application:

DEFINITION A Fermat-sunis a natural number which is the sum of two squares of natural
numbers.

LEMMA The product of a square and a Fermat-sum is a Fermat-sum.

A WTT-translation could be the following small YW-book B of two lines
(both with an an empty context), one a definition and the other a statement.
So the abstract format &is:0>D o 0> S

a Fermat-sum:= NounnenJkenJien(n = k2 +12)
Vu: a squard’v: a Fermat-surfUV: @ Fermat-sum

Note how the defined constamfFermat-suma noun, is used in the statement
following the definition. The noum squareis not defined inB, hence the

text assumes that this definition has been given beforehand: it is an external
constant tdB. Hence, it has to be incorporated in the preface when applying
the derivation rules in order to establishB :: B.

5.3. EXaAMPLE 3

Our third example is from analysis. It contains the definitiongliffierence
quotientand ofdifferentiableand a statement using the latter definition:

DEFINITION. Leth #£ 0, let f be a function fromAto R, a€ Aanda+h € A. Then
w is thedifference quotienof f in awith differenceh. We call f differentiable

atx=aif limp_o w exists. The function/|x] is not differentiable at 0.
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Both definitions require a context. We use fitegg notationto build the
context in the translation of the above text into the following ¥Abook:

 [SACH
o |FrasE

(3) ~acA

(4) ~heR

(5) h#0

o ||||[[arnea

(7) the difference quotient of f= w

(8) f is differentiable at a:= limp_,o 2" exists

(9) —(Axr(y/]X) is differentiable at D

The flag notation is a shorthand for dealing with contexts: since (parts
of) contexts are frequently repeated in succeeding lines, it saves space to
allow multiple use of context entries (declarations and assumptions). The flag
notation also enables the structure of a¥book to be more easily visible.

REMARK 5.3. The flag notation is no more thaugaring flags do neither
exist in theWTT-syntax, nor in its derivation system. Flags provide for a
certain view on WTT-texts which can be helpful for a human reader, e.g.
when inspecting a formalized mathematical text in an electronic library.

The above flag-text is theugaredversion of the book given below. For
convenience we first abbreviate:

MN=ACR f:A—-Ra:Ah:Rh#0a+heA

N=ACR f:A—-Ra:A

The book matching the above flag-text consists ofdte®ncatenation of
the following three lines:

Nt > the difference quotient of f= w

f(ath)—f(
h

M, > fisdifferentiable at:= limy_o 3) exists

0 > —(Ar(y/IX) is differentiable at D
Note how context administration works in the flag notation. For example,
the partAC R,a: A, f : A— R needs not to repeated for the definition in
line (8), since it is stillopen(the three flagpoles of lines (1) to (3) are still
presentin line (8)). We now discuss the details of the aboveWbok.

— [Each context element is separately placedflag The attacheflagpole
registers how long the context element is supposed to be present. Nesting
of the flags fixes the order of the context elements.
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Context elements can be either declarations or assumptions. In order
to visualize the difference, we start declarations with symbol(The
symbol~ points atthe declared variable.)

Note that the indefinite articla occurring in the noura functionin the
original text, is translated here into the flag in line (2).

In the WrT-book there are onlypound variables. Notice for example
that all free variables in line (8) are bound in the context lines (1) to (3).

In translating the original text into (flag-style) W-format, we added
the declaration of, which was not explicit in the original text.

ac Ais translated as a declaration, wheraash € A is an assumption.
(Both statements are treated similarly in the original mathematical text.)

The context elements containih@re arbitrarily arranged in the original
mathematical text. We concentrate these elements in lines (4) to (6) to
use context administration smoothly: for the definition in line (8) we just
skipped —i.e. cut the flagpoles of- the context elements (4) to (6). In fact,
his a bound variable in |i%ow and should not beeclared
in the context. Moreover, the assumptidmg: 0 anda+ h € A are not
desired for the definition in line (8). It is important to findnainimal

context for a definition or statement.

In line (7) we have ghrase definitiorof the form df(\7) = T.The
parameter list of the constattie difference quotieris (A, f,a, h), but
only f is accounted for in the Wr-book. A better formulation isthe
difference quotient of f in a with difference h (where f has domain A)

The definition in line (8) is astatement definitigncorresponding to

cs (\7) = S. Of the parameter listA, f,a) of the constants differ-
entiable af we only find f anda in the book. The definition can also
be given as a phrase definition (namely as the definition of the adjective

differentiablg, in the formatC”(\7) := 4. This case is studied below.

The limit-binder lim,_,, can be considered to be a (non-binding!) con-
stant of three variables, liop, X,qg), defined beforehand in a context
consisting of the three declaratiopse R, X C R,g: X — R. That is,
we consider lim_,g(h) to be an alternative notation for lifp, X, g),
with X the domain of functiog. In line (8) we have thénstantiation

lim (0, X, Apex TEH=T@) "with X = {x € Rla+x € AAX O},

The existenceof the limit as required in line (8) should also have been
defined beforehand, in a piece of mathematical theory stating:
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(1) The definition of thdimit-property of a functiong: X — R with
respect to a poinp on the realx-axis. This property is given as an
existential statement (wittis andd’s), e.g. in the statement definition:
g has the limit-property irp =
JierVeer+ 35ER+VX€X\{D}(|X_ p| <0= |g(x) - || < 5)20
(2) The theorem that the limit-property holds, the existinigs unique.

(3) The definition of linfp, X, g) as being this uniquk again under the
assumption that the limit-property holds.

Hence lin{p, X, g) existsis g : X — R has the limit-property in p
— Inline (9), parameterd, f anda of the statement is differentiable at

a are instantiated witfR, Axr(+/|X|) and O, respectively. The resulting
statement (and its negation with the logical constgrieeds no context.

We give an alternative translation whetdferentiable (at)s defined as an
adjective. Since : A — R becomes a subscript declaration, it should be left
out of the context for stateme(f). (Lines(1) to (7) are the same as before,
in line (9) we employ the typing symbol “:” instead of the verb “is”.)

(1) [“ACR
(2) ~ f:A=>R

(8) differentiable at a:= Adjf:A_ﬂR(Iimh_,ow exists

(9) —(Axr(y/IX) : differentiable at §

Derivations leading to either of the two W-books given above, need
many small steps, but can be constructed straightforwardly. We omit the
derivations. We only give a number of remarks regarding these derivations:

— Inline (1) of both WrT-books we typeA by declaring it to be subset
of R. This is not according to the rules. However, we may consider the
declaration AC R to be shorthand for the declaratién SeT followed
by theassumption A R. Another option is to rewrité C R asA: [ (R).

— Equality, addition, subtraction and division should also obtain weak types
in the preface. Their common weak typedisx T — 7. The weak type
of \/is T — 7. The logical operator has weak typeg — S.

— Function applicationas inf(a) and f(a+ h) can be treated as a binary
external constardppl with weak typeZ x 7 — 7.

. . . . —,
20 This is a statement definitiot¥ (V) := S. It needs a context to declaXe p andg.
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— Inlines(9) and(9) we use an internally defined notiodifferentiablg.
In both translations, either as part of a constant for a statement or as a
constant for an adjective, we can apply rdiet—cong for establishing
well-typedness.

5.4. BEXAMPLE 4

Finally we give an example from elementary algebra. We consider the fol-
lowing theorem together with its proof:

THEOREM. Let G be a set with a binary operatieand left unit elemeng. LetH be a set
with binary operationx and assume thégtis a homomorphism o& ontoH. ThenH has
a left unit element as well.

PrROOF. Take€ = ¢(e). Leth € H. There isg € G such thatp(g) = h. Thené «h =
d(e)«9(g) =¢(e-g) =¢(g) =h,

henced is left unit element oH. m]

A translation into WIT is:

(1) [~G: seT]
(2 ||~-:(GxG)—G]
3 ||[~e:G]
(4) e: aleft unit element 06|
(5) ~H: SET]
(6) ~ s (HxH)—H|
o ||| FEe=n
(8) ¢ : a surjective homomorphisvfn
(9) ¢:=¢(e)
(10) ~h:H]
(11) EIgeG(‘b(Q) = h)
(12) ~Qg:G
(13 ¢(g)=h
(14) &xh=0¢(e)«d(g) =¢(e-9) =9¢(g) =h
(15) €xh=h
(16) € : aleft unit element oH
(17) H has a left unit element
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This book is a good example of the gains due to flags. The book consists
of six lines with contexts overlapping largely. Schematically, the lines are:

H-(9 > (9)

(

(1)—-(8),(10) > (11)
(1)—-(8),(10),(12),(13) > (14)
(1)—-(8),(10) > (19)
1-(® > (16)
(1)—-(9 > (17)

The first of these lines is a definition, the second to fifth are intermediate
results (statements), being part of the proof, and the last line expresses the
theorem (a statement, as well). We translated the proof first, and put the
theorem at the end in order to facilitate a further translation into type theory
(this is not necessary for the translation intarWy. We note the following:

— Lines (1) to (4) could be concentrated in the single declaration (extend-
ing WTT slightly):

(1) |~ (G,-,e) : agroupoid with left unit elemeht

and something similar for lines (5) and (6). W (or type theory!) in
practice ofterasks forsuch a kind of abbreviations for dependent parts
of a context (also callettlescopessee [23]).

— Not all parameters are accounted for in therWbook. E.g., one is
inclined to make lines (4) and (8) more specific in the following manner:

(4) e: aleft unit element o5 with respect to,
(8) ¢ : a homomorphism o ontoH with respect to- and x, resp

— We left out the parameter list for the newly defined conséntline (9).
As we said before, this list can be reconstructed since it is equal to the
list of the declared variables occurring in the context of the definition.
Hence, theofficial format of line (9) can beg(G,-,e H,*,¢) := ¢(e).

Moreover, in the subsequemnsesof the constani in lines (14) to

(16), there should be parameter lists as well behind each occurrence
of constan€. In this case, however, the instantiations for the variables
in the variable lists of in lines (14) to (16) arexactly the samas

in the definition itself (so variabl& is instantiated withG, variable-

with -, etc.). This shows once more that it can be very economical to
allow a shorter notation for parameter lists such that reconstructable or
unchanged heads of parameter lists may be omitted. This is only sugar
and can always be undone. (In Automath [7] this is a syntactic feature.)

revised. tex; 15/12/2003; 10:08; p.45



46

Kamareddine and Nederpelt

The context for the definitio® := ¢(e) in line (9) of the example is
larger than necessary. In fact, we could do with con®xt SET,e:
G,H: sSeT,¢ : G— H and corresponding parameter li&,e H,¢). In
our example, however, we keep close to the originaL&ext, in which
the local definitiore = ¢(e) is made in the full context of the theorem.

Lines (12) and (13) are a direct consequence of our wisivtid free
variablesin a WTT-book. Note thag is aboundvariable in line (11),
but without line (12) it would be &ee variablein line (14).

Itis, in fact, a free variable in the original mathematical text. This is due
to the habit in mathematics to extend the scope of an existentially bound
variable outside the formula in which it is introduced:

There is ge G such thatp(g) = h. Then...¢(e) «d(g) = d(e-g) =
o9 =....

The occurrences dj after Then.. are free! What is actually happening
in such cases is that tlexistenceof such ag automatically induces the
(silent) introduction of such g (for conveniencealled gagain) outside
the scope of thé-binder. Repair of this habit is straightforward, by using
the corresponding logical rule @relimination:

dxeu (P(X))7 Vxeu (P(X) = I‘)

r

This rule is the background for lines (12) and (13), since lines (12)
to (14) prove thatvgeg($(g9) = h = € «h = h), which, together with
(11) and3-elimination justifies the conclusion (15). Hence, the apparent
detourvia lines (12) to (14) is necessary in order to mend a frequent
short cut in mathematical texts. This complication is not the fault of our
translation.

Line (14) is a chain of statements: there are as many statements in this
line as there are =-signs, and maybe even one morampiit conclu-
sion éxh = h, which is repeated in (15) (but in a smaller context).

The translation is as near as possible to the original text (but for the
mending of the consequences of the existential quantifier, see above).
This implies that intermediate results which one would expect in the
formal version, are nevertheless left out. E.g., one could expect the line
Vhen (€ xh = h) preceding line (16), in the same context (1) —8).

Note that weomit all justificationsn WTT-books. Our reason for doing
this is, that we want to have a rather simple syntax fori\wwhich is

21 This is the logical consequence of lines (10) and (15), due ty-inéroduction rule.
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neither concerned witmeta-argumentabout the logical or mathemat-

ical correctness, nor with the interdependence of statements induced by
these correctness arguments. Hence, we find no wordSiileg Hence

or Becausen WTT. The drawback of this is, that the argumentation
structure of a book can become unclear. This is mended when we make
the next step: translating W into type theory.

However, as we said in Remark 3.6, we may choose instead to add to the
WTT-book above, two columns, one with labels and one with comments.
In thelabel column, to the left of the sample ¥¥-text, we could write

e Atline (9): Proof startandDefinition,
e Atline (16): Proof end
e Atline (17): Theorem

In thecommentgolumn, to the right of the text, we could write

e Atline (11): From(8) or Because of7), (8) and (10),
e Atline (15): 3-elimination on(11) and (12)to (14),

e Atline (16): From(10)to (15), V-introduction and definition of left
unit element

We leave it as an easy exercise to give a derivation of tme¥bok above.

6. Final remarks

Presently, there is a great variety of proof checkers and theorem provers. We
mention Automath [7], Mizar [17], NuPrl [5], Coq [2], Isabelle [IGMEGA

[3] and PVS [18]. These systems provide help for the users, e.g. by offering
a friendly user interface or by enabling the usetaxdtics These tactics are
special assignments to the computer, in order to simplify or develop the actual
proof goalduring the construction or check of a proof. Some of these systems
are based on a fully formalized language for mathematics. Others like PVS
only provide tactics to the user, a completed proof is not a text with mathe-
matical content, but only a listing of the tactics used. Some theorem provers
offer a mathematical vernacular in thetWsense, i.e. an incomplete, textual
rendering of a mathematical content which has resemblance with informal
proofs. Below we discuss some of these.

— The theorem proving system Coq [2] incorporates in its documentation
a kind of intermediate specification language, cal@alling?. This

22 geehttp://coqg.inria.fr/doc/node.0.0.htn .
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vernacularis a formally defined language meant for the development
of mathematical theories and to prove specifications of programs. The
intention is that it is usable adanguage of commander Coq, helping

the Cog-user to stay closer twrmal intuition when proving a mathe-
matical proposition. It is, however, not meantaéirst step in formal-
izationas WTT is. It has a rather specific form which does only distantly
reflect a mathematical discourse and it is also not very adequate for the
purposes exposed in this paper.

The mathematical vernacular proposed in [9] relies on Cog. It provides
instructivelabels (like Axi om Defi nition, Hypot hesi s, St at enent,

Proof ). Moreover, a number of natural deduction rules are replaced with
more intuitive alternatives (e.g3-elimination). The aims are clearly
different from ours: labels as the ones above are out of scope in our
formalisation and so areommentsabout the (e.g. logical) structure, as

is discussed in Remark 3.6. Moreover, sincg& s not concerned with
validity, the proof structure itself (e.g., natural deduction) has no formal
counterpart in our system. Consequently, a Proof Synthesis Algorithm
as in [10] has no direct application in W. However, when WT is
translated into more complete formal languages (see Section 6.1), the
ideas of Dowek will most probably be fruitful and inspiring.

The aim of the projecQMEGA [3] is to develop a software environ-
ment for the support of a scala of theorem provers. The built-in version
of the mathematical vernaculais meant to give the user on request a
mathematics-like computeiew of an already checked proof. It has the
same drawbacks as the mathematical vernacular of Coq.

The basic languages of Mizar [17] and Isar [20] are close to the reliabil-
ity criterion and have proven to be suited for expressing large corpora of
mathematical content. Their syntax is, however, rather complicated and
requires much of an ordinary user to become acquainted with it. [20]
compares both Isar and Mizar listing their weak and strong points.

In theTheorema projedd] computer algebra systems are extended with
facilities for mathematical proving. The provers are designed to imitate
the proof style humans employ in their proving attempts. The proofs can
be produced in human-readable style. However, this is donpolsy-
processinga formal proof in natural language. This deviates from our
approach, for which no formal proof needs to be present. The natu-
ral language part of Theorema has little structure and restricts itself to
comments on the logical steps employed (a part that does not appear in
WTT). The linguistic facilities of WT are absent in Theorema'’s natural
language. Moreover, the text style of Theorema (insofar as we could see)
is not based on a formal grammar for the textual language.
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— In [16], a large amount of work has been done on a typed functional
programming language GF whose purpose is to define languages such
as fragments of natural languages, programming languages and formal
calculi. GF is an extension of logical frameworks which are implemen-
tations of type theory. GF is based on Martin-L6f’s type theory. Our
work is different and complementary to that of Ranta. We do not at all
assume/prefer one type theory instead of anotherr\ig completely
independent from any particular type theory. We believe that the formal-
isation of a language of mathematics should separate the questions of
which type theory is necessary for which part of mathematncvhich
language should mathematics be written iforeover, mathematicians
don’t usually know or work with type theories. Mathematicians usually
do mathematics (manipulations, calculations, etc), but are not interested
in general in reasoningboutmathematics.

As far as we know, no theorem provers provide an independent language
for describing mathematical content in such a manner that the reliability

criterion is sufficiently accounted for. Existing mathematical vernaculars are

moreover (to our knowledge) not ready for immediate use, and if accessible
for a mathematical user, then with great difficfty.

6.1. FUTURE WORK

We list a number of items concerning possible future work.

— The syntax and derivation rules of #¥ must betestedon a corpus of
mathematical texts from various areas in mathematics and with consid-
erable size. Former tests (cf. Section 1), are not enough to allow con-
clusions about WT. Forthcoming tests should enlist a potentigkers
group ranging from students to all sorts of mathematicians: both in the
theoretical and applied field, and working in either teaching or research.

— In this testing stage, it should be considered whether certain forms of
sugaringcan safely be added to Y. This sugaring is probably desir-
able in order to make Wr an acceptable language tool for the users.
For example, the possibility of infix notation makes the text more user-
friendly. This also holds for other sugaring devices, such as the possibil-
ity of omitting empty parameter lists.

Another possible sugaring which may be advantageous is the tlag ®f
as employed in Section 5. In the examples of that section, the benefits of
the flag notation were explained.

23 Seehttp: //wwv. cs. kun. nl / ~freek/ di gi mat h/ bycat egory. htni for an extensive
overview of systems implementing mathematics in the computer.
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For enabling a consistent use of certain forms of sugaring, the syntax of
WTT must be extended. It may be preferable to do this in a kirghef]|

built on top of WI'T, to maintain the reliability criterion for WT. The
development of such a shell is user-driven and may require arbitrary
decisions, without much coherence. In this respect, the sugaring-shell
differs from the underlying WT syntax, which has a tighter structure
and a more mathematically-driven motivation.

Itis desirable tomplementWTT. A parser should be able to parserw
expressions and to check whether such expressions obey to the grammar
of Section 2. Next, a (grammatical) type checker must be implemented
which establishes the weakly well-typedness of contexts, books etc. ac-
cording to the derivation rules of Section 3. User-friendliness of such

a type checker is of importance, in order to make the tool acceptable
for mathematicians who wish to write (or translate) their text in(to)
WTT. This may ask for things alfags but also for other aids such as
pop-up windows, appropriate input-output handling, interactive commu-
nication, possible storage and retrieval of texts and contexts.

It is interesting to investigate how W can beenrichedin the direc-

tion of either type theory, or another acceptable complete mathematical
language, such as that of Zermelo-Fraenkel Set Theory. A first step in
that direction is to incorporate labels, proofs and proof methods. This
encapsulates tHabelandcommentgsolumns mentioned in Remark 3.6.

In this stage of the research, itis conceivable thelhain of intermediate
languagesbetween WT and — for example — full fledged type theory

is the best manner to bridge the gap. In this case, translation protocols
should be devised for each link of the chain. For different transitions
in this translation process, different specialists may be the preferred ex-
ecutives: mathematicians, computer scientists or type theorists. It may
be worth while to compare this research with work on (hierarchies of)
specification languages as has been done in computer science.

It should be investigated hosomputer assistancean be invoked in
either the full transition process or in one of the translation stages from
WTT to a completely formalized version of a mathematical text.

Finally, it can be investigated how the results obtained can be made
profitable for the community of mathematicians, both in developing and
in using mathematics, in several degrees of precision. For example, easy
access to WT technology can be useful for computer help in writing
mathematics. On the other side of the spectrum, we have the complete
formalization of a certain text, which is suitable for a complete check
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on correctness and subsequently for storage of correct mathematical
knowledge in a — publicly accessible — data base.

6.2. CONCLUSION

The famous mathematician Frege was frustrated by the informalities of the
common mathematical language!C. . .. | found the inadequacy of language

to be an obstacle; no matter how unwieldy the expressions | was ready to
accept, | was less and less able, as the relations became more and more
complex, to attain precision.(Begriffsschrift Preface, see [11]). In 1879,

he wrote theBegriffsschrift(see [11]), whosdirst purpose is to provide us
with the most reliable test of the validity of a chain of inferen(@gain, see
Begriffsschrift Preface). Then he wrote therundlagenand Grundgesetze

der Arithmetik[11] where he argued that mathematics is a branch of logic
and described arithmetic Begriffsschrift Russell wrote a letter to Frege [11]
informing him of a paradox in Frege’s work and his own (see [12]). To avoid
the paradox, Russell usdgpe theoryin the famousPrincipia Mathemat-

ica [21] where mathematics was founded on logic. Advances were also made
in set theory [22], category theory [13], etc., each being advocated as a better
foundation for mathematics. But, none of the logical languages of the 20th
century satisfies the criteria expected of a language of mathematics. A logical
language does not have mathematico-linguistic categories, is not universal to
all users of mathematics, and is not a satisfactory communication medium:

— Logical languages make fixed choices (first versus higher order, pred-
icative versus impredicative, constructive versus classical, types or sets,
etc.). But different parts of mathematics need different choices and there
is no universal agreement as to which is the best formalism.

— A logician writes in logic their understanding of a mathematical-text
as a formal, complete text which is structured considerably unlike the
original, and is of little use to therdinary mathematician.

— Mathematicians do not want to use formal logic and have for centuries
done mathematics without it.

So, mathematicians kept toMC. In this paper, we gave W, an alterna-
tive to CvL which avoids some of the features of the logical languages which
made them unattractive to mathematicians. We hope thet Wil open a
new useful era of collaboration between mathematicians and logicians:

— WTT- and QuL-texts are related by the reliability criterion (aw-text
covers what its ®L-version intended). A mathematician can check this.
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— Although both the @L-text and its translation into Wi are incomplete,
WTT has additionalevelssupporting more rigor. One can define further
translations into more and more logically-complete versions. Since these
translations are from formal to formal texts, it is easy to check reliability
between a text at leyednd its more complete version at lgvel

— As the path from a @L- to a logically-complete text is divided in
clearly connected phases, it can be built with or without the help of the
mathematician.

The above bridging between mathematics and logic can also reach computer
science and proof checking. In 1967 the famous mathematician de Bruijn
began work on logical languages for complete books of mathematics that
can be checked by machine. People are prone to error, so if a machine can
do proof checking, we expect fewer errors. Most mathematicians doubted
de Bruijn could achieve success, and computer scientists had no interest at
all. However, he persevered and built Automath [14] (AUTOmated MATHe-
matics). Today, there is much interest in many approaches to proof checking
for verification of computer hardware and software. Many theorem provers
have been built to mechanically check mathematics and computer science
reasoning (e.g. Isabelle, HOL, Coq, etc.). In practice ML @ext is struc-

tured very differently from a computer-checked text proving the same facts.
Making the latter involves extensive knowledge and many choices:

— First, the needed choices include:

e The choice of the underlying logical system.

e The choice of how concepts are implemented (equational reason-
ing, equivalences and classes, partial functions, induction, etc.).

e The choice of the formal system: a type theory (dependent?), a set
theory (ZF? FM?), etc.

e The choice of the proof checker: Automath [14], Isabelle [15],
Coq [2], PVS [18], Mizar [17], etc.

— Any informal reasoning in a @L-text will cause headaches as it is
hard to turn a big step into a (series of) syntactic proof expressions.

— Then the L -text isreformulatedin a fully completesyntactic formal-
ism where every detail is spelled out. Very long expressions replace a
clear QuL-text. The new text is useless to ordinary mathematicians.

Thus, automation is user-unfriendly for the ordinary mathematician/computer
scientist. It is the hope that W may help in dividing the jump from informal
mathematics to a fully formal one into smaller more informed steps.

24 Tacticshelp but give drack for the final proof which is not informative nor accessible.
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