
A refinement of de Bruijn’s formal language of mathematics�
Fairouz Kamareddine (fairouz@macs.hw.ac.uk)†
Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Rob Nederpelt (r.p.nederpelt@tue.nl)
Math. and Computing Sc., Eindhoven Univ. of Technology, P.O.Box 513, 5600 MB
Eindhoven, NL

1997/01/23

Abstract. We provide a syntax and a derivation system for a formal language of mathematics
calledWeak Type Theory(WTT). We give the metatheory of WTT and a number of illustrative
examples. WTT is a refinement of de Bruijn’s Mathematical Vernacular (MV) and hence:� WTT is faithful to the mathematician’s language yet is formal and avoids ambiguities.� WTT is close to the usual way in which mathematicians express themselves in writing.� WTT has a syntax based on linguistic categories instead of set/type theoretic constructs.

More so than MV however, WTT has a precise abstract syntax whose derivation rules resemble
those of modern type theory enabling us to establish important desirable properties of WTT

such as strong normalisation, decidability of type checking and subject reduction. The deriva-
tion system allows one to establish that a book written in WTT is well-formed following the
syntax of WTT, and has great resemblance with ordinary mathematics books.

WTT (like MV) is weak as regards correctness: the rules of WTT only concernlinguistic
correctness, its types are purely linguistic so that the formal translation into WTT is satis-
factoryas a readable, well-organized text. In WTT, logico-mathematical aspectsof truth are
disregarded. This separates concerns and means that WTT� can be easily understood by either a mathematician, a logician or a computer scientist.� acts as an intermediary between the language of mathematicians and that of logicians.

Keywords: Mathematics, Formal Language, Mathematical Vernacular, Weak Type Theory.

1. Introduction

The way in which mathematical ideas are usually expressed in writing (books,
papers, etc.) isinformal, in the sense that there exists no prescribed syntax for
the presentation of mathematical contents. We give the nameCommon Math-
ematical Language(CML ) to this linguistic machinery which mathematicians
preferably use to express mathematical content and to communicate with their
fellow mathematicians. We concentrate onwritten specimens of CML

It is useful to also have aformal language for the same communication pur-
poses. Such a language may act as a substitute for CML . We propose aWeak� We are grateful for the anonymous referees for their useful suggestions.

† Contact author. Address as above. Tel: +44 131 451 3868. Fax: +44 131 451 8179.

© 2003Kluwer Academic Publishers. Printed in the Netherlands.

revised.tex; 15/12/2003; 10:08; p.1



2 Kamareddine and Nederpelt

Type Theory(WTT), intended to be a formal language for expressing math-
ematical content. WTT aims to keep as much as possible of the advantages,
and to remove as much as possible of the disadvantages of CML .

1.1. A COMPARISON BETWEENCML AND WTT

We start with a list of what we see as the most salientADVANTAGESof CML :� ExpressiveCML is suited for expressing all kinds of mathematical men-
tal constructs, ranging from mathematical entities and relations, to math-
ematical reasonings and theories. It also permits relevant mathematico-
linguistic categories, such as definitions, theorems and proofs.� Time-honouredCML has a long tradition and is refined by intensive use.� SatisfactoryCML is approved by a large community of mathematicians,
and still proves to be an adequate communication medium.� UniversalCML is used world wide and offers a standard format to users.� FlexibleNot only can CML accommodate many branches of mathemat-
ics, but it is also easily adaptable to new developments in mathematics.

However, there are alsoDISADVANTAGESof CML :� Informal Since CML is based on natural language – mixed with math-
ematical symbols and formulas – it has no well-defined formal basis,
suffers of imprecision, and relies on the understanding of the user.� AmbiguousCML inherits the ambiguities of natural language, such as
unspecified anaphoric relations (discourse references) and overloading
of frequently used words. It also introduces new ambiguities in the math-
ematical extensions to the natural language, as used in CML .� IncompleteIn CML , much is left implicit, the writer making appeal to
the intuition or common sense of the mathematical reader.� Poorly organisedA common mathematical text is only partly structured
in textual units. Many structural aspects are omitted or only hinted at.� Automation-unfriendlySince a CML -text is a plain text, its mathematical
content cannot be exploited by invoking computer assistance.

We revisit the above comparing WTT and CML . First, CML ’s advantages:� ExpressiveThe expressivity of WTT is comparable to that of CML .� Time-honouredWTT is novel, but it respects the mathematical traditions.

revised.tex; 15/12/2003; 10:08; p.2



A formal language of mathematics 3� SatisfactoryThough the authors have ample experience with WTT, its
satisfactory usability of course still has to be demonstrated.� UniversalAt the moment only potentially.� FlexibleWTT is not as flexible as CML . CML allows both language and
meta-language whereas WTT only allows language. So meta-language
must be pushed to the language level, which may not be possible.

As regards the disadvantages:� Formal The main gain of WTT over CML is its formality. WTT has a
well-defined syntax which provides for uniformity of expression.� UnambiguousMost of the ambiguities in the CML -texts disappear in the
translation to WTT. For example, the anaphoric obscurities in CML are
resolved in WTT by the strict context management.� IncompleteA text in WTT is still incomplete, but less so than CML .
Moreover, WTT can be translated further into more complete theories.� Clearly organisedA WTT-text is clearly organized.� Automation-friendlyWTT is fit for computerization. In translating WTT

into stronger versions, the potentials for automation grow fast.

1.2. FEATURES OFWTT

In our design of WTT, we keep close to the Common Mathematical Lan-
guage. Our main reason for doing this isreliability: it is of uttermost impor-
tance that the formal WTT-version of a piece of mathematics covers exactly
the intended contents of the original CML -version. Since the latter is informal
– already in the mind of the mathematician who devised it, but still in the
written version – it is impossible to have an objective check on the correspon-
dence between the original and the formalized text. Hence it is necessary to
invoke ahumanjudgement on this correspondence, for each piece of math-
ematics under consideration. This judgement can be optimally trustworthy
(albeit never for one hundred percent) if the formal version is as close as
possible to the informal one. We call this thereliability criterion.

As soon as a reliable formal translation of a piece of informal mathematical
text has been made, we are on solid ground. Such a translation will still
be far from complete, but since it is formal, it is possible to define further
translations into more complete versions. Since these subsequent translations
are from formal texts to formal texts, it is much easier to check reliability:
one only needs to check the reliability of the translationprocedure.

We list some useful features of WTT as a formal language for mathematics:

revised.tex; 15/12/2003; 10:08; p.3



4 Kamareddine and Nederpelt� WTT respects all linguistic categories which a mathematician usually
employs, so not only the notionssetandelementof a set, but alsonoun
and adjective, already present innatural language and amply used in
CML . This brings a WTT-text nearer to the intuition of a mathematician,
since the fine details of mathematics are better accounted for in a mixture
of mathematical and natural language, than in a set-theoretic setting.� Although the linguistic categoriesnounandadjectiveseem superfluous,
they help to minimize communication losses in this first formalisation
step (from CML to WTT) and aid the connection with computational
linguistic systems.1 Sieving superfluous ingredients can happen at a later
stage (e.g., in a further translation into type theory).� WTT avoids the purely set-theoretic setting because mathematicians do
not have a purely set-theoretic view on mathematics! A collective notion
(a type) is not always identifiable with aset and the notion-subnotion
differs from the set-subset. Also, although predicates can be identified
with subsets, there are subtle differences between the two.� Ambiguities in CML are detectable and solvable in WTT.� WTT also accommodates all sorts ofbinders(such as

S
or ∑).� WTT has basic notions like:assumption, declaration of a fresh variable,

definition, statement(including theoremandstep in a proof).� WTT is consistently structured and usescontexts, which are lists of as-
sumptions and variable declarationssetting the stagefor a statement or
a definition. These contexts reflect the introductory statements usually
expressed in mathematics as e.g.Let . . . or Assume . . ..� The overall form of a text in WTT is a so-calledbook, being a sequence
of so-calledlines, which are statements and definitions, each embedded
in their own context. Each WTT-line can be seen as the translation of a
mathematical expression stating that somethingholds in a certain con-
text. Hence, one finds in a book a –probably connected– fragment of
mathematical knowledge, consisting of lines expressing mathematical
facts (like theorems, lemma’s, but also steps in a reasoning or in a proof)
and lines expressing definitions (possibly in a context).

1 It may be argued that we concentrate in WTT on adjectives and nouns, and not on other
linguistic phenomena like anaphors and ellipses that carry structure in CML . We prefer how-
ever to concentrate on the incompleteness aspect of WTT in order to illustrate the usefulness
of this style compared with the usually assumed theorem proving style of full formalizations
of mathematics.

revised.tex; 15/12/2003; 10:08; p.4



A formal language of mathematics 5

Of course, we do not expect that mathematicians convert to using WTT ex-
clusively. On the contrary, the common mathematical language, as found in
books and papers, is good enough and, moreover, usable and familiar to a high
degree. However, WTT is formal and so close to the usual linguistic format
used by mathematicians, that it can easily be adopted by mathematicians asa
second language. This can be advantageous for the following reasons:� In complex situations, thesecond languageWTT can help the mathe-

matician to identify the (logico-mathematical) structure where he works.� It can also help a person (an expert, a teacher or a student) to be fully
aware of the complexity of a mathematical notion, structure or reason-
ing, in order to better understand the situation.� WTT provides an excellent basis for communication: it enables that
many persons work productively on the same task and that the text
administration of a mathematical project gets a firm basis.� WTT may act as alingua francaor a mathematical vernacular2 for
mathematicians, since it enables a mathematician to express mathemat-
ics in a uniform way. As WTT is clearly structured, it forces the math-
ematics writer to think about the interdependencies of the notions used
such as contexts and instantiations of constants.� WTT can act aspecification languagefor mathematics, since it enables
the mathematician to explicitly specify which mathematical notions, def-
initions, statements, theorems and proofs he/she likes to use. In this
respect, WTT resembles specification languages in computer science,
which enable one to formally represent therequirements. In computer
science, a specification isrealizedin a computer program. In mathemat-
ics, a WTT-book can berealizedin a type-theoretic program: a sequence
of lines obeying the rules of some system of type theory.� A WTT-book acts as a(mathematical) discourse representation struc-
ture, bringing a number of CML -implicit structural relations to surface.� WTT is easy to use, as shown by experiences with mathematics and
computer science students at Eindhoven University of Technology. This
started in 1979 when de Bruijn developed a course on the mathematical
vernacular. This course became part of the curriculum for mathematics
teachers. After de Bruijn’s retirement, Nederpelt took the course and
continues to teach it today using WTT instead of MV.

2 The namemathematical vernacularwas coined by de Bruijn, who was the first to develop
sucha language for mathematics(see F3 of [14]) upon which this work is based.Vernacu-
lar means:the language of a particular group(in this case: the mathematicians). The word
mathematical vernacularis now used for all kinds oflanguages for mathematics.

revised.tex; 15/12/2003; 10:08; p.5



6 Kamareddine and Nederpelt

1.3. AUTOMATH-RELATED MATHEMATICAL VERNACULARS

De Bruijn intended Automath (quote from [6], cf. [14] p. 201 and 210)not just
[...] as a technical system for verification of mathematical texts, it was rather
a life style with its attitudes towards understanding, developing and teaching
mathematics.He added:The way mathematical material is to be presented
to the system should correspond to the usual way we write mathematics. The
only things to be added should be details that are usually omitted in standard
mathematics.This paper is based on de Bruijn’s ideas.� A direct source of inspiration for WTT was the mathematical language

WOT (Wiskundige OmgangsTaalor mathematical everyday language)
[8] devised by de Bruijn. The description of WOT has always been quite
general and descriptive. The language WTT is based on ideas employed
in WOT, but it is independent and worked out into details.� We also take ideas from de Bruijn’s languages SEMIPAL and PAL [7]
used to represent theadministrative structureof mathematical texts. In
both languages one can account for contexts, parameter lists and vari-
ables (in PAL also types). However, these languages are by nature insuf-
ficient to represent mathematical contents and they miss the expressivity
necessary to comply with the reliability criterion.� Similarly, we take ideas from themathematical language Automath[7].
However, the latter requires mathematical content to be completely for-
malized in order to enable immediatetheorem checking. By its amount
of details, it is far too complex to obey the reliability criterion.

The greatest influence however is MV which accommodates de Bruijn’s ideas
for a language of mathematics. De Bruijn presented his MV in two rounds
(we quote F3 of [14], p. 868):In the first round we express the general
framework of organization of mathematical texts. It is about books and lines,
introduction of variables, assumptions, definitions, axioms and theorems [...].
In the second round we get the rules about validity.His division in two rounds
corresponds in WTT to our abstract syntax as round 1 and our derivation rules
as round 2. But MV accommodates more logic than is found in mathematical
texts and hence MV does not comply with the reliability criterion.

Similarly to adopting his rounds, we adopted in WTT de Bruijn’s wish not
to take sets as the primitive vehicles for describing elementhood(F3 of [14],
Section 1.12). De Bruijn looked at (imaginary) substantives likedemisemitri-
angle, but also well-known ones aspoint, number, function,... He did not want
to use sets only. In F3, Section 1.15, he says:Our effort in describing a large
part of the language in terms of both substantives and sets, instead of sets
only, gives some duplication in the language rules that might be considered
as superfluous. We of course would like to try to eliminate one of the two, and

revised.tex; 15/12/2003; 10:08; p.6



A formal language of mathematics 7

deal with sets only, or with substantives only. Both can be done, of course, but
none of the two seems to give anything that looks more satisfactory than what
we have in our MV.De Bruijn talks aboutsubstantives, namesandadjectives.
In WTT, we also use substantives (which we callnouns) and adjectives.

Similarly, we will adopt de Bruijn’s notions of high- and low-typing. We
will use the meta-typing (high-typing) in WTT itself (rather than in the meta-
language) and will keep the usual low typing. An example of high-typing in
MV is A :: substantive whereasa : A is a low-typing. These correspond in
WTT to the high-typingA :: N and the low-typinga : A.

In MV, many logical and mathematical choices are made, which WTT

still postpones. Moreover, MV incorporates certain correctness requirements,
there is for example a hierarchy of types corresponding with sets and subsets.
Therefore, MV is suited for a partial formalization of mathematical content,
but it is alreadyon its wayto a full formalization, while WTT is not. Hence,
WTT is closer toa given informal mathematical content than MV.3

De Bruijn said in F3 of [14] (p. 865):It is quite conceivable that MV, or
variations of it, can have an impact on computing science. A thing that comes
at once into mind, is the use of MV as an intermediate language in expert
systems. Another possible use might be formal or informal specification lan-
guage for computer programs. Our WTT may open the possibility for the
mathematician to get computer help in the development of his ideas. E.g.:� Verificationof mathematical theories, e.g. by a type-theoretic computer

program. This requires translating, in one or more steps, a WTT-text into
type theory and the use of a typechecker. This translation is greatly tech-
nical and may be done by a type theory expert, not the mathematician
who wrote the WTT-text. This leads toseparation of concernsreliev-
ing the mathematician from the cumbersome task of filling the (possi-
bly uninteresting) details. Another possibility is that a clever computer
program does (part of) the translation, in interaction with either the
mathematician who wrote the WTT-text or with a type theory expert.� Documentationof bodies of checked mathematical texts in an archive
or a database which is publicly accessible. One of theviews for the
inspection of such a database could be WTT.� Computer assistance in thedevelopmentof mathematics. A mathemati-
cian may use WTT as arough formal language in which he expresses
ideas and conjectures. A computer program translates the WTT-text into
type theory, in communication with the mathematician, keeping track of
all holes(open places in the reasoning) andproof obligations.

3 It is worth while to investigate whether MV (or a variant thereof) is suited as a next stage
of intermediate language in the direction of a full formalization.

revised.tex; 15/12/2003; 10:08; p.7



8 Kamareddine and Nederpelt

1.4. AN OVERVIEW OF THE PAPER� In Section 2 we give the abtract syntax of WTT which describes the
build-up of a book from its atoms (variables, constants, binders), via
phrases (terms, sets, nouns and adjectives) and sentences (statements
and definitions) up to (WTT-)contexts, (WTT-)lines and (WTT-)books.� In Section 3 we give a derivation system for WTT following the syntax
described in Section 2. The derivation system allows one to establish that
a book written in WTT is well-formed following the syntax of WTT, and
has great resemblance with ordinary mathematics books.� In Section 4 we establish the metatheory of WTT and the properties of
its derivation system. We show that weak type checking is decidable,
enjoys subject reduction with respect to the unfolding of definitions in a
book and that the unfolding of definitions is strongly normalising.� In Section 5 we give a number of examples.� In Section 6, we compare with other work and we conclude.

2. The abstract syntax for WTT

We present a syntax for Weak Type Theory, based on linguistic categories.
Constants and binders (like∑ and

S
) are taken asfirst-class citizens. The

categories include nouns and adjectives, which are not usually present in
formalizations of mathematics (apart from Mizar [1, 17]). With a view to
these categories, we introduce a number of binders, to facilitate linguistic
constructions. Definitions play a prominent role in WTT and reflect the math-
ematicians’s habit to use the definition-mechanism. As in type theory, con-
texts are important in WTT, giving the immediate background for statements
and definitions by listing their free variables together with their types. The
notion of line expresses a statement or a definition together with its context.
The final entity in the WTT-syntax is thebook, being a sequence of lines. The
book is the formal counterpart of amathematical text.

2.1. LINGUISTIC CATEGORIES

In Weak Type Theory (or WTT) we have the following linguistic categories:� On theatomiclevel: variables, constantsandbinders,� On thephrase4 level: termsT , setsS, nounsN andadjectivesA ,
4 According to the Concise Oxford Dictionary, a phrase isa group of words forming a

conceptual unit, but not a sentence, a discourse isa connected series of utterances.

revised.tex; 15/12/2003; 10:08; p.8



A formal language of mathematics 9� On thesentencelevel: statementsS anddefinitionsD,� On thediscourselevel: contextsΓI , lines l andbooksB.

There is a hierarchy between these levels: atoms are part of phrases; atoms
and phrases are part of sentences; and discourses are built from sentences.

The syntax given below, establisheswell-formednessconditions for these
categories. We assume that the sets of variables, constants and binders are
fixed, given beforehand, and mutually disjoint. For convenience, we suppress
the wordwell-formedin the syntactic description of all categories.

2.2. ABSTRACT SYNTAX

We use abstract syntax for the description of the various syntactic categories.
For example, in Section 2.11 we describe the collection of all books,B, in
abstract syntax as:B = /0 j B Æ l to express that a book is eitherthe empty
bookor a bookB followed by a linel. By convention,/0Æ l is written asl.

We make use of bindersB (e.g.∑ or8), in the abstract formatBZ(E), where
thesubscriptZ is adeclarationintroducing a (bound) variable and its type,
e.g.x2 N (see Section 2.7.1). ExpressionsE are given in Section 2.5.� ∑x2f0;1;:::;10g(x2) and8x2N(x�0) are examples of formulas with binders.� The binding symbol for set comprehension,f: : : j : : :g, fits in this format

after a slight modification. E.g., writefx2 Rjx> 5g asSetx2R(x> 5).
For uniformity, our standard for set notation will be the latter one.

Figures 1 and 2 give a list of the syntactic categories and their abstract syntax,
followed bymetasymbolsfor our various categories. We note:� Expressionsare used in Section 2.5 and represent the various categories

that can follow a binder. An expression is a kind ofcollectivecategory.
So after a binder we may find a term, a set, a noun or a statement.� Parameters(see Section 2.4) represent the categories on which constants
may depend. Parameters have a collective character.� Typingsanddeclarationsare special statements, see Section 2.7.1.

NOTATION 2.1. In the abstract syntax, upper indices and lower indices play
different roles.Upper indicesare part of the symbol, butlower indicesbelong
to the abstract syntax. For example, withBTZ (E), we mean all constructs
composed of a binder in the setBT (e.g.lim), subscripted with a declaration
from Z (e.g. n2 N) and followed by an expression inE (e.g.1

n) between
parentheses. The superscriptT attached toB says that the binders inBT are
term-forming. Hence,limn2N(1

n) is a termbelonging toBTZ (E).
revised.tex; 15/12/2003; 10:08; p.9



10 Kamareddine and Nederpelt

level Main abstract syntax Meta-

category symbol

atomic variables V= VT jVSjVS x

constants C= CT jCSjCN jCA jCS c

binders B= BT jBSjBN jBA jBS b

phrase terms T = CT (!P )jBTZ (E)jVT t

sets S= CS(!P )jBSZ(E)jVS s

nouns N = CN (!P )jBNZ (E)jAN n

adjectives A = CA(!P )jBAZ(E) a

sentence statements S = CS (!P )jBSZ(E)jVS S

definitions D = DϕjDS D

Dϕ = CT (!V) := T jCS(!V) := SjCN (!V) :=N jCA(!V) := A
DS = CS (!V) := S

discourse contexts ΓI = /0 j ΓI;Z j ΓI;S Γ
lines l = ΓI.S j ΓI.D l

books B = /0 j BÆ l B

Figure 1. Main categories of syntax

Other category abstract syntax Meta-

symbol

expressions E = T jSjN jS E

parameters P = T jSjS (note:
!
P is a list ofPs) P

typings T = S : SET jS : STAT jT : SjT :N jT : A T

declarations Z = VS : SET jVS : STAT jVT : SjVT :N Z

Figure 2. Categories of syntax

revised.tex; 15/12/2003; 10:08; p.10



A formal language of mathematics 11

2.3. VARIABLES

The setV= VT jVSjVS is fixed, infinite, and divided into three disjoint subsets:

(VT ) Variables ranging overterms,

(VS) Variables ranging oversets,

(VS ) Variables ranging overstatements.

2.4. CONSTANTS

Constants play an important role in mathematical language. They are either
primitive5 or they act as an abbreviation. In the latter case a constant is intro-
duced in the left hand side of adefinition, being a special kind of sentence
(see Section 2.8). Both primitive and defined constants can beusedafter
having been introduced.Doingmathematicswithoutconstants (hence without
definitions) is theoretically possible but practically unfeasible [14].

The setC = CT jCSjCN jCA jCS is fixed, infinite and is disjoint from the set
of variables.C is divided into the following five disjoint subsets:(CT ) Constants forterms; (CS) Constants forsets;(CN ) Constants fornouns; (CA) Constants foradjectives;(CS ) Constants forstatements

A constant is always followed by aparameter list. We denote this asC(!P ).
This list has for each constant a fixed length� 0, thearity of the constant.
ParametersP are either terms, sets or statements:P = T jSjS :6

(If the parameter list is empty we writec instead ofc( ).)
REMARK 2.2. We often usesugaredversions of the combinationconstant
followed by parameter list. For example, instead ofthe centre(C) we write
the centre ofC, and instead of+(3;6) we write the infix formula3+6.

We also often write things like x2 N instead of x: N. In doing this, we
confuseis element ofwith has type. Again, this is for easy understanding.

These sugarings are not part of the syntax ofWTT and should beundone
whenever formal accuracy is at stake. We do not incorporate sugaring for-
mally in WTT, since we want to keepWTT simple: it is not easy to decide
wheresugaris useful and adding rules for sugaring introduces arbitrariness.
We are aware that this policy of ours undermines our claim thatWTT is as
close as possible toCML . We leave this dilemma to further research.

5 Primitive constants are introduced axiomatically, they are not defined in terms of other
notions. E.g., the primitive setN of the natural numbers, the primitive functions (successor)
from N to N or the primitive element 0 inN.

6 We use a list format for the parameters (un-Curried), because this is usual in Automath-
like systems and also because this is how mathematicians use parameters.

revised.tex; 15/12/2003; 10:08; p.11



12 Kamareddine and Nederpelt

EXAMPLE 2.3. For each kind of constants, we give examples of constants
with parameter lists and then state what the constants resp. the parameters
are.

(CT ) Constants for terms with parameter lists:
π, the centre ofC, 3+6, the arithmetic mean of 3 and 6, d(x;y), ∇ f .

The constants are:π, the centre, +, the arithmetic mean, d and∇.

The parameter lists are:( ), (C), (3;6), (3;6), (x;y) and( f ), resp.

(CS) Constants for sets with parameter lists:N, AC, V !W, A[B.

(where AC is the complement of A). The constants are:N, C,!, [.

The parameter lists are:( ), (A), (V;W), (A;B).
(CN ) Constants for nouns with parameter lists:a triangle,
an eigenvalue ofA,an edge of4ABC,a reflection ofV with respect tol.

The constants are:a triangle, an eigenvalue, an edge, a reflection.

The parameter lists are:( ), (A), (4ABC), (V; l).
(CA ) Constants for adjectives with parameter lists:prime, surjective,
Abelian, continuous on[a;b℄.
The constants are:prime, surjective, Abelian, continuous.

The parameter lists are:( ), ( ), ( ), ([a;b℄).
(CS ) Constants for statements with parameter lists:
P lies betweenQ andR,5� 3, p^q,:8x2N(x> 0).
The constants are:lies between,�, ^, :.

The parameter lists are:(P;Q;R), (5;3), (p;q), (8x2N(x> 0)).7
2.4.1. Special constants
We introduce two special constants in order to switch between the two cat-
egoriesnounandset. These categories are both present and frequently used
in CML and it turns out to be useful to be able to easily change from the
one to the other. Note that nouns and sets are in a sense interchangeable
and one could restrict oneself to only one of these categories, without losing
expressive power (as is actually done in the set-theoretic formalization).

The first constant is", of categoryCS. The second one is#, of categoryCN . They have complementary roles. The unary constant" lifts a noun to the
corresponding set,# does the opposite. Here are examples of these constants:

7 Note that the parameters in parameter lists are eithertermsor sets. Only in the case of
statements the parameters may bestatementsas well, as is shown in the last two examples.

revised.tex; 15/12/2003; 10:08; p.12



A formal language of mathematics 13

(CS) (a natural number)"= N, (a divisor of 4)"= f1;2;4g,8(Nounx2R(x> 5))"= Setx2R(x> 5).
(CN ) Z# is an integer, (Setx2R2(jxj= 1))# is Nounx2R2(jxj = 1) or

a point on the unit circle.

2.5. BINDERS

As a third set given beforehand and infinite, we have the set ofbinders. This
set is disjoint from both the set of variables and the set of constants. We
divide the setB of binders into five subcategories, depending on the resulting
category of the bound expressionBZ(E) in which the binder occurs (recall
thatZ is a declaration, e.g.x : N). Hence,B= BT jBSjBN jBA jBS where:(BT ) Binders givingterms; (BS) Binders givingsets;(BA) Binders givingadjectives; (BS ) Binders givingstatements;(BN ) Binders givingnouns;
In BZ(E), the bodyE is one of four categoriesE = T jSjN jS . The next
examples list bound expressions according to the category of the binder:� BTZ (E) = minZ(T )j∑Z(T )jlimZ(T )jRZ(T )jλZ(T )jλZ(S)jιZ(S)j : : :� BSZ(E) = SetZ(S)jSZ(S)jιZ(S)j : : :� BNZ (E) = NounZ(S)jAbstZ(T )jAbstZ(S)jAbstZ(N )j : : :� BAZ(E) = AdjZ(S)j : : :� BSZ(E) = 8Z(S)j : : :
Some of these binders are given in what follows (forSet, see Section 2.2).

2.5.1. Theλ-binder
The format of an expression bound by Church’sλ-binder is:λZ(T =S). Here
λZ(T ) is a term-valued function andλZ(S) is a set-valued function. Exam-
ples:(E � T ) The termλx2R(x2) denotes the squaring function on the reals.(E � S) The termλn2NSetk2N(k � n) sends a natural numbern to the setf0;1; : : : ;ng.

8 Here again, we used sugaring. We write,f1;2;4g for Setn2N(n = 1_ n = 2_ n= 4).
However, the notation withSet is the onlyofficial WTT-format.

revised.tex; 15/12/2003; 10:08; p.13



14 Kamareddine and Nederpelt

2.5.2. Theι-binder
Russell’sι is used for adefinite description: thesuch and such, such that . . . .
The general format for an expression bound with theι-binder is:ιZ(S). The
result of the binding of a sentence by means ofι can either be a term or a set
(therefore we findιZ(S) both in theBT - and in theBS-list). For example:� The termιn2N(2< n< π) describes natural number 3.� The setιU : SET (3 2 U ^ jU j = 1) describes the singleton setf3g (or

Setn2N(n= 3) in unsugared format). (The declarationU : SET expresses
thatU is a set. See also Section 2.7.1.)

2.5.3. TheNoun-binder
Since nouns (indefinite noun phrases) are first-class citizens in WTT, they are
treated similarly to sets. Consequently, next to set comprehension, we allow
noun comprehension, i.e. the construction of a noun. For noun comprehension
we introduce the binderNoun. It is used for anindefinite description: a such
and such, such that . . .. Hence, the general format of a phrase withNoun-
binder is:NounZ(S), i.e.a noun saying ofZ thatS . Examples include:� The nounNounx2R(5< x< 10) is a real number between 5 and 10.� NounV: SET (jVj= 2) is a set with two elements.

2.5.4. TheAbst-binder
TheAbst-binderabstractsfrom a termT , a setSor a nounN and delivers a
noun. It is the formal counterpart of the modifierfor some . . .. One may readAbstZ(T =S=N ) asa termT , or a setS, or a nounN , for someZ.

Here are examples of the three kinds of nounsAbstZ(T =S=N ):
(E � T ) Abstn2N(n2) representsa term n2 for some natural number n, i.e.

the square of some natural number.

(E � S) Abstn2NSetx2R(x > n) representsa setfx 2 Rjx > ng for some
natural number n, i.e.an interval of the form(n;∞), with n2 N.

(E �N ) Abstn2NNounx2R(10n� x< 10n+1) representsa real number in
the interval[10n;10n+1) for some n, i.e. a non-negative real number
which, written in decimal notation, has a zero at the position just before
the decimal point.

revised.tex; 15/12/2003; 10:08; p.14



A formal language of mathematics 15

REMARK 2.4.

1. TheAbst-binder is useful and compact. It enables one to put the ab-
straction quantification on the outside of the expression. However, a noun
constructed with theAbst-binder can always be rewritten without it. We
show this by rewriting the examples in a form withoutAbst, viz.:

(E � T ) Abstn2N(n2); Nounk2N9n2N(k = n2),
(E � S) Abstn2NSetx2R(x>n); NounV: SET9n2N(V = Setx2R(x>n)),
(E �N ) Abstn2NNounx2R(10n� x< 10n+1); Nounx2R9n2N(10n� x< 10n+1).
In all these examples, aninside9 takes the role of theoutsideAbst.

2. In the third case, theAbst-binder, transforming a noun into a noun, corre-
sponds to the

S
-binder, transforming a set into a set. This can be expressed

by the abstract transformation:(AbstZ(N ))"=S
Z((N )" ). See the third

example:
S

n2N Setx2R(10n� x < 10n+1) is the set of all real numbers
in some interval[10n;10n+1). This set can also be written without

S
:S

n2N Setx2R(10n� x< 10n+1); Setx2R9n2N(10n� x< 10n+1).
Note again theinside9, this time in the place of theoutside

S
.

2.5.5. TheAdj-binder
Adjectives, being first-class citizens as well, can be constructed with theAdj-
binder. One can readAdjZ(S) as:the adjective saying ofZ that S. E.g.:Adjn2N(9k2N(n = k2+1)) is an adjective saying of a natural number that it
is a square plus 1. One could give this adjective a name, sayoversquareand
hence say things like5 is oversquareor Let m be an oversquare number.

2.6. PHRASES

Phrases can be terms, sets, nouns or adjectives:

T = CT (!P )jBTZ (E)jVT S= CS(!P )jBSZ(E)jVS
N = CN (!P )jBNZ (E)jAN A = CA(!P )jBAZ(E):

Examples ofCT (!P ), CS(!P ), CN (!P ) andCA(!P ) were given in Example 2.3,

examples ofBTZ (E), BSZ(E), BNZ (E) andBAZ(E) in Section 2.5.
The combinationAN gives a (new) noun which is a combination of an

adjective and a noun. E.g.:isosceles triangle, convergent series.
Note that, as in Section 2.3, variables ranging over nouns or adjectives are

missing in this scheme: such variables are not required in either CML or WTT.

revised.tex; 15/12/2003; 10:08; p.15



16 Kamareddine and Nederpelt

2.7. STATEMENTS

Abstract syntax for the category ofstatementsis: S = CS (!P )jBSZ(E)jVS :
Examples ofCS (!P ) were given in Example 2.3. An example ofBSZ(E)

(with the8-binder forBS ) was given in Section 2.5.

2.7.1. Typings and declarations
A typing statementor typing, expresses the relation between something and
its type. In WTT we have five kinds of typings, depending on the nature of
the type. This type can be:SET (the type of all sets),STAT (the type of all
statements), a set, a noun or an adjective. Each of these typing statements
relates asubject(the left hand side) with itstype/predicate(the right hand
side). The abstract syntax for the setT of typing statements (T � S ) is:
T = S : SET jS : STAT jT : SjT :N jT : A : Here,s : SET , S: STAT , t : s,
t : n andt : a stand fors is a set, S is a statement, t is an element of s, t is nand
t is a. Examples of these cases include:Setn2N(n� 2) : SET, p^q : STAT,
32 N,9 AB : an edge of4ABC, λx2R(x2) : differentiable.

Clearly,T is a subcollection ofCS (!P ), the set of relational statements, with
symbol “:” as special element inCS . See also Section 3.7.

At its turn, a subcollection of the typings is formed by thedeclarations,Z,
where the subject is a variable:10 Z = VS : SET jVS : STAT jVT :SjVT :N .

Here the variableVS, VS or VT is theintroducedor declaredvariable.
Subscripts of binders (Section 2.5) can be taken fromZ.

2.8. DEFINITIONS

The categoryD = DϕjDS of definitionsintroduces new constants. We dis-
tinguish betweenphrase definitionsDϕ andstatement definitionsDS . Phrase
definitions fix a constant representing a phrase. Statement definitions intro-
duce a constant embedded in a statement. In definitions, the defined constant
is separated from the phrase or statement it represents by the symbol “:=”.

REMARK 2.5. We have decided not to include definitions for binders. How-
ever, it is not very hard to include binder definitions in the syntax using an

abstract syntax like:DB = BT =S=N =A=S
Z (E) := T =S=N =A=S .

9 As this example shows, we often replacet : sby t 2 s, with abuse of notation.
10 There are no declarations with an adjective as type. This seems strange, at first sight, since

it is usual to write things like:Let f be differentiable. Such a sentence however, is used either:
(1) as an elliptic version of the introduction of a new variable with anoun(not an adjective)
as type:Let f be a differentiable function, or (2) as anassumptionabout anf which is already
known (not new), and hence as a typing statement,not a declaration.

revised.tex; 15/12/2003; 10:08; p.16



A formal language of mathematics 17

2.8.1. Phrase definitions

We takeDϕ = CT (!V) := T j CS(!V) := S j CN (!V) :=N j CA(!V ) := A
The newlydefined constantsareCT , CS, CN or CA , respectively.
Note that the parameters occurring after theC in the left hand side of each

definition must bevariables. The reason is of course, that a definition should
be as general as possible and hence maydependon a list of variables. Later,
whenusing the definition in a certain situation, all these variables must be
instantiatedaccording to that situation. Examples of phrase definitions are:

(C� CT ) the arithmetic meanof a andb := ιz2R(z= 1
2(a+b)),

(C� CS) R+ := Setx2R(x> 0),
(C� CN ) a unit of G with respect to� := Noune2G(8a2G(a �e= e�a= a))11,

(C� CA) prime := Adjn2N(n> 1^8k;l2N(n= k � l ) k= 1_ l = 1)).12

The variable lists in the four examples are:(a;b), ( ), (G; �), ( ). These vari-
ables must be introduced (declared) in a context (see Section 2.9). For the
first definition, such a context can be e.g.a : R; b : R. For the third definition
the context is:G : SET ; � : G!G. Both contexts consist ofdeclarationsonly.

However, definitions may also depend onassumptions. This is reflected in
Section 2.9, where it is stated that a context consists of a list of declarations
andassumptions. For an example, take the definition of the natural logarithm
(this is again caseC� CT ): ln(x) := ιy2R(ey = x):
Here variablex has to be declared in a context, e.g.:x :R; x> 0 which declares
x of typeR and assumesx is positive.

In general, definitions are not complete without such a context. That is to
say, theground has to be preparedbefore the actual definition is stated.

In Section 3 we see that inweakly well-typeddefinitions, the variables

in variable list
!
V of a definition are the same as the declared variables in

the context, and listed in the same order. (Theassumptionsoccurring in the
context are not accounted for in the parameter list of a WTT-constant.)13 E.g.,
the parameter list ofthe arithmetic meanis (a;b), which is the same as the
list of the declared variables occurring in the contexta2 R; b2 R.14

An instantiationof a defined notion is theuseof a defined constant, thereby
replacing the variables occurring in the variable list, by actual terms or sets.

Examples of instantiations of the first example definition are:the arithmetic
mean of3 and6, or, for givenx: the arithmetic mean of x and x2.

11 Of course,a�e= e�a= a is a sugared version of e.g.a�e= a^e�a= a.
12 Here obviously8k;l2N : : : acts as a syntactic sugaring of8k2N8l2N : : :.
13 In type theory, however, variablesinhabitingassumptions are added to the variable list.
14 Since such a parameter list can be reconstructed from the context in which the definition

is embedded, these parameter lists (or parts of it) are often omitted, just as in Automath.

revised.tex; 15/12/2003; 10:08; p.17



18 Kamareddine and Nederpelt

2.8.2. Statement definitions

DS = CS (!V) := S is the category of statement definitionsdefining constantCS . For example (note again that to make the definition self-contained, we
need a context like:a : a line;b : a line (i.e.,Let a and b be lines)):(C� CS ) a is parallel to b := :9P: a point(P lies ona^P lies onb).

The notionis parallel to can only be considered as a two-placerelation,
and hence its definition must be a statement definition. In other cases, things
are not so clear and the WTT-user has to make a choice. For example, the
definition ofx is the opposite of ycan be treated as a statement definition:

(1) x is the opposite of y:= x+y= 0,
with context consisting of e.g.x : R; y : R. Here we have the caseC� CS .
But it is possible to define the same notion in aphrase(term) definition:

(2) the opposite of y:= ιx2R(x=�y).
Now the context is onlyy : R and we have the caseC� CT .

The difference is whether one considers(is) the opposite ofto be arelation
or aconstant. The latter choice allows more freedom, since a phrase definition
can be used as part of a sentence, but not the other way round.

E.g., if one chooses for (2), then it is possible to instantiate this definition:� in a phrase:the opposite of5,� but also in a sentence:�5 = the opposite of5.

Likewise, it is more flexible to define the phrase (in this case: the noun)a unit
of (G; �) than to define the statemente is a unit of(G; �).
2.9. CONTEXTS

A contextΓ is a list of declarationsZ and statementsS : ΓI = /0 j ΓI;Z j ΓI;S :
A declaration in a context represents theintroduction of a variableof a known
type. A statement in a context stands for anassumption.15 For example we
give the contextx : R; x> 0, as well as the contexta : a line;b : a line.

2.10. LINES

A line l contains either a statement or a definition, relative to a context:
l = ΓI .S j ΓI .D: The symbol. is a separation marker between the context
and the statement or definition. Here are two examples of lines:

A statement line: x : N; y : N; x< y . x2 < y2 ,
15 According to our syntax, such an assumption can also be a declaration – being a statement

with a variable as subject. However, the typing rules for contexts given in Section 3, will
ensure that there is nonewlyintroduced variable in an assumption, so it is always clear whether
a context statement represents the introduction of a new variable, or an assumption.

revised.tex; 15/12/2003; 10:08; p.18



A formal language of mathematics 19

A definition line: x : R; x> 0 . ln(x) := ιy2R(ey = x) .

2.11. BOOKS

A book Bis a list of lines: B = /0 j BÆ l:
A simple example of a book consisting of two lines is the following:

x : R; x> 0 . ln(x) := ιy2R(ey = x) Æ
/0 . ln(e3) = 3 .

3. A derivation system for WTT

A WTT-book constructed with our derivation system must obey the syntax
given in the previous section, and is hence well-formed. However, the deriva-
tion rules only give asubsetof the well-formed constructs obtained with the
abstract syntax of Section 2, since the rules enforce that those constructs
obey certain (weak)typing requirements. Constructs obtained by repeated
application of the derivation rules, are hence calledweakly well-typed. The
overall properties of weakly well-typed constructs are summarized by:� All constructs obtained with the derivation system have a weak type,

which corresponds with a linguistic category.� The derivation system issyntax-drivenin the sense that for each (sub)goal
in a derivation, only one rule is applicable.

A book which has been constructed with our derivation system is transpar-
ently structured. Yet, it has a great resemblance with an ordinary mathemati-
cal text: see the examples in Section 5. Therefore, a weakly well-typed book
can be seen as a natural formalization of mathematics, highlighting a number
of characteristic features of mathematical texts. Among these features are:� A WTT-book reflects the line-for-line development of the original math-

ematical text, in the order of the lines which form the WTT-book.� The important role of contexts, both for (mathematical) statements and
for (mathematical) definitions, is made explicit in a WTT-book .� There is an important role for defined constants with parameter lists.� Binders of different sorts are incorporated.

One can also consider a WTT-text to be a first step towards a complete
formalization into type theory. Type theory is a natural formalism for such a
formalization as is shown by many examples: think e.g. of Automath [14],

revised.tex; 15/12/2003; 10:08; p.19



20 Kamareddine and Nederpelt

being defined in the late sixties and applied to express numerous mathemat-
ical subject matters. Other examples include theorem provers like Coq ([2])
developed in the nineties and firmly embedded into type theory.

However, note that the type restrictions of WTT are only weak. Conse-
quently, a successful formalization of a mathematical text into WTT does not
at all guarantee that its mathematical content is in any sensemeaningful. A
prerequisite for the construction of a sensible WTT-text is that the person
writing this text has a mathematical subject in mind, which he chooses to ex-
press in this formalism, as faithfully as possible. But only a further translation
into type theory will give a complete picture, which still has to beauthorized
by the original text writer:This is (or is not) what I had in mind.

In this section, we discuss weak types and theprefaceof a bookB, meant
to establish weak type information about all constants occurring inB but not
explicitly defined inB. Then we follow the construction of the various weak
types bottom up, assuming that we have already a weakly well-typed bookB
and a weakly well-typed contextΓ relative toB. We start with variables and
constants relative toB andΓ. Next, we discuss the construction of phrases
beginning with a binder and of phrases in general. Finally, we give derivation
rules for sentences (statements and definitions) and for contexts and books.

3.1. WEAK TYPES

Our derivation rules enable one to extend a weakly well-typed bookB with
a line l , in order to form a new weakly well-typed bookBÆ l . This is the
case if the added linel obeys certain weak well-typedness requirements itself,
relative to the bookB. Since a linel always has the formΓ.Sor Γ.D, with
statementSor definitionD (see Section 2.10), we also have to consider weak
well-typedness of a contextΓ relative to a book B, and weak well-typedness
of a statementSor a definitionD relative to a book B and a contextΓ.

For establishing weak well-typedness, we need a notion ofweak typing
between an entity and its weak type. This relation is denoted by a bold-faced
double colon (:: ). As weak types, denoted byW, we use an eight element
subset of our linguistic categories of Section 2.1:W = B, ΓI, T , S,N , A , S ,
D. These stand forbooks, contexts, terms, sets, nouns, adjectives, statements
anddefinitions.

E.g., B :: B expresses that the weak type ofB is B (or: B is a weakly
well-typed book) andn :: N expresses that the weak type ofn isN .

We also introduce a notioǹ of (relative) derivability. We distinguish
between three formats for derivability, in the form of so-calledjudgements:

(1) B is a weakly well-typed book:̀ B :: B.

(2) Γ is a weakly well-typed context relative to bookB: B ` Γ :: ΓI.

(3) t is a weakly well-typed term, etc., relative to bookB and contextΓ:

revised.tex; 15/12/2003; 10:08; p.20



A formal language of mathematics 21

B;Γ ` t :: T ; B;Γ ` s :: S; B;Γ ` n :: N ;
B;Γ ` a :: A ; B;Γ ` S:: S ; B;Γ ` D :: D

NOTATION 3.1. We abbreviatè B :: B, B` Γ :: ΓI, by: OK(B;Γ).
3.2. THE PREFACE

DEFINITION 3.2.� We say that l2 B if l is one of the lines constituting B. If line l is a
definition, it contains exactly one defined constant (see Section 2.8.1).� Let l2B be a definition lineΓ.D where D is of the form c(x1; : : : ;xn) :=
A. Then the defined constant of the definition line, ordef
ons(D), is c.� def
ons(B) = fdef
ons(D)jΓ.D is a line ofB; for someΓg. We
call these constants the internally defined or internal constants of B.

Parameterized constants occurring in a bookB outside a definition, represent
defined notions with instantiated parameter lists. Such constants may not be
internally defined:B is usually a text-fragment, part of a larger text, the rest of
which is omitted. So, a parameterized constant occurring in a bookB needs
not have a corresponding definition as part of a lineinside B. Such constants
are calledexternally definedor externalconstants (relative toB).

EXAMPLE 3.3.� In many books the constantsN andR will be used without definition.
(BothN andR are parameterized constants with empty parameter list.)� One also uses many other well-known constants without defining them,
such as

p
. (This constant needs a parameter list of length one, e.g.,

p
5).� Another well-known constant isln, which will be an external constant

for WTT-books. It has one declared variable in its context. The cor-
responding definition line, which may not occur in the book B under
consideration, is for example, x2 R; x> 0 . ln(x) := ιy2R(ey = x),
with declaration x2 R, so x is the declared variable16. A prerequisite
for this definition ofln is, that e has already been defined. When using
the constantln we need a parameter list of length one, e.g.,ln(5). Note
that 5 matches with x as it belongs to the same linguistic collectionT .

16 x> 0 is an assumption, i.e. a statement which is not a declaration, see Section 2.8.

revised.tex; 15/12/2003; 10:08; p.21



22 Kamareddine and Nederpelt

In order to judge weak well-typedness of theexternallydefined constants, we
extend a bookB on the front with apreface(a kind ofsignature), consisting
of a list of constants, together with the weak types of its parameters and the
resulting weak type of the constant. It is not essential how the externally
defined constant is exactly defined, we can suffice with a description of the
weak types connected with such a constant.

DEFINITION 3.4. We denote a preface for a book B bypref(B). The con-
stants listed in this preface, are gathered inpref
ons(B). If c 2 pre f(B),
if κ1; : : : ;κn is the list of the weak types of the parameters of c, andκ is
the resulting weak type of the full construct c(: : :), then we attach the type
κ1� : : :�κn ! κ to c.

EXAMPLE 3.5. A preface for a book B could look like:

constant name weak type constant name weak typeR S [ S�S! Sp
T ! T � T �T ! S+ T �T ! T ^ S �S ! S� R has no parameters and is a set.� p

is a constant with one parameter, a term, delivering a term.� � is a constant with two parameters, terms, delivering a statement.� pref
ons(B) = fR;p;+;[;�;^g.
We assume that a preface for a bookB, describing the weak types for all
externally defined constants ofB, is constructed by the book-writer himself
and that each bookB is extended with an appropriate prefacepref(B).
REMARK 3.6. When translating a given mathematical text intoWTT, it may
be good practice to also add two columns on either side of aWTT-book B,
one with useful labels labeling lines in B, and another with comments going
with specific lines. This makes it much easier for the translator of aWTT-
book into type theory who does not have access to the original text. (See the
example in Section 5.4.) This also helps since the original text possibly has
interestinglabelsattached to paragraphs or to subtexts, such asTheorem 5.2
or Proof. Moreover, the original text may have many intermediate statements
about interdependencies in the text, which are very useful when translating
further into type theory. Think ofcommentssuch asuse Theorem 5.2, by the
definition ofc or using formula 2.1.

revised.tex; 15/12/2003; 10:08; p.22



A formal language of mathematics 23

3.3. VARIABLES

We definedvar(Γ) which collects all subject variables ofdeclarationsin Γ,
in their order of appearance inΓ,17 ignoring the possible subject variables
occurring inassumptionsin Γ. (See Sections 2.8 and 2.9.)

DEFINITION 3.7. The listdvar of declared variables of a contextΓ is:

(1) If Γ = /0, thendvar(Γ) = /0.

(2a) If Γ = Γ0;x : A and x62 dvar(Γ0), thendvar(Γ) = dvar(Γ0);x.

(2b) Otherwise, ifΓ = Γ0;S, thendvar(Γ) = dvar(Γ0).
Now the derivation rule forvariablesis (recall Notation 3.1 forOK(B;Γ)):

OK(B;Γ), x2 VT =S=S , x2 dvar(Γ)
B;Γ ` x :: T =S=S (var)

NOTATION 3.8. Here and in the rest of the paper, we combine two or more
cases, distinguished by the slash=. In the first case of the above(var) rule,
x2 VT , the conclusion is: B;Γ ` x :: T . In the second case, x2 VS, we get:
B;Γ ` x :: S. In the third case, x2 VS , we get: B;Γ ` x :: S .

3.4. CONSTANTS

Constants defined internally inB are divided in four kinds ofphrase defini-
tions, for terms, sets, nouns and adjectives, and also instatement definitions.
See Section 2.8. We define, for parameterP, the weak typewt of P with
respect toB andΓ as:wtB;Γ(P) = W iff B;Γ `P :: W. The derivation rule for
internal constants is:

OK(B;Γ), Γ0 .D 2 B,dvar(Γ0) = fx1; : : : ;xng, def
ons(D) = c2 CT =S=N =A=S ,wtB;Γ(Pi) = wtB;Γ0(xi), for all i = 1; : : : ;n.

B;Γ ` c(P1; : : : ;Pn) :: T =S=N =A=S (int�cons)
Note that the list of declared variables ofΓ0, viz. x1; : : : ;xn, is the same as

the variable list following the defined constantc in the definition lineΓ0 .D
(this follows from the rule(int�de f), see Section 3.8). Otherwise said:D �
c(x1; : : : ;xn) := : : : . Hence, the above derivation rule determines how such a
c(x1; : : : ;xn) can be instantiated, with resultc(P1; : : : ;Pn). The rule expresses

17 Theorder in thedvar list of a contextΓ is reflected in the order of the variables in the
variable list going with any constant defined with respect toΓ. See Section 3.4.

revised.tex; 15/12/2003; 10:08; p.23



24 Kamareddine and Nederpelt

binder name weak type binder name weak type

min T ! T S S! S
∑ T ! T Set S ! S

lim T ! T Noun S !NR
T ! T Abst T =S=N !N

λ T ! T Adj S ! A
ι S ! T =S=S 8 S ! S

Figure 3. Binding symbols and their weak types

that an instantiation is only allowed if each variablexi becomes replaced by a
formulaPi of the same weak typeW asxi (see example 3.3).

If c is anexternalconstant ofB, then it has a weak type as given in the
preface ofB. For such constants we have the following derivation rule:

OK(B;Γ), c external toB, c :: κ1� : : :�κn! κ,

B;Γ ` Pi :: κi (i = 1; : : : ;n)

B;Γ ` c(P1; : : : ;Pn) :: κ
(ext�cons)

A special kind of external constants is the pair" and# (see Section 2.4.1).
They also have weak types, given in the following list:

constant name weak type" N ! S# S!N
We assume that this list is always part of the preface of a bookB. Hence,

expressions with" or # can also be derived with the rule(ext�cons) above.

3.5. BINDERS

Binders have fixed weak types. For example, binderι (see Section 2.5.2) takes
a statement and delivers a term or a set (the subscriptZ is not important, in
this respect). Figure 3 lists all the weak types corresponding to all binding
symbols used in Section 2.5.

For expressions constructed by means of a binder we have a derivation
rule:

OK(B;Γ;Z), b2 B, b :: κ1 ! κ2, B;Γ;Z ` E :: κ1

B;Γ ` bZ(E) :: κ2

(bind)
revised.tex; 15/12/2003; 10:08; p.24



A formal language of mathematics 25

constant name weak types

: SET S! S
: STAT S ! S

: T �S=N =A ! S
Figure 4. A basic list in a standard preface

Note the subscriptZ: sinceE may depend on the subject variable of the
declarationZ, we require thatB;Γ;Z ` E :: κ1, i.e.,E is correct with respect
to book B and contextΓ extended with declaration Z. (This shift ofZ from
the context to the subscript is also present in the formation and abstraction
rules of type theory, with whichΠZ(E) andλZ(E) are formed and typed.)

3.6. PHRASES

The derivation rule of the combinationAN of an adjective and a noun is:

B;Γ ` n :: N , B;Γ ` a :: A

B;Γ ` an :: N
(ad j�noun)

3.7. STATEMENTS

The derivation rules given above also suffice for the constructs given in the
abstract syntax for statements (see Section 2.7). This includes constantsCS
for statements, as well as logical quantifiers covered by the constructBSZ(E).

For typings, there are two kinds of derivations, dependent on thelevel of
the statement: the first kind is for a statement of the forms : SET or S: STAT ,
saying thats is a set or thatS is a statement, the second is for statements of
the formt : s=n=a, expressing that termt has type sets, nounn or adjectivea.
Both kinds can be treated with the above rule(ext�cons) provided we take
the list given in Figure 4 in our standard preface.

For the first kind of typing, for examples : SET , we let : SET be aunary
constant, withS! S as weak type. This unary behaviour is necessary since
SET is not covered by our linguistic categorization. For the second kind of
statement we use : as abinary constant.

revised.tex; 15/12/2003; 10:08; p.25



26 Kamareddine and Nederpelt

3.8. DEFINITIONS

For internal definitions, we have the so-called(int�de f) derivation rule:

B;Γ ` t=s=n=a=S :: T =S=N =A=S ,dvar(Γ) = fx1; : : : ;xng, c2 CT =S=N =A=S , c 62 pref
ons(B)[def
ons(B)
B;Γ ` c(x1; : : : ;xn) := t=s=n=a=S:: D

REMARK 3.9. Sometimes (as a form of sugaring), the initial part of the
parameter list of a defined constant is omitted, since it can be reconstructed
by listing the declared variables (see Section 3.3) of the context.

3.9. CONTEXTS

Empty contexts are typable anddeclarationsandassumptionsmay be added.` B :: B

B ` /0 :: ΓI
(emp�cont)

OK(B;Γ), x2VS=S , x 62 dvar(Γ)
B ` Γ;x : SET= STAT :: ΓI

(set=stat�decl)
OK(B;Γ), B;Γ ` s=n :: S=N , x2 VT , x 62 dvar(Γ)

B ` Γ;x : s=n :: ΓI
(term�decl)

OK(B;Γ), B;Γ ` S:: S

B ` Γ;S:: ΓI
(assump)18

3.10. BOOKS

Books are lists of lines, containing either a definition or a statement in a
context. The empty book is derivable and every weakly well-typed line, with
respect to a bookB, may lead to a weakly well-typed extension ofB:` /0 :: B

(emp�book)
18 Note that the statementScan be a typingx : A but thatx cannot benewwith respect toΓ,

sinceB;Γ ` S:: S (by Lemma 4.5,(2)). Hence,Scannot be adeclaration.

revised.tex; 15/12/2003; 10:08; p.26



A formal language of mathematics 27

B;Γ ` S=D :: S=D` B Æ Γ.S=D :: B
(book�ext)

4. The meta theory and properties of the derivation system

4.1. FORMAL MACHINERY

We useformula (denotedA;Φ) to refer to either a sentence, a phrase or a
declaration.

DEFINITION 4.1. Free variables for formulas are defined as follows:19

FV(x) = fxg
FV(c(P1; : : : ;Pn)) = FV(P1)[ : : :[FV(Pn)
FV(bZ(E)) = (FV(Z)[FV(E))nfxg if Z is of the form x:�
FV(an) = FV(a)[FV(n)
FV(c(x1; : : : ;xn) := u) = FV(u)[fx1; : : : ;xng if u 2 T =S=N =A=S
FV(x : s=n) = FV(s=n)
FV(x : SET= STAT) = /0

Free variables for contexts/lines/books are defined by:

(Contexts) FV( /0) = /0, FV(Γ;Z=S) = FV(Γ)[FV(Z=S).
(Lines) FV(Γ.S=D) = FV(Γ)[FV(S=D).
(Books) FV( /0) = /0 and FV(B Æ l) = FV(B)[FV(l).
DEFINITION 4.2. Free constants for formulas are defined as follows:

FC(x) = /0
FC(c(P1; : : : ;Pn)) = fcg[FC(P1)[ : : :[FC(Pn)
FC(bZ(E)) = FC(Z)[FC(E)
FC(an) = FC(a)[FC(n)
FC(c(x1; : : : ;xn) := u) = FC(u) if u 2 T =S=N =A=S
FC(x : s=n) = FC(s=n)
FC(x : SET= STAT) = /0

Free constants for contexts/lines/books are defined by:

(Contexts) FC( /0) = /0, FC(Γ;Z=S) = FC(Γ)[FC(Z=S).
(Lines) FC(Γ.S=D) = FC(Γ)[FC(S=D).

19 In the second clause,c(P1; : : : ;Pn) is an instantiation, not the left hand side of a definition.

revised.tex; 15/12/2003; 10:08; p.27



28 Kamareddine and Nederpelt

(Books) FC( /0) = /0 and FC(B Æ l) = FC(B)[FC(l).
DEFINITION 4.3. Subformulas of formulas are defined as follows:subfor(x) = fxgsubfor(c(P1; : : : ;Pn)) = fc(P1; : : : ;Pn)g[subfor(P1)[ : : :[subfor(Pn)subfor(bZ(E)) = fbZ(E)g[subfor(Z)[subfor(E)subfor(an) = fang[subfor(a)[subfor(n)subfor(c(x1; : : : ;xn) := u) = fc(x1; : : : ;xn) := ug[subfor(u)subfor(x : s=n) = subfor(s=n)subfor(x : SET= STAT) = /0

Subformulas of contexts/lines/books are defined by:

(Contexts)subfor(/0) = /0, subfor(Γ;Z=S) = subfor(Γ)[subfor(Z=S).
(Lines) subfor(Γ.S=D) = subfor(Γ)[subfor(S=D).
(Books)subfor( /0) = /0, subfor(B Æ l) = subfor(B)[subfor(l).
The next convention is needed (e.g., in the proof of Lemma 4.10).

CONVENTION 4.4. We assume a version of the Barendregt Convention
where names of free variables are distinct from bound ones and in the same
book/context/line/formula, we use different names for bound variables. For
example, if B;Γ ` bZ(E) :: κ2 then we assume that the declared variable in
Z is different from any declared variable inΓ. If this is not the case then we
rename the declared variable of Z in bZ(E) to a name of a fresh variable.

LEMMA 4.5 (Free Variables).

(1) If B ` Γ :: ΓI, then the declared variables inΓ are distinct.

(2) If B;Γ ` A :: W then FV(A)� dvar(Γ).
(3) If B ` Γ :: ΓI whereΓ� Γ0;(x : A)=A;Γ00, then FV(A)� dvar(Γ0).

Proof: (1) By induction on the derivationB ` Γ :: ΓI.
(2) By induction on the derivationB;Γ ` A :: W.
(3) By induction on the derivationB ` Γ :: ΓI using (1). �
DEFINITION 4.6.

(B0 is a subbookof B) We say B0 � B if there exists B00 : B� B0 ÆB00.
(Γ0 is a subcontextof Γ) We sayΓ0 � Γ if there existsΓ00 : Γ� Γ0;Γ00.

revised.tex; 15/12/2003; 10:08; p.28



A formal language of mathematics 29

(compatibility with a book) Let B be a book and l= Γ .D be a line. A def-
inition c(x1; : : : ;xn) := t=s=n=a=S is compatible with B (resp. with l) if
c 62 pref
ons(B)[def
ons(B) (resp. c6= def
ons(D)). The line l is
compatible with B ifdef
ons(l) 62 (pref
ons(B)[def
ons(B)).

LEMMA 4.7 (Presence of definitions).The following hold:

1. If B;Γ ` A :: W then either A is free of definitions, or A is the only
definition (i.e. of the form c(x1; : : : ;xn) := A0) in A.

2. If B` Γ :: ΓI thenΓ is free of definitions. That is, A is free of definitions
for every x: A or A in Γ.

Proof: By induction on the derivationsB;Γ ` A :: W andB ` Γ :: ΓI. �
The next lemma studies typability inside a weakly well-typed book.

LEMMA 4.8 (Subcontext).If B ` Γ :: ΓI andΓ0 � Γ then B` Γ0 :: ΓI.

Proof: By induction on the derivationB ` Γ :: ΓI. �
LEMMA 4.9 (Subbook). If ` B :: B and B0 � B then ` B0 :: B.

Proof: Corollary of the generation lemma below. �
4.2. PROPERTIES OFWEAK TYPING

LEMMA 4.10 (Thinning/Weakening).

(1) Let B` Γ :: ΓI and Γ0 � Γ. If B;Γ0 ` A :: W and A is not a definition,
then B;Γ ` A :: W.

(2) Let ` BÆ l :: B, ` BÆB0 :: B, and l compatible with BÆB0. Then:

(2a) ` BÆ l ÆB0 :: B.

(2b) If BÆB0;Γ ` A :: W where if A is a definition then A is compatible
with l then BÆ l ÆB0;Γ ` A :: W.

(2c) If BÆB0 ` Γ :: ΓI, then BÆ l ÆB0 ` Γ :: ΓI.

(3) Let ` B :: B and B0 � B. We have:

(3a) If B0;Γ ` A :: W where if A is a definition then it is compatible with
B, then B;Γ ` A :: W,

(3b) If B0 ` Γ :: ΓI, then B` Γ :: ΓI.

(4) Let B` Γ;Γ0 :: ΓI, B` Γ;Γ00 :: ΓI, anddvar(Γ0)\dvar(Γ00) = /0.

revised.tex; 15/12/2003; 10:08; p.29



30 Kamareddine and Nederpelt

(4a)B` Γ;Γ0;Γ00 :: ΓI.
(4b) Let B;Γ;Γ00 ` A :: W and A is not a definition. B;Γ;Γ0;Γ00 ` A :: W.

Proof (1)..(4) by induction on the length of derivations. Use Lemma 4.7.�
LEMMA 4.11 (Generation).

(1) If B;Γ ` x :: W then OK(B;Γ), x2 dvar(Γ) and

(1a) W = T and x2 VT , or

(1b) W = S and x2 VS, or

(1c) W = S and x2 VS .
(2) If B;Γ ` c(P1; : : : ;Pn) :: W then OK(B;Γ) and(2a) eitherW = T =S=N =A=S , there is D;Γ0;x1; : : : ;xn wheredvar(Γ0) = fx1; : : : ;xng, def
ons(D) = c2 CT =S=N =A=S ,

Γ0 .D 2 B, and for all i2 f1; : : : ;ng : wtB;Γ(Pi) = wtB;Γ0(xi),(2b) or c is external to B, and there isκ1; : : : ;κn such that
c :: κ1� : : :�κn !W and B;Γ ` Pi :: κi (i = 1; : : : ;n).

(3) If B;Γ ` bZ(A) :: κ2 then OK(B;Γ;Z) and there isκ1 such that
b :: κ1 ! κ2, and B;Γ;Z ` A :: κ1.

(4) If B;Γ ` an :: W then W = N , OK(B;Γ), B;Γ ` n :: N and
B;Γ ` a :: A .

(5) If B;Γ ` c(x1; : : : ;xn) := t=s=n=a=S :: W thenW = D, OK(B;Γ),
c2 CT =S=N =A=S , c 62 pref
ons(B)[def
ons(B), dvar(Γ) =fx1; : : : ;xng and B;Γ ` t=s=n=a=S :: T =S=N =A=S .

(6) If B ` Γ :: ΓI then ` B :: B and if Γ 6= /0 then

(6a) if Γ = Γ0;x : W then B ` Γ0 :: ΓI, x 62 dvar(Γ0) and
if W = SET= STAT then x2 VS=VS
else if W = s=n then B;Γ0 ` s=n :: S=N , and x2 VT .

(6b) If Γ = Γ0;S then B` Γ0 :: ΓI, and B;Γ0 ` S:: S .

(7) If ` B :: B then either B= /0 or there isΓ, B0 and S=D such that
B= B0 Æ Γ.S=D, OK(B0;Γ), and B0;Γ ` S=D :: S=D.

Proof Take a derivation in one of the above cases. We follow the derivation
until the typed construct on the left of:: first appears. This is done by:(var), (int�cons), (ext�cons), (bind), (ad j�noun), (int�de f), (emp�cont),(set=stat�decl), (term�decl), (assump), (emp�book) and(book�ext) for

revised.tex; 15/12/2003; 10:08; p.30



A formal language of mathematics 31(1), (2a), (2b), (3), (4), (5), (6) whereΓ = /0, (6a) andW = SET= STAT ,(6a) andW = s=n, (6b), (7) whereB= /0 and(7) whereB 6= /0 respectively.
The lemma follows by inspection of the used rule. We need Lemma 4.8 for(ad j�noun) and Lemma 4.7 for(int�de f). �
LEMMA 4.12 (Free Constants).

(1) If ` B :: B, then the defined constants in B are distinct.

(2) If B;Γ ` Φ :: W, then FC(Φ)� pref
ons(B)[def
ons(B).
(3) If B ` Γ :: ΓI whereΓ � Γ0;x : A;Γ00 or Γ � Γ0;A;Γ0, then FC(A) �pref
ons(B)[def
ons(B).

Proof (1) By induction on the size ofB.
(2) We prove by induction on the length of the derivations that ifB;Γ ` A :: W
or B ` Γ;A=x : A :: ΓI thenFV(A)� pref
ons(B)[def
ons(B).
(3) We show by induction on the derivationB ` Γ :: ΓI that for anyΓ0;Γ00;A
such thatΓ� Γ0;x : A;Γ00 or Γ� Γ0;A;Γ00, we haveFC(A)� pref
ons(B)[def
ons(B). We use the following property we showed in (2):

(*) if B ` Γ;A :: ΓI or B ` Γ;x : A :: ΓI then
FC(A)� pref
ons(B)[def
ons(B). �

LEMMA 4.13 (Uniqueness of Types).
If B;Γ ` A :: W1 and B;Γ ` A :: W2, thenW1 �W2.

Proof: This is now a simple corollary of the generation lemma. �
LEMMA 4.14 (Context). If B;Γ ` A :: W then B` Γ :: ΓI.

Proof: By induction on the derivationB;Γ ` A :: W using, asΓ � Γ;Z,
Lemma 4.8 in the(bind) rule whereB;Γ ` bZ(E) :: κ2 comes from
B ` Γ;Z :: ΓI amongst other things. �
LEMMA 4.15 (Subformula).The following hold:(1) If B ` Γ :: ΓI then for every subformula A ofΓ, there existsW andΓ0

whereΓ� Γ0 such that B;Γ0 ` A :: W.(2) If B;Γ ` A :: W then for every subformula A0 of A, there existsW,
andΓ0 whereΓ� Γ0 such that B;Γ0 ` A0 :: W.

Proof: By simultaneous induction on the length of the derivation. �
LEMMA 4.16 (Subformula property).If ` B :: B and B� B0 ÆΓ.AÆB00:

(1) B0 ` Γ :: ΓI.

revised.tex; 15/12/2003; 10:08; p.31



32 Kamareddine and Nederpelt

(2) B0;Γ ` A :: S=D.

(3) Let A0 be a subformula of eitherΓ or of A.
There existW andΓ0 such thatΓ� Γ0 : B0;Γ0 ` A0 :: W.

Proof: (1) + (2) are shown together by induction on the length ofB00.� CaseB00 = /0 then by the generation lemmaOK(B0;Γ)
(henceB0 ` Γ :: ΓI) andB0;Γ ` A :: S=D. We are done.� CaseB� B0 ÆΓ.AÆB00

1 ÆΓ0 .A0,
then by the generation lemmà B0 ÆΓ.AÆB00

1 :: B
hence by IHB0 ` Γ :: ΓI andB0;Γ ` A :: S=D.

(3) : By (1) + (2) we have:B0 ` Γ :: ΓI and B0;Γ ` A :: S=D. Hence, by
Lemma 4.15 we have the desired (3). �
DEFINITION 4.17. We define substitution in a formula as follows:

x[x := A℄ = A
y[x := A℄ = y for x 6= y
c(P1; : : : ;Pn)[x := A℄ = c(P1[x := A℄; : : : ;Pn[x := A℄)(bZ(E))[x := A℄ = bZ[x:=A℄(E[x := A℄)(an)[x := A℄ = a[x := A℄n[x := A℄(c(x1; : : : ;xn) := u)[x := A℄ = c(x1; : : : ;xn) := u[x := A℄ for x 62 fx1; : : : ;xng(y : s=n)[x := A℄ = y : s[x := A℄=n[x := A℄(y : SET= STAT)[x := A℄ = y : SET= STAT

Substitution in contexts/lines/books is defined as follows:

(Contexts)/0[x :=A℄ = /0 and(Γ;Z=S)[x :=A℄ =Γ[x :=A℄;Z[x :=A℄=S[x :=A℄.
(Lines) (Γ.S=D)[x := A℄ = Γ[x := A℄.S[x := A℄=D[x := A℄.
(Books) /0[x := A℄ = /0 and(B Æ l)[x := A℄ = B[x := A℄ Æ l [x := A℄.
LEMMA 4.18 (Substitution).
If B;Γ;x : A ` x :: T =S=S and B;Γ ` A0 :: T =S=S then:

(1) If B;Γ;x : A;∆ ` Φ :: W, andΦ is not a definition, then
B;Γ;∆[x := A0℄ ` Φ[x := A0℄ :: W.

(2) If B ` Γ;x : A;∆ :: ΓI, then B` Γ;∆[x := A0℄ :: ΓI.

Proof By simultaneous induction on the length of the derivations. �
LEMMA 4.19 (Condensing).The following hold:

revised.tex; 15/12/2003; 10:08; p.32



A formal language of mathematics 33

(1) If B;Γ;x : A;∆ ` Φ :: W, Φ is not a definition, and x62 ∆;Φ, then
B;Γ;∆ ` Φ :: W.

(2) If B ` Γ;x : A;∆ :: ΓI and x62 ∆, then B` Γ;∆ :: ΓI.

Proof Show (1) and (2) simultaneously by induction on the length of the
derivation. �

The generation lemma implies that in order to verify that a certain construct
has a certain weak type, there is at most one derivation rule applicable. Hence
it is easy to check weak typing. Our derivations are syntax-driven:

THEOREM 4.20 (Syntax-driven Derivations).Derivations are syntax-driven.

COROLLARY 4.21 (Decidability of weak type checking and weak typability).

(1) Weak type checking is decidable: there is a decision procedure for the
question B;Γ ` Φ :: W ?.

(2) Weak typability is computable: there is a procedure deciding whether
an answer exists for B;Γ ` Φ :: ? and if so, delivering the answer.

Proof (1) By induction on the number of symbols on the right and left of`
using Lemma 4.11. (2) is also by induction on the number of symbols on the
right and left of ` using (1). �
LEMMA 4.22 (Swap). The following hold:� If B;Γ;x : A;y : A0;∆ ` Φ :: W and x 62 FV(A0) then

B;Γ;y : A0;x : A;∆ ` Φ :: W.� If B ` Γ;x : A;y : A0;∆ :: ΓI and x62FV(A0) then B` Γ;y : A0;x : A;∆ :: ΓI

Proof By induction on the length of the derivations using Lemma 4.10.�
DEFINITION 4.23 (Context Restriction).

Let FV(Φ) = fx1; : : :xng andΓ = Γ1;x1 : P1;Γ2;x2 : P2; : : :Γn;xn : Pn;Γn+1.
We defineΓ # FV(Φ) to beΓ1;x1 : P1;Γ2;x2 : P2; : : :Γn;xn : Pn.

Note thatΓ # FV(Φ) � Γ and if FV(Φ)� FV(Φ0) then
Γ # FV(Φ)� Γ # FV(Φ0).

LEMMA 4.24 (Context Restriction).
If B;Γ ` Φ :: W then B;Γ # FV(Φ) ` Φ :: W.

Proof By induction onB;Γ ` Φ :: W using Lemmas 4.8, 4.10, 4.5, 4.22
and 4.7. �

revised.tex; 15/12/2003; 10:08; p.33



34 Kamareddine and Nederpelt

LEMMA 4.25 (Simultaneous Substitution).Let dvar(Γ2) = fx1: : : : ;xng. If
B;Γ1;Γ2 ` xi :: T =S=S and B;Γ1 ` Pi :: T =S=S then:

(1) If B;Γ1;Γ2;Γ3 ` Φ :: W, andΦ is not a definition, then
B;Γ1;Γ3[xi := Pi℄ ` Φ[xi := Pi ℄ :: W.

(2) If B ` Γ1;Γ2;Γ3 :: ΓI, then B` Γ1;Γ3[xi := Pi℄ :: ΓI.

Proof We show both (1) and (2) by induction on the length of the derivation
B;Γ1;Γ2;Γ3 ` Φ :: W andB ` Γ1;Γ2;Γ3 :: ΓI. Use Lemmas 4.8, 4.7 and 4.10.�
4.3. DEFINITIONAL REDUCTION

We use symbol
δ! for the reductional relation ofdefinition unfolding. Its

definition is as expected. First, we define compatibility:

DEFINITION 4.26. We define compatibility in the usual way as follows:

Pi
δ! P0

i for 1� i � n

c(P1; : : : ;Pi ; : : : ;Pn) δ! c(P1; : : : ;P0
i ; : : : ;Pn) for c2 C and Pj 2 P

Z
δ! Z0

bZ(E) δ! bZ0(E) E
δ! E0

bZ(E) δ! bZ(E0) for Z 2 Z, E2 E and b2 B
a

δ! a0
an

δ! a0n n
δ! n0

an
δ! an0 for a2 A and n2N

u
δ! u0

c(x1; : : : ;xn) := u
δ! c(x1; : : : ;xn) := u0

s=n
δ! s0=n0

y : s=n
δ! y : s0=n0 for s2 Sor s2N .

DEFINITION 4.27. Let ` B :: B and Γ . c(x1; : : : ;xn) := Φ a line in B.
δ!

is the compatiblerelation on subterms of B generated by c(P1; : : : ;Pn) δ!
Φ[xi := Pi℄, provided that the occurrence of the latter constant c is not the
defining occurrencein the defining line mentioned. Asδ-reduction depends

on the book in question, we write B̀c(P1; : : : ;Pn) δ! Φ[xi := Pi ℄.
Φ[xi := Pi℄ stands for the simultaneous substitution ofxi by Pi in Φ.

THEOREM 4.28 (Subject Reduction).

If B;Γ ` Φ :: W and B` Φ δ!Ψ, then B;Γ ` Ψ :: W.

Proof DefineB ` Γ δ! Γ0 iff Γ andΓ0 are exactly the same except for either

revised.tex; 15/12/2003; 10:08; p.34



A formal language of mathematics 35� onex : A in Γ which appears asx : A0 in Γ0 with B ` A
δ! A0, or� oneS in Γ which appears asS0 in Γ0 with B ` S

δ! S0.
By simultaneous induction on the derivation we show using Lemmas 4.16,
4.11, 4.7, 4.10 and 4.25 that:

(1) If the derivation isB;Γ ` Φ :: W andB ` Φ δ! Ψ, thenB;Γ ` Ψ :: W.

(2) If the derivation isB;Γ ` Φ :: W andB ` Γ δ! Γ0, thenB;Γ0 ` Φ :: W

else if the derivation isB ` Γ :: ΓI andB ` Γ δ! Γ0 thenB ` Γ0 :: ΓI. �
In what follows we establish the Church Rosser and Strong Normalisation

properties ofδ-reduction by adapting the lines of [19].
The next definition (which is independent of contexts) gives for each for-

mula, its corresponding formula where all definitions of a book are unfolded.

DEFINITION 4.29. Take a book B, and a formulaΦ. We definejΦjB as:jxjB = xjc(P1; : : : ;Pn)jB = jΦjB[xi := jPi jB℄ if Γ0 .c(x1; : : : ;xn) := Φ is a line of B.jc(P1; : : : ;Pn)jB = c(jP1jB; : : : ; jPnjB) if c is external constant (inpref(B))jbZ(E)jB = bjZjB(jEjB)jc(x1; : : : ;xn) := ujB = c(x1; : : : ;xn) := jujBjanjB = jajBjnjBjx : AjB = x : jAjB
We define:j/0jB = /0, jΓ;x : AjB = jΓjB;x : jAjB and jΓ;SjB = jΓjB; jSjB.

LEMMA 4.30. If B;Γ ` Φ :: W then B` Φ δ!! jΦjB.

Proof: By induction on the number of symbols inΦ. The interesting case
is whenΦ is c(P1; : : : ;Pn) and Γ0 . c(x1; : : : ;xn) := Φ0 is a line of B. Then

B ` c(P1; : : : ;Pn) δ!Φ0[xi := Pi℄ δ!!IH jΦ0jB[xi := jPijB℄ = jc(P1; : : : ;Pn)jB. �
LEMMA 4.31. For 1� i � n : jΦ[xi := Pi℄jB = jΦjB[xi := jPijB℄.
Proof: By induction on the structure ofΦ. �
LEMMA 4.32. If B ` Φ δ!!Φ0 thenjΦjB = jΦ0jB.

Proof: By induction on the structure ofΦ. The only interesting case is when
Φ is (c(P1; : : : ;Pn) whereΓ0 .c(x1; : : : ;xn) := Φ0 is a line ofB

andB ` c(P1; : : : ;Pn) δ!Φ0[xi := Pi℄. In this case use Lemma 4.31. �
THEOREM 4.33 (Church Rosser forδ-reduction). If B ` Φ δ!! Φ1 and

B ` Φ δ!!Φ2 then there existsΦ3 such that B̀ Φ1
δ!!Φ3 and B` Φ2

δ!!Φ3.

revised.tex; 15/12/2003; 10:08; p.35



36 Kamareddine and Nederpelt

Proof: By Lemma 4.30,B ` Φ δ!! jΦjB, B ` Φ1
δ!! jΦ1jB, andB ` Φ2

δ!!jΦ2jB. As B ` Φ δ!! Φ1 then by Lemma 4.32jΦjB = jΦ1jB. Similarly, as

B ` Φ δ!! Φ2 then jΦjB = jΦ2jB. Hence TakeΦ3 = jΦ1jB = jΦ2jB. Now

B ` Φ1
δ!!Φ3 andB ` Φ2

δ!! Φ3. �
DEFINITION 4.34. Let B;Γ ` Φ :: W. We say thatΦ is in δ-normal form in

the book B if there is noΦ0 such that B̀ Φ δ!Φ0.
THEOREM 4.35. Let B;Γ ` Φ :: W. ThenΦ is in δ-normal form in B iff
FC(Φ)\def
ons(B) = /0.

Proof: By induction on the structure ofΦ. �
COROLLARY 4.36 (Weak Normalisation forδ-reduction).

Let B;Γ ` Φ :: W. ThenjΦjB is theδ-nf of Φ.

Proof: It is easy to show thatFC(jΦjB)\def
ons(B) = /0. Hence by Theo-

rem 4.35jΦjB is in δ-normal form. But by Lemma 4.30B ` Φ δ!! jΦjB and
by Church Rosser Theorem 4.33 theδ-normal form is unique. HencejΦjB is
theδ-normal form ofΦ. �

In order to establish strong normalisation ofδ we introduce a measure
functionM which decreases withδ-reduction.

DEFINITION 4.37. LetM : B�Φ 7! N be defined as follows:

MB(x) = 1
MB(c(P1; : : : ;Pn)) = 1+Σi=n

i=1MB(u)MB(Pi)
if B = B0 ÆΓ0 .c(x1; : : : ;xn) := uÆB00

MB(c(P1; : : : ;Pn)) = Σi=n
i=1MB(Pi) if c is an external constant

MB(an) = MB(a)+MB(n)
MB(c(x1; : : : ;xn) := u) = MB(u)
MB(bZ(E)) = MB(Z)+MB(E)
LEMMA 4.38. Let B;Γ ` Φ :: W. If wtB;Γ(xi) = wtB;Γ(Pi) for 1� i � n,
thenMB(Φ[xi := Pi ℄)� Σi=n

i=1MB(Φ)MB(Pi).
Proof: By induction on the structure ofΦ.� CaseΦ = xi , 1� i � n then
MB(Φ[xi := Pi℄) =MB(Pi)� Σi=n

i=1MB(Pi) = Σi=n
i=1MB(xi)MB(Pi).� CaseΦ = x 6= xi , 1� i � n then

MB(Φ[xi := Pi℄) =MB(x) = 1� Σi=n
i=1MB(Pi) = Σi=n

i=1MB(x)MB(Pi).
revised.tex; 15/12/2003; 10:08; p.36



A formal language of mathematics 37� CaseΦ = an thenMB(Φ[xi := Pi℄) =MB(a[xi := Pi℄n[xi := Pi℄) =
MB(a[xi := Pi℄)+MB(n[xi := Pi℄)�IH

Σi=n
i=1MB(a)MB(Pi)+Σi=n

i=1MB(n)MB(Pi) = Σi=n
i=1MB(an)MB(Pi).� CaseΦ = c(P0

1; : : : ;P0
m) wherec is external toB andm� 1 then

MB(Φ[xi := Pi℄) =MB(c(P0
1; : : : ;P0

m)[xi := Pi℄) =
MB(c(P0

1[xi := Pi℄; : : : ;P0
m[xi := Pi℄)) = Σ j=m

j=1MB(P0
j [xi := Pi℄)�IH

Σ j=m
j=1 Σi=n

i=1MB(P0
j)MB(Pi) = Σi=n

i=1(Σ j=m
j=1MB(P0

j))MB(Pi) =
Σi=n

i=1MB(c(P0
1; : : : ;P0

m))MB(Pi).� CaseΦ = c(P0
1; : : : ;P0

m) wherem� 1 andΓ0 .c(x1; : : : ;xm) := u is a line
in B thenMB(Φ[xi := Pi℄) =MB(c(P0

1; : : : ;P0
m)[xi := Pi℄) =

MB(c(P0
1[xi := Pi℄; : : : ;P0

m[xi := Pi℄)) =
1+Σ j=m

j=1MB(u)MB(P0
j [xi := Pi℄)�IH

1+Σ j=m
j=1MB(u)Σi=n

i=1MB(P0
j)MB(Pi)�

Σi=n
i=1MB(Pi)+Σ j=m

j=1MB(u)Σi=n
i=1MB(P0

j)MB(Pi) =
Σi=n

i=1MB(Pi)(1+Σ j=m
j=1MB(u)Σi=n

i=1MB(P0
j)) =

Σi=n
i=1MB(Pi)MB(c(P0

1; : : : ;P0
m). �

LEMMA 4.39. If B ` Φ δ!Φ0 thenMB(Φ)>MB(Φ0).
Proof: By induction onB ` Φ δ!Φ0.� CaseB ` c(P1; : : : ;Pn) δ!Φ[xi := Pi ℄ then

MB(c(P1; : : : ;Pn) = 1+Σi=n
i=1MB(Φ)MB(Pi)>

Σi=n
i=1MB(Φ)MB(Pi)�Lemma4:31MB(Φ[xi := Pi℄).� The compatibility cases are a straightforward application of IH. �

Finally, definition unfolding inside well-typed books is well-founded:

THEOREM 4.40 (Strong Normalisation).Let ` B :: B. For all subformu-

las Ψ occurring in B, relation
δ! is strongly normalizing (i.e., definition

unfolding inside a well-typed book is a well-founded procedure).

Proof: This is a corollary of Lemma 4.39. �
revised.tex; 15/12/2003; 10:08; p.37



38 Kamareddine and Nederpelt

5. Examples

5.1. EXAMPLE 1

Our first example is a simple phrase, taken from a mathematical text:

[*1] the square root of the third power of a natural number

We give two possible translations1.1and1.2 into WTT:
1.1: Nounx:R9n:N(x=p

n3) 1.2: Abstn:N(pn3)
Note that translation 1:1 is more informative in that it gives the final type of

the noun (viz.R), but that translation 1:2 is more compact. It is easy to verify
that both translations return a weakly well-typed noun. We check this for
translation 1:2. We start with a preface incorporating all external constants:

constant name weak type(i) 3 T ! T(ii) p
T ! T(iii ) N S(iv) Abst T !N

We also give the categories of the phrase in translation 1:2:

subexp category subexp category subexp category

n T n T Abstn:N(pn3) N
n3 T N Sp

n3 T n : N Z

We need to deriveB;Γ ` Abstn:N(pn3) :: N for someB and Γ. But it
is clear thatB = Γ = /0. We assume thatn belongs to the setVT which we
postulate as:(�) n2 VT . The desired derivation is given in Figure 5.1 where
numbersi, ii , iii and iv refer to the above preface. This derivation is given

in the format of forward reasoning: we start with smaller subexpressions
and build larger ones. The derivation can also be developed in the format
of backward reasoning, i.e., in thegoal-directedmanner where we start with
thegoal (line (8)) and investigate how it can be reached. The only applicable
rule to get line (8) is(bind). This gives new goals, generated by the main
symbol (Abst) and(iv). These goals are the judgements in lines (1), (4) and
(7), and so forth. Note that our derivation system issyntax-drivenwhere for
each goal,only onerule is applicable.

We vary a bit on this example and look at the followingstatement:

[*2] 8 is the square root of the third power of a natural number

revised.tex; 15/12/2003; 10:08; p.38



A formal language of mathematics 39

(1) ` /0 :: B (emp�book)
(2) /0 ` /0 :: ΓI (emp�cont;1)
(3) /0; /0 ` N :: S (ext�cons;1;2; iii )
(4) /0 ` n : N :: ΓI (term�decl;1;2;3;�)
(5) /0;n : N ` n :: T (var;1;4;�)
(6) /0;n : N ` n3 :: T (ext�cons;1;4; i;5)
(7) /0;n : N ` p

n3 :: T (ext�cons;1;4; ii ;6)
(8) /0; /0 ` Abstn:N(pn3) :: N (bind;1;4; iv;7)

Figure 5. Derivation thatAbstn:N(pn3) is a noun

For the translation, the easiest thing is to use our previous example, obtaining
for translations2.1and2.2 the relational statements:

2.1: 8 : Nounx:R9n:N(x=p
n3) 2.2: 8 : Abstn:N(pn3)

But in this case, there is a shorter and more elegant translation possible,
viz. the logical statementtranslation 2.3: 9n:N(pn3 = 8)
REMARK 5.1. This example shows, that theordinary mathematical for-
mulas (so without our extension with nouns and adjectives) are often good
enough for translations of a mathematical text in formal form. In the case
above, translation2:3 is quite satisfactory, albeit that translations2:1 and
2:2 are, in a sense,closerto the original text. However, when definitions enter
the stage, then the extension with nouns and adjectives, and hence withNoun,Abst, Adj, etc, is more appropriate. See Examples 5.2 and 5.3.

Now look at [*3] below for which we can use 1:1 or 1:2 to get 3:1 and 3:2:
[*3] The square root of the third power of a natural number is positive

Translation 3.1: 8y:R(y : Nounx:R9n:N(x=p
n3)) y� 0)

Translation 3.2: 8y:R(y : Abstn:N(pn3)) y� 0)
Again, a moretraditional translation is translation3.3: 8n:N(pn3 � 0)

REMARK 5.2. The above examples show, that the translation of a mathe-
matical text intoWTT is notcompositional. Look at the indefinite articlea in
the phrase[*1] : the square root of the third power of a natural number. Its
translation isNoun, Abst or 9, see 1.1, 1.2 and 1.3. When embedding[*1]
into statement[*2] , aagain can play each of these three roles. However, when
embedding it in statement[*3] , none of these roles can be maintained: in all
three cases 3.1, 3.2 and 3.3, the translation ofa is changed into8.

This non-compositionality is present in several places in the translation
process. The indefinite articlea is an especially versatile word. It may have
rolesNoun, Abst, 9 or 8, as shown above, but also other roles, in particular:

revised.tex; 15/12/2003; 10:08; p.39



40 Kamareddine and Nederpelt

the introduction of a variable in the context of a definition. For the latter, see
Section 5.3. Theversatilityof the definite articlethe is hardly less.

5.2. EXAMPLE 2

Our second example concerns a text with a definition and its application:

DEFINITION A Fermat-sumis a natural number which is the sum of two squares of natural
numbers.

LEMMA The product of a square and a Fermat-sum is a Fermat-sum.

A WTT-translation could be the following small WTT-book B of two lines
(both with an an empty context), one a definition and the other a statement.
So the abstract format ofB is: /0.D Æ /0.S:

a Fermat-sum:= Nounn2N9k2N9l2N(n= k2+ l2)8u: a square8v: a Fermat-sum(uv : a Fermat-sum)
Note how the defined constanta Fermat-sum, a noun, is used in the statement
following the definition. The nouna squareis not defined inB, hence the
text assumes that this definition has been given beforehand: it is an external
constant toB. Hence, it has to be incorporated in the preface when applying
the derivation rules in order to establish̀B :: B.

5.3. EXAMPLE 3

Our third example is from analysis. It contains the definitions ofdifference
quotientand ofdifferentiableand a statement using the latter definition:

DEFINITION. Let h 6= 0, let f be a function fromA to R, a 2 A and a+ h 2 A. Then
f (a+h)� f (a)

h is thedifference quotientof f in a with differenceh. We call f differentiable

at x= a if lim h!0
f (a+h)� f (a)

h exists. The function
pjxj is not differentiable at 0.

revised.tex; 15/12/2003; 10:08; p.40



A formal language of mathematics 41

Both definitions require a context. We use theflag notationto build the
context in the translation of the above text into the following WTT-book:(1) ; A� R(2) ; f : A! R(3) ; a2 A(4) ; h2 R(5) h 6= 0(6) a+h2 A(7) the difference quotient of f:= f (a+h)� f (a)

h(8) f is differentiable at a:= limh!0
f (a+h)� f (a)

h exists(9) :(λx:R(pjxj) is differentiable at 0)
The flag notation is a shorthand for dealing with contexts: since (parts

of) contexts are frequently repeated in succeeding lines, it saves space to
allow multiple use of context entries (declarations and assumptions). The flag
notation also enables the structure of a WTT-book to be more easily visible.

REMARK 5.3. The flag notation is no more thansugaring, flags do neither
exist in theWTT-syntax, nor in its derivation system. Flags provide for a
certain view on WTT-texts which can be helpful for a human reader, e.g.
when inspecting a formalized mathematical text in an electronic library.

The above flag-text is thesugaredversion of the book given below. For
convenience we first abbreviate:

Γ1 = A� R; f : A! R; a : A;h : R; h 6= 0;a+h2 A
Γ2 = A� R; f : A! R; a : A
The book matching the above flag-text consists of theÆ-concatenation of

the following three lines:

Γ1 . the difference quotient of f:= f (a+h)� f (a)
h

Γ2 . f is differentiable ata := limh!0
f (a+h)� f (a)

h exists

/0 . :(λx:R(pjxj) is differentiable at 0)
Note how context administration works in the flag notation. For example,

the partA� R; a : A; f : A! R needs not to repeated for the definition in
line (8), since it is stillopen(the three flagpoles of lines (1) to (3) are still
present in line (8)). We now discuss the details of the above WTT-book.� Each context element is separately placed in aflag. The attachedflagpole

registers how long the context element is supposed to be present. Nesting
of the flags fixes the order of the context elements.

revised.tex; 15/12/2003; 10:08; p.41



42 Kamareddine and Nederpelt� Context elements can be either declarations or assumptions. In order
to visualize the difference, we start declarations with symbol;. (The
symbol; points atthe declared variable.)� Note that the indefinite articlea occurring in the nouna functionin the
original text, is translated here into the flag in line (2).� In the WTT-book there are onlyboundvariables. Notice for example
that all free variables in line (8) are bound in the context lines (1) to (3).� In translating the original text into (flag-style) WTT-format, we added
the declaration ofA, which was not explicit in the original text.� a2 A is translated as a declaration, whereasa+h2 A is an assumption.
(Both statements are treated similarly in the original mathematical text.)� The context elements containingh are arbitrarily arranged in the original
mathematical text. We concentrate these elements in lines (4) to (6) to
use context administration smoothly: for the definition in line (8) we just
skipped –i.e. cut the flagpoles of– the context elements (4) to (6). In fact,
h is a bound variable in limh!0

f (a+h)� f (a)
h and should not bedeclared

in the context. Moreover, the assumptionsh 6= 0 anda+h2 A are not
desired for the definition in line (8). It is important to find aminimal
context for a definition or statement.� In line (7) we have aphrase definitionof the formCT (!V) := T . The
parameter list of the constantthe difference quotientis (A; f ;a;h), but
only f is accounted for in the WTT-book. A better formulation is:the
difference quotient of f in a with difference h (where f has domain A).� The definition in line (8) is astatement definition, corresponding toCS (!V) := S . Of the parameter list(A; f ;a) of the constantis differ-
entiable at, we only find f anda in the book. The definition can also
be given as a phrase definition (namely as the definition of the adjective

differentiable), in the formatCA(!V) := A . This case is studied below.� The limit-binder limh!p can be considered to be a (non-binding!) con-
stant of three variables, lim(p;X;g), defined beforehand in a context
consisting of the three declarationsp 2 R;X � R; g : X ! R. That is,
we consider limh!pg(h) to be an alternative notation for lim(p;X;g),
with X the domain of functiong. In line (8) we have theinstantiation
lim(0;X;λh2X

f (a+h)� f (a)
h ), with X = fx2 Rja+x2 A^x 6= 0g.� The existenceof the limit as required in line (8) should also have been

defined beforehand, in a piece of mathematical theory stating:

revised.tex; 15/12/2003; 10:08; p.42



A formal language of mathematics 43

(1) The definition of thelimit-property of a functiong : X ! R with
respect to a pointp on the realx-axis. This property is given as an
existential statement (withε’s andδ’s), e.g. in the statement definition:

g has the limit-property inp :=9l2R8ε2R+9δ2R+8x2Xnfpg(jx� pj< δ) jg(x)� l j< ε)20

(2) The theorem thatif the limit-property holds, the existingl is unique.

(3) The definition of lim(p;X;g) as being this uniquel , again under the
assumption that the limit-property holds.

Hence lim(p;X;g) existsis g : X ! R has the limit-property in p.� In line (9), parametersA, f anda of the statementf is differentiable at
a are instantiated withR, λx:R(pjxj) and 0, respectively. The resulting
statement (and its negation with the logical constant:) needs no context.

We give an alternative translation wheredifferentiable (at)is defined as an
adjective. Sincef : A! R becomes a subscript declaration, it should be left
out of the context for statement(80). (Lines(1) to (7) are the same as before,
in line (90) we employ the typing symbol “:” instead of the verb “is”.)(1) ; A� R(2) ; f : A! R

...(80) differentiable at a:= Adjf :A!R(limh!0
f (a+h)� f (a)

h exists)(90) :(λx:R(pjxj) : differentiable at 0)
Derivations leading to either of the two WTT-books given above, need

many small steps, but can be constructed straightforwardly. We omit the
derivations. We only give a number of remarks regarding these derivations:� In line (1) of both WTT-books we typeA by declaring it to be asubset

of R. This is not according to the rules. However, we may consider the
declaration A� R to be shorthand for the declarationA : SET followed
by theassumption A�R. Another option is to rewriteA�R asA :℘(R).� Equality, addition, subtraction and division should also obtain weak types
in the preface. Their common weak type isT �T ! T . The weak type
of
p

is T ! T . The logical operator: has weak typeS ! S .� Function applicationas in f (a) and f (a+h) can be treated as a binary
external constantappl with weak typeT �T ! T .

20 This is a statement definitionCS (!V ) := S . It needs a context to declareX, p andg.

revised.tex; 15/12/2003; 10:08; p.43



44 Kamareddine and Nederpelt� In lines(9) and(90) we use an internally defined notion (differentiable).
In both translations, either as part of a constant for a statement or as a
constant for an adjective, we can apply rule(int�cons) for establishing
well-typedness.

5.4. EXAMPLE 4

Finally we give an example from elementary algebra. We consider the fol-
lowing theorem together with its proof:

THEOREM. Let G be a set with a binary operation� and left unit elemente. Let H be a set

with binary operation� and assume thatϕ is a homomorphism ofG ontoH. ThenH has

a left unit element as well.

PROOF. Takee0 = ϕ(e). Let h 2 H. There isg 2 G such thatϕ(g) = h. Thene0 � h =
ϕ(e)�ϕ(g) = ϕ(e�g) = ϕ(g) = h,

hencee0 is left unit element ofH. 2
A translation into WTT is:(1) ;G : SET(2) ; � : (G�G)! G(3) ; e : G(4) e : a left unit element ofG(5) ; H : SET(6) ; � : (H�H)! H(7) ; ϕ : G! H(8) ϕ : a surjective homomorphism(9) e0 := ϕ(e)(10) ; h : H(11) 9g2G(ϕ(g) = h)(12) ; g : G(13) ϕ(g) = h(14) e0 �h= ϕ(e)�ϕ(g) = ϕ(e�g) = ϕ(g) = h(15) e0 �h= h(16) e0 : a left unit element ofH(17) H has a left unit element

revised.tex; 15/12/2003; 10:08; p.44



A formal language of mathematics 45

This book is a good example of the gains due to flags. The book consists
of six lines with contexts overlapping largely. Schematically, the lines are:(1)� (8) . (9)(1)� (8);(10) . (11)(1)� (8);(10);(12);(13) . (14)(1)� (8);(10) . (15)(1)� (8) . (16)(1)� (8) . (17)
The first of these lines is a definition, the second to fifth are intermediate
results (statements), being part of the proof, and the last line expresses the
theorem (a statement, as well). We translated the proof first, and put the
theorem at the end in order to facilitate a further translation into type theory
(this is not necessary for the translation into WTT). We note the following:� Lines (1) to (4) could be concentrated in the single declaration (extend-

ing WTT slightly):(10) ; (G; �;e) : a groupoid with left unit element

and something similar for lines (5) and (6). WTT (or type theory!) in
practice oftenasks forsuch a kind of abbreviations for dependent parts
of a context (also calledtelescopes, see [23]).� Not all parameters are accounted for in the WTT-book. E.g., one is
inclined to make lines (4) and (8) more specific in the following manner:

(4) e : a left unit element ofG with respect to� ,

(8) ϕ : a homomorphism ofG ontoH with respect to� and�; resp:� We left out the parameter list for the newly defined constante0 in line (9).
As we said before, this list can be reconstructed since it is equal to the
list of the declared variables occurring in the context of the definition.
Hence, theofficial format of line (9) can be:e0(G; �;e;H;�;ϕ) := ϕ(e).
Moreover, in the subsequentusesof the constante0 in lines (14) to
(16), there should be parameter lists as well behind each occurrence
of constante0. In this case, however, the instantiations for the variables
in the variable lists ofe0 in lines (14) to (16) areexactly the sameas
in the definition itself (so variableG is instantiated withG, variable�
with �, etc.). This shows once more that it can be very economical to
allow a shorter notation for parameter lists such that reconstructable or
unchanged heads of parameter lists may be omitted. This is only sugar
and can always be undone. (In Automath [7] this is a syntactic feature.)

revised.tex; 15/12/2003; 10:08; p.45



46 Kamareddine and Nederpelt� The context for the definitione0 := ϕ(e) in line (9) of the example is
larger than necessary. In fact, we could do with contextG : SET ;e :
G;H : SET ;ϕ : G! H and corresponding parameter list(G;e;H;ϕ). In
our example, however, we keep close to the original CML -text, in which
the local definitione0 = ϕ(e) is made in the full context of the theorem.� Lines (12) and (13) are a direct consequence of our wish toavoid free
variablesin a WTT-book. Note thatg is a boundvariable in line (11),
but without line (12) it would be afree variablein line (14).

It is, in fact, a free variable in the original mathematical text. This is due
to the habit in mathematics to extend the scope of an existentially bound
variable outside the formula in which it is introduced:

There is g2 G such thatϕ(g) = h. Then: : :ϕ(e) � ϕ(g) = ϕ(e� g) =
ϕ(g) = : : :.
The occurrences ofg afterThen: : : are free! What is actually happening
in such cases is that theexistenceof such ag automatically induces the
(silent) introduction of such ag (for conveniencecalled gagain) outside
the scope of the9-binder. Repair of this habit is straightforward, by using
the corresponding logical rule of9-elimination:9x2U (P(x)); 8x2U(P(x)) r)

r

This rule is the background for lines (12) and (13), since lines (12)
to (14) prove that8g2G(ϕ(g) = h) e0 � h = h), which, together with
(11) and9-elimination justifies the conclusion (15). Hence, the apparent
detour via lines (12) to (14) is necessary in order to mend a frequent
short cut in mathematical texts. This complication is not the fault of our
translation.� Line (14) is a chain of statements: there are as many statements in this
line as there are =-signs, and maybe even one more: theimplicit conclu-
sion e0 �h= h, which is repeated in (15) (but in a smaller context).� The translation is as near as possible to the original text (but for the
mending of the consequences of the existential quantifier, see above).
This implies that intermediate results which one would expect in the
formal version, are nevertheless left out. E.g., one could expect the line8h2H(e0 �h= h) preceding line (16), in the same context (1) – (8).21� Note that weomit all justificationsin WTT-books. Our reason for doing
this is, that we want to have a rather simple syntax for WTT, which is

21 This is the logical consequence of lines (10) and (15), due to the8-introduction rule.

revised.tex; 15/12/2003; 10:08; p.46



A formal language of mathematics 47

neither concerned withmeta-argumentsabout the logical or mathemat-
ical correctness, nor with the interdependence of statements induced by
these correctness arguments. Hence, we find no words likeSince, Hence
or Becausein WTT. The drawback of this is, that the argumentation
structure of a book can become unclear. This is mended when we make
the next step: translating WTT into type theory.

However, as we said in Remark 3.6, we may choose instead to add to the
WTT-book above, two columns, one with labels and one with comments.
In the label column, to the left of the sample WTT-text, we could write� At line (9): Proof startandDefinition,� At line (16): Proof end,� At line (17): Theorem.

In thecommentscolumn, to the right of the text, we could write� At line (11): From (8) or Because of(7), (8) and (10),� At line (15):9-elimination on(11) and (12) to (14),� At line (16):From (10) to (15),8-introduction and definition of left
unit element.

We leave it as an easy exercise to give a derivation of the WTT-book above.

6. Final remarks

Presently, there is a great variety of proof checkers and theorem provers. We
mention Automath [7], Mizar [17], NuPrl [5], Coq [2], Isabelle [15]ΩMEGA
[3] and PVS [18]. These systems provide help for the users, e.g. by offering
a friendly user interface or by enabling the use oftactics. These tactics are
special assignments to the computer, in order to simplify or develop the actual
proof goalduring the construction or check of a proof. Some of these systems
are based on a fully formalized language for mathematics. Others like PVS
only provide tactics to the user, a completed proof is not a text with mathe-
matical content, but only a listing of the tactics used. Some theorem provers
offer a mathematical vernacular in the WTT-sense, i.e. an incomplete, textual
rendering of a mathematical content which has resemblance with informal
proofs. Below we discuss some of these.� The theorem proving system Coq [2] incorporates in its documentation

a kind of intermediate specification language, calledGallina22. This

22 Seehttp://coq.inria.fr/doc/node.0.0.html.

revised.tex; 15/12/2003; 10:08; p.47



48 Kamareddine and Nederpelt

vernacular is a formally defined language meant for the development
of mathematical theories and to prove specifications of programs. The
intention is that it is usable as alanguage of commandsfor Coq, helping
the Coq-user to stay closer tonormal intuition when proving a mathe-
matical proposition. It is, however, not meant asa first step in formal-
izationas WTT is. It has a rather specific form which does only distantly
reflect a mathematical discourse and it is also not very adequate for the
purposes exposed in this paper.� The mathematical vernacular proposed in [9] relies on Coq. It provides
instructivelabels (like Axiom, Definition, Hypothesis, Statement,
Proof). Moreover, a number of natural deduction rules are replaced with
more intuitive alternatives (e.g.,9-elimination). The aims are clearly
different from ours: labels as the ones above are out of scope in our
formalisation and so arecommentsabout the (e.g. logical) structure, as
is discussed in Remark 3.6. Moreover, since WTT is not concerned with
validity, the proof structure itself (e.g., natural deduction) has no formal
counterpart in our system. Consequently, a Proof Synthesis Algorithm
as in [10] has no direct application in WTT. However, when WTT is
translated into more complete formal languages (see Section 6.1), the
ideas of Dowek will most probably be fruitful and inspiring.� The aim of the projectΩMEGA [3] is to develop a software environ-
ment for the support of a scala of theorem provers. The built-in version
of the mathematical vernacularis meant to give the user on request a
mathematics-like computerviewof an already checked proof. It has the
same drawbacks as the mathematical vernacular of Coq.� The basic languages of Mizar [17] and Isar [20] are close to the reliabil-
ity criterion and have proven to be suited for expressing large corpora of
mathematical content. Their syntax is, however, rather complicated and
requires much of an ordinary user to become acquainted with it. [20]
compares both Isar and Mizar listing their weak and strong points.� In theTheorema project[4] computer algebra systems are extended with
facilities for mathematical proving. The provers are designed to imitate
the proof style humans employ in their proving attempts. The proofs can
be produced in human-readable style. However, this is done bypost-
processinga formal proof in natural language. This deviates from our
approach, for which no formal proof needs to be present. The natu-
ral language part of Theorema has little structure and restricts itself to
comments on the logical steps employed (a part that does not appear in
WTT). The linguistic facilities of WTT are absent in Theorema’s natural
language. Moreover, the text style of Theorema (insofar as we could see)
is not based on a formal grammar for the textual language.

revised.tex; 15/12/2003; 10:08; p.48



A formal language of mathematics 49� In [16], a large amount of work has been done on a typed functional
programming language GF whose purpose is to define languages such
as fragments of natural languages, programming languages and formal
calculi. GF is an extension of logical frameworks which are implemen-
tations of type theory. GF is based on Martin-Löf’s type theory. Our
work is different and complementary to that of Ranta. We do not at all
assume/prefer one type theory instead of another. WTT is completely
independent from any particular type theory. We believe that the formal-
isation of a language of mathematics should separate the questions of
which type theory is necessary for which part of mathematicsandwhich
language should mathematics be written in. Moreover, mathematicians
don’t usually know or work with type theories. Mathematicians usually
do mathematics (manipulations, calculations, etc), but are not interested
in general in reasoningaboutmathematics.

As far as we know, no theorem provers provide an independent language
for describing mathematical content in such a manner that the reliability
criterion is sufficiently accounted for. Existing mathematical vernaculars are
moreover (to our knowledge) not ready for immediate use, and if accessible
for a mathematical user, then with great difficulty.23

6.1. FUTURE WORK

We list a number of items concerning possible future work.� The syntax and derivation rules of WTT must betestedon a corpus of
mathematical texts from various areas in mathematics and with consid-
erable size. Former tests (cf. Section 1), are not enough to allow con-
clusions about WTT. Forthcoming tests should enlist a potentialusers
group, ranging from students to all sorts of mathematicians: both in the
theoretical and applied field, and working in either teaching or research.� In this testing stage, it should be considered whether certain forms of
sugaringcan safely be added to WTT. This sugaring is probably desir-
able in order to make WTT an acceptable language tool for the users.
For example, the possibility of infix notation makes the text more user-
friendly. This also holds for other sugaring devices, such as the possibil-
ity of omitting empty parameter lists.

Another possible sugaring which may be advantageous is the use offlags
as employed in Section 5. In the examples of that section, the benefits of
the flag notation were explained.

23 Seehttp://www.cs.kun.nl/~freek/digimath/bycategory.html for an extensive
overview of systems implementing mathematics in the computer.

revised.tex; 15/12/2003; 10:08; p.49



50 Kamareddine and Nederpelt

For enabling a consistent use of certain forms of sugaring, the syntax of
WTT must be extended. It may be preferable to do this in a kind ofshell,
built on top of WTT, to maintain the reliability criterion for WTT. The
development of such a shell is user-driven and may require arbitrary
decisions, without much coherence. In this respect, the sugaring-shell
differs from the underlying WTT syntax, which has a tighter structure
and a more mathematically-driven motivation.� It is desirable toimplementWTT. A parser should be able to parse WTT-
expressions and to check whether such expressions obey to the grammar
of Section 2. Next, a (grammatical) type checker must be implemented
which establishes the weakly well-typedness of contexts, books etc. ac-
cording to the derivation rules of Section 3. User-friendliness of such
a type checker is of importance, in order to make the tool acceptable
for mathematicians who wish to write (or translate) their text in(to)
WTT. This may ask for things asflags, but also for other aids such as
pop-up windows, appropriate input-output handling, interactive commu-
nication, possible storage and retrieval of texts and contexts.� It is interesting to investigate how WTT can beenrichedin the direc-
tion of either type theory, or another acceptable complete mathematical
language, such as that of Zermelo-Fraenkel Set Theory. A first step in
that direction is to incorporate labels, proofs and proof methods. This
encapsulates thelabelandcommentscolumns mentioned in Remark 3.6.� In this stage of the research, it is conceivable thata chain of intermediate
languagesbetween WTT and – for example – full fledged type theory
is the best manner to bridge the gap. In this case, translation protocols
should be devised for each link of the chain. For different transitions
in this translation process, different specialists may be the preferred ex-
ecutives: mathematicians, computer scientists or type theorists. It may
be worth while to compare this research with work on (hierarchies of)
specification languages as has been done in computer science.� It should be investigated howcomputer assistancecan be invoked in
either the full transition process or in one of the translation stages from
WTT to a completely formalized version of a mathematical text.� Finally, it can be investigated how the results obtained can be made
profitable for the community of mathematicians, both in developing and
in using mathematics, in several degrees of precision. For example, easy
access to WTT technology can be useful for computer help in writing
mathematics. On the other side of the spectrum, we have the complete
formalization of a certain text, which is suitable for a complete check

revised.tex; 15/12/2003; 10:08; p.50



A formal language of mathematics 51

on correctness and subsequently for storage of correct mathematical
knowledge in a – publicly accessible – data base.

6.2. CONCLUSION

The famous mathematician Frege was frustrated by the informalities of the
common mathematical language CML : . . . I found the inadequacy of language
to be an obstacle; no matter how unwieldy the expressions I was ready to
accept, I was less and less able, as the relations became more and more
complex, to attain precision...(Begriffsschrift, Preface, see [11]). In 1879,
he wrote theBegriffsschrift(see [11]), whosefirst purpose is to provide us
with the most reliable test of the validity of a chain of inferences(again, see
Begriffsschrift, Preface). Then he wrote theGrundlagenand Grundgesetze
der Arithmetik[11] where he argued that mathematics is a branch of logic
and described arithmetic inBegriffsschrift. Russell wrote a letter to Frege [11]
informing him of a paradox in Frege’s work and his own (see [12]). To avoid
the paradox, Russell usedtype theoryin the famousPrincipia Mathemat-
ica [21] where mathematics was founded on logic. Advances were also made
in set theory [22], category theory [13], etc., each being advocated as a better
foundation for mathematics. But, none of the logical languages of the 20th
century satisfies the criteria expected of a language of mathematics. A logical
language does not have mathematico-linguistic categories, is not universal to
all users of mathematics, and is not a satisfactory communication medium:� Logical languages make fixed choices (first versus higher order, pred-

icative versus impredicative, constructive versus classical, types or sets,
etc.). But different parts of mathematics need different choices and there
is no universal agreement as to which is the best formalism.� A logician writes in logic their understanding of a mathematical-text
as a formal, complete text which is structured considerably unlike the
original, and is of little use to theordinary mathematician.� Mathematicians do not want to use formal logic and have for centuries
done mathematics without it.

So, mathematicians kept to CML . In this paper, we gave WTT, an alterna-
tive to CML which avoids some of the features of the logical languages which
made them unattractive to mathematicians. We hope that WTT will open a
new useful era of collaboration between mathematicians and logicians:� WTT- and CML -texts are related by the reliability criterion (a WTT-text

covers what its CML -version intended). A mathematician can check this.

revised.tex; 15/12/2003; 10:08; p.51



52 Kamareddine and Nederpelt� Although both the CML -text and its translation into WTT are incomplete,
WTT has additionallevelssupporting more rigor. One can define further
translations into more and more logically-complete versions. Since these
translations are from formal to formal texts, it is easy to check reliability
between a text at leveli and its more complete version at leveli+1.� As the path from a CML - to a logically-complete text is divided in
clearly connected phases, it can be built with or without the help of the
mathematician.

The above bridging between mathematics and logic can also reach computer
science and proof checking. In 1967 the famous mathematician de Bruijn
began work on logical languages for complete books of mathematics that
can be checked by machine. People are prone to error, so if a machine can
do proof checking, we expect fewer errors. Most mathematicians doubted
de Bruijn could achieve success, and computer scientists had no interest at
all. However, he persevered and built Automath [14] (AUTOmated MATHe-
matics). Today, there is much interest in many approaches to proof checking
for verification of computer hardware and software. Many theorem provers
have been built to mechanically check mathematics and computer science
reasoning (e.g. Isabelle, HOL, Coq, etc.). In practice, a CML -text is struc-
tured very differently from a computer-checked text proving the same facts.
Making the latter involves extensive knowledge and many choices:� First, the needed choices include:� The choice of the underlying logical system.� The choice of how concepts are implemented (equational reason-

ing, equivalences and classes, partial functions, induction, etc.).� The choice of the formal system: a type theory (dependent?), a set
theory (ZF? FM?), etc.� The choice of the proof checker: Automath [14], Isabelle [15],
Coq [2], PVS [18], Mizar [17], etc.� Any informal reasoning in a CML -text will cause headaches as it is

hard24 to turn a big step into a (series of) syntactic proof expressions.� Then the CML -text isreformulatedin a fully completesyntactic formal-
ism where every detail is spelled out. Very long expressions replace a
clear CML -text. The new text is useless to ordinary mathematicians.

Thus, automation is user-unfriendly for the ordinary mathematician/computer
scientist. It is the hope that WTT may help in dividing the jump from informal
mathematics to a fully formal one into smaller more informed steps.

24 Tacticshelp but give atrack for the final proof which is not informative nor accessible.

revised.tex; 15/12/2003; 10:08; p.52



A formal language of mathematics 53

References

1. Bancerek, G.: 2003, ‘On the Structure of Mizar Types’.ENTCS85.7.
2. Barras, B. et al.: 1999, ‘The Coq Proof Assistant, Reference Manual’. INRIA.
3. Benzmüller, C. and M. Kohlhase: 1997, ‘ΩMEGA: Towards a Mathematical Assistent’.

In: W. McCune (ed.):Proceedings of Conference on Automated Deduction (CADE-14),
Vol. 1249 ofLecture Notes in Artificial Intelligence. pp. 252–255.

4. Buchberger, B. et al.: 1997, ‘A survey of the Theorema project’. In:Proceedings of
ISSAC’97 (International Symposium on Symbolic and Algebraic Computation), Maui,
Hawai (1997). pp. 384–391.

5. Constable, R. L. et al.: 1986,Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice Hall.

6. de Bruijn, N.: 1990,Reflections on Automath. Eindhoven University of Technology.
Also in [14], pages 201–228.

7. de Bruijn, N. G.: 1970, ‘The mathematical language Automath, its usage and some of
its extensions’. In:Proceedings of Symposium on Automatic Demonstration, Vol. 125 of
Lecture Notes in Mathematics. pp. 29–61. Also in [14], pages 73–100.

8. de Bruijn, N. G.: 1979/1980, ‘Grammatica van WOT’.Euclides55, 66–72.
9. Dowek, G.: 1990a, ‘Naming and scoping in a mathematical vernacular’. Technical Re-

port 1283, INRIA (Institut National de Recherche en Informatique et en Automatique,
Rocquencourt.

10. Dowek, G.: 1990b, ‘A Proof Synthesis Algorithm for a Mathematical Vernacular’. In: G.
Huet and G. Plotkin (eds.):Proceedings of the First Workshop on Logical Frameworks,
Antibes, France.

11. Heijenoort, J. v. (ed.): 1967,From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Cambridge, Massachusetts: Harvard University Press.

12. Kamareddine, F., L. Laan, and R. Nederpelt: 2002, ‘Types in logic and mathematics
before 1940’.Bulletin of Symbolic Logic8(2), 185–245.

13. MacLane, S.: 1972,Categories for the Working Mathematician. Springer.
14. Nederpelt, R. P., J. H. Geuvers, and R. C. de Vrijer: 1994,Selected papers on Automath.

Amsterdam: North-Holland.
15. Nipkow, T., L. Paulson, and M. Wenzel: 2002,Isabelle/HOL, A proof assistant for

higher-order logic. Springer, LNCS 2283.
16. Ranta, A.: 2001, ‘The GF language: Syntax and Type System’. Technical report,

Chalmers. http://www.cs.chlamers.se/ aarne/GF.
17. Rudnicki, P.: 1992, ‘An overview of the MIZAR project’. In: B. Nordström, K. Petter-

son, and G. Plotkin (eds.):Proceedings of the 1992 Workshop on Types for Proofs and

Programs, B
Æ
astad. pp. 311–332.

18. S. Owre, J. R. and N. Shankar: 1992, ‘PVS: A prototype verification system’. In: D.
Kapur (ed.):Lecture Notes in Artificial Intelligence, Vol. 607. pp. 748–752.

19. Severi, P. and E. Poll: 1994, ‘Pure Type Systems with Definitions’. In: A. Nerode and Y.
Matiyasevich (eds.):Proceedings of LFCS’94 (LNCS813). New York, pp. 316–328.

20. Wenzel, M. and F. Wiedijk: 2002, ‘A comparison of Mizar and Isar’.Automated
Reasoning29, 389–411.

21. Whitehead, A. and B. Russell: 19101, 19272, Principia Mathematica, Vol. I, II, III.
Cambridge University Press.

22. Zermelo, E.: 1908, ‘Untersuchungen über die Grundlagen der Mengenlehre’.Math. An-
nalen65, 261–281.

23. Zucker, J.: 1975, ‘Formalization of classical mathematics in Automath’. In:Colloque
Internationale de Logique, Clermont-Ferrand, France. pp. 135–145.

revised.tex; 15/12/2003; 10:08; p.53



revised.tex; 15/12/2003; 10:08; p.54


