A Reflection on Russell’s Ramified
Types and Kripke’s Hierarchy of
Truths

FATROUZ KAMAREDDINE, Department of Computing Science,
University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ),
Scotland. E-mail: fairouz@dces.gla.ac.uk

TWAN LAAN, Department of Mathematics and Computing Science,
FEindhoven University of Technology, P.O. Box 513, 5600 MB
FEindhoven, The Netherlands. E-mail: laan@uwin.tue.nl

Abstract

Both in Kripke’s Theory of Truth KTT [8] and Russell’s Ramified Type Theory RTT [16, 9] we are
confronted with some hierarchy. In RTT, we have a double hierarchy of orders and types. That is, the
class of propositions is divided into different orders where a propositional function can only depend
on objects of lower orders and types. Kripke on the other hand, has a ladder of languages where
the truth of a proposition in language Ly can only be made in L,, where m)n. Kripke finds a fixed
point for his hierarchy (something Russell does not attempt to do). We investigate in this paper the
similarities of both hierarchies: At level n of KTT the truth or falsehood of all order-n-propositions of
RTT can be established. Moreover, there are order-n-propositions that get a truth value at an earlier
stage in KTT. Furthermore, we show that RTT is more restrictive than KTT, as some type restrictions
are not needed in KTT and more formulas can be expressed in the latter.

Looking back at the double hierarchy of Russell, Ramsey [11], and Hilbert and Ackermann [7]
considered the orders to cause the restrictiveness, and therefore removed them. This removal resulted
in Church’s Simple Type Theory sTT [1]. We show however that orders in RTT correspond to levels
of truth in KTT. Hence, KTT can be regarded as the dual of STT where types have been removed
and orders are maintained. As RTT is more restrictive than KTT, we can conclude that it is the
combination of types and orders that was the restrictive factor in RTT.

Keywords: The Hierarchies of Types, orders and truth levels, Principia’s Substitution, the restric-

tiveness of combining types and orders

1 Introduction

The role of Type Theory in Logic and Mathematics has always been a restrictive
one. The need for restrictions was realised at the beginning of this century, when
Bertrand Russell showed that Frege’s Begriffsschrift [5], a formalisation of logic, was
inconsistent!. Russell considered self-application to be the cause of the contradictions,
and hence excluded all possibilities of self-application in his Theory of Types [13, 16].

As paradoxical sentences in Natural Language play a role similar to that of the para-
doxes in Logic and Mathematics, Type Theory eliminated the paradoxical sentences
(see for instance [10]). Paradoxes moreover have been classified in two categories (see

1An English translation of Russell’s letter to Frege in which this inconsistency is described can be found in [6]

J. of the IGPL, Vol. 4 No. 2, pp. 195-213 1996 195 © IGPL

196 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

[11]): the logical and the semantical. The famous Russell’s paradox is logical whereas
the famous liar’s paradox is semantical. The semantical paradoxes usually involve the
truth predicate T which gives the truth value of a proposition. Tarski [14] shows that
truth is undefinable and that having the truth predicate inside the language leads
to contradictions. For this reason, he distinguishes between (object-) language and
meta-language and allows the truth predicate only at the meta-level. Now, to talk
about the truth of sentences in the meta-language, one needs a meta-meta-language
and so on. Kripke [8], however, considers Russell’s Theory of Types and the Theory of
Truth by Tarski to be too restrictive for a proper formalisation of Natural Language
and presents a type-free theory where the truth predicate belongs to the language,
in which nevertheless the known paradoxes do not occur. Kripke’s idea is to follow
a certain hierarchy as with Russell but to take the fixed point of his hierarchy of
languages to reach a language which has its own truth predicate.

We start this paper by presenting an overview of both Russell’s system (in Section
2, using a formalisation presented in [9]) and Kripke’s (in Section 3). In Section 4 we
carefully compare both theories. As Russell’s system is said to be more restrictive than
Kripke’s, this comparison is carried out by coding Russell’s expressions in Kripke’s
theory. The stronger restrictions in the Ramified Type Theory can be seen clearly:
at several parts in the definition of the embedding the reader will notice that some
type-theoretic properties of Russell’s expressions are mentioned, but not used in this
definition. We show that the embedding is conservative, i.e. that truth in Russell’s
theory and in Kripke’s theory are the same, as far as formulas expressible in Russell’s
(more restrictive) system are concerned.

2 The Ramified Theory of Types RTT

In this section we give a short, formal description of Russell’s Ramified Theory of
Types (RTT). Our formalisation of Russell’s theory is the first of its kind and is
worth attention. This formalisation is both faithful to Russell’s original informal
presentation and compatible with the present formulations of type theories. The
basic aim of RTT is to exclude the logical paradoxes from logic by eliminating all
self-references. An extended philosophical motivation for this theory can be found in
Principia Mathematica [16], pages 38-55. We will not go into the full details of the
formalisation of Russell’s theory (these details can be found in [9], the presentation
by Russell himself in Principia is informal).

In Subsection 2.1 we introduce propositional functions, the logical formulas of the
‘naive’ system of logic. In Subsection 2.2 we present a rule to assign a type to
some of these propositional functions. The propositional functions that lead to the
logical paradoxes are, of course, not typable. In Subsection 2.3 substitution for RTT
is discussed. This part is rather technical, but we need it in the proof of lemma 4.8,
which is essential in the proof of one of our fundamental results (theorem 4.10). That
18, lemma 4.8 helps us in showing that KTT can be regarded as a system based on RTT
of which the types and not the orders have been removed.

2. THE RAMIFIED THEORY OF TYPES RTT 197

2.1 Propositional functions

In this section we shall describe the set of propositions and propositional functions
which Whitehead and Russell use in Principia. We give a modernised, formal defini-
tion which corresponds to the description in Principia.

At the basis of the system of our formalization there 1s

e an infinite set A of individual-symbols;
e an infinite set V of variables;

e an infinite set R of relation-symbols together with a map a: R — INT (indicating
the arity of each relation-symbol).

0-ary relations are not explicitly used in Principia but could be added without prob-
lems. Since functions are relations in Principia, we will not introduce a special set of
function symbols.

We assume that {aj,a;,...} C A; {x,x1,%2,...,7,V1,..-,%,21,...} C V;
{R,Ry,...,S,84,...} € R. We will use the letters «,y,z,21,... as meta-variables
over V, and R, Ry, ... as meta-variables over R. Note that variables are written in
typewriter style and that meta-variables are written in stalics: x denotes one, fized
object in V whilst z denotes an arbitrary object of V.

We assume that there is an order (e.g. alphabetical) on the collection V, and write

z(y if the variable is ordered before the variable y. In particular, we assume that

x(x (o {y{yi . (2(z1(. ..

We also have the logical symbols V, = and V in our alphabet, and the non-logical
symbols: parentheses and the comma.

DeFINITION 2.1 (Propositional functions)
We define a collection F of propositional functions, and for each element f of F we
simultaneously define the collection Fv(f) of free variables of f:

1.IfRERandi1,...,ia(R)E.AUVthen R(il,...,ia(R))Ef.

FV(R(i1, - - ia(r)) = (it damy) NV
2IfzeV,neNand ky,.... ky € AUVUF, then z(ky, ... ky) € F.

Fv(z(ke, .. kn) S {2 ke, OV

If n = 0, we write z() so as to distinguish the propositional function z() from the
variable z:;2

3.1 f,g € Fthen fVge€F and ~f € F. vv(f V g) E vv(f) Urv(g); rv(=f) &

Fv(f);
4.1f f € F and z € vv(f) then Va[f] € F. rv(Va[f]) = rv(f) \ {=}.

5. All propositional functions can be constructed by using the rules 1, 2, 3 and 4
above.

We use the letters f, ¢, h as meta-variables over F.

21t is important to note that a variable is not a propositional function. See for instance [12], Chapter VIII: ‘The
variable’, p. 94 of the 7th impression.

198 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

CONVENTION 2.2

[Variable convention] We make the usual convention that a variable # in a proposi-
tional function f that is bound by the quantifier ¥V does not occur as a free variable
in f. Moreover, different bound variables in f have different names.

A propositional function f must be seen as a proposition in which some parts (the
free variables) have been left undetermined. Tt will turn into a proposition as soon as
we assign values to all the free variables occurring in 1t. In this light, a proposition
can be seen as a degenerated propositional function (with 0 free variables).

It will be clear now what the intuition behind propositional function of the form
R(i1,...,iar)), f Vg, ~f and Yz[f] is. The intuition behind propositional functions
of the second kind is not so obvious. z(ky, ..., ky) is a propositional function of higher
order: z 1s a variable for a propositional function with n free variables; the argument
list ki,..., ky indicates what should be substituted® for these free variables as soon as
one assigns such a proposttional function to z.

Notice that there are propositional functions of the form z(k1, ..., k) (where z € V)
but that expressions of the form f(ki,...,k,), where f € F, are not propositional
functions. Even substituting f for z in z(k1,...,k,) does not lead to f(kyi,..., k),
as the notion of substitution in RTT will appear to be quite different from the usual
notion of substitution in first order logic (see Subsection 2.3 for more details).

ExaMPLE 2.3
Here are some higher-order propositional functions from ordinary mathematics.

e The propositional functions z(x) and z(y) in the definition of Leibniz-equality:
Vz[z(x) < z(y)]

e The propositional functions z(0), z(x) and z(y) in the formulation of complete
induction:

[2(0) — (VxVy[z(x) — (S(x,y) — 2(y))])] — Vx[z(x)]
e z() in the formulation of the law of the excluded middle:

vz[z() V —z()]

2.2 Ramified types

Not all propositional functions should be allowed in our language. For instance, the
expression - () is a perfectly legal element of F, nevertheless, it is the propositional
function that makes it possible to derive the Russell Paradox. Therefore, types are
introduced.

DEFINITION 2.4 (Ramified types)
1. ¢° is a ramified type (0 is called the order of this type);

3In the Principia, it is not made clear how we should carry out such substitutions. We must depend on our
intuition and on the way in which substitution is used in the Principia. Nevertheless, it is hard and elaborate to
give a proper definition of substitution. We present a short overview of this definition in Subsection 2.3; for a
motivation of this definition and its relation to S-reduction in the A-calculus the reader should consult [9].

2. THE RAMIFIED THEORY OF TYPES RTT 199

2.If ty,...,t, are ramified types of orders ay,...,a, respectively, and
aymax(ay,...,dn), then (¢1,...,%,)% is a ramified type of order a;

3. All ramified types can be constructed using the rules 1 and 2.

¢° represents the type of the individuals, and one can think of (¢1,...,¢,)® as being
the type of the propositional functions with n free variables, say x4, ..., z,, such that
if we assign values ki of type ¢; to @1, ..., k, of type ¢, to z,, then we obtain a

proposition. The type ()* stands for the type of propositions of order a.

Russell strictly divides his propositional functions in orders. For instance, both
Vp[p() V =p()] and R(a) are propositions, but they are of different level: The earlier
one presumes a full collection of propositions, hence (according to Russell) it cannot
belong to the same collection of propositions as the propositions p over which it
quantifies (among which R(a)). This made Russell decide to let ¥p[p() V =p()] belong
to a type of a higher order (level) than the order of R(a).

This can already be seen in the definition of ramified types: (¢1,...,%,)% can only
be a type if a 1s strictly greater than each of the orders of the #;s.

DEFINITION 2.5
Let @1, ..., 2, be a list of distinct variables, and ¢1,...,%, be a list of ramified types.
We call 21:t1,... 25t a context and call {xq, ..., z,} its domain.

We write I' = f : ¢ to express that f € F has type ¢ in context I', and extend
the variable convention to contexts: If z is bound in f, then # does not occur in the
domain of T'.

We use ', A to range over contexts and #1,%5,... to range over types.

We now present a set of typing rules for RTT. These rules are derived from and
equivalent to the rules in [9], which are as close as possible to Russell’s original ideas.
We change our notation for propositional functions slightly: Instead of Va[f] we write
Va:t[f], where ¢ is some ramified type.

DEeFINITION 2.6 (Typing rules for RTT)
eIfce A, then I' ¢ : ¢° for any context I';

o If f € F,and x1(...{x, are the free variables of f, and ¢1,...,t, are types such

that z;:t; € T, then T'F f: (¢1,...,t,)% if and only if

—1If f = R(i1,...,1ar)) then t; = ° for all ¢, and a = 1 (if n)0) or a = 0 (if
n=0);

~1If f = z(k1, ..., km) then there are uy, ..., uy such that z:(u1, ..., um)* "t €T,
and I'F k;:u; for all k; € AUF, and k;:u; €T for all k; € V;

—1If f = f1V fa then there are uj*, u5? such that I' F f; : uf* and @ = max(ay, az2);
if f=—-f then TF f/:(t1,...,t0)%

—1If f = Va:to[f'] then thereis jsuch that T 2o = f/ : (31, ..., %21, %0, 8, ..., tn)".

ExamMPLE 2.7
—x(x) is not typable in any context T
Assume, we would have T' F —x(x) : ¢.
Then ¢t must be of the form (u)*, with x:u € T, as =x(x) has one free variable.
This implies I' - x(x) : (u)®, hence by Unicity of Types below, v = (u/)*~!, with
x:u er.
As T is a context, we have u = u’, hence u = (u)*~!, which is impossible.

200 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths
An important result is the following (a proof can be found in [9]):

THEOREM 2.8 (Unicity of types)
Ifr'-f:tand ' f:uthent = u.

2.8 Substitution in RTT

Substitution in RTT is not simply a syntactic operation of replacing a variable by an
object, as is usual in first-order logic. This can be understood if we read the interpreta-
tion of the propositional function z(k1, ..., kn). Substituting a propositional function
f for the variable z should have as a result f, in which kq,..., &, are substituted
for the free variables in f. So a substitution may result in a new substitution (and
we may wonder whether this process will ever terminate). Below, we give a formal
definition of substitution in RTT (needed in the proof of the Substitution lemma 4.8).
For examples and an extended motivation of the definition the reader may consult

[9].

DEFINITION 2.9
Let feF, T f it ki,.... k€ AUVUF and 2y, ..., 2, €V such that

o If k; € A then z;:° € T
o If k; €V then there is t such that both k;:t € I' and x;:t € T
o If k; € F then there 1s ¢t such that I' - k;:2 and x;:t € T'.

We define flzy,...,em:=k1,.. ., kn], the (simultaneous) substitution of ki,..., kn
for z1,...,&m in f (shorthand f[z;:=k;] if no confusion arises) by a double induction
on the order and structure of f:

o f=R(i1,. .. iar)). Define 7, d—ef{ ke i iy =

Zj - i]' ifijg{l‘l,...,l‘m}
def . .

flesi=ks] = R(4), ..., z;(R)).

o f=z(hy,..., hy). We distinguish two cases:
; def k‘z if h]' =Xy

Lz g{z1,...,zm}. Define h; = { hy ifh & {x1,. .. am}
Flee=k] = 2(hy, ... RL).
k‘z if h]' =Ty
h]' lfhjg{l‘l,,l‘m}
Notice that, as z, #, and %k, have the same type, k, is a propositional func-

tion with n free variables, say y1{...{y,. Now: flz;:=k;] et kplyr, .., yn:=h1,

..., hL]. Note that the object on the right is a correct substitution (with respect
to the types of the y; and the h;) and has already been defined, as k, has the
same order as z, which is exactly one less than the order of z(hy, ..., hy).

o f=fiV fo. Then fle;i=k] ™ file;=ki]V folzi=ki].
o f=~f". Then flz;:=k] o —f'[xi=ki].

o f=Vuit[f']. Then fla;:=k;] ! Vat[f' [x;:=k;]] (we assume that & {@1,...,2m}).

def
1
2.z €{x1,. .., Tm}, assume z = x,. Define b} = {

2. THE RAMIFIED THEORY OF TYPES RTT 201

Substitution in RTT is quite different from usual notions of substitution in, for exam-
ple, first order logic or A-calculus. For a good understanding of the rest of this article
it 1s essential to see these differences.

There is no definition of substitution in Principia. The above definition is based on
what happens in Principta when a substitution seems to take place. The hardest part
of the definition is a substitution of the form z(hy, ..., hn)[21, ..., 2;m:=k1, ... km]
where z is among the z;: say, z = x,. We can assume that &, is a propositional
function with n free variables, say, y1{... (yn.

According to the definition, we first carry out the substitutions that have nothing
to do with z (the definition of the h}s). This part is similar to a usual first-order
substitution.

Now we must substitute k, for z in z(h{,..., k). The intuition on the propo-
sitional function z(h’l,...,hg), that was eXplamed at the end of Subsection 2.1,
prescribes that the arguments A, ... h], must be substituted for the free variables
Yi,...,Yn of kp, as soon as k, is substituted for z. This leads to a new substitution
kplyr, ..., yn:=h1, ..., hL]. As the order of &, is lower than the order of z(hq,..., hy),
we may assume that the final result of this new substitution has already been defined.

To understand the notion better it may be helpful to treat the substitution
z(hy, ..., hy)[e;i=k;] first as if it was a usual, first order substitution, and write
down k, (R, ..., h!) as an informal, intermediate result. Then the substitution of the
h; for the y; in k, can be seen as the contraction of the n f-redexes in the A-term
(Ay1 -+ -yn-kp)h] - - hl,. Notice, however, that k,(h{,...,h]) is not a propositional
function (see the explanation in Subsection 2.1). More on the relation between sub-
stitution in RTT and S-reduction in A-calculus can be found in [9].

We give some examples of RTT-style substitutions in order to make the reader more
familiar with this notion.

ExamprLE 2.10

® R(xy,x0)[x1:=as] = R(a, x3). On first order level, RTT-substitution is the same as
in first order logic.

e z(R(x),y)[x:=a] = z(R(x),y). Note that x is not a free variable of z(R(x),y)! The
substitution does not ‘continue’ in the arguments of z(R(x),y): z(R(x), y)[x:=a] #
2(Rx)[x=a],).

e z(a)[z:=R(x)] = R(x)[x:=a] = R(a).

* 21 (R(x))[21:=22(a)] = 22(a)[z2:=R(x)] = R(x)[x:=a] = R(a).

o z;(xy,R(x1))[x2, Z1:=a,25(y)] = 22(y)[y, Z2:=a, R(x1)] = R(x4)[x1:=a] = R(a). The
reader might want to make some informal, intermediate steps in this substitution
(as explained above): 21 (X9, R(%1))[%2,21:=a,25(y)] first leads to
(22(y))(a,R(x1)) as an intermediate result, and then to z,(y)[y, z2:=a, R(x41)].
Similarly, this new substitution first leads to (R(x1))(a)[z2:=R(x1)] and then to
R(xy)[x1:=a].

We will need the following results about substitutions. They are proved in [9].

LEMMa 2.11
The order of f is greater than or equal to the order of the substitution fla;:=k;].

LEMMA 2.12

FV(flzii=gi]) = (FV(f) \{z1,.. ., 2n}) U {gilg: € V and z; € FV(f) }.

202 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

2.4 Logical truth for RTT in Tarski’s style

With substitution properly defined, we can give a definition of logical truth in Tarski-
style for RTT:

DeFINITION 2.13 (Logical truth for RTT)
Let f € F and assume Fv(f) = @. We define RTT = f:

o If (a1,...,am) € R then RTT |E R(ay, ..., ay), for all individuals ay, ..., ap,.
o If RTT = f1 or RTT £ f5 then RTT | f1 V fo.

o If not RTT |= f, then RTT |= —f.

o If f =Vz:t[h] and for all g of type ¢, RTT = h[z:=g]?, then RTT = Va:t[h].

REMARK 2.14

At first sight, the reader might expect a clause for the case f = z(ki,..., k) in
the above definition. However, Fv(z(k1,...,km)) D {2}, so FV(z(k1,..., kn)) # @.
Propositional functions of the form z(kq, ..., k) only occur in the above definition in
a form in which the variable z has been bound by a quantifier. As was noted earlier
(in Subsection 2.1) expressions of the form f(ki1,...,k,), where f is a propositional
function, do not exist in RTT.

REMARK 2.15

This definition of logical truth is quite informal. For example, the first clause ‘If
(a1,...,am) € R then RTT = R(ay,...,an) requires the symbol R to be already
fully interpreted and to denote a relation independently of any Tarskian assignment
function. This is faithful to Russell, for whom the Tarskian notion of an uninterpreted
formal language was quite alien.

3 Kripke’s Theory of Truth KTT

In this section, we shortly describe Kripke’s Theory of Truth KTT (see [8]). Kripke
expresses higher-order formulas within a first-order language, using the fact that many
interesting languages are rich enough to express their own syntax (for instance, via a
Godel Numbering).

Let us assume a first-order language L, with variables ranging over a domain D,
and primitive predicates interpreted by (totally defined) relations on D. Let us also
assume two subsets S; and S; of D such that S; NSy = @. Kripke extends L to
L(51,52) by adding a monadic predicate T. The main idea is to interpret T as a
‘truth predicate’. Sy contains the elements d of D for which T(d) holds (so it contains
the (codes of) formulas which we consider to be ‘true’); Ss contains those d € D for
which =T(d) holds (hence it contains the (codes of) formulas which we consider to be
‘false’). We do not demand that Sy U Ss = D, hence T is a partial predicate over D.

DeFINITION 3.1 (Logical truth for KTT)
Let L be a first-order language over a domain D with R as set of primitive predicates.

4FV(h[z:=g]) = & by lemma 2.12

3. KRIPKE’S THEORY OF TRUTH KTT

Let f be a sentence in L. We define L = f as follows®:

203

f LEf LE-f
R(dl,,dm) (dl,,dm)ER (dl,,dm)gR
g1 A g2 L giand L =g, LE (mg1)V (ng2)
g1V g LiEgior L g L E (=g1) A (—g2)
Valg] L = gle:=d] for all d € D L = Jz[—yg]
Jz[g] L = g[z:=d] for some d € D L | Va[-g]
—mg LEy Ly

Here, R€R; d,dy,...,dp, € D, and g, g1, g2 are formulas of L. Now let S1,5, C D
such that S1 NSy, = @. KTT = L(S1, S2) is the first order language over D with
R U{T} as the set of primitive predicates (T ¢ R). We extend the definition of L = f
to KTT = f by putting KTT = T(d) iff d € S7 and KTT | —T(d) iff d € S5.

It is important (and easy) to notice that the extension of L to L(S, S3) is conservative:

LEMMA 3.2
Let L be a first order language over a domain D, let S7, 5> C D such that S1NS; = @,
and assume that f is a sentence in L. Then L = f if and only if L(S1,52) | f.

Now Kripke uses T as a predicate expressing truth by defining a hierarchy of languages.
This hierarchy has much in common with Russell’s hierarchy of orders. L was assumed
to be able to express its own syntax, hence so is L(S1, S2), for any S1, S2. Notice that
the sentences of L(S1,S52) do not depend on the sets S; and S, so we can take one
Godel Numbering (), being a map from the formulas of L(S;,S2) to D. The Kripke-
hierarchy of languages is defined by presenting a hierarchy of pairs of sets (S1, S2):

DEFINITION 3.3

For any ordinal o we define a pair of sets (54,1, 54 ,2) and a language KTT,.

® 50,1 o ;5 So,2 o Z; KTTy o L(So1,50,2).
o If 51, Sa,2 and KTT, have been defined, then we define:

Sot1,1 def {{}|f is a sentence and KTT, = f}

Sag12 = {{)|f is a sentence and KTT, = —f} U
U {d € D|d# (f) for all sentences f of KTT,}

d
KTTa41 = L(Sa411,Sa+1,2)

o If o is a limit ordinal and Sg 1, Ss2 and KTTg have been defined for all 5{«, then

def

Sai = USﬁ,i
Bla

def

KTToa = L(Sa1,52)

5Notice that even though this definition is different from Tarski’s definition, especially with respect to the
definition of L = —f, it is easy to prove the equivalence of both definitions. This is because all primitive predicates
of L are totally defined. We took this definition however as we need to extend it for the partial predicate T.

204 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

LEMMA 3.4 (Conservation of knowledge)
If a{f then Sy 1 C Sp1 and Sa 2 C Ss9.

We can see the construction of the languages KTT, as a process of obtaining knowl-
edge. At the initial stage, KTTg, T(d) is not defined for any d € D. There is no
knowledge at all.

Applying the definition of truth given for KTTg, we obtain knowledge: Some sentences
f can be judged true (KTTo | f; we store the code of f in Sj 1), some other sen-
tences g can be judged false (KTTy = —g; the code of ¢ is stored in S12). It is not
possible to judge all sentences. For instance, neither KTTy = Vx[T(x) V =T(x)] nor
KTTg | =Vx[T(x) V =T(x)] hold, so (Vx[T(x) V —T(x)]} neither belongs to S; 1, nor to
Si2.

The knowledge we obtained is expressed by the predicate T in KTT;. In KTT; we
know more about T than in KTTg. Hence more sentences can be judged true or false;
we store their codes in Ss; and Sy o respectively. The lemma on Conservation of
Knowledge 3.4 guarantees that this process only extends our knowledge, i.e.:

e Sentences that were judged to be true at level KTT; remain true at level KTT;

e Sentences that were judged to be false at level KTT; remain false at level KTT,.

By iterating this process we arrive at the levels KTTs, KTTy4, ..., KTTy, KTTyit1, - - -
This limit does terminate however in that it has a fixed point.

4 RTT in KTT

Both in RTT and in KTT we are confronted with a hierarchy. Russell constructs a
hierarchy by dividing propositions and propositional functions into different orders,
taking care that a propositional function f can only depend on objects of a lower
order than the order of f.

Kripke does not make this distinction beforehand. He has only one truth-predicate
(T), but decisions about truth of propositions are split into different levels: At the first
level only decisions about propositions that do not involve T are made, at the second
level decisions about propositions involving T for codes of first-level propositions are
made, and so on.

In Subsection 4.1 we investigate the similarity between both hierarchies, by de-
scribing RTT within KTT. In Subsection 4.2 we investigate in which way RTT is more
restrictive with respect to self-reference than KTT.

4.1 RTT embedded in KTT
To embed RTT in a first order language L, we have to cope with two technical problems:

o We need to encode the notion of and the manipulation with (higher-order) propo-
sitional functions into a first-order language. The manipulation is especially im-
portant with respect to substitution, which in the higher-order situation is much
more complicated than in the first order case (cf. the definition of substitution
2.9).

e In Russell’s theory, it is possible (and, due to the hierarchy of orders, in fact
only possible) to quantify over only a part of all propositions. This makes it

4. RTT IN KTT 205

impossible to translate, for instance, the proposition Vp:()*[p() V —=p()] directly
by Vx[T(x) V =T(x)], as the quantifier in the latter also quantifies over (codes of)
higher-order propositions.

As we do not want contexts to be involved in this coding, we assume that each variable
in V has (implicitly) a superscript ¢, indicating its type. This makes it possible to
do without contexts, as the types of the variables are now clear from the function in
which they occur. For reasons of clarity, we will not write this superscript explicitly,
as long as no confusion arises.

We propose the following solutions to the problems sketched above (we first give
the definition and afterwards explain our thoughts behind it):

DEerFINITION 4.1

Let KTT be the language L with domain D = A, extended with for each ramified
type t a monadic predicate Typ,, for each n € IN a (n+1)-ary function App,,, and the
monadic predicate T (T will play the same role as in Section 3). We code the typable
propositional functions f of F to formulas f in the language KTT. We do this by
induction on the structure of f.

o If f = R(i1,...,7a(r)), then f is present in the original language I and we take
- def

o{ff i 2(k1, ... k), write K; = (k;) for k; € F, and K; = k; for k; € AUV.
Define f def T(App,, (2, K1,..., Kpn)).
eIf f=[iV fo, then T TV o
oIf f =~/ then [% 77
o If f =Vaz : u[f’], then Tdéf Yz [-Typ, () V f].
We now give a formal interpretation to the newly introduced predicates Typ, and
App,.

DEFINITION 4.2

For all ramified types ¢ # :°, let Typ, = (f)|f € Fand f :t} and Typ,o =
Assume: n € IN, f € F is of type (t1,...,1,) and has free variables z1{...{x,.

Assume also: for i = 1,...,n, k; : t; and either d; = k; (if t; =) or d; = (k_l) (if

t; #1°). We define:

App, () dv, ... dn) = (Flen, - ani=ke, - k).

From now on, we will interpret the function symbol App,, as the function App,,, and
the relation symbol Typ, as the relation Typ;.

We make some remarks with respect to these definitions.

REMARK 4.3

It is clear that the newly introduced functions App,, are used for carrying out sub-
stitutions, thus solving the first of the technical problems stated at the beginning of
this subsection. The predicates Typ, solve the second problem, as can be seen in the

definition of Ya[f].

206 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

REMARK 4.4
Notice that we did not define the functions App,, on the full domain D"+1. We could
have done that, but will not need App,, on other elements of D! than defined above.

REMARK 4.5

At this point, our work is related to (but independent of) Paul Gilmore’s work on
NaDSet 1. NaDSet 1 is a theory of generalized abstraction which makes n-ary predica-
tion a primitive of the system, with the unary truth predicate being trivially definable
upon this basis. For a useful connection between KTT and NaDSet 1, see [4].

REMARK 4.6
The extensions suggested above are of a mere technical character. Therefore, we think
that we can still speak of an embedding of RTT within KTT.

NoTAaTION 4.7
To keep notations uniform, we sometimes want to speak about (Z) when we only
intend to mention z, for # € V, and about (@) when only meaning a, for a € A.

Hence, we formally define: (%) 4f 4 and (@) G for all z €V and all = € A.

Below, we work in two systems: RTT and KTT. These systems have a different
notion of substitution, though they use the same notation for expressing substitution.
From the context, however, it will always be clear which kind of substitution is meant.

The language KTT above is similar to that presented in Section 3, and we construct
KTT, for each ordinal o as described in that section. We need the following lemma:

LEMMA 4.8 (Substitution lemma)
Assume g is a propositional function of order m and g[z:=k] is a proposition of order

n. If KTT, |= g[z:=k] then KTT,, | glz:=(k)].

ProoOF. We make the proof a little easier by proving that if: If ¢ s a propositional
function of order m and glxq,. .., xp:=k1,... kp) is a proposition of order n, then I

and 2 hold where

L. KTT, | glry, ..., 2p:=ky, ..., k,] implies KTT,, | glzy, ..., 2p:=(k1), ..., (k)]

2. KTT, = —g[z1,...,xp:=k1, ..., ky] implies KTT,, = =glzy, ..., zpi=(k1),..., (kp)]

We write g[z;:=k;] as a shorthand for g[x1, ..., zp:=k1,..., kp] as long as no confusion
arises, and use similar abbreviations for other substitutions. The proof is by induction
on the structure of g.

® g = R(i1,...,1ar)). Then, by definition of glx;:=k;], g[r;:=k;] = glzi:=(k;)]. As
n < m, the lemma follows by the lemma on Conservation of Knowledge 3.4.

og=z(hi,....hy). If 2z & {x,...,2,} then again g[z;:=k;] = glz;=(k;)]° and
again the lemma follows from n < m and the lemma on Conservation of Knowledge
3.4.
The interesting case is when ¢ = z(h1,...,hy) and z € {z1,...,2,}. To keep
notations clear, we assume p = 1 and z = x;. The reader may verify that the
case pyl only complicates notation, not the proof. We only show 1 as 2 is similar.
Assume KTT,, = gz;:=k;].

SThis is because in this case, no higher order substitutions occur, and the notion of RTT-substitution coincides
with ordinary, first order substitution.

4. RTT IN KTT 207

As kq and z have the same type, ki has ¢ free variables, say y1 (... (y,, and by
definition of substitution in RTT, z(h1, ..., hy)[z1:=k1] = ki1[yi:=h;]. Notice that
z and kp have the same order (m—1), and that n, the order of ki[y;:=h;], is at
most the order of & (lemma 2.11). This means: n < m — 1. Using lemma 3.4:
KTTm—1 | k1[yi:=h].

By the definition of T we have: KTT,, |E T (<k1[yi::hi]>) . We are now done

because:
=) = (o h)l==F)]
= T(hpp, (2, (1), ()= {7}
= T(&pp,((k1), (R1), ..., (Ry)))
= T(<k1[yi3:h2]>)
®*g=g1Vyga

First, assume KTT,, | gle;:=k;]. As glz;:=ki] = g1[ei=k;] V g2[2i:=k;], there is
J such that KTT, | g;[z;:=k;]. By the induction hypothesis, there is j such that
KTTy, | §jleii={k;)], as the order of g; is < m. Hence KTTy, = gr[zi:=(k;}] V
Falxi:=(k;)], so we are done.
Now assume KTT,, = —g[#;:=k;]. This means: KTT, = —(g1[zi:=k]V g2[zi:=k]).
Hence KTT, | —g;[e;:=k;] for j = 1,2, and by the induction hypothesis, this
means (again the order of the g;s are < m) KTT,, | —g;[z;:=(k;)] for j = 1,2,
hence
KTTm [E —gi[wi=(ki)] A ~gales=(ki)]. B
So KTTy, | (grfe:={ki)] V G2lei:={ki}]), and KTTy, | (2(g1 V 92))[z:={k;)].

e g=yg.
If KTT,, | g[®;:=k;] then use the induction hypothesis for ¢’.
IfKTT, = —g[z;:=k;] then KTT, |= ¢'[x;:=Fk;], so by induction KTT,, |= ¢'[z;:=(k;)],
80 KT Ty, = -y’ [5:={k;)].

o g =Va:t[g'].
If KTT,, | g[zi:=k;], then for all d such that Typ,(d), KTT, | ¢'[#;:=k][z:=d],
hence for all these d, KTTy, = ¢'[2;:={(k;)][x:=d], so KTTy, | Ya[g'[x;:={k;}]], and
KT Ty = gles=(k:)].
If KTT,, E —g[®;:=k;] then there is d € D such that Typ,(d) and KTT, |:_
=g/ [2;:=k;|[2:=d], hence KTTy, | —g¢'[2;:={k:)][x:=d], and KTTy, = Ja[-g'[x::={k;}]].
Hence KTT,, = Jx[~g'[x;:=(k;)]] and KTT,, = =V[g'[e;:=(k;)]].

REMARK 4.9

We have actually proven a stronger fact: Assume g is a propositional function of order
m and g[z:=k] is a proposition of order n. IfKTT, | g[z:=k] then KTT, |= glz:=(k)],
where p = min(m, n+1). This tells us more about the role of the predicate T: Although
a substitution may lower the order of a propositional function by more than one, only
one application of the T-predicate is involved (hence only one level in the hierarchy
of truths). However, in the theorem below we only need the (weaker) form in which
we presented the substitution lemma originally.

208 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

THEOREM 4.10 _
Let f: ()™ € F. Then: rTT [f if and only if k1T, = f.

ProOF. [<] Due to the use of = in the definition of KTT, |= f, we prove a little bit
more:

¢ If RTT |= f then KTT, | f;

o If RIT |= —f then KTT, = —f.

These claims are proved simultaneously by induction on the definition of RTT = f.

o f = R(dy,...,dar)) for a R € R and some dy,...,dar) € D. Then f=f
As RTT |= f, we know that (d, ..., dar)) € R, hence KTT, = f. The proof is
similar for = f.

e f = g1V g2. Then the orders of the g;s are either equal to, or smaller than n.

First assume RTT |= f. Then we know that RTT |= ¢; for i = 1 or ¢ = 2. By the
induction hypothesis (and Conservation of Knowledge, if the order of g; is (n),
KTT, E i, As f =31 V 7z, KIT, |= f.
Now assume RTT = —f. Then it is not true that RTT = f, so it is not true
that RTT | ¢; for i = 1 or i = 2. So RTT | —yg; for i = 1,2. By the
induction hypothesis (and, again, possibly Conservation of Knowledge), we have
KTT,, |= =g;, hence, KTT,, = —g; for i = 1,2. So KTT, |E —g1 A —gz,and hence
$0 KTT, = —f.

e f=-g. If RTT |= f then use IH on g to get KTT, = =7, hence KTT, = f.

If RTT = —f, then RTT |= ¢, so by induction KTT, E 7, so KTT, | =7, so
KTT, E —f.

e [=Va:t[g]. Notice that g has order n.

If RTT |= f then for all k:t, RTT | g[e:=k]. By the induction hypothesis, we
know that for all k : ¢, KTT,,, = glz:=k], where my is the order of g[z:=k].
By the substitution lemma 4.8 we have: For all k : ¢, KTT,, = glz:=(k)]. Hence,
for all d € D, KTT,, = —Typ,(d) V g[z:=d]. Hence KTT,, |= Vz : t[g].
The argument for RTT |= —f is similar.

[=] This is easy now. Assume, for the sake of the argument, not RTT = f. Then

RTT |= —f, hence KTT, = —f and KTT,, |= f, which is a contradiction.

| |

This theorem clearly shows the relation between the orders in RTT and the levels
of truth in KTT. The heart of the proof of theorem 4.10 is in the proof of case
z(h1, ..., hy) of the substitution lemma 4.8. This is the only place in the proof where
the properties of the predicate T are used. It is understandable that these properties
must be used at exactly this place when we look at the definition of propositional
functions and the typing rules for propositional functions. Exactly the possibility
of constructing a propositional function of the form z(hq,..., hy) makes it possible
to arrive at higher-order propositional functions and higher-order propositions. So
exactly at this spot, Kripke’s predicate T must appear, in order to raise one level in
KTT as well.

COROLLARY 4.11 _
RrT |= f if and only if kTT,, | f.

We cannot improve the result of theorem 4.10 in general: There are propositions f
of order n in RTT whose code is provable at level KTT, in KTT, but not at any lower
level.

4. RTT IN KTT 209

THEOREM 4.12
Let n)0, and let f, be the nth-order-proposition ¥p:()"~[p() V =p()]. Then:

KTT,, |= f, if and only if m > n.

ProoF. [«] follows from theorem 4.10 and lemma 3.4. [=] is by induction on n.
Observe that

Jn = p[=Typ(j-1 (p) V (T(ApPo(P)) V ~T(APPo(p)))]-

en = 1. Let g be any proposition of order 0 in RTT. Then KTTo |= Typy(g) but
as T is completely undefined at level 0, KTTg [~ T(Appo(g)) V ~T(Appo(g)). Hence,
KTTo & fi-

e Assume the theorem has been proved for all n/(n. Assume m(n and KTT,, |= f,.
By definition of |=, we have: KTT,, = T(Appo({fu_1)))V-T(Appo({f._1))), and for
reasons of consistency: KTTp, | T(Appo({fn—1))), hence KTTy, E T(fn—1), so, by

the definition of T: KTT,,—1 |= fn—1, which contradicts the induction hypothesis,
asm— 1{n—1.

There are, however, propositions f of order n in RTT for which KTT,, = for KTT,, =
—f can already be established for m(n.

ExamMpLE 4.13

Consider a proposition ¢ = g1 V g2 where g1 is a true proposition of order m and g5 is
any proposition of order n. As gy is true in RTT, we have KTT,, | g1, and therefore
KTT,, = 7.

4.2 The restrictiveness of Russell’s theory

We illustrate the different approaches of Russell and Kripke by an example given by
Kripke himself.

ExamMPLE 4.14
Let D, R, L, S4; and KTT, be as in Section 3 where R contains two monadic
predicates V and W which are collections of (codes of) utterances of persons V and
W. Now define

P = Vx[-H(x)V -T(x)]
Q = Vx[-V(x) V -T(x)]

(informally, P denotes: All utterances of W are false, and @ denotes: All utterances
of V are false). Now distinguish two situations. In both situations, we want to
know whether P and () become true or false when passing through the hierarchy of
languages KTTg, KTTy,.... Or, more formally, whether there is « such that (V) and
(W) belong to Sa1 U Sa 2.

1.v={(P)} and W = {{@)} (notice that V and W are just subsets of D).
In this case, P is logically equivalent to =T({Q)}) and @ is logically equivalent to
-T((P)). As a consequence we have: if (Q}) € S, ; then (P) € S 3_; for some
B{a, and if (P) € S, ; then (@) € Sp 3_; for some F{a. Hence (P}, (Q) &€ Sa,, for
all «, 7, so neither the truth of P nor the truth of @ will ever be established.

210 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

2. In the situation above, the only utterance of V was that anything said by W is
false, and vice versa. In that case, it is also intuitively clear that it is impossible
to say anything about the truth of P or). Now we change the situation. We
assume that R also contains a third monadic predicate R, and that d is an element

of R. We redefine W: et
W= {(Q), (R())}.

This has drastical consequences. As KTTy | R(d), (R(d)) € S1,1, so KTT1 E
T({R(d))), hence KTTy | = P. Therefore, (P) € S35, so KTTy |= =T({P}), hence:

KTTy E -P
KTT: = @

The fact that W utters a true sentence makes it possible to conclude at level 1
that P 1s false, irrespective of the fact that W has also uttered another sentence
@, of which we can’t establish the truth at level 1. The falsehood of P makes it
possible to decide about) at the next level, so the falsehood of P and the truth
of () could have been established at level 2.

In Russell’s terminology it wouldn’t be possible to write expressions like P and @
at all: They are excluded beforehand, as P involves @), therefore has to be of higher
order than @, and) involves P, therefore has to be of higher order than P.

This indicates an important difference between RTT and KTT: Kripke allows much
more expressions to be written down. In some situations these expressions will never
obtain any truth-value (like P and @ in the first example), but in other situations
(so: with other definitions of the primitive predicates) the same expressions will get a
truth-value. Kripke concludes: ‘it would be fruitless to look for an intrinsic criterion
that will enable us to steve out — as meaningless, or ill-formed — those sentences which
lead to paradox’.

ExamMpPLE 4.15
Another, more formal, example of a proposition f in KTT for which there is no ¢ € F

with § = f is the proposition f def Vx[T(x) V =T(x)]:

Assume, for the sake of the argument, that § = f. Let m be the order of g. Then
KTTpm = f or KTT,, = —f. This implies KTTy, | T(fim) V 7T(fm), where f,, is as in
theorem 4.12. By definition of T this means KTT,,—1 |= fim or KTTym—1 | —fm, both
contradicting theorem 4.12.

5 Orders and types

RTT is based on a double hierarchy: One of types and one of orders. This double
hierarchy is too restrictive. It is possible to develop Logic and Mathematics within
RTT, but for instance the proof of the Supremum Theorem, which is fundamental in
real analysis, cannot be given. The origin of the problem is the use of the so-called
predicative and impredicative propositional functions.

DEeFINITION 5.1

Let f € F be typable in RTT. Assume f has free variables zy,...,z, of orders
my, ..., My, respectively. fis called predicativeif its order is equal to max(my, ..., m,)+
1; if its order is greater then f is called impredicative.

6. CONCLUSION 211

As the impredicative propositional functions cause problems, the ‘Axiom of Reducibil-
ity’ is proposed in ‘Principia Mathematica’ (1910-1912). This axiom is as follows:

For each f € F there s a predicative g € F that is logically equivalent to f

This axiom has been controversial from the moment it was introduced. Russell himself
admits that ‘¢t has a purely pragmatic justification: 1t leads to the desired results,
and to no others. But clearly it s not the sort of ariom with which we can rest
content.” Though serious efforts have been made to develop Mathematics within RTT
(for instance by Weyl [15]), this has not become the usual practice. In 1925, Ramsey
[11] shows that, by making distinction between language and meta-language, the
orders can be removed from the system without re-introducing any known paradox.
Hilbert and Ackermann [7] present a similar idea. With this remark the type-theoretic
foundations for the Simple Theory of Types sTT, introduced by Church [1] in 1940,
were laid, and orders have remained out of the important modern type systems up
till now.

It is therefore interesting to notice the relation between orders in RTT and levels of
truth in KTT, as formulated in theorem 4.10. It shows that Kripke’s system can be
regarded as a system based on RTT, of which not the orders, but the types have been
removed. In this way, KTT can be seen as a system that is dual to sTT.

KTT, however, has a more subtle approach than many type theories as it does not
exclude any, possibly ‘paradoxical’, expression from the syntax, which is the usual
type-theoretic approach. If an expression is paradoxical, it will not get a truth value
at any level a of the hierarchy of Truths. Whether an expression is paradoxical or
not does not only depend on its syntactic structure, but also on the domain D (see
example 4.14). So paradoxes are only excluded at the level of semantics.

The discussion above shows that the orders of RTT are not to be blamed for the
restrictiveness of RTT. KTT is a system which contains orders but has only few re-
strictions towards self-application.

It is the combination of orders and types that makes RTT restrictive.

6 Conclusion

6.1 Results

We presented a formalisation of Russell’s Ramified Theory of Types RTT which is
faithful to both Russell’s original informal presentation and the present formulations
of type theories.

We used this formalisation to compare RTT with Kripke’s Theory of Truth KTT. We
established the relation between Russell’s hierarchy of orders and Kripke’s hierarchy
of truth-levels. In particular we showed that

1. A proposition of RTT of order n is true if and only if it is true at level n in Kripke’s
Truth Hierarchy (theorem 4.10).

2. The truth of some propositions of order n of RTT cannot be established in KTT
at a level of truth hierarchy smaller than n (theorem 4.12). Yet for some other
propositions, it can be established at an earlier level (example 4.13).

We also saw that Russell’s theory has many restrictions. On the one hand, all propo-
sitional functions of RTT can be coded in Kripke’s Truth Theory; on the other hand

212 A Reflection on Russell’s Ramified Types and Kripke’s Hierarchy of Truths

there are formulas of Kripke’s theory that cannot be expressed in RTT, respecting
both hierarchies.

We conclude, as so often has been concluded in Logic, in Mathematics and in
Natural Language, that Russell’s Theory of Types is too restrictive. However, the
usual objections against RTT in Logic and Mathematics is the use of orders. After
Ramsey [11] and Hilbert and Ackerman [7] had given motivations for leaving out these
orders, they have hardly been used anywhere in logic or mathematics (though Weyl
[15] has tried to give a build-up of mathematics within rRTT).

Here the situation is completely different. Orders in RTT and truth-levels in KTT
go hand in hand; on the other hand the types do not appear any more in KTT. This
establishes KTT as the dual to sTT (Church’s Simple Type Theory) which removes
the orders from RTT.

As far as we know, our contribution is the first statement of a formal correspon-
dence between finite levels of truth in Kripkean Theory of Truth (KTT) and orders
of quantification in Russell’s Ramified Type Theory (RTT). Our conclusion is that,
contra Ramsey, it is the restriction of the mizture of orders and types on predication
rather than order restriction on quantification alone that accounts for the very re-
strictive nature of RTT. This is important and takes an added significance when seen
in the context of the logicisation of second order arithmetic in a type free first order
logic utilizing Kripke-Gilmore models which realises the hope of Russell’s earlier type
free substitutional theory.

6.2 Future work

Kripke’s theory has a transfinite hierarchy of orders whereas Russell did not investi-
gate such transfinity. It would be interesting hence to see how far one can build types
in Russell’s theory and what properties would hold at such level.

We concluded that some order-n-properties of RTT get their truth-value only at level
n of KTT whilst others get it already at an earlier level. This divides propositions into
two classes and an accurate description of these classes may be interesting.

As to the question of Kripke being more liberal in that any well-formed sentence
can be expressed but its truth value may not be calculated (think of the paradox-
ical sentences), one may compare this approach to the implicit typing of Curry’s
Type Theory ¢TT [2, 3] where self-referential sentences may be expressed but are not
typable. Hence, even though we said that KTT is the dual of STT, it may be the twin-
brother of ¢TT where only truth or falsehood of typable terms can be determined. We
are currently investigating this issue.

Acknowledgements

We would like to thank Rob Nederpelt and the anonymous referees for their construc-
tive comments on an earlier version of this paper.

This work has been partially supported by EPSRC grant GR/K 25014.

Laan is supported by the Co-operation Centre Tilburg and Eindhoven Universities.
He is grateful to the Department of Computing Science, University of Glasgow, for
their hospitality, and to the Dutch Foundation for Scientific Research (NWO), for
their financial support, during the preparation of this article.

6. CONCLUSION 213

References

[1] A.Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56-68,
1940.

[2] H.B. Curry and R. Feys. Combinatory Logic, volume I of Studies in Logic and the Foundations
of Mathematics. North-Holland, Amsterdam, 1958.

[3] H.B. Curry, J.R. Hindley, and J.P. Seldin. Combinatory Logic, volume II of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 1972.

[4] S. Feferman. Toward useful type-free theories I. Journal of Symbolic Logic, 49:75-111, 1984.

[5] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Nebert, Halle, 1879. Also in [6].

[6] J. van Heijenoort, editor. From Frege to Gédel: A Source Book in Mathematical Logic, 1879-
1981. Harvard University Press, Cambridge, Massachusetts, 1967.

[7] D. Hilbert and W. Ackermann. Grundzige der Theoretischen Logik. Die Grundlehren der
Mathematischen Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag, Berlin,
first edition, 1928.

[8] S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690-716, 1975.

[9] T.D.L. Laan. A formalization of the Ramified Type Theory. Technical Report 33, TUE Com-
puting Science Reports, Eindhoven University of Technology, 1994.

[10] R. Montague. The proper treatment of quantification in ordinary English. In J. Hintikka, J.M.E.
Moravcsik, and P. Suppes, editors, Approaches to Natural Language. Dordrecht, 1973.

[11] F.P. Ramsey. The foundations of mathematics. Proceedings of the London Mathematical Society,
pages 338-384, 1925.

[12] B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

[13] B. Russell. Mathematical logic as based on the theory of types. American Journal of Mathe-
matics, 30, 1908. Also in [6].

[14] A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1:261-405,
1936. German translation by L. Blauwstein from the Polish original (1933) with a postscript
added.

[15] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das Kontinuum und andere
Monographien, Chelsea Pub.Comp., New York, 1960.

[16] A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 19107,
19272. (All references in this paper are to the first volume).

Received 6 May 1995. Revised 7 September 1995

