The Weak Normalization of the
Simply Typed As.-calculus

ARIEL ARBISER, Department of Computer Science, University of
Buenos Aires, Pabellon I - Ciudad Universitaria (1428) Buenos Aires,
Argentina. E-mail: arbiser@dc.uba.ar

FATROUZ KAMAREDDINE, School of Mathematical and Computer
Sciences, Heriot-Watt University, Riccarton, Edinburgh FH1j 4AS,
Scotland. E-mail: fairouz@macs.hw.ac.uk

ALEJANDRO RIOS, Department of Computer Science, University of
Buenos Aires, Pabellén I - Ciudad Universitaria (1428) Buenos Aires,
Argentina. E-mail: rios@dc.uba.ar

Abstract

In this paper, we show the weak normalization (WN) of the simply-typed Asc-calculus with open
terms where abstractions are decorated with types, and metavariables, de Bruijn indices and updating
operators are decorated with environments. We show a proof of WN using the Awe-calculus, a calculus

isomorphic to)\?e. This proof is strongly influenced by Goubault-Larrecq’s proof of WN for the
Ao-calculus but with subtle differences which show that the two styles require different attention.
Furthermore, we give a new calculus Aw/, which works like Ase but which is closer to Ao than Aw.. For
both Awe and Aw, we prove WN for typed semi-open terms (i.e. those which allow term variables but
no substitution variables), unlike the result of Goubault-Larrecq which covered all Ao open terms.

Keywords: lambda calculus, explicit substitution, weak normalization, simple typing.

1 Introduction

Classical A-calculus has the meta-substitution operator which behaves as an atomic
or primitive operation. Since there are many interesting questions regarding the way
substitutions are “executed”, calculi of explicit substitution for the A-calculus were
created. The aim is to fill the gap between theory and implementation of the A-
calculus.

During the last fifteen years, many lambda calculi with explicit substitution have
been proposed and studied. Among all the known calculi, Ao [1] has been historically
the first one as well as a model for others to compare with. This pioneering calculus
reflects in its choice of operators and rules the calculus of categorical combinators (cf.
[3]). The main innovation of the Ao-calculus is the division of terms in two sorts:
the sort term and the sort substitution. As. [8] departs from this style of explicit
substitutions in two ways. First, it keeps the classical and unique sort term of the
A-calculus. Second, it does not use some of the categorical operators, especially those
which are not present in the A-calculus. As, introduces two new sets of operators which

L. J. of the IGPL, Vol. 0 No. 0, pp. 1-27 0000 1 @© Oxford University Press

2 The Weak Normalization of the Simply Typed \s.-calculus

reflect the substitution and updating that are only present in the meta-language of
the A-calculus. By doing so, the As.-calculus can be said to be closer to the A-calculus
from an intuitive point of view, rather than a categorical one. The As.-calculus, like
the Ao-calculus, does not preserve strong normalization and its simply typed version
is not strongly normalizing [7].

The object of this paper is to study the weak normalization of typable terms in a
simply typed de Bruijn lambda calculus with explicit substitution, and some variants.
We begin by giving here a brief survey of the simply typed versions of the A-calculus
with de Bruijn indices [5], and of As, As. and their respectively isomorphic (in a sense
to be defined later) calculi Aw and Aw, as presented in [9]. From the point of view
of syntax the only difference in those presentations from the type free framework is
that abstractions are decorated with types. In the calculi we study here we also have
metavariables, de Bruijn indices and updating operators decorated with environments.
We will present these extensions in Section 2.

A result of weak normalization for typed As. with open terms is quite interesting,
since on the one hand As, is a calculus enjoying most good properties, and on the other
it is an open problem whether the s.-calculus is strongly normalizing. Moreover, we
give strategies to calculate normal forms. For the proof of WN we will use the method
of Goubault-Larrecq [6] already employed for Ao, although a non-trivial adaptation
is necessary for As. as we will see.

We assume familiarity with de Bruijn notation and meta-substitution (cf. [5]), and
we assume the usual conventions about parentheses. Throughout the article, we use
a,b,... to range over terms of any of the calculi considered, s,t,... to range over
substitutions of any of the calculi having substitutions as a sort, and m,n,... to
range over IN (positive natural numbers). Moreover, a = b means that a and b
are syntactically identical, and —* and —» denote the transitive and the reflexive
transitive closures of a reduction notion —.

Types and environments are defined for all the calculi discussed in this paper, as
follows:

DEFINITION 1.1
The syntax for types and environments is given by:

Types T == T |T-—>T Environments &£ := nil | T,€

where T is a set of basic types. We let A, B, etc. range over 7 and E, F, etc. range
over £.

The following notation for environments will be frequently used. For an envi-
ronment £ = Ay, As,...,A,, we denote with E; the ith type of the environment,

i.e. A;, with E>; the environment A;, A;11,..., A, and with E; the environment
Air1,Ai49,..., Ay, Similarly, E<; denotes the environment A, Ay, ..., A;; Eg; is
the environment Ay, As,...,4;_1, and E.; B,>; is the environment

Al;AQa"'aAiflaBaAia"'aAn

i.e. the result of adding type B before position i to the environment E.
The simply typed A-calculus in de Bruijn notation is given as follows:

The Weak Normalization of the Simply Typed As.-calculus 3

A E+-b:B
(L1-var) AEF1:4 (L1-X) EFAb:A> B
(L1 — varn) Efn:B (L1 — app) R e

A/EFn+1:B Elrba:B

Fic. 1. The typing rules of the simply typed A-calculus

DEFINITION 1.2
1. The syntax of the simply typed A-calculus is given by:

A == IN| (AAN) | AT.A).

2. We say that a reduction — is compatible on A when for all a, b, c € A, if a = b
then ac — be, ca — ¢b and AA.a — AA.b.

3. B-reduction is the smallest compatible reduction on A generated by:
(B-rule) (AM.a)b —p af1+ b}
where of{e o} is the usual meta-substitution for the de Bruijn terms [5].

The A-calculus (o la de Bruijn), is the reduction system whose only rewriting rule

is B.

4. The typing rules for the simply typed A-calculus in de Bruijn notation are defined
in Figure 1. (We call the typing system L1).

2 Typing lambda calculi by marking abstractions and
operators

In this section we give the typed versions of the calculi we are going to study. We
recall the calculus Aw, from [8], and we remark that when we define this calculus
as well as \ s, they differ from the previously studied versions (see [8, 9]) in that
not only abstractions are decorated with types (as in Church-style formulations of
typed A-calculi), but also metavariables, de Bruijn indices and updating operators
are decorated with environments. These new decorations should allow one to type
each typable term in a unique way, in the sense that given a typable term, there is a
unique environment and a unique type for it. This will allow us to talk about the type
of a term. For instance, the type of n4,...4,, will be A, in the environment A; ... A,,
(for m > n), whereas undecorated terms would have a type depending on the given
environment. Nevertheless we remark that all the results to follow also hold when
erasing all type decorations.

4 The Weak Normalization of the Simply Typed As.-calculus

g_gen ()\Aa) b — aa'l b
G -A-tr (M.a)o’b — AA.(aoiT D)
7 -app-tr (a1az)o’db — (a1 07b) (a2 07b)
n—1p if n>j
o -des n b o i =J
E<j,B,Es; O — po b it m=y
ng if n <j
Poatr e (Ma) — M4 a)
R ,) .
Y -app-tr <,02’E(611 az) — (‘PZE ai) (‘PZE az)
N i\ B n+i—1g if n>k
@-des 802 >k NE< ., Expti 7 { ng if n<k

FiG. 2. The rewriting rules of the simply typed As-calculus

2.1 The simply typed As and As.-calcul

DEFINITION 2.1 .
The set of ground simply typed As-terms, denoted A s, and the set of open simply

typed As-terms, denoted A?op are given as follows :

Gr.Terms As := INg | As As | AT .As | As oiAs |¢2’8A?
Op.Terms As,, = Ve | INg|As,p Asop | ATASp | ASop 09AS o | @EAS,

where i,j > 1, k > 0 and V stands for a set of variables with pairs of environments
and types as sub-indices, denoted as Xg 1, Yg, 1, etc. For each n € IV, we assume
that ng can be formed only when the length of E is greater than or equal to n.
Sometimes, when no ambiguity could arise, the subscripts will be omitted. We call
pure terms the terms that do not contain metavariables (i.e. elements of V¢, 1), o- or
p-operators.

DEFINITION 2.2

1. A closure is a term of the form ao?b. A pure term does not contain o’s nor
@’s. Compatibility on As is extended by adding: if @ — b then aoic — bo’e,
cola — colb and pla — pib.

2. The simply typed As-calculus is given by the rewriting rules in Figure 2, i.e. its
reduction relation is the smallest compatible relation generated by those rules. We
use s to denote this set of rules. The s-calculus is the rewriting system given
by the set of rules =S \{3—gen}. The typing rules are given by the typing

N
system L s1 of Figure 3. We will use the symbol l—L—i for this typing relation.

3. We say that a € As is a well typed term, or typed for short, if there exists an
environment F and a type A such that E I—L—i a: A.

The Weak Normalization of the Simply Typed As.-calculus 5

AEFb:B

5 —
(L s1 — var) AEF1ap:A (L s1 = 2) EF)Ab:A> B

- Etng: B - EFE+Fb:A—>B Eta:A
Lsl-— Lsl—
(L s1 - varn) AEFntisp:B (L s1 = app) EFba:B

- Es;Fb:B E_ ;B,Es;Fa:A - Ecp,Espiiba:A
(L sl — 0_) >1 <lia ‘7 >i I~ a (L sl — (P) <k ZikE—‘l-z a

Etlaocth: A EFop; " a: A
Fic. 3. The typing rules of the simply typed As-calculus

G-0- i J J+1 i j—it+1 : . .
0-0-tr (ag')o?c — (aoc?tc¢) o' (bo c¢) if i<y
7-p-tr 1 (¢2E<j_’“’B’EZ"_’°a) adb — i Pa if k<j<k+i
Gptr 2 (goZE<j_k’B’E2j_ka) b — goZ’E(a gl p) it k+i<j
b-0-tr goZ’E(a alb) — (goi’fla) ol (gofc’fl_jb) if j<k+1
= = 6 Esiet; 5Bkt Fopie i, NN : .
C-ptr 1 @ T (g SHTTEMI) go%E(<p2+1>_’“j’a) if I+j<k
-p-tr 2 QB> (cpi’Es’“_“EZ’““_’ a) — @t if I<k<l+j

Fi1G. 4. The new rewriting rules of the simply typed As.-calculus

DEFINITION 2.3 .
1. The set of rules A s. is obtained by adding the rules in Figure 4 to the rules
of the \s-calculus given in Figure 2. The /\?e—calculus is the reduction system

(A?op, —)\?e) where —, -+ is the smallest compatible reduction on A?op generated

by the set of rules)\?e.

The ?e—calculus is the rewriting system generated by the set of rules ?e:)\?e
\{?- gen}. Remark that the typing rules for /\?e are exactly the same as the typing
rules for As given in Figure 3. We only need to add rules to type metavariables:

—
(L s1 —Metav) EF Xg4:A.

We further assume that for each context E and type A there are infinitely many
metavariables X, such that E+ X : A.

2. We say that a € A?Op is a well typed term, or typed for short, if there exists an
environment E and a type A such that E |_L_i a:A.
S

6 The Weak Normalization of the Simply Typed As.-calculus

We denote with As and As. the respective untyped calculi, i.e. the calculi where
the decorations have been erased.

2.2 The simply typed Aw and Aw,-calcul

In order to express As-terms in the Ao-style, we take the approach of [9]. We split
the closure operator of Ao (denoted in a semi-infix notation as —[—]) into a family of
closure operators that were denoted also with a semi-infix notation as —[—];, where ¢
ranges over the set of natural numbers. We also admit as basic operators the iterations
of 1 and therefore have a countable set of basic substitutions 1™, where n ranges
over the set of natural numbers. By doing so, the updating operators of As become
available as —[1"];. Finally, we use a slash operator of sort term — substitution
which transforms a term a into a substitution a/. This operator may be considered
as consing with id (in the Ao-jargon) and has been first exploited in the Av-calculus

(cf. [2]).
DEFINITION 2.4 . . L s e
The set of terms of the Aw-calculus, noted Aw, is defined as A w U A w , where A w

and A @ are mutually defined as follows :
t t t t t s
Terms Az:::]Ng|AB Aw |XT.A3 |A$[A3]j where j > 1
. ¢
Substitutions A @ = %A w / wherei >0

The set, denoted)\3, of rules of the \-calculus is given in Figure 5 . The set of rules
of the & -calculus is the set W= A& \{3 —gen}. Closures are terms of the form a[s];,
pure terms are terms without substitutions, and compatibility is defined in the usual
way.
. — . — — —

The typing system for the Aw-calculus is called Lw1. The rules Lwl-var, Lwl-
varn, Lwl-A and Lzl—app are exactly the same as L?l—var, L?l—vam, Ls1-A and
L?l—app, respectively, as given in Figure 3. The new rules are given in Figure 6 . We
will use the symbol b, - for this typing relation.

Just like the)\?—calculus, the Aw-calculus is not even locally confluent on open terms.
By open terms in this new syntax we mean terms which admit variables (usually
called metavariables) of sort term and of sort substitution.

Now, we define formally what we mean by open terms in our new syntax and give
the rewriting rules of ,\Be;

DEFINITION 2.5

t t
The set of open terms, noted ABOI, is defined as A Uo,, UAw

s —
where A w,, and

op’
A @, are mutually defined as follows :

t t t 1 i
Op. Terms A &= Ve | Ve | Azg,, NGy | ATAG,, | A6y, [A©
— 8 . —
Op. Subst. Aw,,:=Wee | 1¢ | Aw,,/

8
opli

where j > 1 and ¢ > 0, and V¢, 7 stands for a set of term variables, denoted Xg r,
YE 1, etc. and We ¢ stands for a set of substitution variables denoted zg k', Y5, 5,

The Weak Normalization of the Simply Typed As.-calculus 7

7 -gen (AM.a)b — alb/lh

o -app-tr (@b)s]; — (a[s];) (bs]y)

7 -A-tr (Aa)[sl; — AA.(a[s]j11)

N n—1g if n>j
o-/-des np;B.Bs,lall; — afti 'y if n=j

ng 1f’l’L<]

U—T-des nE<j,E2i+j [TZE'ZJ]J — {

ng 1fn<3

Fic. 5. The rewriting rules of the simply typed Aw-calculus

etc. We take s, t, ... to range over A ZJ)ZP. Closures, pure terms and compatibility
are defined as for \a. . N

The set, denoted Aw,, of rules of the Aw,-calculus is obtained by adding to the
set of rules A given in Figure 5, the rules given in Figure 7. The set of rules of the
— .= — =
We-calculus is W= Iw, \{o —gen}.

The typing rules for)@)e are those of \& together with rules to type metavariables:

(L sl —MetawT) EF Xpa:A (L sl —MetawS) EF sppvE

We further assume that for each context E and type A there are infinitely many
metavariables X, such that £+ X : A. We also assume that for each pair of contexts
E, E' there are infinitely many metavariables z, such that E + x> E'.

t
We also define A 3501, as the set of semi-open terms, i.e. those open terms without

8

t
substitution variables (it is a proper subset of A Bop), and A Bsop as the set of semi-
open substitutions, i.e. those open substitutions without substitution variables (it is

8
a proper subset of A w,,).

t

sop

_)t _)t — t _)t —8

A wsop::: V&T | ‘Etvtg | A wsop Aw sop | A wsop [A wsop]j
—S$; —

A wsop:::TZ‘I | A wsop /

| AT A @

Last, we denote with Aw and Aw. the respective untyped calculi, i.e. the calculi
where the decorations have been erased.

In the rest of the paper unless explicitly stated we will restrict)\Ze to the set

st
Awg,,

8 The Weak Normalization of the Simply Typed As.-calculus

— o 0 — _ EI—a:A
(Lwl — id) Er1yvE (Lw1 — slash) Era/v AE
(L1 — shift) E F4i o E Es;FsvE E.,E'ta:A

(Lzl — clos)

A EEY L oE Etals];: A
(LWl — MetawT) EF Xpa:A (L&1 — MetavS) Etrzppv>E
Fi1G. 6. The new typing rules of the simply typed Aw.-calculus
o-/-tr alb/lelsl; — alsliablslywea/le i K<
. a[b/j-i[tslk if k+i<j
-tr alth , b/];)
/ Moo, 08,2y, Je[0/]; A oR<j<hid

. alty 1i—iltgl if k+i<j
Atr a[th, , Lo, — >i=k
-1 (NP 1 (N { o oh<j<hii

Fi1c. 7. The new rewriting rules of the simply typed Aw,-calculus

3 The isomorphism

The untyped versions of)\?, /\?e, A& and ,\Je are obtained by deleting every type

and environment information of terms (cf. [9]). For the untyped calculi we proved (cf.
¢

[9]) that the term restriction of the Ao and Aw,-calculi on A Bsop are “isomorphic”

respectively to the Xs and)\?e—calculi. In this section, we state that the isomorphism

can be adapted for the typed versions of these calculi and furthermore, that the new

isomorphism preserves types.

DEFINITION 3.1 " N

The functions T : As op— A w pand S:Aw,, — As,, are defined inductively:

T(Xg,4)=XE,4 S(XEg,a) =XE,a
T() =ng S(nE) =ng
T(ab) =T(a)T(b) S(ab) = S(a)S(b)
T(AA.a) = AA.T(a) S(A\A.a) = \A.S(a)
T(ao’b) = T(a)[T(b)/]; S(a[b/];) = S(a) a?S(b)
T(¢p%a) = T(a)[ty Tess S(atiglk) = ¢k 77 (S(a))

We make an “abus de notation” and use the same names T and S for the trivial
restrictions of these functions to ground terms. The context will make it clear which
is meant in every case.

The Weak Normalization of the Simply Typed As.-calculus 9

THEOREM 3.2
The following hold:

1. Let a, b € AS . If @ = b then T(a) = T(b). If a —, - b then T(a) =, = T (b).
2.Let a, b€ s,y fa— bthen T(a) 5 T(b). a—,; bthen T(a) >,
T(b).

3.Let a, b€ A @y If a2 b then S(a) == S(b).

Ifa —,z, b then S(a) 37, S(b).

¢
4.Let a, b€ Ad,,,. Ifa—- bthen S(a) = S().

Ifa -, bthen S(a) 33, S(b).
PROOF: By induction on a. If the reduction is internal, the induction hypothesis
applies; otherwise, the theorem must be checked for each rule. As an example, we
illustrate for item 2. the case of reduction at the root with the rules o-p-tr 1 and
o-p-tr 2: .
Suppose k < j < k +i. Then (},a)07b =5 p—tr1 ¢ita, and
T(pra)o’b) = T(ppa)[T(b)/]; .
= T(a)’[T“l]kH[T(b)/]j =/ —4—tr T(a)[1" 2]gy1 (since k+i>j>k+1>k)
=T(g;). .y o
Suppose k +i < j. Then (p}a)o’b =4 ¢ tr2 ¢}(ac?""1b), and
T((pha)o’h) = T(cfa) [T)/ o o
= T(@) [Tepa [T/ =+ 1r T@IT®)/]j—s1 [Jesr (since k+3 < j)
= T(ao? D)ty = T(p} (a0’ 1))
The other cases are simpler. X

We verify finally that 7" and S are in fact inverses of each other.

THEOREM 3.3
The following hold:

t

1.Foralla € A @ , we have T(S(a)) =a. For all a € AS, we have S(T(a)) = a.
t

2. Forallae A Zsop, we have T'(S(a)) = a. For all a € A?o,,, we have S(T'(a)) =

a
PROOF: By an easy induction on a. X

COROLLARY 3.4
= .. . — . —t - .. . — .
As is isomorphic to Aw restricted to A w , and s, is isomorphic to Aw,. restricted

t
to A 3301).

We end this section by stating that the isomorphism preserves types, which will be
used to obtain subject reduction for Xs and)\?e from the corresponding results for
XoJ and ..

LEMMA 3.5 N Lt
Let E be an environment, A a type, a € Asypand b€ A w,,,.

LI EF > a:Athen Eb - T(a): A
s1 Lwl
221t Ek ~ b:Athen EF o S(b): A

PROOF: By induction on the structure of a and b, respectively. X

10 The Weak Normalization of the Simply Typed \s.-calculus
4 Subject Reduction

This section is devoted to establish Subject Reduction for our four calculi. We prove

first subject reduction for Aw and /\ae and then we use the isomorphisms given in
. — —

the previous section to obtain Subject Reduction for As and As .

THEOREM 4.1, (Subject Reductlon for /\w)
LetabEAw andstEAw

1.IfE|-a:Aanda—>)\UbthenEI—b:A.
2.IfE|—31>Fands—>M—J»tthenEI—tDF.

PRroOF: By simultaneous induction on the structure of a and s. If the reduction is
internal it is enough to apply the inductive hypothesis. If the reduction is at the root
then each rule must be examined. We check for instance the rule ;—/ -des for the case
n=j.

Let us assume E - np_; B rs;[a/]; : A. Therefore there exists an environment E' such
that EZJ [a/DEI and E<j,EI F nF<j,B,F2j : A. Hence E<j = F<j and E' = B’FZJ
and therefore E>; = F>;, hence E = F. From E>; - a/> E' we deduce E>; Fa: B
and, since A = (E<j,B,FE>;), and n = j, we have A = B. Therefore, E>; Fa: A
and, because F l—ﬂ;l >E>;, we can apply the clos-rule (remember E = E>; and, by
convention, E.; = nil) to obtain E F a[t% '], : A. X

THEOREM 4.2, (Subject Redu(ﬁlon for Ao,)
LetabGAw pand s,t € Awg,

1.IfE|—a:Aanda—>)@> bthenEl—b:A.
2.IfEI—s|>Fands—>/\3 t then E+t> F.

PRrOOF: By simultaneous induction on the structure of @ and s. The proof is analogous
to the previous proof, only the new rules must be checked now. As an example we
study 3—/ -tr. Assume E F a[b/]i[s]; : A and k < j. Therefore, there exists an
environment E’ such that

Esjk s> E' (4.1)

and E<;,E' F a[b/]x : A. Since k < j, by Lw1-clos there exists an environment E”
such that
Ec,E"Fa:A (4.2)

and Ey,...,E;_1,E' - b/ v E". Therefore, E" = B, Ey,...,E;_1,E' and
Ey,...,E;_1,E'+b:B (4.3)
Applying the clos rule, from 4.1 and 4.2 we get
Eci,B,E>p Fals]jp1: A (4.4)
and from 4.1 and 4.3, E>j b b[s];_k+1 : B, and a further application of slash gives
B b b[s]j_ks1/ > B, Exi (4.5)

Finally, applying clos to 4.4 and 4.5, we conclude E & a[s];41[b[s]j—k+1/]k * A. X

The Weak Normalization of the Simply Typed As.-calculus 11
We use now the translations to prove Subject Reduction for Xs and)\?e.

THEOREM 4.3 (Subject Reduction for Xs and As ¢)
Let a, beAs andchAsop

1.IfE|—a:Aanda—>)\§> bthen EFb: A.
2.IfE|—c:Aandc—>)\;> dthen EFd: A.

Proor: We just check the 1st item (the 2nd is similar). If E a : A then, by
Lemma 3.5.1, £+ T(a) : A. On the other hand, if a —,~ b then, by Theorem 3.2.2,
T(a) =, T'(b). Now, by Theorem 4.1.1, E' - T(b) A, and by Lemma 3.5.2, we get
E+ S(T(b)): A, and we are done because S(T(b)) = b, by Theorem 3.3. X

5 Woeak Normalization of w,

. . . — o

In this section we prove weak normalization for w., the calculus of substitutions asso-

ciated to)\35, by reducing the problem to the untyped calculus. Weak normalization
- . . . L —

of w, will be needed in the next section to obtain weak normalization of \w,.

DEFINITION 5.1 .
We define type erasure for Aw-terms as follows:

| XB,Al=XBa |oBF|=2BF
Ing|=n |1 [=1

|labl = |a] 0] la/| = lal/
|AA.a| = Mal |a[s];| = lal[|s]];

LEMMA 5.2 . s
Let a,b€ Aw,,, and s,t € A w,,,

1.Ifa —,~ bthen |a] =xo, [b].
2.If s >, = tthen |s| =0, [t]-

PROOF: By an easy induction on the structure of terms and substitutions. X

EHEOREM 5.3
we-calculus is weakly normalizing for semi-open terms.

PROOF: In [§] it is shown that every innermost strategy terminates in the s.-calculus,

i.e. the untyped version of ?e. Here, we prove that every innermost strategy must

also terminate for 36. The proof is by contradiction. Let us consider an innermost

infinite reduction path beginning with:

e a term a, i.e. a = a1 = ... = a, — Now, using the previous lemma and
remarking that erasing the types does not change the character of the strategy, we
get an innermost infinite derivation in we:
lal = la1| = ... = |an| — - ..
and then, applying the translation S (cf.[9]) from untyped Aw-terms into untyped
)\?e—terms, which does not change the character of the strategy either, we get the
innermost infinite s.-derivation:

S(lal]) = S(|la1]) = ... = S(lan|) =
which contradicts the above mentioned result in [8].

12 The Weak Normalization of the Simply Typed \s.-calculus

e a substitution s, then s = a/ (because s =t%, is a normal form) and the infinite
reduction must occur within a. Hence, by the previous item, this is also a contra-
diction.

X

6 Soundness and simulation

We have shown that Je is WN for semi-open terms. Therefore for every term a in
. — — —
the corresponding language we can define the normal forms s (a), s, (a), we (a) as
usual. In this section we show that these calculi enjoy the expected soundness and
simulation properties with respect to de Bruijn A-calculus.
These calculi are sound in the following sense:

PROPOSITION 6.1 (Soundness of /\?, /\?e, Mo and /\36)
The following hold:
1.Leta, be As. If a mév b then s (a)—»p s (b).
s

— —

2. Let a, b€ A5,y If a —= bthen 5. (a)=»5 e (b)-

Se

3.Leta,be Aw. Ifa == b then W (a)—»5 @ (b).
w
4. Let a, be Aam. Ifa v b then cw, (a)—»p we (b).

ProorF: All items can be proved by induction on the position where the reduction
takes place. See more details in [8]. X

Also, they simulate the S-reduction in the de Bruijn A-calculus with or without open
terms. We recall next the definition of the de Bruijn A-calculus with the addition of
metavariables.

DEFINITION 6.2
We define the de Bruijn open terms by:

Op.Terms A, ::= Ve | INe | (AopAop) | (AT -Aop)

The de Bruijn A-calculus on open terms has as its only rule S-reduction, which is be
the smallest compatible reduction on A,, based on the schema in Definition 1.2. As
before we may assume that for each context E and type A there are infinitely many
metavariables X, such that E + X : A. The typing rules are the usual ones plus the
term metavariable typing rule as given before.

PROPOSITION 6.3 (Simulation of S-reduction for)\?,)\?e, X and)\36)

1. Let a, b € A be typed terms. If a —3 b, then the following hold:
—

(a) there exists ¢ €As such that a —- c—»= b

o —gen s

—

(b) there exists ¢ € Aw such that a 2 gen €T b.

2. Let a, b be open A-calculus typed terms. If a —3 b, then the following hold:
—

(a) there exists ¢ €As,p such that a —- c—»-> b
o—gen Se

The Weak Normalization of the Simply Typed As.-calculus 13

5
(b) there exists ¢ €Awy,p such that a —— c—»- b
o —gen We

Proor: All items can be proved by induction on the position where the reduction
takes place. X

7 Weak Normalization of)cje and /\36

The main technical tool in the proof of weak normalization of ,\Ze is the translation
similar to the one given in [6] of typed terms into functions whose arguments are
A-terms (or lists of them) and whose results are A-terms (or lists of them). Although
the idea is the same, the translation has to be carefully adapted. Let T be a given
type. In order to define this translation we associate every term variable Xg 4 with
a variable of the A-calculus that we denote

XA1—>...—>AH—>T—>A;

where E = A,,...,A,. We also associate every substitution variable zg r with a list
of classical variables denoted

LA ... Ap—=T—=B1 -3 LA ... 5 A 3T Bm LA ... Ap —T—T)

where F' = By, ..., B,,. The indices show the types of the associated classical vari-
ables. .

The translation maps every Aw-term w such that A;,..., A, F u: A into a function
[u] whose arguments are lists of n+1 terms ¢1; .. .;tp41 of respective types A44,..., A,
and T and which returns a term of type A. The translation of a Aw-substitution s
such that A;,..., A, F s> By,..., By, is a function [s] whose arguments are lists of
n+1 terms t1;...;tp41 of respective types Ay,..., A, and T and which returns a list
of m + 1 A-terms of types By,..., B, and T, respectively.

Essentially the translation reduces the term to substitution normal form, suspend-
ing substitutions on variables. Then, roughly speaking, substitution steps map to
vacuous beta-reductions and o —gen (i.e. Beta) steps on substitution normal forms
map to non-empty A-calculus 8 reductions, yielding the desired result by a simulation
argument.

DEFINITION 7.1

The translation [e] is given as follows, where ¢ denotes the list of terms t1;. .. ; tn; tnt1
and E=A4y,...,A,, F=B4,...,.Bpand E5>A=A4, - ... 5 A, - T— A

L [Xeal® = Xpoati-..tep

2. [zer]®) = @EeoBiti - tut1); 3 (@EE=B, t1 o tng1); (BBt - o v tng1)
3. [ke]@®) = i where k <n

4. [MAu]@E) = Az.([u](z1) with z fresh of type A

5. pe® = (l@)[10)

6. [ulsl](®) = T[ul(ts;---;ti-1;[81(t5 - - 5tnt))

7. [tR]®) = tryt;---itngt where k <n +1

8.

[w/1® = (@)t

14 The Weak Normalization of the Simply Typed \s.-calculus

In clause (4), z fresh means z ¢ FV(?) and z # X, & for every free variable X and
z in u. If we assume that our countable set of variables is ordered then we may take
z as the first variable satisfying the previous conditions.

In clause (6), the arguments list (¢15...;ti—1; [s](¢:; - . - ; tnt1)) should be interpreted
as the concatenation between the list t1, tioa and the list which results from
[[3]](i3+ n+1)

LEMMA 7.2

If z # X ,& for every X,z in u, then ([u](%))[a/2] =a [u](F[a/z]) where by f[a/z] we
mean the list t1[a/z];...;tp[a/2] £ T =t1;. .. ;tn.

PRrROOF: By an easy induction on u. X

The next lemma is important, stating that [] is invariant under all the rules of the
substitution calculus.

LEMMA 7.3_)
Let f,9 € Awep, if f —— g then [/1 = lg]-

ProOOF: By induction on the structure of f. If the reduction is internal, use the
induction hypothesis. We only give the case where f = a[s];, g = a[s']; and s — ¢,
since the application and abstraction cases are analogous.

Let t = t1;...;tpt1 with the right length. Then [a[s];](Z) =

[al(tes .- stizas [s](Eis - - s tnga)) = [al(tas .. s tions [8] (a5 - - -5 tngn)

(by the 1nduct10n hypothe51s)

= [a[s'li](®).

If the reduction is at the root, then we must study each rule. In all cases, let
t =11;...;tpe1 with the right length.

For the 7—/—des rule,
e if £ > j, then [k[a/];](t1;. . ;tnt1) =
[%1(ts5 . - J 1;[a/] (55 - n+1))
[k1(tss - -5 t—1; [al (255 - - tn+1)t ceitngr) =
te—1 = [[k - 1]](t1;---;tn+1)
e if k = j, then [k[a/];](t1;.. . ;tnt1) =
[%](t1; .- J 1; [a/](t5- - n+1))
[£1(ts; - -5 815 [al (255 - - - tn+1) tis-itntr) =
[al(t); - - n+1)
[[a]]([[T’ 1]](7517 —itn1)) =
[l u](tss5 - 5 tnsa)
e if k < j, then [[k[a/] [t 5 tnga) =
[k]](tly -] 17[[a/]](J7 - n+1))
ty = [k]](tl, citngt)-
For the o -A-tr rule,

[(AA.a)[s];](t1;- - - 5tns1) =

QA DI DT b))
Az.fa](z;t1;- - 5t5-15 (815 - - s tns1))
/\Z-[[G[S]j+1]](z tl, citny1) =

The Weak Normalization of the Simply Typed As.-calculus 15
[MA.(als];+1)]().

For the ?—app—tr rule,

[(ab)[s];](ts; .- 5 tns1) =

[(@b)] (s -5 ti—1; [s1(ts5 - - - 5tns1)) =

lal(t1s. - 5ti—15 [8](255 - - s tnia DIBN (15 - - 5515 [8] (g5 - - -5 tnn)) =
lals];](t1; - - -5t)[O[s];] (t15 - - 5 tng) =

[a[s];bls];I (15 - - - 5 tntn)-

For the g—T—des rule,
oif k 2], then [k[1%];](t1;. . ;tny1) =

[ED(tns - 2 t5ma [(55 - -5 tngn)) =

[k]](th) t] 1at.7+’la'- tn+1)

ipith—1—j+1 = thti = [[k +i](t; .- 5 tnt)
o if k < j, then [k[1];](t1;. . ;tns1) =

[RDCtes - - o t5ma [(t55 - 5 tngn)) =

ty = [[k]](tl, ceitngt).
For the o-/-tr rule, let k < _7 f = ab/lk[s]; and g = a[s]j+1[0[s]j—k+1/]k- Let

= [b](tx;---5tj—1; [8](t5;- - -5 tnt1)). Then

[[a[b/]k[11)=
[alo/1e] (815 - - 58515 [s1(E55 - -5 tngn)) =
lal(tis .. ste—15Bste; .. -3 tj—15[s] (&5 -+ -3 tnt1)) =
la[s]js1](ts; - - 5 te—1; Bitas -5 tnga) =
la[s]j+1](tas - - -5 th—15 [Bls]j—k41] (s - - - s tns)) =
[als]j+1 [Bls]j—k+1/1x](2)-

For the /-t-tr rule,
o if k+i < j, then [a[t?]x[b/];](#) =

[a[t]k](tes -5 ti—ns D (Ess - sttty - tngn) =
[al(tes -5 trns [T (ERs - -5 15 [BD(Es - 5 Engn)s 85 - -5 Engn)) =
lal(t15. -5 th—1s thtis -5t 1,[[5]](n+1) tj-. tn+1) =

[alb/]j—](t1s - -5 tr—1; tk—g—z: : tn+1)
[alb/]j—(ts; - -5 tr—1; [tk -5 tgr)) =
Lalt/)—i 1@ |

eif k< <k+i, then [alt[b/10) =
[a[t]k] (15 - - s ti—s [BI (2js - - -5 tngn)s tn+1)
lal(tes. - ste—1; [P0 Ch; - - 5 tim [OD(E5 - - 5 tnta)sty o tngn)) =
[a]](t1§---;tk—1§tk-g-z'—1§-- tn+1)
[a](tes - - -5 th—1; [H Dtk -5t)i - Emtt) =
[a[t* 1 1:](®)-

For the 1-1-tr rule,

eif k+4 < j, then [a[t]k[Tl] (@) =
[a[Tz]k]](th . J 17[[T]](J7 . n-‘rl))
[a[Tz]k]](th . J 17tJ+l7 . tn+1)
|Ia]](t17 - tk 17[[T]](tk7 -] 17tj+l7 .- tn+1))=
|[a]](t1, . tk 1,tk+l, . t] 1,t]+l,.. tn+1):

16 The Weak Normalization of the Simply Typed \s.-calculus

[al(tes- - sth—1s thpis -3 tj—im14is [M1(Eks - - -5 tng)) =
[a[t'];—il (b1 - 5 trmrs 1D (Eks - - -5 Eng)) =
[alt'];—:[+]x] () , B

oif k < j <k+i, then [a[t*],[t];](F) =
[alt1k](trs- - 5 ti—1; [P] (g5 - - tngn)) =
lal(tes - s th—ns [0 (tks - - s timn5tjaas - - 5 tng)) =

[al(ts;- - ste—tsthtitss - 5tng1) =
[a](t1;. - s te—1s [P (tk5 - 5 tngn)) =
[a[t*+]](®)

X

DEFINITION 7.4 .
Given the terms u,v € Aw,, we say that u and v have the same type if both are well
typed and there is a context E and type A such that E I—Ls—i u:Aand E l_Ls_i v A

DEFINITION 7.5 .
We define the quasi-order > on Aw,, terms as follows: u > v if u and v have the

same type and [u](t) i)g [v](¥) for every list of A-terms % of the right length and the
right types (to be called right t from now onwards).

It follows immediately that > is a strict order (i.e. irreflexive and transitive), which
is also compatible with taking closures as stated next.

LEMMA 7.6 Lt s
l.Let a,b € A wy,,, j > 1and s € A wy,,. If a > b, then a[s]; > b[s];.

—t . . —8
2. Let a,b € A wy,,, i1,...,% > 1 and s1,...,8; € A Wy,

a[sl]il ... [Sk]ik > b[S]_]z'l - [sk]ik .

p- 1 a > b, then

PROOF:
1. For every right t,
[a[s]]]](f) = |[a]](t1, e ,tj_l, |[8]](tj, N ,tn)) —)g [b]](tl, e ,tj_l, |[8]](tj, e ,tn))
= [bls];1().
2. Iterating the previous result.
X

The following Lemma is technically important and will be used in the proof of
Lemma 7.8.

LEMMA 7.7 s
Let k>1,01 > 42> - >4 >1,81,...,8; €EA Wsop and let X be a term variable.

_ t
Then for every right ¢, there exist r > 1,¢1,...,¢, € A Zsop which do not depend on
tl,...,tz’kfl such that [X[Sl]il [sk],k]](f) =X tl t2 tik,1 q ... gr.

PRroOF: By induction on k.
e For k =1 we have:

— 81 = d/, then [[X[Sl]zl]](i) = X t1 ... th,l [[d]](tz'l,. . .,tn) ti1 . tn, thus take
(q1,---,ar) = ([d](tiys---tn),tiy,---,tn) which clearly do not depend on the
prescribed terms.

—s1 =1™ with m > 0, then [X[Sl]“]](z) = X t1 oo tii—1 tis4m --- tn, thus take
(q1,---,9r) = (tiy+m, - - -, tn) Which do not depend on the prescribed terms either.

The Weak Normalization of the Simply Typed As.-calculus 17

e For the inductive case we have:
— s = d/, then [X[s1]i, ... [se]ix [8r+1]i0s:] ()
= |[:X[81]i1 e [Sk]ik]](tly e ;tik+171|[d]](tz'k+1 yooe ;tn);tik_H; ey tn)
=Xt ... ti—1 [d(tigrs---5tn) tiggy --- tin—2 @1 --. gr (by the induction

hypothesis) where g¢i,. .., ¢, do not depend on the previous terms in the list.
Taking (q1,...,q0) = ([d](Finsrs- - tn)s tinsrs - s tin—2,Q1s-- - r),
no ¢; depends on t1,...,t;,,, -1, and

[X[s1liy - - [Stt]inn JE) = X ti to oo i1 @t - G-
— Sp41 =™ with m > 0, then [X[s1]i, -- - [Sk]i, [3k+1]ik+1]](t)
= |[:X[81]i1 s [sk]ik]](tla s 7tik+1—17 tik+1+m7 .. 7tn)
=Xt ...ty 1 tigpidm -o- tix—14m @1 .. ¢ (by the induction hypothesis)
where q1,...,q, do not depend on the previous terms in the list. Taking
(qia tee q;-/) = (tik+1+m7 te 7tik—1+ma qi;. .. aqr)a no q; depends on
t1,... 7tik+1—1; and

[X[sl]il s [Sk+1]ik+1]](i) = X tyta ... t’ik+1*1 qi s q;’

Now we can give the key result, for semi-open terms.

LEMMA 7.8 . .
Let a,b € A w,,, where a is an w.-normal form. If a =7 gen b then a > b.

PRroOOF: By induction on the position of the 7 —gen redex in the term a.

If the reduction is at the root, i.e. a = (AA.c)d and b = c[d/];, then

[(A.c)d](E) = (I(AA.0)1@))([d] () = (Az.[el(z D) ([d] (F)) =5 [)(z;8)[([d](?))/=

= [e]([d](?);t) = [c[d/]1](?) (by Lemma 7.2). Remark that, when Lemma 7.2 has

been used, since z should be chosen such that z ¢ FV (2), then ¢[([d](?))/z] = 1.

Else we have the following cases:

e g =n or a = X aterm variable, the result holds vacuously since there is no o - gen
redex.

e a = cd then if the reduction occurs in ¢, say ¢ =7 _gen c', we have
[®) = [AOM@ -} [1OE = [@d]@ = [E](using the induction
hypothesis; and the situation is analogous if the reduction occurs in d.

e a = MA.c then the reduction occurs in ¢, say ¢ =2 _gen c', then
[a]@) = Az.[c](®) =} Az.[¢'](@) = [MNA.C'](?) = [b]() using the induction hypothe-
sis.

e a is a closure, then a will necessarily have the form d[s1];, ...[sm]i,, Where d is
not a closure; d cannot be an abstraction, nor an application, nor an index (or
else a would not be a nf). Then d = X a term variable, and i; > iz > -+ > iy,
(or else a would not be a nf). Then we have that there exists ¥ > 1 such that
a= X[s1]i; -+ [Sk—1)in_1 [Sk)ir [Sk+1)inss - - - [Smli,, Where s, = e/ with e =2 gen e,
for some terms e, e’, and
@ = on Xs1lin -+ [sk-ali_i[€'/]i[skr]ing - - - [Smlin, = 0.

Suppose first £ > 2. In what follows Lemma 7.7 will be used twice; the non depen-
dence of the terms ¢y, .. ., ¢, on the i1 —1 terms explicited in the proof guarantees
that the ¢, ..., ¢, which appear after the 2nd. equality also ensure that the 3rd.

18 The Weak Normalization of the Simply Typed As.-calculus

equality holds. We have that

[X[s1]i; - - [sk—1]ins [e/]6]()

= [[:X[Sl]’ll s [Skfl]’ik—l]](tla e tig—1, [e]](t’ika v :tn)atik yere at")

=Xt ta ... ti—1 [e](tip ---tn) tip - tip_y—1 @1 --- gr (by Lemma 7.7)
—)E Xtity ... tik,1 [e’]](tik . ..tn) tz'k A tik_1,1 q ... qr

(by the induction hypothesis and compatibility).

On the other hand,

[X[s1]i, - - - [sk—1lin_. [€'/]a](F)

= |[:X[31]i1 s [Sk—l]ik—l]](tla e tig—1, [el]](tika s tn)a Ligs oo - 7tn)

=X tl t2 PN tik,]_ [[6’]](751',c - tn) t’ik . t’ik_1*1 qi .- q;‘

and because of the fact that ¢f,...,¢. do not depend on the terms before gi, we
have that ¢; = ¢} for 1 <i <r.

Thus, by Lemma 7.6(2),
[a]] (z) = [X[Sl]il s [sk—l]ik—1 [e/]ik [8k+1]ik+1 s [sm]zln]](f) B
=% [X[s1liy - - - [sk—1]ix_y [€' /Nia [Sh41)ingr - - - [8m)in J(B) = [B](2)-

The case k = 1 follows directly by Definition 7.1:
[X[e/):](®)
=X 721 to ... ti1—1 |[€]](ti1 tn) ti1 tn
—SE Xttty [ty) by et
(by the induction hypothesis and compatibility)
= [X[e'/]i,](¢) and use Lemma 7.6(2) similarly.
X

Even though it is an adaptation of the technique in [6], the technical result in
Lemma 7.7 was required. In Lemma 7.8 special care is necessary for handling closures.
For the case that a is a closure, if it were any open term (i.e. having substitution
variables), it might have a more complicated form than just d[si]i, ... [Sm]s, Wwith
the conditions above mentioned, and here is where the method would not work. The
condition iy > --- > i, becomes strictly necessary, otherwise the S-redex could be
lost in the [e] transform. The result does not hold for full open terms, taking for
instance the normal form a = 2[z],[d/]; as a counterexample, for d =2 _gen d', since

a=2 e 2[z]2[d'/]1 but

[a](®) = [2[z]]([d/](t15 - - -5 tn))
[2lz]2)([d](t1; - - 5ta)stas - -5 tn)
20([d] (t15 - - -3 tn); [2] (Fr5 - -5 20)) =

I21([d] (t1s - - - 5tn); Bt1 oo ot e o3 Bb1 oo ty) =

Tty ...ty

which may not have (-redexes. This counterexample is critical. So far, Lemma 7.8
could not be extended for the full open term set using the same technique; it does
not seem that some simple or intuitive change in the [e] function definition could
help. Problems also are caused by terms like 1[z]2, which could be partially fixed

—
redefining the Aw,-calculus in such a way that terms of the form k[z]; for £ < j would

N
not be in normal form. Recall that if a,b €Aw are two typed terms where a is an

The Weak Normalization of the Simply Typed As.-calculus 19

(;;—normal form, we need to certify that, when a =7 _gen b, then for every right £,
[a] (%) i)g [b](t), i.e. the possibility of 8 reduction in the simply typed A-calculus

—
must be created. For this reason we could add to Aw, the following rule:
(0 —des) n[sl; = n ifn<j

This rule subsumes rules (3—/—des) and (g—T—des) for the case n < j, and it is
consistent with Lemma 7.3. The addition of this rule forces terms like n[z]; for n < j
not to be J:;—normal forms. But note that terms having closures with substitution
variables are not in the domain of the translation S.

Nevertheless, the addition of this new rule does not fix the problem for examples
like a above, since the condition is n = j and there is no similar rule to be added in
order to force n[z], to reduce.

In virtue of the main result in [6], a natural question is: what happens in Aw, which
can make the difference with Ao, since the latter is WN on all typed open terms? The
reason we found is that, when the counterexample is translated to Ao, it is not a
o-normal form and hence it does not represent a counterexample. Remark that the
statement of Lemma 7.8 is for normal forms. More precisely, a = 2[z]2[d/]: translates
to the Ao term 1[1][1.(z o 1)][d.id] (and to the Aoy term 1[t][ft (x)][d.id]), which is
clearly not a o-normal form.

The problem forced the statement of Lemma 7.8 to refer to semi-open terms. It is
worth mentioning, however, that due to the above isomorphism it suffices to consider

=
this restricted set of terms in order to obtain WN of As.. This was our original goal.
DEFINITION 7.9 N .

A canonical strategy for Aw,. is a strategy which applies the 0 —gen rule only to

N S — . ..
0 —gen-redexes in we-normal forms and whose w-reductions are normalizing.

As an example, take a strategy which applies the d —gen rule only to Je—normal
forms and whose Z))e—reductions are leftmost-innermost (li). Hence, given a term ay,
such a canonical reduction sequence will be:

B, @ (ar) = B, @, (a2) =
a1 ;e e (31 ?7gen a2 35 e \G2 (_T)fgen

I .= . — . —
where —Z»U—J stands for li we-reduction and w, (a;) is the We-normal form of a;.

THEOREM 7.10 . N
Every canonical strategy for Aw,. is strongly normalizing and therefore the A\ w.-
calculus is WN for semi-open terms.

PRrOOF: If there is an infinite reduction sequence

— —
ai —»aewe (al) —); as —»Bewe (a2) — =

—gen o—gen o

then by Lemmas 7.3 and 7.8, for every right ¢, we get a contradiction through the
infinite reduction sequence in the typed A-calculus:

[a1] @) = [We (a)]@) =7 [a2]@) = [@e (a2)]E) =7 -+

20 The Weak Normalization of the Simply Typed As.-calculus

Now, the isomorphism presented in Section 3, gives:

THEOEEM 7.11
The As¢-calculus is weakly normalizing for open terms.

8 The A\w.-calculus.

— —
We extend the previous result to a new calculus, Aw!, derived from Aw.. In this

-
section we omit typing decorations for notation simplicity, therefore Aw/, will be just
written Awl.

Awl, is written in the style of Ao and has 1 as the sole de Bruijn index, while the
others are constructed as in Ao. We will show that typed Aw. is WN on semi-open
terms.

A good reason to use this calculus is to show the power of the composition rules,
which indeed emulates the behavior of the other indices. Thus with a smaller language
one will have in some sense the same reduction possibilities.

Remark that the problem which forced us to restrict Lemma 7.8 still holds. Up to
now, we do not know whether typed Aw’, is WN on all open terms.

DEFINITION 8.1
The set of open terms and substitutions of the Aw!-calculus, noted Aw! , is defined

op?

as A'w!, U A’w), where A'w], and A*w],, are mutually defined as follows:
Atwf,p x= V|1)\Atw;p | Atw;pAtw;p | Atw'op[Asw’op]j j>1
Al i= WA | A, k>0

and the set of semi-open terms and substitutions of the Aw!-calculus is defined as

Awl,, U A*w),,, where A'w),, and A®w],, are mutually defined as follows:

Atw;op n=V | 1 |)‘Atw;op | Atw;opAtw;op | Atw;op[Asw;op]j -7
A, == AW,/ k

The rules of the Aw!-calculus are given in Figure 8

As with A\we, all rules except (o-gen’) conform w),.
Note that the (o-des’) rule, in the presence of the (o-/-des’) rule, subsumes the
following two possible rules:

(0 =/ — des") 1a/]; = { (11[T0]1 ;i i

(0— 1 —des”) 1], — 1 j>1

Note also that for all i > 1, the term 1[17]; is an w}-normal form representing the
de Bruijn index i + 1. In fact, 1[1%]; [y =,/ 1[17H];.
Now we wish to relate Aw!, and Aw, by means of a translation.

v IV
o R

The Weak Normalization of the Simply Typed As.-calculus 21

(o-gen’) (M)b — alb/l1

(0-app-tr’) (ab)[s]; — a[s];b[s];

(0-A-tr’) (Aa)[s]; — Aa[s]jt1)

(o-/-des’) a/lq — a[th

(o-1-des’) 1’y — 1

(o-des’) 1[s]; — 1 i>1
(o-/-tr’) alb/lxlsl; — als]j+1[bls]j—k+1/]k k<j
) apy — | Rl kriss

(-1-tr?) G[Ti]k[Tl]j N { a[Tl.]j—i[Tz]k k+i<jy

a1 k<j<k+i

F1G. 8. The rewriting rules of the simply typed Aw.-calculus

DEFINITION 8.2
For open terms and substitutions we define a translation | e | : Aw,, — Awy, by:

X = X || =

1] =1 [n+1 = 11" (n>1)
[Aa| = Al |abl = |al[d]

[t5] = 1* la/| = lal/

la[s];| = lallls]];

Note that the translation of an index greater than 1 yields a term of the form 1[1"],
while 1 is translated as 1.

We give a Simulation Proposition which will be used in the subsequent results of
the section.
PROPOSITION 8.3 (Simulation)
Let a,b € Aw,p.

1.If a =4 gen b, then |a| =4 gen’ |b].
2.If a =, b, then |a] —».. [b].

3.If a =, b, then |a] =,/ [b].

4.If @ —» o, b, then |a| —=»x.: [D].

ProOF:

1. By induction on a. If the reduction is at the root where (A¢)d —4—gen c[d/]1, then
la| = (Ale|)|d] =o—gen |c|[|d]/]1 = |b]. For internal reductions, the proof is straight-
forward.

2. By induction on a. If the reduction is at the root, we analyze every possible w,-rule
applied.
ea = nlcfl; wo—/—dges P —1 =0bwithn >j > 1, thenn > 2. Ifn > 2

then [a| = |n|[|0|/] = 1" Nallel/lj =j=p-er 11" = In — 1] = [b], since
1=k S] <k +i=n>2. Ifn= 2, I[Tn_2]1 = 1[T0]1 _)ofodes’ 1= |1| = |b|

22 The Weak Normalization of the Simply Typed As.-calculus

ea=nlc/lj Fo_/_dges [PV 11 = b withn=j> 1.
If n =1, then |n[c/];| = 1|cl/]; o= /—des |l[t®]1 = |¢[1%]1] and we are done.
If n > 1, then |a| = |n[lc|/]; = 11" Tullel/]; = /—t—tr Llel/lj—nsa [t
o taes [l "1 =41 [el[F]y = [b] since
l1=k<k+i=n=jthusj—n+1=1.

ea = nlc/lj 25—/ —ges » = b with 1 < n < j. If n = 1, we are done by
rule (0-/-des') since j > 1. Else, |a| = [n|[lc|/]; = 11" illel/l; =)=t
lel/lj-n+1[t" ' —o—des 11" 71 = [b], since j > n = k+ i < j thus
J—n+1>1.

e a=n[M]; 95—t—des n+1 =0, with n > j > 1. We have the following cases
If n=1 (thus j = 1) and [= 0, then |a] = 1[1%1 =2 5—t_ges' 1 = [b].
If n =1 (thus j = 1) and [> 0, then |a| = 1[}]; = |1 +1| = |p|
It n > 2 then [a] = [n|[N]; = 14" i [N]; 1o 1Ay = n+1] = [3
sincel=k<j<k+i=nmn.

ea=n[M]; 95_t—des n = b with 1 <n < j. We have the following cases:
If n = 1, then |a| = 1[}]; = s—desr 1 = |b] since j > 1.
£ n > 2 then [a] = A" L[1'); =1-1—er 1 nsal1")1 =omgewr 11712
=|n|=[b| since 1 <n < jthus j—n+1>1.

e The other rules are straightforward.

For internal reductions, the proof is straightforward.

. Consequence of the second item.
4. Consequence of the previous items.

w

X

As it can be seen in the proof of Proposition 8.3, the w!-rules (o-/-tr’), (/-1-tr’) and
(T-1-tr’) can handle closures over indices thus simulating the behavior of the we-rules
(0-/-des) and (o-1-des).

REMARK 8.4
Let u,v € Aw!,

sop*

L If u =0 v, then u =y, v.

2. ju| = u.
ProOOF: Both 1. and 2. can be proved by an easy induction on wu. X
The second assertion above means that the translation is onto and invariant for the
set Awg,,-

COROLLARY 8.5 (Confluence)
Aw, and w!, are confluent on semi-open terms.

Proo¥r: To prove the confluence of Awy, let a € Aw;,,, and suppose a —»x,: a1,
a —%x,. az. By Remark 8.4, both derivations are also Aw.-derivations. Since Awe
is isomorphic to As., it is confluent on semi-open terms [8], thus there exists b €
Awgop such that a1 —#x,. b and as —»x,. b. By the fourth item of the Simulation
Proposition, |a;| —#x. |b] and |az| =% . |b]. Since a = |a| by Remark 8.4, this closes
the diagram.

The confluence of w!, is proved analogously, by using the third item of the Simulation

Proposition. X

The Weak Normalization of the Simply Typed As.-calculus 23

N
We define the typing rules of Aw! in a straightforward manner analogously to Aw,.
Moreover, we have:

LeEMMA 8.6 (Typability preservation)
For all a € Awl,,, if a is typed in Aw., then a is typed in Awe.

sop’

PrOOF: By induction on a. X

8.1 Weak normalization of typed \w,,

!

In order to prove WN of typed Aw!, we will relate the Awe-calculus with the Aw!-
calculus. We first give a grammar for the set of Aw, open terms in we-normal form
and another grammar for the set of Aw, open terms in Awe-normal form. These
grammars will specify conditions associated to some of their rules (strictly speaking,
they can be seen as grammar schemas or conditional grammars.)

We denote with NF,, , NF\,,, NF, and NF), the sets of normal forms of the
respective calculi untyped open terms.
DEFINITION 8.7

We call w,-syntactic normal forms the terms NS, generated by the following syntax
with start symbol M:

M == M ...Mp|c|AM wheren>1
c = c1 e
c1 = m[s1]ig .. [Snlin where m > 1,n > 0,V1 < k < n,i; > 1,
V1<k<n,(ig <igr1 = (sp € Wor (sg =t and spp1 € W))),
n>1 = s1e€W
c2 u= Xl[s1]i; ... [Snlin where n > 0,V1 < k < n,ip > 1,
V1<k<n,(ig <igr1 = (s € Wor (s =1t and spy1 € W)))
s u= M/|xz| 1tk where k > 0

DEFINITION 8.8
We call Aw,-syntactic normal forms the terms NSy, generated by the following
syntax with start symbol N:

N = ¢Ni...Np | AN wheren >0

c = c|e

c1 = m[si)i; ... [sn)in, wherem >1,n2>0,V1<Ek<mn,i; > 1,
V1 <k<mn,(iyg <ige1 = (s € W or (sp =1t and sg11 € W))),
n>1 = s1€W

c2 u= X[s1]y; -..[Sn)i, Wheren >0,V1<k<m,ip>1,
V1<k<mn,(ir < Tl = (s € W or (sg :Tt and Sp41 € W)))

s = N/|z| 1t where k > 0

LEMMA 8.9

The w,-syntactic normal forms are exactly the w.-normal forms.

Proor: We prove NS, C NF,, by checking that in each clause no rhs term contains
any we-redex.

Now we prove NF,,, C NS,,. Let t € NF,, . We prove that t € NS,,, by induction
ont. If t = n, it is clear. The same if t = X, t = \b or t = t1t5. If ¢ is a closure,
then let ¢t = u[s1]s, - - - [Sn]i,, Where u is not a closure. Then u cannot be Av, nor ¢;ts,
otherwise ¢ would not be an w-nf. It can only be a de Bruijn index or a metavariable.
In either case, ¢ is generated by the c¢; or ¢ clause respectively, and in each case the
conditions should hold or else ¢ would not be an w,-nf. X

24 The Weak Normalization of the Simply Typed As.-calculus

LEMMA 8.10
The Aw,-syntactic normal forms are exactly the Aw.-normal forms.

PROOF: The proofs of both inclusions are analogous to the ones given in the previous
Lemma. X

We also give grammars for the set of Aw) open terms in w!-normal form and for
the set of Aw! open terms in Aw!-normal form, specifying conditions in some of their
rules.

DEFINITION 8.11

We call w,-syntactic normal forms the terms NS,; generated by the following syntax
with start symbol M:

M = Mi...Mp|c|AM wheren>1
c = c1 e
c1 = 1[s1]iy - [Snlin where n > 0,V1 < k < mn,ip > 1,
V1<k<n,(ig <igr1 = (s € Wor (sp =1t and spp1 € W))),
n>1 = (i1 =1and (s1 € W or s; =1%, t > 0))
c2 == X[s1li; .- [Snlin where n > 0,V1 < k < m,ip > 1,
V1<k<n,(ixg <igr1 = (sx € W or (sg =t and Sp+1 € W)))
s u= M/|xz| 1k where k > 0

DEFINITION 8.12
We call \wg-syntactic normal forms the terms NS, generated by the following
syntax with start symbol N:

N = ¢Ni...Np | AN wheren >0

c = cle

c1 = 1s1ls; ---[Sn)i, ~ where n >0,V1 <k <m,i; > 1,
V1<k<n,(ig <igr1 = (s € W or (sp =1t and sg11 € W))),
n>1 = (i1 =1and (s1 € W or s1 =1, t > 0))

c2 u= X[s1]s; ... [sn)i, ~wheren >0,V1<k<m,i;>1,
V1 <k<n,(ig <ige1 = (s € W or (sp =1t and spp1 € W)))

s wu= N/|z| 1tk where k > 0

LEMMA 8.13

The w!-syntactic normal forms are exactly the w!-normal forms.

Proor: We prove NS,» C NF, by checking that in each clause no rhs term contains
any w-redex.

Now we prove NF,, C NS,,. Let t € NF,.. We prove that t € NS, by induction
ont. If t =1, it is clear. The same if t = X, t = Ab or t = t1t5. If ¢ is a closure,
then let ¢t = wu[s1]y, - --[Sn),,, Where u is not a closure. Then u cannot be Av, nor
t1ta, otherwise t would not be an we-nf. It can only be 1 or a metavariable. In either
case, t is generated by the ¢; or ¢y clause respectively, and in each case the conditions
should hold or else ¢ would not be an w!-nf. X

LEMMA 8.14
The Awl-syntactic normal forms are exactly the A\w!-normal forms.

PRrOOF: The proofs of both inclusions are analogous to the ones given in the previous
Lemma. X

Remark that all these grammars generate all the respective normal forms including
untypable normal forms (eg. such as 11).

The Weak Normalization of the Simply Typed As.-calculus 25

LEMMA 8.15
If a € NF,, then |a| € NF,,.

PROOF: We use induction on a. In virtue of Lemma 8.9, we have the following cases:
l.ifa=M;... M, ora=MAM,i.e. the M clause was used, it is straightforward, since
la| = | M| ...|My]| or |a| = A|M|, so in both cases |a| has no internal w,-redexes by
the induction hypothesis.
. analogous for the ¢2 clause.
. analogous for the s clause.
4. for the c1 clause, a will have the form m[s1];, ... [sn]i, Where the mentioned condi-
tions hold. Then:
o If n =0, then
(a) either m = 1, then |a| = 1 which is an w!-normal form
(b) or m > 2, then |a| = 1[t™!]; which is also an w!-normal form.
e Else n > 1, then s1 € W, and we have two cases:
(a)ift m = 1, |a| = 1[|s1]]s, ---[|snl]i,, and since |s1] = s1 € W, there are no
we-redexes by the induction hypothesis, thus |a| € NF,,
(b) if m > 2, |a] = 1[t™ 1[|s1]]i, - - -[|8nl]i. , and since |s1]| = s1 € W, there are no
wg-redexes by the induction hypothesis, thus |a| € NF,:.

W N

X

LEMMA 8.16
If a € NF),, then |(l| € .Z\/v.l‘?,\w/e

PRrROOF: We use induction on a. In virtue of Lemma 8.10, we have the following cases:

l.ifa=¢cNy...N, or a = AN, i.e. the N clause was used, it is straightforward, since
la| = |¢||N1] ... |Nn| or |a| = A|N|, so in both cases |a| has no internal Aw.-redexes
by the induction hypothesis.

Cases 2., 3. and 4. are analogous to items 2., 3. and 4. of the previous lemma. X

COROLLARY 8.17 (Weak normalization of typed w!)
Typed wl, is weakly normalizing for semi-open terms.

PROOF: Let a € AW/

sop D€ @ typed semi-open term. By Theorem 5.3, a has an w,-

normal form w, (a). By Simulation and Remark 8.4, a = |a —Hur | we (a)|. Last,
| we (a)| is an w!-normal form by Lemma, 8.15. X

We will state a necessary result about li-strategies:

LEMMA 8.18 (leftmost-innermost character preservation)
Via simulation, every li-strategy applied to a term a € Aw,,p, projects into a li-strategy
applied to the term |a| € Aw),

sop*

PROOF: We can prove that if a =, b is a li-step, then |a|] — [b| is a sequence of li-
steps, by induction on the position where the reduction takes place. As an illustration,
we analyze the case of the -/-des rule for the case n = j:

nla/ln =, a[t" 1, so we suppose a € NF,,, since this is a li-step, then:

Infa/]n] = 11"~ L1[lal/In

=, Ulal /L[

= a|[t°L [t

—uy [al[t" My = |a[t"]

26 The Weak Normalization of the Simply Typed As.-calculus

Note that all =, steps in this sequence are li, in particular the second and third
steps are li because |a| € NF,; by Lemma 8.15 thus it does not contain wj-redexes.

The rest of the cases require similar or less considerations. X

Combining the previous lemmas and Theorem 7.10 we get

THEOREM 8.19 (Weak normalization of typed Awl)
Every canonical strategy for Aw! with li w!-steps is strongly normalizing and therefore
the simply typed Aw!-calculus is WN for semi-open terms.

PrOOF: Let a € Awj,,. Then, since Awj,, C Awsop, by Theorem 7.10 there exists
b € NF),, such that a —»),_ b and this derivation is a canonical strategy. Then by
Remark 8.4 and Lemma 8.18, we have that a = |a| =%, |b| and this derivation is a

canonical strategy, and by Lemma 8.16 |b| € NF),;, thus a € W Ny, . X

9 Conclusion

The main purpose of this paper is to present a proof of weak normalization for simply
typed As., inspired by the technique of [6] for proving weak normalization of simply
typed Ao. We prove not only that typed terms are WN but we also give a strategy
for reaching the normal forms.

A main feature to emphasize is that the behavior of Aw, differs when analyzing weak
normalization of open and semi-open terms. The same applies to Aw.. It is important
to notice that this question for Aw,. on open terms emerged when analyzing As open
terms, a calculus in which there is no distinction between semi-open and open terms
since it is one-sorted.

We introduced a new calculus, Aw., to which we transferred the same result. This
calculus is closer to Ao than the calculus Aw, (which is isomorphic to /\?e yet written
in the Ao style), in the sense that the only de Bruijn index it uses is 1. It is a good
example which shows that a calculus may not need more than a single index, if it
has adequate composition rules. Thus such a new calculus has a smaller set of terms
when compared to its parent. We showed that Aw. enjoys the same good properties as
Awe, by relating their respective sets of normal forms. For that purpose we provided
conditional context-free grammars to describe the normal forms, this being a useful
tool.

Future work includes a possible characterization of the properties that make it
possible to carry over this result to other calculi. Also, it will be interesting to
analyze weak normalization (possibly in a different line from [6]) for typed Aw. and
Aw! on full open terms. Another interesting line of research is the study of other
typing systems for these calculi, such as intersection and higher-order typing.

10 Acknowledgment

We are grateful to the anonymous referees for their careful and detailed comments
and corrections.

The Weak Normalization of the Simply Typed As.-calculus 27

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional
Programming, 1(4):375-416, 1991.

[2] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit substitutions
which preserves strong normalisation. Functional Programming, 6(5), 1996.

[3] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.
Pitman, 1986. Revised edition, Birkhduser (1993).

[4] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of
explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.

[5] N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser Theorem. Indag. Mat., 34(5):381-392,
1972.

[6] J. Goubault-Larrecq. A proof of weak termination of the simply typed Ac-calculus. Proc. Int.
Workshop on Types for Proofs and Programs (TYPES’96). LNCS, 1512:134-151, 1998.

[7] B. Guillaume. Un calcul des substitutions avec étiquettes. PhD thesis, Université de Savoie,
Chambéry, France, 1999.

[8] F. Kamareddine and A. Rios. Extending a A-calculus with explicit substitution which preserves
strong normalisation into a confluent calculus on open terms. Journal of Functional Program-
ming, 7(4):395-420, 1997.

[9] F. Kamareddine and A. Rios. Relating the Ao- and As-styles of explicit substitutions. Logic and
Computation, 10(3):349-380, 2000.

[10] A. Rios. Contribution a ’étude des A-calculs avec substitutions explicites. PhD thesis, Université
de Paris 7, 1993.

Received 24 November 2004. Revised 23 May 2005.

