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Abstract

We study the position of the AUTOMATH systems within the framework
of Pure Type Systems (PTSs). In [2, 22], a rough relationship has been
given between AUTOMATH and PTSs. That relationship ignores three of
the most important features of AUTOMATH: definitions, parameters and
II-reduction, because at the time, formulations of PTSs did not have these
features. Since, PTSs have been extended with these features and in view
of this, we revisit the correspondence between AUTOMATH and PTSs. This
paper gives the most accurate description of AUTOMATH as a PTS so far.

1 Introduction

The AUTOMATH systems are the first examples of proof checkers, and in this
way they are predecessors of modern proof checkers like Coq [20] and Nuprl [16].
The project started in 1967 by N.G. de Bruijn:

“it was not just meant as a technical system for verification of mathematical
texts, it was rather a life style with its attitudes towards understanding, devel-
oping and teaching mathematics.” ([12]; see [44] p. 201)

Thus, the roots of AUTOMATH are not to be found in logic or type theory,
but in mathematics and the mathematical vernacular [11]. De Bruijn had been
wondering for years what a proof of a theorem in mathematics should be like, and
how its correctness should be checked. The development of computers in the 60s
made him wonder whether a machine could check the proof of a mathematical
theorem, provided the proof was written in a very accurate way. De Bruijn
developed the language AUTOMATH for this purpose. This language is not only
(according to de Bruijn [10]) “a language which we claim to be suitable for
expressing very large parts of mathematics, in such a way that the correctness
of the mathematical contents is guaranteed as long as the rules of grammar
are obeyed” but also “very close to the way mathematicians have always been
writing” . This is reflected in the goals of the AUTOMATH project:

“1. The system should be able to verify entire mathematical theories.
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2. The system should remain very general, tied as little as possible to any
set of rules for logic and foundations of mathematics. Such basic rules
should belong to material that can be presented for verification, on the
same level with things like mathematical axioms that have to be explained
to the reader.

3. The way mathematical material is to be presented to the system should
correspond to the usual way we write mathematics. The only things to be
added should be details that are usually omitted in standard mathematics.”

([12]; see [44] pp. 209-210)

Goal 1 was achieved: Van Benthem Jutting [3] translated and verified Lan-
dau’s “Grundlagen der Analysis” [42] in AUTOMATH and Zucker [52] formalised
classical real analysis in AUTOMATH.

As for goal 2, de Bruijn used types and a propositions as types (PAT) princi-
ple! that was somewhat different from Curry and Howard’s [17, 28]. The appear-
ance of types in AUTOMATH finds its roots in de Bruijn’s contacts with Heyting,
who made de Bruijn familiar with the intuitionistic intertpretation of the logi-
cal connectives (see [26, 40]). The interpretation of the proof of an implication
A — B as an algorithm to transform any proof of A into a proof of B, so in fact
a function from proofs of A to proofs of B, gave rise to interpret a proposition as
a class (a type) of proofs. De Bruijn who was not influenced by developments in
A-calculus or type theory when he started his work on AUTOMATH, discovered
this notion of “proofs as objects”, better known as “propositions as types”, in-
dependently from Curry [17] and Howard [28]. Curry and Howard identified the
logical implication and the universal quantifier with function types, following
Heyting’s intuitionistic interpretation of logical connectives. In doing so, they
do not leave a possibility for a different interpretation of implication and uni-
versal quantification. Using PAT in de Bruijn’s style, the rules for manipulating
the logical connectives must always be made explicit by the user (for example
see Sections 12 and 13 of [4]). This makes it possible to give interpretations of
logical connectives that are not based on interpreting implication and universal
quantification by a function type (see [41]).

De Bruijn spent a lot of effort on goal 3. He studied the language of math-
ematics in great depth [11] and used the following features to achieve goal 3:

e The use of books. Like a mathematical text, AUTOMATH is written line
by line. Each line may refer to definitions or results given in earlier lines.

e The use of definitions and parameters. Without definitions, expressions
become too long. Also, a definition gives a name to a certain expression
making it easy to remember what the use of the definiens is.

As AUTOMATH was developed independently from other developments in the
world of type theory and A-calculus, and as it invented powerful typing ideas
that were later adopted in influential type systems (cf. [2]), there are many
things to be explained in (and learned from) the relation between the various
AuTOoMATH languages and other type theories. Type theory was originally in-
vented by Bertrand Russell to exclude the paradoxes that arose from Frege’s

IThe first practical use of the propositions-as-types principle is found in AUTOMATH.



“Begriffschrift” [21]. It was presented in 1910 in the famous “Principia Math-
ematica” [51] and simplified by Ramsey and Hilbert and Ackermann. In 1940,
Church combined his theory of functions, the A-calculus with the simplified type
theory, resulting in the influencial “simple theory of types” [15]. Since, many
influential type systems have been developed. Eight of the most important such
systems have been unified in the Barendregt cube [2]. Terlouw [50] and Be-
rardi [5] extended independently Barendregt’s work into a general framework
leading to the so-called Pure Type Systems (PTSs [2]).

In this paper we focus on the relation between AUTOMATH and Pure Type
Systems (PTSs). Both [2] and [22] mention this relation in a few lines, but as
far as we know a satisfactory explanation of the relation between AUTOMATH
and PTSs is not available. Moreover, both [2] and [22] consider AUTOMATH
without one of its most important mechanisms: definitions and parameters.
But definitions and parameters are extremely powerful in AUTOMATH. Even
the AUTOMATH system PAL, which roughly consists of the definition system
of AUTOMATH only, is able to express some simple mathematical reasoning
(see Section 5 of [10]). According to de Bruijn [12] this is “due to the fact
that mathematictans worked with abbreviations all the time already”. Recent
developments on the use of definitions and parameters in PTSs [31, 41, 32, 33, 47]
justify renewed research on the relation between AUTOMATH and PTSs.

e Section 2 describes PAT, PTSs and the basic AUTOMATH system AUT-68.

e Section 3 discusses how we can transform AuUT-68 into a PTS. Some prop-
erties of AUT-68 are unusual for PTSs: e p-reduction; e Il-application
and II-reduction (as AUT-68 does not distinguish A and II: both Ilz:A.B
and Az:A.B are denoted by [z:A]B); e a definition system; e a parame-
ter mechanism. We do not consider n-reduction as an essential feature of
AuToMATH, and focus on its most characteristic type-theoretical features:
definitions and parameter. In systems with II-application, II behaves like
A, and there is a rule of II-reduction: (Ilz:A.B)N —p Blz:=N]. We leave
the features of II-application and II-reduction till Section 5.

e In Section 4, we give a system A68 that is (almost) a PTS. In A68, def-
initions play an active role. We show that A68 has the usual properties
of PTSs and can be seen as AUT-68 without n-reduction, II-application
and II-reduction. There is no direct parameter system in A68 either, but
parameters are hidden in the rules for the construction of product types.

e In Section 5 we discuss how A68 can be extended with direct parameters
and with Il-application and II-reduction. We also discuss how our ap-
proach can be extended to other AUTOMATH systems like AUT-QE where
the identification of A and II is more subtle than that of AuT-68 and it
is not easy to tell whether [z:A]B should stand for Az:A.B or Ilz:A.B
in PTSs. In addition to AUT-QE, we reflect on AA (cf. [44], B.7) where
terms are presented as lambda trees and to each AUTOMATH book, there
corresponds a single lambda tree whose correctness is equivalent to that
of the book. We conclude in Section 6.



2 AUTOMATH, PAT, PTSs and AuT-68

Basic to AUTOMATH is the PAT principle commonly known as the Curry-Howard
isomorphism, although it was also invented independently by de Bruijn who
applied it in a different way to that of Howard and Curry. Many other proof
checkers and theorem provers, like Coq [20], Nuprl [16] and LF [23], use the
PAT principle. In Section 2.1 we explain the origin of the PAT principle. Then,
in Section 2.2 we introduce PTSs and we devote the rest of this section to
AUTOMATH with its formulation of lines, books and definitions.

During the AUTOMATH-project, several AUTOMATH-languages have been de-
veloped. They all have two mechanisms for describing mathematics:

e The typed A-calculus, with the important features of A-abstraction, A-
application and S-reduction.

e The use of definitions and parameters.

The latter mechanism is the same for most AUTOMATH-systems, and the dif-
ference between the various systems is mainly caused by different A-calculi that
are included. In this section we describe the system AuT-68 [4, 9, 19] which not
only is one of the first AUTOMATH-systems, but also a system with a relatively
simple typed A-calculus, which makes it easier to focus on the (less known)
mechanism for definitions and parameters. A more extensive description of
AuT-68 on which our description below is based, can be found in [4, 9, 19].

2.1 Propositions as Types and Proofs as Terms

Although Church’s simply typed A-calculus has logical symbols like V, V, it
cannot be seen as a logical system. If one wants to make logical derivations,
one has to build a logical system on top of it. Type theory nowadays plays an
important role in logic in a different way: it can be used as a logical system
itself. This use of type theory is generally known as “propositions as types” or
“proofs as terms”. As both expressions abbreviate to PAT, we will use this ab-
breviation to indicate both “propositions as types” and “proofs as terms”. PAT
only partially covers the idea of using type theory as a logical system. “Proofs
as terms” already suggests an important advantage of using type theory as a
logical system: here proofs are first-class citizens of the logical system, whilst for
many other logical systems, proofs are rather complex objects outside the logic
(for example: derivation trees), and therefore cannot be easily manipulated.
Below we mention some origins of the PAT principle.

Intuitionistic logic

The idea of PAT originates in the formulation of intuitionistic logic. Though it is
not correct that “intuitionistic logic” is simply the logic that is used in intuition-
istic mathematics?, there are frequently occurring constructions in intuitionistic

2“Intuitionistic logic” is standard terminology for “logic without the law of the excluded
middle”. The terminology suggests that it is “the logic that is used in intuitionism”. However,



mathematics that have a logical counterpart. One of these constructions is the
proof of an implication. Heyting [25] describes the proof of an implication a = b
as: deriving a solution for the problem b from the problem a. Kolmogorov [40]
is even more explicit, and describes a proof of a = b as the construction of a
method that transforms each proof of a into a proof of b. This means that a
proof of @ = b can be seen as a (constructive) function from the proofs of a
to the proofs of b. In other words, the proofs of the proposition a = b form
exactly the set of functions from the set of proofs of a to the set of proofs of
b. This suggests to identify a proposition with the set of its proofs. Now types
are used to represent these sets of proofs. An element of such a set of proofs is
represented as a term of the corresponding type. This means that propositions
are interpreted as types, and proofs of a proposition a as terms of type a.

Curry

PAT was, independently from Heyting and Kolmogorov, discovered by Curry
and Feys [17]. In paragraph 8C of [17], Curry describes so-called F-objects,
which correspond more or less to the simple types of Church in [15]. As a basis,
a list of primitive objects ¢, %5, ... is chosen. All these primitive objects are
F-objects. Moreover, if @ and 8 are F-objects, then so is Fa. Here, F is a new
symbol. Faf must be interpreted as the class of functions from « to . If a
is an F-object, then the statement - X must be interpreted as “the object X
belongs to a”. The rule-F is adopted: if F FXY Z and F XU then F Y (ZU).
This rule immediately corresponds to the application-rule of Church’s A-calculus
and says: if Z belongs to FXY and U belongs to X, then ZU belongs to Y.

Earlier in [17], Curry gave the implication combinator P with the rule-P: if
FPXY and - X then Y. PXY is interpreted as the proposition “if X then
Y”. Curry notices that rule-P has similar behaviour to rule-F.

Curry is the first to give a formalisation of PAT. For each F-object « he
defines a proposition of by: ¥ = ¥; and (FaB)f = Pat’B¥ 2 Curry then
intuitionism (i.e., the philosophy of Brouwer and the mathematics based on it) declares math-
ematics to be independent of logic. According to that philosophy, a proof of a mathematical
theorem is a method to read that theorem as a tautology. The fact that one needs a list of tau-
tologies before the proof of more complicated theorems becomes clear, only indicates that the

constructions we make are too complicated to be comprehended immediately. Mathematics
itself however, is a construction in one’s mind, independent of logic:

“Een logische opbouw der wiskunde, onafhankelijk van de wiskundige intuitie, is
onmogelijk — daar op die manier slechts een taalgebouw wordt verkregen, dat
van de eigenlijke wiskunde onherroepelijk gescheiden blijft — en bovendien een
contradictio in terminis — daar een logisch systeem, zoo goed als de wiskunde

zelf, de wiskundige oer-intuitie nodig heeft”
(Over de Grondslagen der Wiskunde [8], p. 180)

(A logical construction of mathematics, independent of the mathematical intuition, is impos-
sible — for by this method no more is obtained than a linguistic structure, which irrevocably
remains separated from mathematics — and moreover it is a contradictio in terminis — be-
cause a logical system needs the basic intuition of mathematics as much as mathematics itself
needs it. [Translation from [27]]).

3Remark that Curry’s function a — af

is in fact an embedding of types in propositions



shows that the types-as-propositions embedding o ++ o is sound and complete:
if F,, Xy --- X,,Y is an abbreviation of FX; (FXo(...(FX,,Y)...)) then:

“If - Frpér - --&mnX then F (Fpéy - --§m77)P. Moreover, if = Fp&p - &mnX
is derivable from the premises F a;a; (i = 1,...,p) then  (Fm&1 - Emn)T is

”»

derivable from the premises af (i=1,...,p).

([17], paragraph 9E, Theorem 1)

“If + (Fmgl---ﬁmn)P is derivable by rule-P from the premises - af, then
for each derivation of this fact and each assignment of a1,...,ap to a1,...,ap
respectively there exists an X such that - F,;, &1 -+ - &, nX is derivable from the
premises - aja; (i =1,...,p) by rule-F alone.([17], paragraph 9E, Theorem 2)

The treatment of PAT in [17] is mainly directed towards Propositions as
Types. Proofs as terms are implicitly present in the theory of [17]: the term
X in the proof of Theorem 1 of [17] can be seen as a proof of the proposition
(Fp&1 -~ &mn)” . But this is not made explicit in [17].

Example 1 As an example, we show the deduction of the proposition A — A
from the logical axioms X — Y — X* (the K-aziom) and (X - Y — Z) —
(X = Y)—= X — Z (the S-aziom), both in the style of the combinator P and in
the PAT-style. Both derivations correspond to the derivation of the proposition
A — A in natural deduction style, with the use of modus ponens, and axioms
X=>Y—=>Xand X =2Y 22)2(X=>Y)—> X — Z only:

FA>A-2A)—>A) > A-2A-04) A A
FA-(A—>A)—- A
FA-A—-A4) >A-> A FA->A- A

FA— A

e Weuse P, X1 --- X, Y as an abbreviation for PX; (PXs(... (PX,,Y)...)).
So P,,X1---X,,Y can be interpreted as the proposition X; — X, —

FPoni1Xo - XnY F X
-+ X;, = Y. In this notation, Rule-P is: Ji P(inXl XY 9.

For terms XY, Z, we take the following axioms:
(K): FP,XYX;
(S): FP3(P.XYZ)(PXY)XZ.

Let A be a term. From the axioms we derive - PAA, using rule-P:

F Ps(PyA(PAA)A)(PA(PAA))AA
- P,A(PAA)A
FP,(PAPAA)AA - PA(PAA)
FPAA ;
(so a types-as-propositions embedding instead of a propositions-as-types embedding).

4We assume that — is associative to the right, i.e. X — Y — Z denotes X — (Y — Z)
and not (X —»Y) — Z.




e In PAT-style, the situation is similar. Now we do not use any axioms,
but we use some standard combinators. The combinator K (which can be
compared to the Ad-term Axy.x) has type Fo XY X, for arbitrary F-objects
X,Y (a term can have more than one type in Curry’s theory). K can be
seen as a “proof” of the axiom (Fy XY X)¥. This is indicated by putting
K behind the axiom: (FeXY X)¥K. The combinator S, comparable to
the A-term Axyz.xz(yz), has type F3(F: XY Z)(FXY)XZ for arbitrary F-
objects X,Y,Z. S is a “proof” of the axiom (F3(FeXY Z)(FXY)XZ)P.
This is denoted as (F3(Fe XY Z)(FXY)X Z)PS. The derivation above now
translates to:

- Fs(FyA(FAA)A)(FA(FAA))AAS
F FaA(FAA)AK
F Fo(FA(FAA))AASK) - FA(FAA)K
- FAA(SKK) '

The conclusion of this derivation can be read as: SKK is a function from
A to A, or, with PAT in mind: SKK is a proof of the proposition A — A.

Both derivations correspond to the derivation of the proposition A — A in
natural deduction style, with the use of modus ponens, and axioms X -+ Y — X
and X - Y —>2)» (X —>Y)—> X — Z only:

FA—-(A—-2A4) A >A—-A—-A) A A
FA-(A—>A) - A
FA-A—-A)>A-> A FA—->A— A

FA— A

Howard

Howard [28] combines the argument of Curry and Feys [17] with Tait’s discovery
of the correspondence between cut elimination and S-reduction of A-terms [49].

Example 2 Take this natural deduction style derivation of a proposition B:

[A]
;
A— B A
B

Here, [A] denotes that the assumption A has been discharged at the point where
we concluded A — B from B. D is a derivation with some assumptions of A,
and conclusion B, whilst D5 is a derivation with conclusion A. The derivation
®, can be used to replace the assumptions of A in derivation ©;. This means
that we can transform the derivation to:



where copies of D5 have replaced the assumptions A in D;.
We can decorate the two derivations above with A-terms that represent
proofs. This results in the following two deductions:

x:A

D,
T:B
(Az:A.T): (A — B) S:A

((\:A.T)S): B

and

S A

Tx:=S]: B

The assumption of A is represented by a variable x of type A. This is a natural
idea: the variable expresses the idea “assume we have some proof of A”. The
derivation ®; is represented by a A-term 7', in which the variable  may occur
(we can use the assumption A in derivation 7). Then the term Az:A.T exactly
represents a proof of A — B: it is a function that transforms any proof x of A
into a proof T of B. As D, is a derivation of A (assume, S is a proof term of
A), we can apply A\z:A.T to S, obtaining a proof (Az:A.T)S of B.

Substituting the derivation ©, for the assumptions of A in ®; is nothing
more than replacing the assumption “assume we have some proof of A” by
the explicit proof S (i.e., substituting S for z). This gives a term T, where
each occurrence of = has been replaced by S: the A-term T'[z:=S]. The proof
transformation exactly corresponds to the S-reduction (Az:A.T)S —3 T[x:=s].

This is the first time that proofs are treated as A-terms. Howard doesn’t call
these A-terms “proofs” but “constructions”. Moreover, Howard’s treatment of
PAT pays attention to both Propositions as Types (following the line of Curry
and Feys) and Proofs as Terms (by using A-terms to represent proofs, thus
following the interpretation of logical implication as given by Heyting).

Howard’s discovery dates from 1969, but was not published until 1980.

De Bruijn

Independently of Curry and Feys and Howard, we find a variant of PAT in the
first AUTOMATH system of de Bruijn (AUT-68 [44], [10]). Though de Bruijn
was probably influenced by Heyting (see [12] in [44], p. 211), his ideas arose



independently from Curry, Feys and Howard This can be clearly seen in Section
2.4 of [9], where propositions as types (or better: proofs as terms) is implemented
in the following way, differing from the method of Curry and Howard.

First, a constant bool is introduced. bool is a type: the type of propositions.
If b is a term of type bool (so b is a proposition), then true(b) is a primitive
notion of type type. true(b) represents the type of the proofs of b. So, a proof of
proposition b is of type true(b) and not of type b (since propositions themselves
are no types) With this “bool-style” implementation (as it was called by de
Bruijn in [12]) in mind, it becomes clear why de Bruijn prefers the terminology
“proofs as terms” to “propositions as types”: in the bool-style, propositions
are not represented as types. Only the class of proofs of such a proposition
is represented as a type. Proofs however, are represented as terms, just as
in Howard’s implementation of PAT. So in the bool-style, the link between
proposition and type is not as direct as the link between proof and term. The
implementation of Howard (called “prop-style” by de Bruijn) does not make
any distinction between a proposition and the type of its proofs.

The bool-style implementation has as advantage that one does not need a
higher order lambda calculus to construct predicate logic. In relatively weak
AUTOMATH systems such as AUT-68 one usually finds a “bool-style” implemen-
tation of PAT. It would be impossible to give a “prop-style” implementation in
such a system as its A-calculus is not strong enough to support it. In AUTOMATH
systems with a more powerful A-calculus we also find “prop-style” implementa-
tions. See [43] for a description of prop-style implementations in AUTOMATH.

Another advantage of the bool-style implementation is that one does not
depend on a fixed interpretation of the logical connectives. One is free to define
ones own logical system (and it is possible to base that system on the Brouwer-
Heyting-Kolmogorov interpretation of the logical connectives. This has been
one of the reasons for de Bruijn to implement PAT in a bool-style way (see [12]).

Though the bool-style implementation is not used in later AUTOMATH sys-
tems, it is still in use in the Edinburgh Logical Framework [23], and other
systems[48]

2.2 Pure Type Systems

Lambda calculus was introduced by Church [13, 14], as a formalisation of the
notion of function. With this formal notation he could formulate his set of pos-
tulates for the foundation of logic. Kleene and Rosser [38] showed that Church’s
set of postulates was inconsistent. The lambda calculus itself, however, appeared
to be a very useful tool. Being a suitable framework for the formalisation of
functions, it is not surprising that lambda calculus became an excellent tool
for formalising the Simple Theory of Types [15]. This formalisation is at the
basis of most modern type theories and especially at the basis of PTSs. In this
section, we give the necessary machinery of PTSs needed for this paper.

Definition 3 Let V be a set of variables and C a set of constants (both count-
ably infinite). The set T(V,C) (or T, if it is clear which sets V and C are used)



of typed lambda terms with variables from V and constants from C is defined
by the following abstract syntax: T :=V |C | TT | AV:T.T | IIV:T.T.

We use z,y, 2z, a, f as meta-variables over V. In examples, we sometimes
want to use some specific elements of V; we use typewriter-style to denote such
specific elements. So: x is a specific element of V; while x is a meta-variable
over V. The variables x, y, z are assumed to be distinct elements of V (so
x #Z y etc.), while meta-variables z,y, z, ... may refer to variables in the object
language that are syntactically equal. We use A, B,C,M,N,...,a,b,... as
meta-variables over T. FV(A), the set of free variables of A, and substitution
Alz:=B] are defined in the usual way. We use = to denote syntactical equality
between lambda terms.

Terms that are equal up to a change of bound variables are taken to be syn-
tactically equal. This allows the Barendregt Convention where bound variables
are chosen to differ from free ones. Throughout, we let = € {A, II}.

Notation 4 o We write (---((AB1)B2)---By) as AB; --- By,.
e We write ma1: 41 .(mwo:As. (- - (mwp:Ap.A) -+ +)) as 71':1':':/1’.3, orml ;i A A

o We write A[rn:=Bp]---[tn:=By] as A[z;:=B;]",,. If m > n then
Alz;:=B;],, denotes A. We also write A[z;:=B;|, as A[#:=B).

Definition 5 (f-reduction) The relation —3 is given by the contraction rule
(Az:A;.A2) B —3 As[r:=B] and the usual compatibility rules. The relation —4
(resp. =g) is the smallest reflexive and transitive (resp. equivalence) relation that
includes —5. By A =% B we indicate that A =5 B, but A # B.

A term with no subterms of the form (Az:A4;.42)B is in S-normal form, or
a normal form if no confusion arises. We write A —>gf B (resp. A —»gf B) if
A —3 B (resp. A —»3 B) and B is in f-normal form.

Definition 6 e A specification is a triple (S, A, R), such that S CC, A C
S xS and RC S x S x S. The specification is singly sorted if A and R
are (partial) functions from S — S and S x S — S resp. We call S the
set of sorts, A the set of azioms, and R the set of (II-formation) rules.

e A contest is a finite (possibly empty) list z1:A1, ..., zn:A, (or &:4) of vari-
able declarations. {zi,...,z,} is the domain DOM (a’:’ff) of the context.

The empty context is denoted (). We use I'; A to range over contexts.

e We extend substitutions to contexts by: ()[z:=A] = (); and
IMz:=A] if z =y;
. L _ y

(I, y:B)[z:=A] = { IMz:=Al,y:Blz:=A4] ifz#y.

Though PTSs were not introduced before 1988 [5, 50] many rules are highly

influenced by rules of known type systems like Church’s Simple Theory of Types
[15] and Automath (see 5.5.4. of [18], and Section 2).
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(axiom) () F 51289 (s1,82) € A

I'A:s
(Start) m T g DOM (F)
I'A:B T'EC:s
(weak) T +CFA. D xz ¢ poM (T)
'-A:s; Iz:AF B :ss
(1) 'k (IIz:A.B) : s3 (51,52,50) € R
) ,z:AFb:B 'k (Iz:A.B) : s
L'k (Az:AD) : (Iz:A.B)
(appl) 'k F: (Ilz:A.B) F'a:A
apb TF Fa: Blz:=a]
I'-A:B B :s B:gB'
(conv) TFA:B
Figure 1: Typing rules of PTSs
C
A— (*, %) Aw
A2 (¢, %) (O,%) A2 P2
AP (*7*) (*7D) AWl APQ (D *)
Aw (3, %) (0,0) A :(':' o
A2 | (%) (0% (+,0) AL é
Aw (#,%)  (O,%) (0,0)
APw (¢, %) (x,0) (3,0
AC (%) (O, 0 (@E,0

Figure 2: The Barendregt Cube

Definition 7 (Pure Type Systems) Let & = (S, A, R) be a specification.
The Pure Type System AS describes the judgements (given in Figure 7) I' kg
A:B (or '+ A: B, if it is clear which & is used). ' - A : B states that A has
type B in context I'. A context I' is legal if there are A, B such that T'+ A : B.
A term A is legal if there are I', B such that ' A: BorI'F B : A.

An important class of PTSs is given as eight PTSs in the Barendregt Cube [2]
of Figure 2. These systems all have {x, 0} as set of sorts, and *:0 as only axiom,
but differ on the I-formation rules. We write (s1, s2, s2) as (s1, $2)-

2.3 Books, lines and expressions of AUTOMATH

In AUTOMATH, a mathematical text is thought of as being a series of consecutive
“clauses”. Each clause is expressed as a line. Lines are stored in so-called books.
For writing lines and books in AUT-68 we need: e The symbol type o A set
V of variables; ® A set C of constants; ¢ The symbols ( ) [ | : — ,
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We assume V and C are infinite, VN C = & and type € V UC. The elements of
Y are called block openers, those of V UC are called identifiers in [10].

Definition 8 (Expressions) We define the set £ of AuT-68-expressions (or

expressions) inductively as below. Sometimes we use the set £+ Loy {type}.

(variable) If z € V then = € £; We use the same meta-variables and specific
elements as for V.

(parameter) Ifa € C,n € N(n >0) and Xy,...,3, € £ then a(Xy,...,%,) €
E. We call ¥4,...,%, the parameters of a(%y,...,%,);

(abstraction) If x € V, ¥ € £ U {type} and Q € & then [z:X]Q € &;
(application) If ¥,,%, € £ then (X,)%; € £.

Remark 9 e The AuT-68-expression [z:X](2 is AUTOMATH-notation for ab-
straction. In PTS-notation one writes Az:X.Q or IIz:X.Q. In a relatively
simple AUTOMATH-system like AUT-68, it is easy to determine whether
Az:X.0Q or IIz:¥.Q is the correct interpretation for [z:X]Q. This is harder
in AUTOMATH-systems with a more complex A-calculus, like AUT-QE.

e The AUT-68-expression (¥3)¥; is AUTOMATH-notation for the intended
application of the “function” ¥; to the “argument” 3. In PTS-notation:
¥1¥o. (Note the unusual order of “function” ¥; and “argument” o).
The advantages of writing (¥5)X; instead of the classical ¥; X, are exten-
sively discussed in [37]. In particular, if ¥; is a function [2:21]Q25, then
(E2)E1 = (Z2)[z:21]25. The argument X5 and the abstraction [z:0] be-
long together: as soon as the intended application of the function ¥; to
its argument is carried out, X, is substituted for x everywhere in Q5. It
is convenient to put expressions that belong together next to each other.
In classical notation, one writes ([2:Q1]Q2)%5, where £» and [2:Q4] are
separated from each other by the expression 25. This makes the structure
of the expression less clear, in particular if €2, is a very long expression.

We define Fv(A) in the same way as for PTSs where also Fv(a(X1,...,%,)) def
U, FV(Z;). We adhere to the usual convention that names of bound variables
in an expression differ from the free variables in that expression. We use = to
denote syntactical equivalence (up to renaming of bound variables).

Definition 10 If Q,%,,...,%, are expressions (in £), and z1,...,z, are dis-
tinct variables, then Q[zi,...,zp:=%1,...,%,] denotes the expression 2 in
which all free occurrences of x1,...,z, have simultaneously been replaced by
¥y,...,%,. This is an expression in & (this can be proved by induction on the
structure of Q). Moreover, type[z1,...,T,:=X1,...,%,] is defined as type.

Definition 11 (Books and lines) An AUT-68-book (or book) is a finite list
(possibly empty) of (AUT-68)-lines (to be defined next). If [;,...,1, are the
lines of book B, we write B =11,...,l,. (See Example 13.)

An Aut-68-line (line if no confusion arises) is a 4-tuple (I'; k; X1;X5). Here,

12



e [' is a context, i.e. a finite (possibly empty) list z;:a1,...,Z,:q,, where
the z;s are different elements of V and the a;s are elements of £ U {type};

e ¥; can be (only): o The symbol — (if k£ € V); o The symbol PN (if k € C)
(PN stands for “primitive notion”); o An element of £ (if k € C);

e k is an element of VU C; and X5 is an element of £ U {type}.
Remark 12 There are three sorts of Automath-lines (see Example 13):

1. (T;k;—;X9) with k € V. This is a variable declaration of the variable k
having type X5. This does not really add a new statement to the book,
but these declarations are needed to form contexts.

Variables can play two roles. First of all they can represent an unspec-
ified object of a certain type (compare this to the mathematical way of
speaking: “let x be a natural number”). Secondly, a variable can act as a
logical assumption. This happens if the variable has as type the proof of
a certain proposition A. The usual mathematical way of speaking in such
a situation is not “let x be a proof of A”, but: “assume A”;

2. (T; k; PN; Xo) with k € C. This line introduces a primitive notion: a con-
stant k of type Xo. This constant can act as a primitive notion (for instance
introducing the type of natural numbers, or introducing the number 0),
or as an axiom. The introduction of k is parametrised by the context
I'. For instance, if we want to introduce the primitive notion of “logical
conjunction” , we do not want to have a separate primitive notion for each
possible conjunction and(A, B).® Instead, we want to have one primitive
notion and, to which we can add two propositions A and B as parameters
when we want to form the proposition and(A, B). Therefore, we introduce
and in a context I' = x:prop, y:prop. Given certain propositions A, B this
enables us to form the AuT-68-expression and(A4, B);

3. (T;k;21;%2) with k£ € C and ¥y € £. This line introduces a definition.
The definiendum k is defined by the definiens ¥, and has type ¥o. Defi-
nitions are parametrised like primitive notions. They help to:

e abbreviate long expressions, clarify the book structure, and make
expression manipulations efficient;

e give a name to an expression. For instance, we can abbreviate
S(S(s(S(s(8(5(0))))))) by 7.

Example 13 In Figure 3 we give an example of an AUTOMATH-book that intro-
duces some elementary notions of propositional logic. We have numbered each
line in the example, and use these line numbers for reference in our comments
below. To keep things clear, we have omitted the types of the variables in the
context. The book consists of three parts:

5Unlike the habit in mathematics to use only one character (possibly indexed) for a variable,
AUTOMATH adopts the convention of computer science to use variables containing more than
one character. So and represents only one variable, and not the application of a to n and d.
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o prop PN type (1)

%] x — prop (2)

x y — prop (3)

X,y and PN prop (4)

x | proof PN type (5)

X,y px — proof (x) (6)
X,¥,px Py — proof (y) (7)
X,¥,p%X,py | and-I | PN proof (and) (8)
X,y PXy — proof (and) (9)
X,¥,pxy | and-01 | PN proof (x) (10)
x,y,pxy | and-02 | PN proof (y) (11)
X prx — proof (x) (12)

X,prx and-R and-I(x,x,prx,prx) proof (and(x,x)) (13)
X,¥,PXy and-S and-I(y,x,and-02,and-01) proof (and(y,x)) (14)

Figure 3: Example of an AUTOMATH-book

e In lines 1-5 we introduce some basic material:

1.

We take the type prop as a primitive notion. This type can be
interpreted as the type of propositions;

. We declare a variable x of type prop. This variable will be used in

the sequel of the book;

. We similarly define a variable y of type prop within the context

x:prop. For reasons of space, we do not explicitly mention the type
of x in the context; if necessary we can find that type in line 2;

. Given propositions x and y, we introduce a new primitive notion, the

conjunction and(x,y) of x and y;

. Given a proposition x we introduce the type proof (x) of the proofs

of x as a primitive notion. In this way, we can use the PAT principle
a la de Bruijn (cf. Section 2.1);

e In lines 6-11 we show how we can construct proofs of propositions of the
form and(x,y), and how we can use proofs of such propositions:

6. Given propositions x and y, we assume that we have a px € V of type

proof (x). L.e., the variable px represents a proof of x;

We also assume a proof py of y;

. Given propositions x and y, and proofs px and py of x and y, we

want to conclude that and(x,y) holds. This is a natural deduction
axiom which we call and-I (and-introduction). and-I(x,y,px,py)
is a proof of and (x,y), so of type proof (and(x,y)).

In line 8, we see proof (and) instead of proof (and (x,y)) as the type
of and-I. This is usual in Automath, and keeps lines short. This
“default mechanism” works as follows. As the context of line 4 has
two variables x and y, we conclude that and should always carry two
parameters. In the expression proof (and) in line 8, no parameters
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10.

11.

are provided for and. It is then assumed that the first two variables of
the context of line 8 are used as “default parameters”. The first two
variables of the context of line 8 are x and y. Therefore, proof (and)
in line 8 should be read as proof (and(x,y)).

Similarly, we can write proof instead of proof (x) in line 6. From
line 5 (where proof is introduced) we find that proof carries one
parameter. Writing just proof in line 6 means that we must use the
first variable of the context of line 6, x, as a default parameter. We
must write proof (y) in line 7 because proof would give proof (x);

. To express how we can use a proof of and (x,y), first we introduce a

variable pxy that represents an arbitrary proof of and(x,y);

As we want x to hold when and(x,y) holds, we introduce an axiom
and-01 (and-out, first and-elimination). Given propositions x,y and
a proof pxy of and(x,y), and-01(x,y,pxy) is a proof of x;

Similarly, we introduce an axiom and-02 representing a proof of y;

e We can now derive some elementary theorems:

12.

13.

14.

We want to derive and (x,x) from x. That is: from a proof of x, we
can construct a proof of and (x,x). In line 6, we introduced a variable
px for a proof of x. However, we declared px in the context x,y. As
we do not want a second proposition y to occur in this theorem, we
declare a new proof variable prx, in the context x;

We derive our theorem: the reflexivity of the logical conjunction.
Given a proposition x, and a proof prx of x, we can use the axiom
and-TI to find a proof of and(x,x): we can use and-I(x,x,px,px)
thanks to line 8. We give a name to this proof: and-R. If, anywhere
in the sequel of the book, X is a proposition, and Q is a proof of X,
we can write and-R(X, ) for a proof of and(X,X). This is shorter,
and more expressive, than the original expression and-I(X%, X, Q,Q);

We also show that and is symmetric: whenever and(x,y) holds, we
also have and(y,x). The idea is as follows. Given propositions x,y
and a proof pxy of and (x,y), we can form proofs and-01 (x,y, pxy) of
x and and-02(x,y,pxy) of y. We can feed these proofs “in reverse or-
der” to the axiom and-1I: the expression and-I(y,x,and-02,and-01)
represents a proof of and(y,x). The expression and-02 should be
read as and-02(x,y,pxy) due to the “default parameter” mecha-
nism. Similarly, and-01 must be read as and-01(x,y,pxy).

2.4 Correct books

Not all books are good books. If (I';k;X1;3,) is a line of a book 9B, the
expressions X1 and Yo (as long as ¥; is not PN or —, and X, is not type) must
be well-defined, i.e. the elements of V U C occurring in them must have been
established (as variables, primitive notions, or defined constants) in previous
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parts of B. The same holds for the type assignments z;:; that occur in T
Moreover, if ¥ is not PN or —, then ¥; must be of the same type as k, hence
¥, must be of type Yo (within the context I'). Finally, there should be only one
definition of any object in a book, so k should not occur in the preceding lines
of the book. Hence we need notions of correctness and of typing.

We write B; @ - OK to indicate that a book ‘B is correct, and B;I' - OK to
indicate that the context I is correct with respect to the (correct) book B.¢ We
write B; T F X : ¥y to indicate that ¥, is a correct expression of type o (or
simply a correct expression) with respect to 8 and I'. We also say: ¥ : o is
a correct statement with respect to 8 and I'. We write Fayr_gs if a confusion
of systems arises. The following two interrelated definitions are based on [19].

Definition 14 (Correct books and contexts) A book B and a context I’
are correct if B;T" F OK can be derived with the rules below (=gq is given in
Section 2.5. The rules use correct statements of Definition 15):

(axiom) ;9 F OK
B, (T2;—a),Bo; T F 0K
By, (L52;— ), Bo; T z:a F OK
B;I' - OK
B, ([;x;—; type); @ F OK
B; ' F s : type
B, (T z;—;X0); @ F OK
B;I' - OK
B, (T; k; PN; type); I - OK
B; ' s : type
B, ([;k;PN; Xy); @ F OK
B; ' X, : type
B, ([ k;Xq;type); @ - OK
B; T F X5 : type B;LEX 8, BTy =pq XY
B, ([5k;21;%5,); 9 F OK

(context ext.)

(book ext.: varl)

(book ext.: var2)

(book ext.: pnl)

(book ext.: pn2)

(book ext.: defl)

(book ext.: def2)

For the (book ext.) rules, we assume z € V and k € C do not occur in B or I'.

Definition 15 (Correct statements) A statement B;T' F X : Q is correct if
it can be derived with the rules below (the start rule uses the notions of correct
context and correct book as given in Definition 14).

6As the empty context will be correct with respect to any correct book.
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B; 'y, z:a, s F OK

(start) B; 1, 20,2 F 2:cx
B = %1, (a:lzal, e, I Qg b, Ql; Qz), %2
%;F F Ei:ai[xl,. . .72131;12:21, ‘e .,Eifl](i = ]., e ,T’L)
(parameters) BT EbO(E,...,8,)  Qefzr, ..., xni=%1,..., 5]
(abstr.1) B; [ F Xitype  B;1,2:3, F Qi:type
B; [ F [2:21]Q : type
B; [ F Xi:type BT, 2:3 F Qp:itype By 02X F 3oy
(abstr.2) BT F [2:31])82 1 [2:21]
(application) %, '+ 21 . [:UZQl]QQ %, '+ 22 : Ql
%,F F <22>21 : QQ[LU::ZQ]
. B I'EX:Qr B;I'FQotype By F Q) =4 Qo
(conversion)

B;IFX:Qy

When using the parameter rule, we assume that 8; I - OK, even if n = 0.
Lemma 16 The book of Example 13 (see Figure 3) is correct.

PROOF: We prove this for the first four lines (we leave lines 5-14 for the reader).
We write (m-n) to denote the book that consists of lines m to n of Example 13.

1. By (axiom), &; @ I OK, so (&; prop; PN; type); @ F OK (book ext.: pnl).
2. By (parameters), (1-1); @ I prop : type. Therefore by (book ext.: varl),
we have: (1-1),(@,x,—, prop); @ | OK.
3. By (context ext.), (1-2); x:prop - OK.
Therefore by (book ext.: varl), we have: (1-2), (x:prop;y;—; prop) - OK.

4. By two applications of (context ext.), (1-3); x:prop, y:prop - OK.
By (parameters), we have: (1-3); x:prop, y:prop I prop:type.
Therefore by (book ext.: pn2), we have: (1-4); @ I OK. X

2.5 Definitional equality

We need to describe the relation =gq (“definitional equality”). This notion is
based on the mechanisms of definition and abstraction/application of AuT-68.
The abstraction/application mechanism provides the well-known notion of -
equality, originating from (X)[z:Q:]Q; — Q[z:=X]. We need to describe the
definition mechanism of AuT-68 via the notion of d-equality.”

Definition 17 (d-equality) Assume, B;T F ¥ : ¥'. We define the d-normal
form nfq(X) of ¥ with respect to 8 by induction on the length of B. Assume
nfq(X) has been defined for all B’ with less lines than 9B, and all ¥ that are
correct with respect to B’ and a context I'. By induction on the structure of X:

"This definition depends on the definition of derivability F which in turn depends on
the definition of =g4. The definitions of correct book, correct line, correct context, correct
expression and =gq should be given within one definition, using induction on the length of
the book. This would lead to a correct but very long definition, and that is the reason why
the definitions are split into smaller parts (in this paper as well as in [19]).
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e If ¥ is a variable x, then nfy(X) def x;

o If ¥ =5b(D,...,Q,) and the normal forms of the ;s have been defined,
determine a line (A;b;Z1;=2) in the book 9B (there is exactly one such
line, and it is determined by b). Write A = z;:a4, ..., Z,:q,. Distinguish:

[1]

o =; = —. This case doesn’t occur, as b € C;

o Z; = PN. Then define nfy(X) % b(nfy(21), ..., nfq(2));

o X is an expression. Then E; is correct with respect to B’ that contains
less lines than B (B’ doesn’t contain the line (A;b; Z;;=2), and all
lines of B’ are lines of B), hence we can assume nfq(Z;) has been

defined. Define nfy(X) def nfq(Z1)[z1, ..., zp:=nfq (), ..., 0fq (Qn)];
o If ¥ = [2:(]Q then nfy(X) ¥ [znfy(Q1)]nfa (Qs);
o If ¥ = () then nfy(X) X (nfy(Q2))nfq ().

Write ¥ =q 2 if nfq(X1) = nfq(X2)® and =pq for the smallest equivalence
relation containing =g and =4.

Definition 18 ¥; and ¥, are called definitionally equal (with respect to a book
B) if ¥ =g Bo.0

Instead of Definition 17, we can define d-equality via a reduction relation.

Definition 19 (d-reduction) Let B be a book, I' a correct context with re-
spect to B, and ¥ a correct expression with respect to 28;I'. We define ¥ —; Q
by the usual compatibility rules, and

(0) If ¥ = b(Xy,...,%,), and B contains a line (xi:a1,...,Tn:q,;b;81;5)
where Z1 € £, then ¥ —5 Eq[z1,...,2,:=%1,..., Zy].

¥ is in d-normal form if for no expression 2, ¥ —45 Q. We define —»s, —»}' and
=4 as usual. Again, —5 depends on B, but we drop 9B if no confusion occurs.

Lemma 20 1. (Church-Rosser) If Ay =5 As then there is B such that
A1 —s B and Az - B,’

2. nfyq(X) is the unique 0-normal form of ¥;
3. X =5 Q if and only if ¥ =4 Q.

4. —¢s is strongly normalising.

8Note that the d-normal form nfg(X) of a correct expression ¥ depends on the book 9B,
and to be completely correct we should write nfqes(2) instead of nfg(X). We will, however,
omit the subscript 9B as long as no confusion arises.

9Definitional equality of expressions ¥; and X2 depends on the book B, so we should write
=pgax instead of =g4. As before, we leave out the subscript 28 as long as no confusion arises.
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PROOF:

1. AuT-68 with —5 is an orthogonal term rewrite system (see [39]). Such a
term rewrite system has the Church-Rosser property (see [39]);

2. It is not hard to show that ¥ —»s nfq(X). By induction on the definition
of nfq(X) one shows that nfq(X) is in d-normal form. The uniqueness of
this normal form follows from the Church-Rosser property;

3. If ¥ =5 Q then by (1) there is ¥ such that ¥ —5 ¥ and Q@ —5 ¥. This
means that the §-normal forms of ¥ and €2 are equal, so by (2), nfy(X) =
nfq(2). On the other hand, if nfy(¥) = nfy(Q2), then ¥ and  have the
same d-normal forms (by (2)), so ¥ =5 Q.

4. By 2, —; is weakly normalising. Moreover, Definition 17 of nf4(X) induces
an innermost reduction strategy. By a theorem of O’Donnell ([45], or pp.
75-76 of [39]), — is strongly normalising. X

Definition 21 e A book B is part of a book B’, notation B C B’, if all
lines of B are lines of B’.

e A context I' is part of a context IV, notation I' C I", if all declarations
z:a of T' are declarations in I".

Lemma 22 (Weakening) If B;I' - X:Q, B C®B', [ CI' and B';T' - oK
then B';T'F X : Q.

PROOF: By induction on the derivation of B;I' - X : Q. X

3 From Aur-68 towards a PTS )68

We want to give a description of AUT-68 within the framework of the Pure
Type Systems. One of the most important choices to be made is whether or
not to maintain the parameter mechanism (that is: to allow expressions with
parameters, as in the second clause of Definition 8). On the one hand, the
parameter mechanism is an important feature of AUTOMATH. On the other hand
PTSs do not have a parameter mechanism, and the parameter mechanism can be
easily imitated by function application (cf. the second clause of the forthcoming
Definition 23). Moreover, the description by van Benthem Jutting in [2] of the
systems AuT-68 and AUT-QE in a PTS style does not use parameters.

In this paper, we provide a translation to PTSs without parameters. In doing
so, we can explain van Benthem Jutting’s description of AUT-68 and AUT-QE.

We will see, however, that the way in which we must handle parameters in
the resulting PTS is a bit artificial. Moreover, we think that parameters play an
important role in the AUTOMATH systems, and that they could play a similar
role in other PTSs. Therefore, we present extensions of PTSs with parameters
in [32, 41, 33]. These extensions are based on the way in which parameters are
handled in AUTOMATH, and it was shown that AUTOMATH can be described
very well within these PTSs with parameters.
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To describe AUT-68 as a PTS without parameters (call it A68), we first
translate the expressions of AUT-68 to typed A-terms (note that the parameter
mechanism of Definition 8 is replaced by repeated function application in PTSs):

Definition 23 Recall that T and V are the set of terms and variables for PTSs.

We define a mapping [...] from the correct expressions in £ (relative to a book

B and a context I') to T. We assume that CUYV C V.

OEdéfxfor:UEV; .b(El,...,En)dész_l"'E_n; O(Q)Ed:efiﬁ;

—— def e def [ I2:X.Q if [2:3]Q has type type,
® type = * [eX)0= { Az:X.Q  otherwise

With this translation in mind, we want to find a type system A68 that “suits”
AUT-68, i.e. if ¥ is a correct expression of type 2 with respect to a book B
and a context I', then we want B',T' F ¥ : Q to be derivable in A68, and vice
versa. Here, B’ and I are some suitable translations of 8 and I'. The search
for a suitable A68 will focus on three points: II-formation and parameter types;
constants and variables; and definitions.

3.1 The choice of the correct formation (II) rules and the
parameter types Yz:A.B

As type = *, Definition 15 clarifies which II-rules are implied by the abstraction
mechanism of AUT-68, the rule on the left translates into the rule on the right
which is II-rule (%, %, *) (B and T are suitable translations of % and I'):

B; T F Xi:type B0, 2:3 F Qq:type BTHFI:x BT, o3 FQpx

B; T F [2:21] : type BT F (I2:X,.Qy) : *

It is, however, not immediately clear which II-rules are induced by the
parameter mechanism of AuT-68. Let ¥ = b(Xy,...,%,) be a correct ex-
pression of type 0 with respect to a book 8 and a context I'. By Defini-
tion 14 there is a line (x1:q1,...,Tn:qn;b;21;22) in B such that each X; is
a correct expression with respect to 8 and I', and has a type that is defi-
nitionally equal to a;[z1,...,zi—1:=X1,...,%;_1]. We also know that Q =pq
Solr1,. . 20:=%1,...8,]. Now ¥ = b ---3,, and, assuming that we can
derive in A68 that X; has type @g[r1,...,T; 1:=%1,...,%; 1], it is not unrea-

sonable to assign the type Ilz;:aq - -z, @,tob.Z5. We will abbreviate this
last term by []\, #;:@;.E>. Then we can derive (using n times the application
rule that we will introduce for A68) that ¥ has type Q in A\68.

It is important to notice that the type of b, H?:l x;:0G.22, does not neces-
sarily have an equivalent in AUT-68, as in AUT-68 abstractions over type are
not allowed (only abstractions over expressions ¥ that have type as type are
possible — cf. Definition 15). In other words, the type of b, [\, #;:%;.E>, is
not necessarily a first-class citizen of AuT-68 and should therefore have special
treatment in A68. This is the reason to create a special sort A, in which these
types of AUT-68 constants and definitions are stored. This idea originates from
van Benthem Jutting and was firstly presented in [2].
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If we construct z,,:@,.=» from E_g, we must use a rule (s, s2,s3), where
s1, S2, S3 are sorts. Sort s; must be the type of @;,. As a,, = type or a;, has type
type, we must allow the possibilities s; = * and s; = O. Similarly, =5 = type
or =, has type type, so we also allow s2 = x and s» = 0. As we intended to
store the new type in sort A, we take s3 = A.

For similar reasons, we introduce rules (x,A,A) and (0,A,A) to construct
H?:l T;:0G.29 from Iz, :@,.2s for n > 1. Hence, we have the II-rules:
(%, %,%); (%, A); (O, %, A); (%, 0, A); (3,0, A); (%, A, A); (O, A, A).

We do not have rules of the form (A, ss,s3) or (s1,4,s3) with s3 = % or
s3 = O. So types of sort A cannot be used to construct types of other sorts.
In this way, we can keep the types of the A-calculus part of AUT-68 separated
from the types of the parameter mechanism: the last ones are stored in A.

In Example 5.2.4.8 of [2], there is no rule (x,%,A). In principle, this rule is
superfluous, as each application of rule (x,*, A) can be replaced by an applica-
tion of rule (x,*, ). Nevertheless we maintain this rule because:

e The presence of both (x,*,*) and (*,*, A) in the system stresses the fact
that AUT-68 has two type mechanisms: one provided by the parameter
mechanism and one by the A-abstraction mechanism;

e There are technical arguments to make a distinction between types formed
by the abstraction mechanism and types that appear via the parameter
mechanism. In this paper, we denote product types constructed by the
abstraction mechanism in the usual way (so: IIz:A.B), whilst we will use
the notation §z:A.B for a type constructed by the parameter mechanism.
Hence, we have for the constant b above that b : §I | z;:@;.Z2'°. As an
additional advantage, the resulting system will maintain Unicity of Types.
This would have been lost if we use rules (x,x,%) and (x,*, A) without
making this difference, as we can then derive both

a:x oo x sk, v b o and ik oo x sk, v b ok
n
ax F (z:a.q) : * ax F (z:a.q) : A

e There is another reason to make a distinction between types formed by
the abstraction mechanism and types that appear in the translation via
the definition mechanism. So far, we use AUT-68 without II-application.
In AuT-68 with IT-application (call this system AUT-68II for the moment;
see also Section 5) the application rule of Definition 15 (see below on the
left, is replaced by the rule on the right, but the rule describing the type

of b(Xy,...,X,) is the same as the rule in Definition 15 (parameters):
B0 E Sefe]Q B0 FSa: BT F Sy:[e:0]Qy BT F Sy
%,F F <22>21 : QQ[CUZ:EQ] %,F F <Z2>21 : <22>QQ ’

So if we want to make a translation of AuT-681I, the application rule for
[I-terms has to be different from the application rule for §-terms. Without
distinction between II-terms and §-terms, it would be impossible to amend
the system to represent AUT-68II. Distinguishing between II-terms and

Owe use 7, z;:37.E2 as an abbreviation for §z1:@7 - - - (@n0n.E2
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§-terms makes it possible to obtain a translation of AUT-68II from the
translation of AUT-68 in a simple way.

3.2 The different treatment of constants and variables

When we seek to translate the AuT-68 judgement 95; " F X : Q2 in A\68, we must
pay attention to the translation of B, as there is no equivalent of books in PTSs.
Our solution is to store the information on identifiers of %8 in a PTS-context.
Therefore, contexts of A68 will have the form A;I'. The left part A contains
type information on primitive notions and definitions, and can be seen as the
translation of the information on primitive notions and definitions in 8. The
right part [' has the usual type information on variables.

The idea to store the constant information of B in the left part of the
context arises naturally. Let 9 be a correct AUT-68 book, to which we add a
line (T';b; PN; Z3). Then I' = z1:ay, ..., T, is a correct context with respect
to B, and B; ' - Ez:type or Z5 = type. In A68 we can work as follows. Assume
the information on constants in 8 has been translated into the left part A of
a A68 context. We have (assuming that A68 is a type system that behaves like
AUT-68, and writing T for the translation x,:ag,...,z,:a@, of I'): A;T F Zy:s
(s = % if B;T F Es:type; s = O if E5 = type). Applying the §-formation
rule n times, we obtain A; @ - qT.E; : A (if T is the empty context, then
T.Z; = =, and Z, has type * or O instead of A. We write T for 7, z;:@).
As qT.Z, is exactly the type that we want to give to b (see the discussion in
Section 3.1), we use this statement as premise for the start rule that introduces
b. As the right part T of the original context has disappeared when we applied
the §-formation rules, b: § .=, is automatically placed at the righthand end of
A: The conclusion of the start rule is A, b: qT.Z; F b: T.5,.

Adding b:qT.E; at the end of A can be compared with adding the line
(T; b; PN; Z3) at the end of 9. This process can be captured by the rule below
where s; € {*,0} (compare: Z:type or Z» = type) and sy € {*,0, A} (usually,
s9 = A\; the cases sy = *,0 only occur if T' is empty):

AT FEss; A;-qT =8

Ab:qT .2 b:qT .5, ’

3.3 The definition system and the translation using §

A line (z1:a1,...,Tn:an;b;Z1;29), in which b is a constant and Z; € &, rep-
resents the definition: “for all expressions 4, ..., ), (obeying some type con-
ditions), b(Q,...,Qy,) abbreviates Zj[zy,...,2p:=01,...,Q,], and has type
Bz, .oy =01, ..., 2,].” So in A68, the context should also mention that
bX; - X, “isequal to” Zq[zy,...,z,:=X1,...,X,], for all terms Xy,...,X,.
This can be done by writing b:= (/\?:1 a:za_zE_l) : (1{?:1 a:za_zE_z) in the con-
text instead of only b: ', T;:0;.22, and adding a d-reduction rule that unfolds
the definition of b: if b:= (/\?:1 a:za_zE_l) : (1]?:1 xza_lE_z) € A then A F b —5
Al z;:0;.2,. Unfolding the definition of b in a term bX; ---X,, and applying
B-reduction n times gives Z;[x1:=%1] - - - [T,:=X,]. This procedure corresponds
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exactly to the d-reduction A F b(Xy,...,%,) =5 Z1[z1,. .., Tn:=%1,...,5,] in
AUT-68'1. This method, however, has disadvantages:

e Inthe AuT-68line (z1:q1, ..., Thian; b;21;22), b(X1, .. ., X;,) has for equiv-

alent in \68, bX; ---%,. If n > 0, this A68-term has B = bX; - - X, as

a subterm for any m < n. But B has no equivalent in AuT-68: only af-

ter B is applied to suitable terms ¥,,11,..., %, the result BY,, ;- %,

has b(X;,...,%,) as its equivalent in AuT-68. Hence B is not directly

translatable into AUTOMATH, but only an intermediate result necessary

to construct the equivalent of b(Xq,...,%,). B is recognisable as an in-

termediate result via its type §;_,,,, #;:0G.E2, of sort A (not x or O).

The method above allows to unfold the definition of b already in B, because
bX, ---%,, can reduce to ()\?:1 xza_lE_l) ¥, - -ﬂ, and we can (-reduce
this term m times to (AL, ©i:@;.21) [z;:=X%;]7,. It is more in line
with AUT-68 to make such unfolding not possible before all n arguments

Y1,..., %, have been applied to b, so only when the construction of the
equivalent of b(Xq,...,%,) has been completed;

e Moreover, A\, z;:@;.Z; does not necessarily have an equivalent in AuT-
68. Take for example the constant b in line (a:type;b;[x:a]z; [z:a]a).
Then A, 2;0.21 = Ak r:a.z. Its equivalent in AUT-68 would be
[a:type][z:a]z, but an abstraction [a:type] cannot be made in AUT-68.12
This explains why we do not incorporate A, z;:@;.=Z; as a citizen of \68.

Therefore we choose a different translation. The line (z;:aq, ..., Z,:aq,;b; Z1; Z2),
where Z; € &, will be translated using b:= (82, ;:05.51) : iz, ¢::05.52) in-
stead of b:= ()\?:1 xza_lE_l) : (1]?:1 xza_lE_z) in the left part of the translated
context A. A reduction rule bX; -+ X, —5 Z1[m1,. .., 70:=X1, ..., X,] is added
for all terms X;,...,X,. The symbol § is used instead of A. This emphasises
that, though both §x:A and Az:A are abstractions, they are not the same kind

of abstraction.

4 )68

Here, we give A68, show that it has the desirable properties of PTSs and that
it is the PTS version of AUT-68.

Definition 24 (\68)
1. Let S is the set of sorts {*,0, A}. Terms of A68 are given by 7 =V |
C|S|TT | AV:T.T|8V:T.T | IV:T.T | §V:T.T. Free variables rv(T')

and “free” constants FC(T') of term T are defined as usual;

11'We can assume that the x; do not occur in the ¥;, so the simultaneous substitution
Ei[z1, ..y ni=X1,...,8,] is equal to Eq[z1:=21] - - - [Zn:=2n].

12Thig situation compares to that of Section 3.1, where we found that the type of b is not
necessarily a first-class citizen of AUT-68. There, we could not avoid that the type of b became
a citizen of A68 (though we made it a second-class citizen by storing it in the sort A).
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2. We define the notion of context inductively:

e J; @ is a context; DOM (&; &) = &;

e If A;T" is a context, z € V, z does not occur in A;I’ and A €
T, then A;T,x:A is a context (z is a newly introduced variable);
DOM (A;T) = poM (A;T) U {z};

o If A;T is a context, b € C, b does not occur in A;T and A € T
then A b:A;T is a context (in this case b is a primitive constant;
DOM (A, b:A;T) = DoM (A;T') U {b};

e If A;T is a context, b € C, b does not occur in A;T', A € T, and
T € T, then A b:=T:A;T is a context (in this case b is a defined
constant; DOM (A, b:=T:A4;T) = boM (A;T') U {b}.

Note that a semicolon is used as the separation mark between the two
parts of the context. A comma separates expressions within each part.

We define PRIMCONS (A;T') = {b € boMm (A;T) | b is a primitive constant};
DEFCONS (A;T) = {b € DoM(A;I) | bis a defined constant}; and
FV(A;T) =pom(;T).

3. We define §-reduction on terms. Let A be the left part of a context.
If (b= (8, ©i:A4:.T): (Yo 2::A;.B)) € A and B is not §y:B;.Bs,, then
Ak bX4 e Xy s T[.’I,'l,...,;L'nCZXl,...,Xn] for all Xl,...Xn eT.

We also have the usual compatibility rules on §-reduction. We use nota-
tions like —»g,—»?, =s as usual. If no confusion about which A occurs,
we simply write bX; -+ Xy, =5 T[z1, ..., 2n:=X1, ..., Xy)];

4. We use the usual notion of S-reduction;

5. Judgements in A68 have the form A;T F A : B, where A;T is a context
and A and B are terms. In the case that a judgement A;I' - A : B is
derivable according to the rules below, A;T' is a legal context and A and
B are legal terms. We write A;T' - A : B : C if both A;TF A: B and
A;T'F B : C are derivable in A68. The rules for A68 are given in Figure 5
(v, pc, and dc are shorthand for variable, primitive constant, and defined
constant, respectively). The newly introduced variables in the Start-rules
and Weakening-rules are assumed to be fresh. Moreover, when introducing
a variable x with a “pc”-rule or a “dc”-rule, we assume = € C, and when
introducing z via a “v”-rule, we assume z € V. We write A;' Fygs A: B
instead of A;T F A : B if the latter gives rise to confusion.

Note that there is no rule (§). This is because we do not want terms like § z:A.B
to be first-class citizens of A68: they do not have an equivalent in AUTOMATH.

Definition 25 We define: Ay;I'; F Ay; s if and only if

o If b:A € Ay; Ty then Ay; 'y F b:A; o If b:=T:A € Ay then Ay;'y F b:A;
o If b:=(§;_; w; : A;.U):B € Ay and U # §y:B.A’ then Ay F bzy -~z =35 U.
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(Axiom)

(Start : v)

(Start : pc)
(Start : dc)
(Weak : v)
(Weak : pc)
(Weak : dc)
(I — form)
(9 — form)
(A

(App,)
(App,)

(Conv)

sEx O

A;THA:s
AT x:AbFx: A
A;TFB: s A;-qI.B : 59
Ab:qT.B;+b: §I.B
A;TFT:B:sy A;FqQL.B : sy
A b:=(§T.T):(IT.B);-b: qTI'.B
A;THEM:N ATHA:s
AT,z AEM N
A;FM:N A;TEB:s; A;EQTB : s
Ab:qI.B;-M: N
AFM:N A;TET:B:sy A;FQILLB sy
A b:=E8T.T):(JT.B);F M : N
A;THA:x AT x:AF B %
A;T F (Iz:A.B) :
ATHA: 5 A;D,z:AF B : sy
AT (fz:AB) : A
AT FTe:AB % AT x:AFF: B
A;T F (Az:AF) : (IIz:A.B)

AT M :x:A.B ATEN:GA
A;TF MN : Blz:=N]
A;TFM:qz:AB A;TENCA
A;THMN : Blz:=N]
ATEM:A A;T'FB:s AFA=3; B

A;THM:B

Figure 4: Rules of A68
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Many properties for PTSs hold for A68 and can be proved by the same
methods as for PTSs. Due to the split of contexts and the different treatment
of constants and variables, these properties are on some points differently for-
mulated than usual. The proofs of Lemmas 26, 27, 30, 31, 32 follow [2].

Lemma 26 (Free Variable Lemma) Let A = b1:By,...,by,: By, (in A, also
expressions bi:=T;:B; may occur, but for uniformity of notation we leave out the
:=T;-part); let T = x1:A1, ..., xn: A, and A;TF M : N. Then:

e Theby,...,bp, €C and x1,...,x, €V are all distinct;
e FC(M),FC(N) C {b1,...,bm}; FV(M),FV(N) C{z1,...,2n};
o bliBl, Sy bi—l:Bi—l; + B,‘CSi fOT’ Si € {*, D, A},
and A, iL'liAl, . ,:Ej_liAj_l F Aj:tj fOT’ tj € {*, D}.
Lemma 27 e (Start) Let A;T be a legal context. Then
A;TEx:0, and if b:A € AT, or e:=T:A € A, then A;T Fe: A.

e (Definition) Assume Ay, b= (87—, x;:A;.T) : (i z;::A;.B) and
Ag;T'F M : N, where B is not of the form §y:By.Bs. Then
Ay;z1:A4y, . 2 A BT 2 B s for an s € {x,0}.

The Transitivity Lemma must be formulated differently than usual (cf. 30)
because contexts may contain definitions. To the usual formulation

“Let Ay; "1 and As; Ty be contexts, of which Aq; Ty is legal. Assume
that for all b:A € Ao; s and for all b:=T:A € As; s, Ay; T F b:A.
Then AQ;FQ FB:C= Al;Fl FB:C.”

we must add a clause that b is defined in A1;I'; in a similar way as it has been
defined in Ao;I'>. The next example shows that things go wrong otherwise:

Example 28 Let Ay = by:x,by:x,bz:=by:x and Ay = by:x,byi*, by:=bg:x. Let
I'y =T's = x3:b3. Note that all the assumptions of the traditional formulation of
the Transitivity Lemma (see above) hold for Ay; 'y and As; 2. Nevertheless,
we can derive Ay;Ts F x5 : by (because Ag; 'y F x:by and according to As,
bs =g4 b2, so we can use the conversion rule). But we cannot derive Ay;Ty F
X3 : by (because bz and by are not definitionally equal according to Ay).

The following formulation of the Transitivity Lemma is correct:
Definition 29 We define: Ay;I'; F Ay; 'y if and only if

o If b:A € Ay; Ty then Ay; T F b:A;

o If b:=T:A € Ay then Ay;T'; Fb:4;

o If b:=(8, z;: A;.U):B € Ay and U # §y:B.A’ then
Al l—bxl---xn =pé U.
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Lemma 30 e (Transitivity) Assume A1;Ty F Ay;T's and Ay; T - B : C.
Then Al;Fl FB:C.

e (Substitution) If A;Ty,2:A,Ts - B : C and A;Ty & D : A then
A;Ty,Ty[x:=D] + Blx:=D] : Clz:=D)].

e (Thinning) Let A1;T'y be a legal context, and let Ao; Ty be a legal context
such that Al g Az and Fl g Fz. Then Al;Fl FA:B= AQ;FZ FA:B.

Lemma 31 (Generation Lemma)
e Ifx € V and A;T F x:C then s € {*,0} and B =5 C such that
A;T'FB:sand x:BeT;

o IfbeC and A;T F b:C then ds € S and B =5 C such that A;TF B : s,
and either b:B € A or 3T such that b:=T:B € A;

o Ifs€ S and A;T'F 5:C then s = x and C =5 O;

o If AsT H MN : C then 3A, B such that A;T F M : (Ila:A.B) or A;T +
M : (§2:A.B), and A;T + N:A and C =5 Blz:=N];

o If A;TF (Az:Ab) : C then 3B such that A;T F (Ilz:A.B) %, A; T, x: A+
b:B and C =5 llo:A.B;

o Assume A;T F (Hx:A.B) : C. Then C =p5 *, A;T' F A and A; T, a:A -
B:x;
o If ;T F (2:A.B) : C then C =5 A, A;T F Aisy for sy € {x,0}, and
AT, x:AF Bisy for so € {x,0,A}.
Lemma 32 ¢ (Unicity of Types) If A;T F A: By and A;T A By
then B1 =pé BQ.

e (Correctness of Types) If A;T' = A : B then there is s € S such that
B=sorA;THB:s.

o If \;T+ A: (Iz:By.By) then A;T'F By« %; and A;T,x:By F By : .

o If \;THA: (Jx:By.Bs) then
AT F By :sy for s1 € {x,0}; and A;T,2:By F Ba:sa for some sa.

In order to show some properties of the reduction relations =g, =5 and —gs
and as d-reduction also depends on books, we first have to give a translation of
AUT-68 books and AUT-contexts to A68-contexts:

Definition 33 e Let I' be a AuT-68-context x1:1, ..., %Tn:ay. Then

= def j— —_—
' =zi00,..., 2000,

e Let B be a book. We define the left part B of a context in A68 as:
Y ; e B, (T';b;PN; Q) def B, b:T.Q;

o B, (0, Q) & B, o B, (I;0;%; Q) ¥ p=§T.5:.qT.0.
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prop : *

and : §x:prop.§y:prop.prop,
proof : Y x:prop.*,
and-I : §x:prop.{y:prop.{px:(proof)x.qpy:(proof)y.(proof)((and)xy),
and-01 : §x:prop.§y:prop.pxy:(proof)((and)xy).(proof)x,
and-02 : §x:prop.§y:prop.{pxy:(proof)((and)xy).(proof)y,
and-R  := §x:prop.§prx : (proof)x.(and-I)xx(prx)(prx)

§x:prop.§prx : (proof)x.(proof)((and)xx),

and-S := §x:prop.§y:prop.§pxy:(proof)((and)xy).
(and-T)yx((and-02)xy (pxy))((and-01)xy (pxy))
§x:prop.{y:prop.fpxy:(proof)((and)xy).(proof)((and)yx)

Figure 5: Translation of Example 13

Example 34 The translation of the AUTOMATH book of Example 13 into \68 is
given in Figure 5. (Because of the habit in computer science to use more than one
digit for a variable, we have to write some additional brackets around subterms
like proof to preserve unambiguity). Note that all variable declarations of the
original book have disappeared in the translation. In the original book, they
do not add any new knowledge but are only used to construct contexts. In our
translation, this happens in the right (instead of the left) part of the context.

Lemma 35 Assume, ¥ is a_correct expression with respect to a book B.
o 1. X =g Y ifand only if ¥ —p X'y B o
e 2. B auT_ss X —s X if and only if B ez X —s L.

PROOF: An easy induction on the structure of X. X

The Church-Rosser property of —3; (Theorem 44) will be proved by Parallel
Reduction =4, & la Martin-Lof and Tait (see Section 3.2 of [1]). The next
three pages are devoted to this proof. We use IH for Induction Hypothesis.

Definition 36 Let A be the left part of a context. We define a “parallel re-
duction” relation =35 on 7T: eforz eV, Atz =p35x;
ekorbeC,AFb=psb; elorse S, Al s=p;5s;
e If AF P =35 P and AF Q =35 Q', then

o A+ Az:P.Q =35 A\v:P'.Q)'; o A FIIz:P.Q =ps lIz:P'.Q';

o AF z:P.Q) =5 Jz:P'.Q"; o Ak PQ =35 P'Q;
e If AFQ =55 Q and AF R =45 R, then A - (A\z:P.Q)R =35 Q'[x:=R'];
o If b:=(87— ) x;:A;.T):(N1=y z:A;.U) € A, the term T is not of the form §y:T3 .75,
AI—T:>55 T" and A F M; =34 le fori=1,...,n, then A +bM;---M, =35
T'x1,...,xn:=M{,...,M].

Some elementary properties of =5 are:

Lemma 37 (Properties of =>3;5) Let A be the left part of a context. Then:
1.A|‘M2>55M; Q.IfAl‘M—)B(;MI thenA'-M:>55M';
3 IfAFM =g;s M' then A+ M —»B6 M'.

PRrROOF: All proofs can be given by induction on the structure of M. X
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By Lemma 37, —#gs (the reflexive and transitive closure of —gs) in A is the
same relation as the reflexive and transitive closure of =>g5 in A. Therefore, if
we want to prove Church-Rosser —# 35, it suffices to prove the Diamond Property
for =35. We first make some preliminary definitions and remarks:

Lemma 38 If A+ M =g; M' and A+ N =35 N' then
A+ M[y:=N] =35 M'[y:=N"].

ProOF: Induction on the structure of M.
c

Lemma 39 Assume, A and A, A" are left parts of legal contexts, and FC(M)
DOM (A). Then A+ M =5 N if and only if A, A"+ M =55 N.

ProOF: By induction on the length of A and by induction on the definition
of A - M =35 N. All cases in the definition of A - M =35 N follow
directly from IH for A - M =35 N, except for the case bMy--- M, =35
T'x1,...,xn:=M]{,...,M!]. As F¢(M) C DOM (A), we have b € DOM (A).

Write A = Al,btz@?:l :UZAzT)(ﬁUL:l iL“zAlU), AQ.

e Notice that T is typable in Ay;x1:A1,...,2,:A, (Definition Lemma). By
the Free Variable Lemma: Fc(T) C DOM(A;). By IH on the length of
A we have A H T =36 T ifAFT =36 T’, and A F T =36 T iff
A,A' T =36 T';

e We conclude: AT =35 T' iff A)A'FT =55 T

e By IH on the definition of A - M =35 N, we have A F M; =35 M; iff
A,A' [ M,' =>35 Mil;

e Note that b:=(8§7; z;:4;.T):(fi=; z;:4;.U) is an element of both A, A" and
A. Moreover, b ¢ boM (A’) (as A, A’ is the left part of a legal context).
Hence A - bM, -+ M, =55 N iff A, A"+ bM, -+ My, =45 N. <

For left parts A of contexts and for M € T with rFc(M) C poM (A), we define
aterm M2, In M2, all B-redexes that exist in M are contracted simultaneously
(this is a usual step in a proof of Church-Rosser by Parallel Reduction), but also
all 5-redexes are contracted. We will show that A = N =55 M* for any N with
A+ M =45 N;so M* helps us to show the Diamond Property for = 3;.

Definition 40 We define M2 for any left part A of a context and any M € T
such that Fc(M) C pom(A). The definition of M is by induction on the
length of A. So assume M2 has been defined for contexts A’ shorter than A.
We use induction on the structure of M:

def def
e 2= g forany z € V; sA = s for any s € S;

e M =b. Distinguish:
— b ¥ for any b € PRIMCONS (A;);

— A L for any b € DEFCONS (A;) that is not a d-redex;
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— If b € DEFCONS (4;) is a d-redex, then A = Ay, b:=T:U, A,, where
T # §y:T1.T>. By the Definition Lemma, A;F T : U, so we can

assume that 721 has already been defined. Then »* def T4,
e \z:P.Q)~ def \z: P2 Q2 (Iz:P.Q)~ def Mz:P2.Q%;
(J2:P.Q)> € qa:P2.Q%,;
e M is an application term. We distinguish three possibilities:

— M = PQ is not a (é-redex. Then we define M* def PAQA,

— M is a B-redex (Az:P.Q)R. We define M* def QA[z:=RA];

— M is a d-redex bMj - - - M, and for T is not of the form §y:77.T5, A is
Ay b= (87 @A T) (e 20 A;.U) , Ao So Ay xp:Ay, .o xntAp F
T : U (by the Definition Lemma) and we can assume that 72! has
already been defined. Then M2 % T21[zy, . zp:=MA, ... M2

Lemma 41 Let A be the left part of a legal context. Then A+ M =35 MA
for all M with ¥c(M) C pDOM (A).

PRrROOF: By induction on the definition of M“. We only treat the case A -
bMy -+ M, =p5 (bMy---M,)> where bM; --- M, is a d-redex. Write A =
Ay, b= (87 A T) : (T, 2::4;.U) , Ay, as in the definition of (bMj - - - M,;)?
By induction, we may assume that Ay - T =35 T2 and A + M; =35 MiA.
By the Definition Lemma, T is typable in Ay;x1:A1,...,Z,: Ay, so by the Free
Variable Lemma, rc¢(T) C poM (A;). By Lemma 39, A + T =35 T?1. So
AF DMy My =g5 T2 21, .., mpi=ME, ..., M2]. X

Theorem 42 Let A be the left part of a legal context. Assume rc(M) C
poM (A). If A+ M =35 N then AF N =35 MA.

Proor: Induction on the the definition of M2.

e M =x. Then N =z and M2 = z;
e M =b. Distinguish:
— b € PRIMCONS (A;). Then N = b and M* = b;
— b € DEFCONS (A;), but b is not a é-redex. Then N = b and M*> = b;
— b € DEFCONS (A;), and A = Ay, b:=T:U, Ay, and T # §y:T1.T>. Then
either N =bor N =T where T =35 T'. If N =b then M = N and
we can use Lemma 41. If N =T then observe that by IH, A; T =35
T41, that by Lemma 39 A+ T =45 T1, and that M2 = T41;
e M =s. Then N =s and M2 = s;
M = Az:P.Q. Then N = A\z:P'.QQ' for some P',Q" with A - P =35 P’
and A F Q =55 Q'. By IH on P and @ we find A F P' =55 P2 and
AF Q" =55 Q2. Therefore A - \z:P'.Q" =55 A\z:P>.Q4.
The cases M = [lx:P.Q, M = Yz:P.QQ, and M = P(Q where PQ is not a
Bd-redex, are proved similarly;
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e M is an application term (and is either a 5 or a d-redex). Distinguish:
— M is a B-redex, M = (Az:P.Q)R. Distinguish:

* N = (Av:P'.Q")R for P',Q",R' with A+ P =p3; P, AFQ =3;
Q" and A F R =4; R'. By induction, A F Q' =35 Q and
A b R =35 RA. Therefore A F N =35 Q%[z:=R%];

* N =Q'[v:=R']for Q',R' with AF Q =35 Q" and A+ R =35 R'.
By induction, A F Q' =35 Q® and A  R' =3; R®. By Lemma
38, A+ Q'[x:=R'] =35 Q*[z:=R"];

— M is a d-redex, M = bM,---M,, and for T # §y:T1.T5, we have
A= Al, b= (§?:1 iL“zAlT) : (ﬂ?:l iL“zAzU) ,Az.

* N = bM{---M], for M] with A - M; =35 M!. By induction,
we have A + M/ =55 M?. By the Definition Lemma, T is
typable in a context Aj;xqi:Aj,..., T, A,, so by the Free Vari-
able Lemma, FC(T) C DOM(A1). By Lemma 41, Ay F T =34
TA1. By Lemma 39, A - T =55 T?1. Hence A F N =g3;
TAvzy,. . o= MP, ..., M2

x* N=T'zy,...,xn=M{,...,M]] for a T' with A - T =35 T" and
for M! with A = M; =35 M!. By the Definition Lemma, T is
typable in Ay;z1:Ay,...,2,:4,, so by the Free Variable Lemma,
FC(T) C DOM (A;). By Lemma 39, A; T =3; T'. By IH on T,
Ay F T =p5 TR As Ay B T =55 T', v¢(T") € DOM (A1), s0
by Lemma 39, A + T'" =55 T?1. By IH, also A - M} =55 MA.
Repeatedly applying Lemma 38, we find!3
Ak T’[:L“l, ce ,:L“n::M{, ce MTIL] =36

T2z, .. xp=MP,... M2, K

Corollary 43 (Diamond Property for =p3;) Let A be the left part of a
context in which M is typable. Assume A+ M =35 N1 and A = M =35 N».
Then there is P such that A+ Ny =gs P and A+ Ny =35 P.

PRroOF: Immediately from the theorem above: Take P = M2, X

Theorem 44 (Church-Rosser for —35) Let A be the left part of a context
in which M is typable. If A+ M —g5 N1 and A+ M —»gs5 Ny then there is P
such that AF Ny =35 P and A+ Ny =55 P.

PRrROOF: Directly from Lemma 37.2, Lemma 37.3 and Corollary 43. X
Lemma 45 (Subject Reduction) Let A;T'F A : B.

1.IfA—g A then A;THA B, 2. A—45 A then A;,T A" : B.
3. If A —»ps A’ then A;T'+ A" : B.

13We must remark that T'[z1,...,zn:=M],...,M}] = T'[z1:=M]]--[zn:=M]}] and
TAYzy,. .., ¢n=MP, ..., M5 = TP [z1:=M{] - [zn:=M2]. This is correct as we can
assume that the x; do not occur in the M]’ and Mj .
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ProoOF: The prooffor 1.is as in [2]. The proof for 3. is by induction on the length
of reduction using 1. and 2. As for 2. we define A;T" —5 A; T if ' =14, 2:4, T,
and IV = I'y,x:A", 5, and A F A —5 A’. We define A;T" —5 A';T similarly.
By induction on the derivation of A;T' F A:B we prove simultaneously:

A;THABand AFA—; A = A THA:B
A;TFA:Band A;T =5 AT = A THAB
A;TFA:B and AT —5 ATV = ATV AB,

We only treat the case where the last applied rule is the 2nd application rule,
and only prove the first of the three statements. Assume:

A=A b= ( § xi:Ai.T> : < q xi:Ai.B> Ay (1)
i=1 i=1
with B # §y:B;.B>, and that the conclusion of the 2nd application rule is
AT EOMy - My, K, (2)

for some K, and therefore A & oM --- My, —4 T[x;:=M;]? ;. We must prove:
AT F Tlzy:=M;), : K,,. We do this in two steps.
1. We analyse the structure of K,, and derive that A - K, =g5 Blz;:=M;]| ;
2. We show that A;T'F T'x;: =M, : Blzg=M;],.

Ad 1. We repeatedly apply the Generation Lemma, starting with (2), thus
obtaining K, Ky—1,..., K1, K|,, K/ _1,...,K{, Lpn,Ly_1,..., Ly such that

AT b bM, - My : (fas:Li. KY); (3)
AT+ M; : Li; )
A* K; =ps K}[z;:=M;]; (5)
A b Kooy =35 To:Li K} (6)

We end with A;T' F b : (z1:L1.K7). By (1) and Generation: A + §z1:L,. K| =35
1{?:1 zj:A;.B. By Church-Rosser we have L; =gs A; and

n
Ak K{ =35 11 ;Ej:Aj.B. (7)
j=2
) 1 (6) B.7) qn . — —
Hence A - 1I$2.L2.K2 =pé Kl =Bé (ﬂj=2 ;L'j.Aj.B) [:El.—Ml] =
", z;:A;[x1:=M].Blz1:=M,], so by the Church-Rosser Theorem we have
Ly =g As[r1:=M;]. Proceeding in this way, we obtain for i =1,...,n:
A |‘ Li :g(; A,'[:Ej::Mj];";ll; (8)

A K; =86 ' :IZjZAj[QZkZ:Mk]Z;ll.B[QZkZ:Mk]i;ll;

J

=1
A |‘ Ki =35 ﬂ 1:Ej:Aj[:Ek::Mk]izl.B[mk::Mk];;:l.
Jj=i+
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In particular,
A& K, =g5 Blz;:=M;]i—;. 9)
Ad 2. We calculate the type of T'[z;:=M;]? ;. By Definition Lemma on (1):
Ay x:Ay, . e A ET 2 B, (10)
By Start Lemma: Aq;xq:A4q,...,2;-1:4;1 F A;:s; for sorts s; € S. Hence:

A;THA s

A; T xq:A; is legal
A;D,x: AL F As s

AT @Ay, 0 As is legal

Thinning Lemma);
Start Rule);
Thinning Lemma);
Start Rule);

~ o~

AT, z1:A1, ..., op: Ay is legal. (Start Rule).

By Thinning Lemma to (10), A; T, z1: Ay, ...,z Ay T : B.As AT My 2 Ly
(4) and A;T F Ay : s1, we have A;T F M; : A; by the Conversion rule
and (8). By Substitution Lemma: A;T, xo:Az[z1:=M1], ..., &n:Apfx1:=M;] F
T[x1:=M1] : Blz1:=M;]; and A; T F Az[zr:=Mi] : so.

As A;T F My : Ly (4) and A F Ay[z1:=M;] =5 L2 (8) we have by conversion
A;T F My : As[zy:=DM;], and again by the Substitution Lemma:

A;T, :1:3:A3[3:,-::Mi]%:1, ... ,xn:An[xi::M,-]f:1 - T[xi::Mi]%zl : B[wi::M,-]f:1
AT F Azl :=M][x2:=Ms] : s3.

Proceeding in this way we eventually find

AT F Tlwy:=M;)2, : Blxg:=M;]%,. (11)

Applying Lemma 32 to (9) we have A;T F K, : s. Now use the Conversion
Rule, (11), and the fact that A - K,, =g5 Blz;:=M;],. X

Lemma 46 Assume s € S and M legal. If AF M =g5 s then M = s.

Proor: First assume s € {O0,A}. If A;T'+ M : N for some I' and N, and
A+ M =gs s then by Church-Rosser A F M —»35 s, so by Subject Reduction
A;T F s : N, contradicting the Generation Lemma. If A;T" v N : M and
AF M =gs s and M # s then we have by Lemma 32 that A;I' - M : P for
some P, so again A;T'F s: P, in contradiction with the Generation Lemma.

Now assume s = %, A;I' - M : N, and A F M =5 s. By Church-Rosser,
AFM —»Bs *, say A+ M —B5 --- 836 M’ —Bs *. By Subject Reduction,
A;TFM' N and A;T F =+ : N. By Generation A F N =g; O, s0 N = 0.
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e M' = (Ar:A.B)C and * = B[z:=C]. By Generation 3B’ where A
B'[z:=C] =35 O (so B'[z:=C] = 0), A;T + (Ax:A.B) : (Ilz:A.B") and
A;THC: A C =0 contradicts A;T' - C : A, so B’ = 0. By Lemma 32,
A;T F (ITz:A.0) : %, so by Generation A; ', x:A - O : %, contradiction;

e M'=0bM,---M, and A F bM; --- M, —5 T[z;:=M;]?_, = * as above.

If s=+ A;T'FN: M, and AF M =g5 s then by Lemma 32 M = s (and we
are done) or A;T'F M : s’ (which implies M = s by the above argument). X

We prove Strong Normalisation for fdé-reduction in A68 by mapping a typable
term M (in a context A;I') of A68 to a term |M|a that is typable in a strongly
normalising PTS. The mapping is constructed in such a way that if M —3 IV,
|M|a =7 |N|a, and that if AF M =5 N, [M|a =3 |N|a.

Definition 47 Let A be the left part of a legal context and let M € 7. We
define |M|, by induction on the length of A and the structure of M.

o|x|Ad§fa:f0ra:€V; 0|S|Ad§fsf0rs€S o|PQ|Ad§f|P|A|Q|A
def def
o \T:P.Q|y T Az |P|5 - |Qly o |Hz:P.Q|\ = Tz:|P| QA
o [92:P.Q|y i |P|y . |Q|y  ® bl % bforall b e C\ DEFCONS (A;)
def \p

o bl = Moy mit|Aila, T s, if A=A bi=(81 ) 204 1)1y 204:.U), Ay
The following lemma is useful:
Lemma 48 Let A, Ay, Ay be left parts of legal contexts and M, N € T.
1. FV(|M|,\) =FV(M).
2. If Ay = Ay, A" and vc(M) C DOM (A1) then [M|,, = [M],, -
9. [Mle=N1ly = [M]y [a:= V] ).

Proor: 1. is by induction on the definition of |M|,. We show the non trivial
case where M = b and A = A, b:=§T.T):(JT.U), Ay (T # §y:T1.T2). By
the Definition Lemma, T is typable in A;;T'; therefore Fv(T') C pDoM (T') (Free
Variable Lemma). By IH, Fv(|T|,,) € poM (T') and therefore FV([b|,) = @.

2. is by an easy induction on the definition of [M], .

3. is by induction on the definition of |M|,. In the case M = b and b:=T:U €
A, use the fact that Fv(|M|,) = FV(M) = @& (Lemma48.1) and therefore
|M |y [w:=|N|s] = [M]5 = |M[z:=N]|5. X

The purpose of the definition of |M], is explained in the following lemma:
Lemma 49 1. If M =g N then | M|, —»; [N|A-
2. If AF M —5 N, then |M|, —3 |N|-
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ProOF: 1. is by induction on the structure of M. We only treat the case
M = (Az:P.Q)R and N = Q[z:=R]. Then

|M|y = (Az:[Plp - [Qa) [R[a =5 Q] A [m:=|R|A] ! |Q[z:=R]|4 -

2. is by induction on the structure of M. We only treat the case in which

M = bMy---My; A = Abi=81 2:A.T) (T, 22 4;.U),Ag; and N =
Tlz1,...,xn:=Mi,...,M,]. Note that

|M |y = (Mg i |Ai] A, - |T|A1) |Mi|p - [Mn|y =25 [T]a, [mi= M| o]0

48.2 48.3
= |T|p[ze=|Mi|Aljer = |Txe=Mioi|a = 1T 21,y 2ni=M,..., My]|A-

At the last equivalence, we must make a remark similar to footnote 13. X

8.3

Let ASN be the PTS over A-terms with variables from VUC and sorts from .S, and
therules:™ (%, %, %); (%, %, A); (O, %, A); (+,8,4); (3,8, 4); (x, A, A); (B, A, A).
This is in fact the pure type system that is based on the II-formation rules of
Section 3.1. ASN is contained in ECC [2]. As ECC is f-strongly normalising,
also ASN is #-strongly normalising.
We present a translation of A68-contexts to ASN-contexts:

Definition 50 Let A;T" be a legal A68-context.

e We define |A| by induction on the length of A:
o lo| o e A LUI AL bUL; e A b=TU] A,

lef
o f T =a2y:4;,...,7,: A, then |A;T| = A, 21 [Ar|a .- Tt [ Ao

We see that definitions b:=T:U in A are not translated into |A|. This cor-

responds to the fact that all these definitions are unfolded (replaced by their

definiendum) in |b| ,. Now we prove a very important lemma:

Lemma 51 If A;T' Fygg M : N then |A;T| Fygn [M|5 | N|a-

PRrROOF: By induction on the derivation of A;I'+ M : N. We treat the cases:

A;T Faes B :s1 AjF ['B:s:

(Start: Primitive Constants) — A?Z?ﬂf.él; |_)\768 ;‘)6? :ITF.B 52 51 = *,0
By IH, |A| Fasn [9T.B|, : 82, so by Start |A],b:|fT.B|, F b:|9C.B|, .
Observe that |A,b: 4T.B| = [A|,b: |T.B|,, that |b] »:qr.p = band that
(by Lemma 48.2) |T.B|, = H“‘—“B|A,b:ﬂF.B;

A,F l_)\eg T:B: S1 A;|—)\68 ﬂFB . S92
Start: Defined Constant =x%,0

(Start: Defined Constants) — o =@ a5y 5. qr.8 L~ ©

By induction |A; | Fygn [JI.B|, @ 82, s0 (write I' = z1:A4, ..., 2,:4,):

n
|A5 | FasN .H1$i¢|Ai|A-|B|A ‘82 (12)
1=

14We choose the name ASN because this system will help us in showing that A68 is SN.
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By induction, we also have |A; | Fygn |T|A ¢ |BlA, sO:
|A| y L1t |A1|A yeeesTnt |An|A FAsN |T|A : |B|A ) (13)

and by repeatedly applying the A-rule on (13) and using the fact that, by
IH, the types H?:l. zj:|Aj| 5 - |B|A are all typable, we find:

|A; ]| FasN <ii\1xi:|Ai|A.|T|A> : (Hlx,-:|A,-|A.|B|A>; (14)

i=

A;T Fres M : (Iz:A.B) AT Fys N: A

A;T ks MN : Blz:=N]
By IH, |A;T| Fysn [M|, 2 (I [A| 5 - |B|A) and [A;T| Fasn [N|s 2 |A]A-
By application |A;T| Fagn M5 |N|a : |B|a [2:=]A|A]. By definition of
|[MN|, and Lemma 48.3, |A;T'| Fygn |[MN|, ¢ |Blz:=A]|5 - X

(Application 1)

Theorem 52 (Strong Normalisation) A68 is $d-strongly normalising.
PROOF: Assume, we have an infinite 3d-reduction path in A68:
M, —Bs M —Bs M; —B5 - (15)

As d-reduction is strongly normalising (Lemmas 20 and 35), there must be
infinitely many S-reductions in this reduction path, so we have a path Ny —3
N{ —»5 Ny =3 Nj —»5 N3 = Ni —»; ... By Lemmas 49.1 and 49.2, this gives
apath [Ny =5 [N{|y =5 [Na|y —f N3 5 [Ns|y =5 [Njlx =5 -
which is an infinite S-reduction path in ASN. By Lemma 51, ||, is legal in
ASN. But as ASN is strongly normalising, this infinite S-reduction path cannot
exist. Hence, the infinite #é-reduction path (15) does not exist, either. X

The next two theorems establish the formal relation between AuUT-68 and \68.

Theorem 53 Let B be an AUT_OI\EATH book and T' an AUTOMATH context.
o If B;I' Fayr—es OK then B is legal;
o If BT Fapr_es X :Q then B;T Fygs X : .

Proor: We prove both statements simultaneously, by induction on the deriva-
tion of B; ' FauT_gs OK and B; [ - X : Q of Definitions 14 and 15. We only
treat one case. Assume, the last step is book extension rule def2:
B; I Faur—es Z2:type B Faur g8 T1:E8) BT Fayr_es T2 =54 T

B, (L5 k;X1;52); @ FauT—6s OK '

By IH, we have
%;f |_>\68E_23 * (16)
and

%,f |_>\68 2_1 : 2_12 (].7)
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By Lemma 35, we have

B Fes 2 =p5 S (18)
Applying the conversion rule of A68 to (16), (17) and (18) yields
%,f |_>\68 2_1 : 2_2 (19)

As ;T is legal, for each z:a € T (say: I = I'1,z:0,T3) we have B, Fa: s
for an s € {*,0}, by the Free Variable Lemma 26. Thus we can repeatedly
apply the §-formation rule (starting with (16)) to obtain:

%; l_)\Gg ﬂfz_z HVAN (20)

(If I' = @ then we apply the §-formation rule zero times, and the type of §T.X5
is * instead of A). Now we can apply the (Start: dc) rule on (19), (16) and (20)
to obtain: B; k:=(§ .21 ):(J.2s);Fres k : .25,

50 B, (T;k;21;50); = B, k:=(§ 1.5, ):(JT.25); is legal. X

Theorem 54 Let A;T Fyggs M : N. There is an AUTOMATH book B and

context T such that B;T" F 4 yr_es OK, and B,T" = A;T. Moreover,
1. If N =0 then M = x;

2. If A;T Fygs N : O then N = x and there is Q € £ such that Q = M and
B;[" Faur_es 2 type;

3. If N = A then there is " = z1:X1, ..., 2,8, and Neéu {type} such
that: e IV T is correct with respect to B; e M = I'"".Q;
e 0 =type or B;I' Fyr_gs : type;

4- If A;T Faes N @ A then there areb € C and Xy, ..., Xy, € € such that M =
b¥y---X,. Moreover, B contains a line (mlz%...,xﬂﬂm;b;El;Ez)

such that: @ N = (ﬂ?;nﬂ :U,':Qi.Eg) [Z1,.. ., 2n:=%1,..., 8], « m > n;
o B[ Fapur_es islifz, .. wim1=20, 0, 80] (1< <n);

5. If N = % then 3Q € £ such that Q = M and B;T" F 4yr—_es 2 : type;

6. If A;T Fags N : % then there are ¥,Q € € such that ¥ = M and Q = N,
and B; T Fapr_es L Q, and B; T F oyr_gs 2 : type.

PROOF: Induction on the derivation of A;I" Fygs M : N. We treat the cases:

Weakening: definitions Assume the last step is
Asjbyxes M: N  A;TkyxsT:B:sy  A;bags (T.B: s
Ab:=80.T):(fT.B);Fxes M : N
or s; = O. Use IH and determine B, IV, ¥, X5, 4, and Q> such that
B=AT =Y =T7,% =B,Q =M and Q; = N. We know by
induction that B;" FayT_gs 2o : type (if s1 = %) or X = x (if s, = 0O).
Also, B; T Faur_es 21 ¢ 2. This makes it possible to extend 9B with a
new line, thus obtaining a legal book B, (I"; b; £1; ¥5). Using Weakening
for AuT-68 (Lemma 22) and IH on A;Fygs M : N, it is not hard to verify
the cases 1-6 for A, b:=(§T".T):(J.B);Fxes M : N;

where s; = *
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A,F |_>\68 M1 . (ﬂxAB) A,F ")\68 M2 : A
A; T |_)\68 M1M2 . B[CU:MQ]
Determine B, I'' such that B = A and I” = I'. By Correctness of Types
32 and Generation Lemma 31, A;T Fygs (J2:A.B) : A, so by IH (case
4), there are b,%;,...,%, such that M; = bX;---%,, and there is a
line (21:Q1,..., % Qm;b;21;E2) in B such that m > n, BT Fayr_es
Ei:Qi[:Uj::Ej];-;ll 1<i<nand §2:A.B = (12,4, 2::Q;.5) [:Uj::E_j]?zl.
Observe: A = m[azjzzz_j]?zl. As BTV Faur_es Qnt1 : type or

Application 2 The last step is

Qni1 = type, we have A; T Fygg Q0,11 @ s for an s € {x, 0}, and by Substi-
tution and Transitivity Lemmas we have A;T' Fygs Qn+1[wj:22j];'l:l :
s, hence A;T Fygs A : s. With IH we determine ¥ € & such that
B FauT—6s X 0 Qur[w:=%;]7, and My = 3.

We now treat the most important ones of the cases 1-6:

4. The only thing that does not directly follow from the results above

is m > n+ 1. Assume, for the sake of the argument, m = n +
1. Then Blz:=My] = Spfz;:=5;]74. As A;T bags Bla:=My] : A,
ERETE) ?ill is of the form §z:P.(Q), which is impossible;

6. Note: Blz:=M,] = (1{;-”:”+2 :c,Q_,E_g) [z;:=%; ;’ill We have A; ' Fygs
Blz:=M>] : *. So Blz:=M>] # Yy:P.Q, and hence m = n + 1. There-
fore, B; I Faur—gs b(Z1,- .-, Bng1) : Bafze=5]1 X

Remark 55 We explain different cases used in the formulation of Theorem 54.

e The cases N = O and A;T' F N : O imply that there are no other terms
in A68 than * itself at the same level as *. This corresponds to the fact
that type is the only “top-expression” in AUT-68;

e The cases N = x and A;I' - N : % give a precise correspondence between
expressions of AuT-68 and terms of A68: If M : N in A68 then there are
¥,Qin AuT-68 such that ¥ : Q in AuT-68 and ¥ = M and Q = N;

e The cases N = A and A;T' F N : A cover terms that do not have
an equivalent in AUT-68 but are necessary in A68 to form terms that
have equivalents in AUT-68. More specific, this concerns terms of the
form 7, z;:A4;.B (needed to introduce constants) and terms of the form
bM; - -- M, where b is a constant of type -, z;:4;.B for certain m > n
(needed to construct A68-equivalents of expressions like b(Xy,...,3,)).

We conclude that A68 and AUT-68 coincide as much as possible, and that
the terms in A68 that do not have an equivalent in AUT-68 can be traced easily
(these are the terms of type A and the terms of a type N : A, and the sorts O
and A, which are needed to give a type to * and to the §-types).

Notice that the alternative definition of §-reduction in A68, discussed at the
end of Subsection 2.5, would introduce more terms in A68 without an equivalent
in AUT-68, namely terms of the form A}, z;:4;.B.
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5 More suitable PTSs for AUTOMATH systems

Recall that we related the system AUT-68 to a PTS A68 ignoring the AU-
TOMATH features: parameters, and identifying As and IIs or at least, providing

both II-reduction and II-application. In particular, in Definition 23, we gave
b(X1,...,%,) A 5, .. %, as A68 does not have direct parameters. Also, al-
though we had As and IIs in A68, unlike AUTOMATH which used expressions
of the form [z:X]2 for both abstractions, we did not allow neither II-reduction

where the reduction rule —1; works like S-reduction as follows:
[I-reduction (IIz:A.B)N —y Blz:=N]
nor IT-application where the A68 rule (App,) is changed into

A;TF M :1Ix:A.B A TENGA
A;THMN : (Ilz:A.B)N

[I-application

There are good reasons to use parameters (cf. [32, 33]), II-reduction and
IT-application (cf. [31, 36]). In Section 5.1 we look at how we might remedy the
above shorcomings to create more faithful interpretations of AuT-68 as PTSs.

The system AuUT-68 is one of several AUTOMATH-systems that have been
proposed. Another frequently used system is AUT-QE. In Section 5.2 we compare
AuT-68 to AUT-QE and describe how we can easily adapt A68 to a system AQE.
In Section 5.3 we reflect on the system AA which is claimed by de Bruijn to
embrace all the essential aspects of AUTOMATH apart from type inclusion.

5.1 )\68 with parameters, II-reduction and [I-application

PTSs don’t usually follow AUTOMATH in identifying As and IIs. PTSs don’t
even follow AUTOMATH in allowing II-reduction and II-application. We have
the following results in the area:

e [30] showed that as long as the usual application rule of PTSs is used, a
PTS system remains unchanged whether II-reduction is included or not.
As a result, if the usual application rule of PTSs is used, a PTS system
remains unchanged whether As and IIs are unified or not. [30] concluded
that a PTS system where As and Ils are unified and where the application
is changed to II-application faces the same problem (and inherits the same
solution) as that of the PTSs where As and IIs are not unified but where
[T-application and II-reduction are used.

e [36] showed that PTSs with II-reduction and II-application lose Subject
Reduction. For instance, one can derive a:*, z:a b (Ay:ay)z : (lly:a.a)z,
but it is not possible to derive a:x, z:a - x : (Iy:a.a)x.

e [31] showed that PTSs with II-reduction and II-application have all the
desirable properties if a definition system is used. Let us call the PTS
with II-reduction and Il-application and definitions as in [31], ASILd.
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Though our system A68 does not have II-reduction and II-application, it is
easy to extend it to a system AII68 by adding these rules:

AT M :Tx:A.B A TEN:GA
A;TFMN : (Iz:A.B)N

(Rule (App,) remains unchanged — see also the discussion in Section 3.1);

e Changing rule (App,) into

e Adding the new reduction rule —y; by (lIz:A.B)N —y; Blz:=N].

The system AII68 is actually much closer to AuT-68 than A68.
In AII68 we do not have Subject Reduction, either: it is not hard to derive

sack, v E (Ayany)e : (My:a.a)x
Nevertheless, we can not derive in AII68
sack, v oo (Hyaea)z

The “restoration” of Subject Reduction in ASIId is only because of the spe-
cial way in which definitions are introduced and removed from the context. In
AII68, once definitions have been introduced, they cannot be removed from the
left part of the context any more. So, we need to investigate whether the method
of [31] can be extended to AII68 in order to restore Subject Reduction in AII68.

As for parameters, [32] gives a formulation of PTSs with parameters, [33]
formulates PTSs with parameters, II-reduction, II-application, definitions & la
[31] and explicit substitutions, [41, 6] formulate PTSs with parameters and
definitions as in AUTOMATH and [30] gives a formulation of PTSs where As and
IIs are unified, and with parameters, [I-application, explicit substitutions and
definitions a la [31]. All these formulations satisfy the good properties of PTSs.

In the above systems, PTSs are extended with parameters by adding terms
of the form C(A4,...,A;) where C is a set of constants disjoint from the set
of variables, and n > 0. Then, in addition to the set of (II-formation) rules
R, a set of parametric construction rules P is added. Typing rules for dealing
with the new terms are finally added as follows: (A = z1:By,...,z,:B,, A; =

x1:By,...,x;_1:B;—1 and coNs (') is the set of constant declarations in I'):
= Fl‘aC:BF,Ail‘aBiiiF,Al‘aA:
(C-weak) T At g 35 5(ss,5) € P, ¢ & cons (D)
Fl, C(A)ZA, Fz '_a Asz [ZL“J:A]];;ll (Z =1,..., n)
= Iy,c(A):A Ty, F, A:s (if n=0)
(C-app) T, (A AT, Fy c(Ar, o An) Al =4,

With this in mind, the Barendregt cube of Figure 2 can be refined into the
eight smaller cubes on the left, and the AUTOMATH systems AUT-68 and AUT-
QE, as well as the Edinburgh LF and Milner’s ML find a more accurate placing
in this refined cube as on the picture on the right (cf. [32, 33, 41]).

40



A2 /|> AP2
_ _— Dw |

2 P2
E_ _ = 4(}
M Ti68— MUT-
\P .
(O,0)eR gL _ APy
O0,0)eP
- ( eﬂ) A>—TF \P
o) o)
K*“ er

Figure 6: LF, ML, AuT-68, and AuT-QE in the refined Barendregt Cube

5.2 AvuT-QE
The system AUT-QE has many similarities with AuT-68, and a few extensions:
1. We can form abstraction expression [z:X]type (extending Definition 8);

2. Inhabitants of types of the form [z:X]type are introduced by extending
the abstraction rules 1 and 2 of Definition 15 with the rule for AuT-QE:

B; ' F Xy :type B; ', x:X; F Yaitype
BTk [2:21]82 : [2:X;]type '

Notice that the expression [2:X;]type is not typable, just as type is not
typable. In a translation to a PTS, these expressions should get type O;

3. There is a new reduction relation on expressions, which is specific for AuT-
QE (which we call —QE in the sequel). This relation is given by the rule

[z1:X1] - - [z 2] [y:Q]type —QE [21:21] - - [xn:Ep]type (for n > 0).

The first two rules are rather straightforward. They correspond to an extension
of A= to AP in Pure Type Systems. It is also easy to extend A68 with similar
rules: We just add the II-formation rule (x,d,0):

A;THA:x Al e:AFB: O
AT F (Mz:A.B) - O

In AuT-68, PAT is implemented in de Bruijn-style (see Section 2.1 and Example
13). An implementation of predicate logic in Howard-style is not possible in
AuT-68, but due to the extension with types of the form [z:X]type, such an
implementation becomes possible in AUT-QE. See [18].

The third rule deserves attention, as it is very unusual. It is needed in AUT-
QE because that system does not distinguish As and IIs. In AUT-68 this did not
matter, as from the context it could always be derived whether an expression
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[2:X]Q should be interpreted as Az:X.Q or as IIz:¥.Q. The latter should have
type type, and the first should not have type type. In AUT-QE the situation
is more complicated. An expression [z:X]{} may have more than one type:

Example 56 Let 8 consist of two lines:

(ga a,—, type)a
(a:type, T, a)‘

Notice that, using rule (abstr.1) of Definition 15, we can derive that

B; a:type Fqr [r:a]a : type. (21)
But using the new abstraction rule of AuT-QE we can also derive

B; a:type FqE [r:a]a : [z:a]type. (22)

More generally, we can prove that the two statements below are equivalent
in AUuT-QE (that is: if either of them is derivable then they are both derivable):
BT For  [z1:Z1] - @0 S, [21:24] - - - [zn: 2] type; (23)
B;I o [z1:21] - [0 E0]Q 0 [21:51] - [z Em ] type (24)
(for m < n). In (23), the expression [z1:X1]- - [2,:X,]Q2 should be read as
Aisy 2i:%;.Q; in (24) it should be read as N2y z;: % [}, ) 7;:5;.Q.
But this equivalence holds only for expressions of the form

[371221] s [a:nEn]Q

and not for general expressions ¥ (take, for instance, ¥ a variable). In order
that the equivalence holds for general expressions X, de Bruijn introduced a rule
for type inclusion:

B[ ke X [z1:5] - [2,: 2, ]type
B;Lbqe X : [z1:51] - [#n—1:Zp_1]type’

Lists of abstractions [z1:X1] - - [,:X,,] were also called telescopes by de Bruijn.
In the rule for type inclusion, we see that one part of the telescope “collapses”.

5.3 AA

As we saw above, de Bruijn departed from the classical notation of the A-
calculus and wrote the argument before the function and used [z : A] instead of
Az : A or IIz : A. So for example, de Bruijn wrote (z)[x : *][y : =]y instead of
Az x Ay : z.y)z.
De Bruijn called items of the form (B) and [z : C], A- (for application)
respectively T- (for typing) wagons. De Bruijn called (B)[z : C], an AT-pair.
In de Bruijn’s notation, the f-rule (Az : C.A)B —3 Alx := B] becomes:

(B)[x : C]A —»g[z:=BJA
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Note that the A-wagon (B) and the T-wagon [z : C] occur NEXT to each other.

Here is an example which compares S-reduction in both the classical and the
de Bruijn notation. Wagons that have the same symbol on top, are matched
(we ignore types for the sake of simplicity):

Classical Notation De Bruijn’s Notation
(o .Oy. Az 2D) &) B) A () (B)z] (OVll2] (D)=
% %
+ - + - -+ 4 -
((Ay. Az .2D) C) A (4) (C)y] [2] (D)=
) % ) fB
(Az .2zD) A (A)[2)(D)z
% G
AD (D)YA

o + — + o -
The bracketing structure in classical notation of ((Az .(Ay . Az .zD) C) B) A),

o 4+ + o — o + 4+ —

is[1 [2 [3 ]2 ]1 |3, where [; and |; match. Whereas (A)(B)[z](C)[y][z] (D)z has
—0 o+ +—

the simpler bracketing structure [[ ][ ]] or even better: [[][]] in de Bruijn’s

notation. An A-wagon (B) and a T-wagon [z : C] are partners when they match.
Non-partnered wagons are bachelors. A sequence of wagons is called a segment.
A segment is well balanced when it contains only partnered wagons.

Moreover, de Bruijn defined local S-reduction, which keeps the AT-pair and
does B-reduction at one instance (instead of all the instances). For example (we
take a simpler example than above and again ignore types for simplicity):

(y)[z]{z)z B-reduces locally to (y)[z](x)y and to (y)[z](y)x. Doing a further
local B-reduction gives (y)[z](y)y. Now that the [z] does not bind any variable
any more, and hence we can remove the AT-pair (y)[z] obtaining (y)y.

Furthermore, de Bruijn generalised the AT-pair to the AT-couple where for
example, in (AY(B)[z](C)[y][z](D)z, we have the AT-pairs: (B)[z] and (C)[y]
and the AT-couple (A)[z]. This definition of AT-couples leads to a natural
generalisation of S-reduction as follows:

(B)s[x : C]A ~»3 5[z := B]A where 5 is a well balanced segment.

So for example, (A)(B)[z](C) [y][z1(D)z ~5 (B)[z)(C) ly][z == A|(D)z.

The A-calculus & la de Bruijn has many advantages over the classical A-
calculus. Some of these advantages are summarised in [37].

In AuT-SL (cf. B.2 of [44]), de Bruijn described how a complete AUTOMATH
book can be written as a single lambda calculus formula. The disadvantage of
AuT-SL was that in order to put the book into the lambda calculus framework,
it was necessary to first eliminate all definitional lines of the book. De Bruijn
did not like this idea as without definitions, formulae can exponentially grow.

For this reason, de Bruijn developped the AA calculus (cf. B.7 of [44]), with
which he attempts to embrace all essential aspects of AUTOMATH apart from
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type inclusion. AA is the lambda calculus written in his notation (as above)!®

but where S-reduction!® is presented as the result of local B-reductions and AT-
removals. The reason for this is that the delta reductions of AUTOMATH can be
considered as local f-reductions, and not as ordinary g-reductions.

We have fully investigated PTSs and the type free lambda calculus in de
Bruijn’s notation [35, 37, 7]. We have also shown that ~» g satisfies nice prop-
erties in the type free lambda calculus [29] and that it loses subject reduction
in PTSs but that subject reduction can be regained if definitions are added in
the contexts [7]. We have not yet studied PTSs with local S-reductions and
AT-removal, although we have studied the type free lambda calculus with local
B-reduction, AT-removal and explicit substitution [34]. We leave the study of
PTSs with de Bruijn’s local g-reduction and AT-removal for future work.

6 Conclusion

In this paper we described the most basic AUTOMATH-system, AUT-68, in a PTS
style. Though an attempt at such a description has been given before in [2, 22],
we feel that our description is more accurate. Moreover, unlike [2, 22], our
description pays attention to the definition and parameter systems, which are
crucial in AuUTOMATH. We gave a PTS called A68 which is closely related to
AuT-68. Although A68 does not include II-conversion (while AUTOMATH does),
one can adapt it to include II-conversion following the lines of [31].

The adaptation of A68 to a system AQE, representing the AUTOMATH-system
AUT-QE is not hard, either: it requires adaptation of the Il-formation rule to
include not only the rule (x, %, x) but also (*,0,0) and the introduction of the
additional reduction rule of type inclusion. We leave this as a future work. We
also leave as a future work the extension of PTSs with local S-reduction and
AT-removal & la de Bruijn and hence the connection between de Bruijn’s AA
and PTSs with definitions.

There is no doubt that AUTOMATH has had an amazing influence in the-
orem proving, type theory and logical frameworks. AUTOMATH however, was
developed independently from other developments in type theory and uses a
A-calculus and type-theoretical style that is unique to AUTOMATH. Writing
AUTOMATH in the modern style of type theory will enable useful comparisons
between type systems to take place. There are still many lessons to learn from
AUTOMATH and writing it in modern style is a useful step in this direction.

References
[1] H.P. Barendregt. The Lambda Calculus: its Syntaz and Semantics. Studies in Logic and
the Foundations of Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.

[2] H.P. Barendregt. A-calculi with types. In Handbook of Logic in Computer Science, pages
117-309. OUP, 1992.

151n AA, de Bruijn favours trees over character strings and does not make use of AT-couples.
16Recall this is now both 8- and II-reduction as he unifies As and IIs.

44



(3]

(11]

L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath system.
PhD thesis, Eindhoven University of Technology, 1977. Published as Mathematical Centre
Tracts nr. 83, (Amsterdam 1979).

L.S. van Benthem Jutting. Description of AUT-68. Technical Report 12, Eindhoven
University of Technology, 1981. Also in [44], pp. 251-273.

S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of construc-
tions and the other systems in Barendregt’s cube. Technical report, Dept. of Computer
Science, Carnegie-Mellon University and Dipartimento Matematica, Universita di Torino,
1988.

R. Bloo, F. Kamareddine, L. Laan, and R.P. Nederpelt. Parameters in Pure Type Sys-
tems, volume 2286 of Lecture Notes in Computer Science, pages 371-385. Springer
Verlag, 2002.

R. Bloo, F. Kamareddine, and R.P. Nederpelt. The Barendregt Cube with Definitions
and Generalised Reduction. Information and Computation, 126(2):123-143, 1996.

L.E.J. Brouwer. Over de Grondslagen der Wiskunde. PhD thesis, Universiteit van
Amsterdam, 1907. Dutch; English translation in [27].

N.G. de Bruijn. AUTOMATH, a language for mathematics. Technical Report 68-WSK-
05, T.H.-Reports, Eindhoven University of Technology, 1968.

N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its
extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, Symposium on
Automatic Demonstration, pages 29-61, IRTA, Versailles, 1968. Springer Verlag, Berlin,
1970. Lecture Notes in Mathematics 125; also in [44], pages 73-100.

N.G. de Bruijn. The Mathematical Vernacular, a language for mathematics with typed
sets. In P. Dybjer et al., editors, Proceedings of the Workshop on Programming Lan-
guages. Marstrand, Sweden, 1987. Reprinted in [44] in combination with Formalizing the
Mathematical Vernacular (formerly unpublished, 1982).

N.G. de Bruijn. Reflections on Automath. Eindhoven University of Technology, 1990.
Also in [44], pages 201-228.

A. Church. A set of postulates for the foundation of logic (1). Annals of Mathematics,
33:346-366, 1932.

A. Church. A set of postulates for the foundation of logic (2). Annals of Mathematics,
34:839-864, 1933.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5:56-68, 1940.

R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, New Jersey, 1986.

H.B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1958.

D.T. van Daalen. A description of Automath and some aspects of its language theory.
In P. Braffort, editor, Proceedings of the Symposium APLASM, volume I, pages 48-77,
1973. Also in [44], pages 101-126.

D.T. van Daalen. The Language Theory of Automath. PhD thesis, Eindhoven University
of Technology, 1980.

G. Dowek et al. The Coq Proof Assistant Version 5.6, Users Guide. Technical Report
134, INRIA, Le Chesney, 1991.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Nebert, Halle, 1879. Also in [24], pages 1-82.

J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen,
1993.

45



(23]

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings
Second Symposium on Logic in Computer Science, pages 194-204, Washington D.C.,
1987. IEEE.

J. van Heijenoort, editor. From Frege to Gddel: A Source Book in Mathematical Logic,
1879-1931. Harvard University Press, Cambridge, Massachusetts, 1967.

A. Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, Berlin, 1934.

A. Heyting. Intuitionism, an introduction. Studies in Logic and the Foundations of
Mathematics. North Holland, Amsterdam, 1956.

A. Heyting, editor. Brouwer: Collected Works, volume 1. North-Holland, Amsterdam,
1975.

W.A. Howard. The formulas-as-types notion of construction. In [46], pages 479-490,
1980.

F. Kamareddine. Postponement, conservation and preservation of strong normalisation
for generalised reduction. Journal of Logic and Computation, 10(5):721-738, 2000.

F. Kamareddine. On Functions and Types: A Tutorial, volume 2540 of Lecture Notes in
Computer Science, pages 74-93. Springer Verlag, 2002.

F. Kamareddine, R. Bloo, and R.P. Nederpelt. On w-conversion in the A-cube and the
combination with abbreviations. Annals of Pure and Applied Logics, 97:27-45, 1999.

F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining the Barendregt cube using pa-
rameters. Fifth International Symposium on Functional and Logic Programming, FLOPS
2001, LNCS 2024:375-389, 2001.

F. Kamareddine, L. Laan, and R.P. Nederpelt. Revisiting the notion of function. Alge-
braic and Logic Programming, 54:65—-107, 2003.

F. Kamareddine and R.P. Nederpelt. On stepwise explicit substitution. International
Journal of Foundations of Computer Science, 4:197-240, 1993.

F. Kamareddine and R.P. Nederpelt. Refining reduction in the A-calculus. Journal of
Functional Programming, 5(4):637-651, October 1995.

F. Kamareddine and R.P. Nederpelt. Canonical typing and II-conversion in the Baren-
dregt Cube. Journal of Functional Programming, 6(2):245-267, 1996.

F. Kamareddine and R.P. Nederpelt. A useful A-notation. Theoretical Computer Science,
155:85-109, 1996.

S.C. Kleene and J.B. Rosser. The inconsistency of certain formal logics. Annals of
Mathematics, 36:630-636, 1935.

J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, pages
1-116. UP, 1992.

A.N. Kolmogorov. Zur Deutung der Intuitionistischen Logik. Mathematisches Zeitschrift,
35:58-65, 1932.

T. Laan. The Ewvolution of Type Theory in Logic and Mathematics. PhD thesis, Eind-
hoven University of Technology, 1997.

E. Landau. Grundlagen der Analysis. Leipzig, 1930.

R.P. Nederpelt. Presentation of natural deduction. Recueil des travauzr de [’Institut

Mathématique, Nouvelle série, 2(10):115-126, 1977. Symposium: Set Theory. Founda-
tions of Mathematics, Beograd 1977.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath.
Studies in Logic and the Foundations of Mathematics 133. North-Holland, Amsterdam,
1994.

M.J. O’Donnell. Computing in Systems Described by Equations, volume 58 of Lecture
Notes in Computer Science. Springer Verlag, 1977.

46



(46]

J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, New York, 1980.

P. Severi and E. Poll. Pure type systems with definitions. Technical Report 24, TUE
Computing Science Notes, Eindhoven University of Technology, 1993.

T. Streicher. Semantics of Type Theory. Birkhauser, 1991.

W.W. Tait. Infinitely long terms of transfinite type. In J.N. Crossley and M.A.E.
Dummett, editors, Formal Systems and Recursive Functions, Amsterdam, 1965. North-
Holland.

J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical report, De-
partment of Computer Science, University of Nijmegen, 1989.

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, 11, III. Cambridge
University Press, 1910,1912, 19131, 1925, 1925, 19272.

J. Zucker. Formalization of classical mathematics in Automath. In Colloque Interna-
tional de Logique, Clermont-Ferrand, pages 135-145, Paris, CNRS, 1977. Colloques
Internationaux du Centre National de la Recherche Scientifique, 249.

47



