
De Bruijn's Automath and Pure Type SystemsFairouz Kamareddine� Twan Laany Rob NederpeltzAbstra
tWe study the position of theAutomath systems within the frameworkof Pure Type Systems (PTSs). In [2, 22℄, a rough relationship has beengiven between Automath and PTSs. That relationship ignores three ofthe most important features of Automath: de�nitions, parameters and�-redu
tion, be
ause at the time, formulations of PTSs did not have thesefeatures. Sin
e, PTSs have been extended with these features and in viewof this, we revisit the 
orresponden
e betweenAutomath and PTSs. Thispaper gives the most a

urate des
ription of Automath as a PTS so far.1 Introdu
tionThe Automath systems are the �rst examples of proof 
he
kers, and in thisway they are prede
essors of modern proof 
he
kers like Coq [20℄ and Nuprl [16℄.The proje
t started in 1967 by N.G. de Bruijn:\it was not just meant as a te
hni
al system for veri�
ation of mathemati
altexts, it was rather a life style with its attitudes towards understanding, devel-oping and tea
hing mathemati
s." ([12℄; see [44℄ p. 201)Thus, the roots of Automath are not to be found in logi
 or type theory,but in mathemati
s and the mathemati
al verna
ular [11℄. De Bruijn had beenwondering for years what a proof of a theorem in mathemati
s should be like, andhow its 
orre
tness should be 
he
ked. The development of 
omputers in the 60smade him wonder whether a ma
hine 
ould 
he
k the proof of a mathemati
altheorem, provided the proof was written in a very a

urate way. De Bruijndeveloped the language Automath for this purpose. This language is not only(a

ording to de Bruijn [10℄) \a language whi
h we 
laim to be suitable forexpressing very large parts of mathemati
s, in su
h a way that the 
orre
tnessof the mathemati
al 
ontents is guaranteed as long as the rules of grammarare obeyed" but also \very 
lose to the way mathemati
ians have always beenwriting". This is re
e
ted in the goals of the Automath proje
t:\1. The system should be able to verify entire mathemati
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2. The system should remain very general, tied as little as possible to anyset of rules for logi
 and foundations of mathemati
s. Su
h basi
 rulesshould belong to material that 
an be presented for veri�
ation, on thesame level with things like mathemati
al axioms that have to be explainedto the reader.3. The way mathemati
al material is to be presented to the system should
orrespond to the usual way we write mathemati
s. The only things to beadded should be details that are usually omitted in standard mathemati
s."([12℄; see [44℄ pp. 209{210)Goal 1 was a
hieved: Van Benthem Jutting [3℄ translated and veri�ed Lan-dau's \Grundlagen der Analysis" [42℄ in Automath and Zu
ker [52℄ formalised
lassi
al real analysis in Automath.As for goal 2, de Bruijn used types and a propositions as types (pat) prin
i-ple1 that was somewhat di�erent from Curry and Howard's [17, 28℄. The appear-an
e of types in Automath �nds its roots in de Bruijn's 
onta
ts with Heyting,who made de Bruijn familiar with the intuitionisti
 intertpretation of the logi-
al 
onne
tives (see [26, 40℄). The interpretation of the proof of an impli
ationA! B as an algorithm to transform any proof of A into a proof of B, so in fa
ta fun
tion from proofs of A to proofs of B, gave rise to interpret a proposition asa 
lass (a type) of proofs. De Bruijn who was not in
uen
ed by developments in�-
al
ulus or type theory when he started his work on Automath, dis
overedthis notion of \proofs as obje
ts", better known as \propositions as types", in-dependently from Curry [17℄ and Howard [28℄. Curry and Howard identi�ed thelogi
al impli
ation and the universal quanti�er with fun
tion types, followingHeyting's intuitionisti
 interpretation of logi
al 
onne
tives. In doing so, theydo not leave a possibility for a di�erent interpretation of impli
ation and uni-versal quanti�
ation. Using pat in de Bruijn's style, the rules for manipulatingthe logi
al 
onne
tives must always be made expli
it by the user (for examplesee Se
tions 12 and 13 of [4℄). This makes it possible to give interpretations oflogi
al 
onne
tives that are not based on interpreting impli
ation and universalquanti�
ation by a fun
tion type (see [41℄).De Bruijn spent a lot of e�ort on goal 3. He studied the language of math-emati
s in great depth [11℄ and used the following features to a
hieve goal 3:� The use of books. Like a mathemati
al text, Automath is written lineby line. Ea
h line may refer to de�nitions or results given in earlier lines.� The use of de�nitions and parameters. Without de�nitions, expressionsbe
ome too long. Also, a de�nition gives a name to a 
ertain expressionmaking it easy to remember what the use of the de�niens is.As Automath was developed independently from other developments in theworld of type theory and �-
al
ulus, and as it invented powerful typing ideasthat were later adopted in in
uential type systems (
f. [2℄), there are manythings to be explained in (and learned from) the relation between the variousAutomath languages and other type theories. Type theory was originally in-vented by Bertrand Russell to ex
lude the paradoxes that arose from Frege's1The �rst pra
ti
al use of the propositions-as-types prin
iple is found in Automath.2



\Begri�s
hrift" [21℄. It was presented in 1910 in the famous \Prin
ipia Math-emati
a" [51℄ and simpli�ed by Ramsey and Hilbert and A
kermann. In 1940,Chur
h 
ombined his theory of fun
tions, the �-
al
ulus with the simpli�ed typetheory, resulting in the in
uen
ial \simple theory of types" [15℄. Sin
e, manyin
uential type systems have been developed. Eight of the most important su
hsystems have been uni�ed in the Barendregt 
ube [2℄. Terlouw [50℄ and Be-rardi [5℄ extended independently Barendregt's work into a general frameworkleading to the so-
alled Pure Type Systems (PTSs [2℄).In this paper we fo
us on the relation between Automath and Pure TypeSystems (PTSs). Both [2℄ and [22℄ mention this relation in a few lines, but asfar as we know a satisfa
tory explanation of the relation between Automathand PTSs is not available. Moreover, both [2℄ and [22℄ 
onsider Automathwithout one of its most important me
hanisms: de�nitions and parameters.But de�nitions and parameters are extremely powerful in Automath. Eventhe Automath system Pal, whi
h roughly 
onsists of the de�nition systemof Automath only, is able to express some simple mathemati
al reasoning(see Se
tion 5 of [10℄). A

ording to de Bruijn [12℄ this is \due to the fa
tthat mathemati
ians worked with abbreviations all the time already". Re
entdevelopments on the use of de�nitions and parameters in PTSs [31, 41, 32, 33, 47℄justify renewed resear
h on the relation between Automath and PTSs.� Se
tion 2 des
ribes pat, PTSs and the basi
 Automath system Aut-68.� Se
tion 3 dis
usses how we 
an transform Aut-68 into a PTS. Some prop-erties of Aut-68 are unusual for PTSs: � �-redu
tion; � �-appli
ationand �-redu
tion (as Aut-68 does not distinguish � and �: both �x:A:Band �x:A:B are denoted by [x:A℄B); � a de�nition system; � a parame-ter me
hanism. We do not 
onsider �-redu
tion as an essential feature ofAutomath, and fo
us on its most 
hara
teristi
 type-theoreti
al features:de�nitions and parameter. In systems with �-appli
ation, � behaves like�, and there is a rule of �-redu
tion: (�x:A:B)N !� B[x:=N ℄: We leavethe features of �-appli
ation and �-redu
tion till Se
tion 5.� In Se
tion 4, we give a system �68 that is (almost) a PTS. In �68, def-initions play an a
tive role. We show that �68 has the usual propertiesof PTSs and 
an be seen as Aut-68 without �-redu
tion, �-appli
ationand �-redu
tion. There is no dire
t parameter system in �68 either, butparameters are hidden in the rules for the 
onstru
tion of produ
t types.� In Se
tion 5 we dis
uss how �68 
an be extended with dire
t parametersand with �-appli
ation and �-redu
tion. We also dis
uss how our ap-proa
h 
an be extended to other Automath systems like aut-QE wherethe identi�
ation of � and � is more subtle than that of Aut-68 and itis not easy to tell whether [x:A℄B should stand for �x:A:B or �x:A:Bin PTSs. In addition to aut-QE, we re
e
t on �� (
f. [44℄, B.7) whereterms are presented as lambda trees and to ea
h Automath book, there
orresponds a single lambda tree whose 
orre
tness is equivalent to thatof the book. We 
on
lude in Se
tion 6.3



2 Automath, pat, PTSs and Aut-68Basi
 to Automath is the pat prin
iple 
ommonly known as the Curry-Howardisomorphism, although it was also invented independently by de Bruijn whoapplied it in a di�erent way to that of Howard and Curry. Many other proof
he
kers and theorem provers, like Coq [20℄, Nuprl [16℄ and LF [23℄, use thepat prin
iple. In Se
tion 2.1 we explain the origin of the pat prin
iple. Then,in Se
tion 2.2 we introdu
e PTSs and we devote the rest of this se
tion toAutomath with its formulation of lines, books and de�nitions.During the Automath-proje
t, severalAutomath-languages have been de-veloped. They all have two me
hanisms for des
ribing mathemati
s:� The typed �-
al
ulus, with the important features of �-abstra
tion, �-appli
ation and �-redu
tion.� The use of de�nitions and parameters.The latter me
hanism is the same for most Automath-systems, and the dif-feren
e between the various systems is mainly 
aused by di�erent �-
al
uli thatare in
luded. In this se
tion we des
ribe the system Aut-68 [4, 9, 19℄ whi
h notonly is one of the �rst Automath-systems, but also a system with a relativelysimple typed �-
al
ulus, whi
h makes it easier to fo
us on the (less known)me
hanism for de�nitions and parameters. A more extensive des
ription ofAut-68 on whi
h our des
ription below is based, 
an be found in [4, 9, 19℄.2.1 Propositions as Types and Proofs as TermsAlthough Chur
h's simply typed �-
al
ulus has logi
al symbols like _, 8, it
annot be seen as a logi
al system. If one wants to make logi
al derivations,one has to build a logi
al system on top of it. Type theory nowadays plays animportant role in logi
 in a di�erent way: it 
an be used as a logi
al systemitself. This use of type theory is generally known as \propositions as types" or\proofs as terms". As both expressions abbreviate to pat, we will use this ab-breviation to indi
ate both \propositions as types" and \proofs as terms". patonly partially 
overs the idea of using type theory as a logi
al system. \Proofsas terms" already suggests an important advantage of using type theory as alogi
al system: here proofs are �rst-
lass 
itizens of the logi
al system, whilst formany other logi
al systems, proofs are rather 
omplex obje
ts outside the logi
(for example: derivation trees), and therefore 
annot be easily manipulated.Below we mention some origins of the pat prin
iple.Intuitionisti
 logi
The idea of pat originates in the formulation of intuitionisti
 logi
. Though it isnot 
orre
t that \intuitionisti
 logi
" is simply the logi
 that is used in intuition-isti
 mathemati
s2, there are frequently o

urring 
onstru
tions in intuitionisti
2\Intuitionisti
 logi
" is standard terminology for \logi
 without the law of the ex
ludedmiddle". The terminology suggests that it is \the logi
 that is used in intuitionism". However,4



mathemati
s that have a logi
al 
ounterpart. One of these 
onstru
tions is theproof of an impli
ation. Heyting [25℄ des
ribes the proof of an impli
ation a) bas: deriving a solution for the problem b from the problem a. Kolmogorov [40℄is even more expli
it, and des
ribes a proof of a ) b as the 
onstru
tion of amethod that transforms ea
h proof of a into a proof of b. This means that aproof of a ) b 
an be seen as a (
onstru
tive) fun
tion from the proofs of ato the proofs of b. In other words, the proofs of the proposition a ) b formexa
tly the set of fun
tions from the set of proofs of a to the set of proofs ofb. This suggests to identify a proposition with the set of its proofs. Now typesare used to represent these sets of proofs. An element of su
h a set of proofs isrepresented as a term of the 
orresponding type. This means that propositionsare interpreted as types , and proofs of a proposition a as terms of type a.CurryPat was, independently from Heyting and Kolmogorov, dis
overed by Curryand Feys [17℄. In paragraph 8C of [17℄, Curry des
ribes so-
alled F-obje
ts,whi
h 
orrespond more or less to the simple types of Chur
h in [15℄. As a basis,a list of primitive obje
ts #1; #2; : : : is 
hosen. All these primitive obje
ts areF-obje
ts. Moreover, if � and � are F-obje
ts, then so is F��. Here, F is a newsymbol. F�� must be interpreted as the 
lass of fun
tions from � to �. If �is an F-obje
t, then the statement ` �X must be interpreted as \the obje
t Xbelongs to �". The rule-F is adopted: if ` FXY Z and ` XU then ` Y (ZU).This rule immediately 
orresponds to the appli
ation-rule of Chur
h's �-
al
ulusand says: if Z belongs to FXY and U belongs to X , then ZU belongs to Y .Earlier in [17℄, Curry gave the impli
ation 
ombinator P with the rule-P: if` PXY and ` X then ` Y . PXY is interpreted as the proposition \if X thenY ". Curry noti
es that rule-P has similar behaviour to rule-F.Curry is the �rst to give a formalisation of pat. For ea
h F-obje
t � hede�nes a proposition �P by: #Pi � #i and (F��)P � P�P�P .3 Curry thenintuitionism (i.e., the philosophy of Brouwer and the mathemati
s based on it) de
lares math-emati
s to be independent of logi
. A

ording to that philosophy, a proof of a mathemati
altheorem is a method to read that theorem as a tautology. The fa
t that one needs a list of tau-tologies before the proof of more 
ompli
ated theorems be
omes 
lear, only indi
ates that the
onstru
tions we make are too 
ompli
ated to be 
omprehended immediately. Mathemati
sitself however, is a 
onstru
tion in one's mind, independent of logi
:\Een logis
he opbouw der wiskunde, onafhankelijk van de wiskundige intu��tie, isonmogelijk | daar op die manier sle
hts een taalgebouw wordt verkregen, datvan de eigenlijke wiskunde onherroepelijk ges
heiden blijft | en bovendien een
ontradi
tio in terminis | daar een logis
h systeem, zoo goed als de wiskundezelf, de wiskundige oer-intu��tie nodig heeft"(Over de Grondslagen der Wiskunde [8℄, p. 180)(A logi
al 
onstru
tion of mathemati
s, independent of the mathemati
al intuition, is impos-sible | for by this method no more is obtained than a linguisti
 stru
ture, whi
h irrevo
ablyremains separated from mathemati
s | and moreover it is a 
ontradi
tio in terminis | be-
ause a logi
al system needs the basi
 intuition of mathemati
s as mu
h as mathemati
s itselfneeds it. [Translation from [27℄℄).3Remark that Curry's fun
tion � 7! �P is in fa
t an embedding of types in propositions5



shows that the types-as-propositions embedding � 7! �P is sound and 
omplete:if FmX1 � � �XmY is an abbreviation of FX1(FX2(: : : (FXmY ) : : : )) then:\If ` Fm�1 � � � �m�X then ` (Fm�1 � � � �m�)P . Moreover, if ` Fm�1 � � � �m�Xis derivable from the premises ` �iai (i = 1; : : : ; p) then ` (Fm�1 � � � �m�)P isderivable from the premises ` �Pi (i = 1; : : : ; p)."([17℄, paragraph 9E, Theorem 1)\If ` (Fm�1 � � � �m�)P is derivable by rule-P from the premises ` �Pi , thenfor ea
h derivation of this fa
t and ea
h assignment of a1; : : : ; ap to �1; : : : ; �prespe
tively there exists an X su
h that ` Fm�1 � � � �m�X is derivable from thepremises ` �iai (i = 1; : : : ; p) by rule-F alone."([17℄, paragraph 9E, Theorem 2)The treatment of pat in [17℄ is mainly dire
ted towards Propositions asTypes. Proofs as terms are impli
itly present in the theory of [17℄: the termX in the proof of Theorem 1 of [17℄ 
an be seen as a proof of the proposition(Fm�1 � � � �m�)P . But this is not made expli
it in [17℄.Example 1 As an example, we show the dedu
tion of the proposition A ! Afrom the logi
al axioms X ! Y ! X4 (the K-axiom) and (X ! Y ! Z) !(X ! Y )! X ! Z (the S-axiom), both in the style of the 
ombinator P and inthe pat-style. Both derivations 
orrespond to the derivation of the propositionA ! A in natural dedu
tion style, with the use of modus ponens, and axiomsX ! Y ! X and (X ! Y ! Z)! (X ! Y )! X ! Z only:` (A! (A! A)! A)! (A! A! A)! A! A` A! (A! A)! A` (A! A! A)! A! A ` A! A! A` A! A :� We use PmX1 � � �XmY as an abbreviation for PX1(PX2(: : : (PXmY ) : : : )):So PmX1 � � �XmY 
an be interpreted as the proposition X1 ! X2 !� � �Xm ! Y: In this notation, Rule-P is: ` Pm+1X0 � � �XmY ` X0` PmX1 � � �XmY :For terms X;Y; Z, we take the following axioms:(K): ` P2XYX ;(S): ` P3(P2XY Z)(PXY )XZ.Let A be a term. From the axioms we derive ` PAA, using rule-P:` P3(P2A(PAA)A)(PA(PAA))AA` P2A(PAA)A` P2(PA(PAA))AA ` PA(PAA)` PAA ;(so a types-as-propositions embedding instead of a propositions-as-types embedding).4We assume that ! is asso
iative to the right, i.e. X ! Y ! Z denotes X ! (Y ! Z)and not (X ! Y )! Z. 6



� In pat-style, the situation is similar. Now we do not use any axioms,but we use some standard 
ombinators. The 
ombinator K (whi
h 
an be
ompared to the �-term �xy:x) has type F2XYX , for arbitrary F-obje
tsX;Y (a term 
an have more than one type in Curry's theory). K 
an beseen as a \proof" of the axiom (F2XYX)P . This is indi
ated by puttingK behind the axiom: (F2XYX)PK: The 
ombinator S, 
omparable tothe �-term �xyz:xz(yz), has type F3(F2XYZ)(FXY )XZ for arbitrary F-obje
ts X;Y; Z. S is a \proof" of the axiom (F3(F2XY Z)(FXY )XZ)P .This is denoted as (F3(F2XY Z)(FXY )XZ)PS: The derivation above nowtranslates to:` F3(F2A(FAA)A)(FA(FAA))AAS` F2A(FAA)AK` F2(FA(FAA))AA(SK) ` FA(FAA)K` FAA(SKK) :The 
on
lusion of this derivation 
an be read as: SKK is a fun
tion fromA to A, or, with pat in mind: SKK is a proof of the proposition A! A.Both derivations 
orrespond to the derivation of the proposition A ! A innatural dedu
tion style, with the use of modus ponens, and axiomsX ! Y ! Xand (X ! Y ! Z)! (X ! Y )! X ! Z only:` (A! (A! A)! A)! (A! A! A)! A! A` A! (A! A)! A` (A! A! A)! A! A ` A! A! A` A! A :HowardHoward [28℄ 
ombines the argument of Curry and Feys [17℄ with Tait's dis
overyof the 
orresponden
e between 
ut elimination and �-redu
tion of �-terms [49℄.Example 2 Take this natural dedu
tion style derivation of a proposition B:[A℄D1B D2A! B ABHere, [A℄ denotes that the assumption A has been dis
harged at the point wherewe 
on
luded A ! B from B. D1 is a derivation with some assumptions of A,and 
on
lusion B, whilst D2 is a derivation with 
on
lusion A. The derivationD2 
an be used to repla
e the assumptions of A in derivation D1. This meansthat we 
an transform the derivation to:7



D2AD1Bwhere 
opies of D2 have repla
ed the assumptions A in D1.We 
an de
orate the two derivations above with �-terms that representproofs. This results in the following two dedu
tions:[x:A℄D1T : B D2(�x:A:T ) : (A! B) S : A((�x:A:T )S) : Band D2S : AD1T [x:=S℄ : BThe assumption of A is represented by a variable x of type A. This is a naturalidea: the variable expresses the idea \assume we have some proof of A". Thederivation D1 is represented by a �-term T , in whi
h the variable x may o

ur(we 
an use the assumption A in derivation D1). Then the term �x:A:T exa
tlyrepresents a proof of A ! B: it is a fun
tion that transforms any proof x of Ainto a proof T of B. As D2 is a derivation of A (assume, S is a proof term ofA), we 
an apply �x:A:T to S, obtaining a proof (�x:A:T )S of B.Substituting the derivation D2 for the assumptions of A in D1 is nothingmore than repla
ing the assumption \assume we have some proof of A" bythe expli
it proof S (i.e., substituting S for x). This gives a term T , whereea
h o

urren
e of x has been repla
ed by S: the �-term T [x:=S℄. The prooftransformation exa
tly 
orresponds to the �-redu
tion (�x:A:T )S !� T [x:=s℄.This is the �rst time that proofs are treated as �-terms. Howard doesn't 
allthese �-terms \proofs" but \
onstru
tions". Moreover, Howard's treatment ofpat pays attention to both Propositions as Types (following the line of Curryand Feys) and Proofs as Terms (by using �-terms to represent proofs, thusfollowing the interpretation of logi
al impli
ation as given by Heyting).Howard's dis
overy dates from 1969, but was not published until 1980.De BruijnIndependently of Curry and Feys and Howard, we �nd a variant of pat in the�rst Automath system of de Bruijn (Aut-68 [44℄, [10℄). Though de Bruijnwas probably in
uen
ed by Heyting (see [12℄ in [44℄, p. 211), his ideas arose8



independently from Curry, Feys and Howard This 
an be 
learly seen in Se
tion2.4 of [9℄, where propositions as types (or better: proofs as terms) is implementedin the following way, di�ering from the method of Curry and Howard.First, a 
onstant bool is introdu
ed. bool is a type: the type of propositions.If b is a term of type bool (so b is a proposition), then true(b) is a primitivenotion of type type. true(b) represents the type of the proofs of b. So, a proof ofproposition b is of type true(b) and not of type b (sin
e propositions themselvesare no types) With this \bool-style" implementation (as it was 
alled by deBruijn in [12℄) in mind, it be
omes 
lear why de Bruijn prefers the terminology\proofs as terms" to \propositions as types": in the bool-style, propositionsare not represented as types. Only the 
lass of proofs of su
h a propositionis represented as a type. Proofs however, are represented as terms, just asin Howard's implementation of pat. So in the bool-style, the link betweenproposition and type is not as dire
t as the link between proof and term. Theimplementation of Howard (
alled \prop-style" by de Bruijn) does not makeany distin
tion between a proposition and the type of its proofs.The bool-style implementation has as advantage that one does not need ahigher order lambda 
al
ulus to 
onstru
t predi
ate logi
. In relatively weakAutomath systems su
h as aut-68 one usually �nds a \bool-style" implemen-tation of pat. It would be impossible to give a \prop-style" implementation insu
h a system as its �-
al
ulus is not strong enough to support it. In Automathsystems with a more powerful �-
al
ulus we also �nd \prop-style" implementa-tions. See [43℄ for a des
ription of prop-style implementations in Automath.Another advantage of the bool-style implementation is that one does notdepend on a �xed interpretation of the logi
al 
onne
tives. One is free to de�neones own logi
al system (and it is possible to base that system on the Brouwer-Heyting-Kolmogorov interpretation of the logi
al 
onne
tives. This has beenone of the reasons for de Bruijn to implement pat in a bool-style way (see [12℄).Though the bool-style implementation is not used in later Automath sys-tems, it is still in use in the Edinburgh Logi
al Framework [23℄, and othersystems[48℄2.2 Pure Type SystemsLambda 
al
ulus was introdu
ed by Chur
h [13, 14℄, as a formalisation of thenotion of fun
tion. With this formal notation he 
ould formulate his set of pos-tulates for the foundation of logi
. Kleene and Rosser [38℄ showed that Chur
h'sset of postulates was in
onsistent. The lambda 
al
ulus itself, however, appearedto be a very useful tool. Being a suitable framework for the formalisation offun
tions, it is not surprising that lambda 
al
ulus be
ame an ex
ellent toolfor formalising the Simple Theory of Types [15℄. This formalisation is at thebasis of most modern type theories and espe
ially at the basis of PTSs. In thisse
tion, we give the ne
essary ma
hinery of PTSs needed for this paper.De�nition 3 Let V be a set of variables and C a set of 
onstants (both 
ount-ably in�nite). The set T(V; C ) (or T, if it is 
lear whi
h sets V and C are used)9



of typed lambda terms with variables from V and 
onstants from C is de�nedby the following abstra
t syntax: T ::= V j C j TT j �V:T:T j �V:T:T:We use x; y; z; �; � as meta-variables over V. In examples, we sometimeswant to use some spe
i�
 elements of V; we use typewriter-style to denote su
hspe
i�
 elements. So: x is a spe
i�
 element of V; while x is a meta-variableover V. The variables x, y, z are assumed to be distin
t elements of V (sox 6� y et
.), while meta-variables x; y; z; : : : may refer to variables in the obje
tlanguage that are synta
ti
ally equal. We use A;B;C;M;N; : : : ; a; b; : : : asmeta-variables over T. fv(A), the set of free variables of A, and substitutionA[x:=B℄ are de�ned in the usual way. We use � to denote synta
ti
al equalitybetween lambda terms.Terms that are equal up to a 
hange of bound variables are taken to be syn-ta
ti
ally equal. This allows the Barendregt Convention where bound variablesare 
hosen to di�er from free ones. Throughout, we let � 2 f�;�g.Notation 4 � We write (� � � ((AB1)B2) � � �Bn) as AB1 � � �Bn.� We write �x1:A1:(�x2:A2:(� � � (�xn:An:A) � � � )) as �~x: ~A:B, or �ni=1xi:Ai:A.� We write A[xm:=Bm℄ � � � [xn:=Bn℄ as A[xi:=Bi℄ni=m. If m > n thenA[xi:=Bi℄ni=m denotes A. We also write A[xi:=Bi℄ni=1 as A[~x:= ~B℄.De�nition 5 (�-redu
tion) The relation !� is given by the 
ontra
tion rule(�x:A1:A2)B !� A2[x:=B℄ and the usual 
ompatibility rules. The relation!!�(resp. =�) is the smallest re
exive and transitive (resp. equivalen
e) relation thatin
ludes !� . By A!!+� B we indi
ate that A!!� B, but A 6� B.A term with no subterms of the form (�x:A1:A2)B is in �-normal form, ora normal form if no 
onfusion arises. We write A !nf� B (resp. A !!nf� B) ifA!� B (resp. A!!� B) and B is in �-normal form.De�nition 6 � A spe
i�
ation is a triple (S;A;R), su
h that S � C , A �S �S and R � S �S �S. The spe
i�
ation is singly sorted if A and Rare (partial) fun
tions from S ! S and S � S ! S resp. We 
all S theset of sorts , A the set of axioms , and R the set of (�-formation) rules .� A 
ontext is a �nite (possibly empty) list x1:A1; : : : ; xn:An (or ~x: ~A) of vari-able de
larations. fx1; : : : ; xng is the domain dom�~x: ~A� of the 
ontext.The empty 
ontext is denoted hi. We use �, � to range over 
ontexts.� We extend substitutions to 
ontexts by: hi[x:=A℄ � hi; and(�0; y:B)[x:=A℄ � � �0[x:=A℄ if x � y;�0[x:=A℄; y:B[x:=A℄ if x 6� y.Though PTSs were not introdu
ed before 1988 [5, 50℄ many rules are highlyin
uen
ed by rules of known type systems like Chur
h's Simple Theory of Types[15℄ and Automath (see 5.5.4. of [18℄, and Se
tion 2).10



(axiom) hi ` s1 : s2 (s1; s2) 2 A(start) � ` A : s�; x:A ` x : A x 62 dom (�)(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (�)(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s3 (s1; s2; s3) 2 R(�) �; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)(appl) � ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄(
onv) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 1: Typing rules of PTSs�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�! (�; �) (2;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�C (�; �) (2; �) (�;2) (2;2) �������������! �P�2 �P2�! �P!�C�!p ppp p ppp -6��1 (�;2) 2 R(2;2) 2 R(2; �) 2 R
Figure 2: The Barendregt CubeDe�nition 7 (Pure Type Systems) Let S = (S;A;R) be a spe
i�
ation.The Pure Type System �S des
ribes the judgements (given in Figure 7) � `SA : B (or � ` A : B, if it is 
lear whi
h S is used). � ` A : B states that A hastype B in 
ontext �. A 
ontext � is legal if there are A;B su
h that � ` A : B.A term A is legal if there are �; B su
h that � ` A : B or � ` B : A.An important 
lass of PTSs is given as eight PTSs in the Barendregt Cube [2℄of Figure 2. These systems all have f�;2g as set of sorts, and �:2 as only axiom,but di�er on the �-formation rules. We write (s1; s2; s2) as (s1; s2).2.3 Books, lines and expressions of AutomathInAutomath, a mathemati
al text is thought of as being a series of 
onse
utive\
lauses". Ea
h 
lause is expressed as a line. Lines are stored in so-
alled books .For writing lines and books in Aut-68 we need: � The symbol type; � A setV of variables; � A set C of 
onstants; � The symbols ( ) [ ℄ : | ; .11



We assume V and C are in�nite, V \ C = ? and type 62 V [ C. The elements ofV are 
alled blo
k openers , those of V [ C are 
alled identi�ers in [10℄.De�nition 8 (Expressions) We de�ne the set E of Aut-68-expressions (orexpressions) indu
tively as below. Sometimes we use the set E+ def= E [ ftypeg.(variable) If x 2 V then x 2 E ; We use the same meta-variables and spe
i�
elements as for V.(parameter) If a 2 C, n 2 N (n � 0) and �1; : : : ;�n 2 E then a(�1; : : : ;�n) 2E . We 
all �1; : : : ;�n the parameters of a(�1; : : : ;�n);(abstra
tion) If x 2 V , � 2 E [ ftypeg and 
 2 E then [x:�℄
 2 E ;(appli
ation) If �1;�2 2 E then h�2i�1 2 E .Remark 9 � The Aut-68-expression [x:�℄
 isAutomath-notation for ab-stra
tion. In PTS-notation one writes �x:�:
 or �x:�:
. In a relativelysimple Automath-system like Aut-68, it is easy to determine whether�x:�:
 or �x:�:
 is the 
orre
t interpretation for [x:�℄
. This is harderin Automath-systems with a more 
omplex �-
al
ulus, like aut-QE.� The Aut-68-expression h�2i�1 is Automath-notation for the intendedappli
ation of the \fun
tion" �1 to the \argument" �2. In PTS-notation:�1�2. (Note the unusual order of \fun
tion" �1 and \argument" �2).The advantages of writing h�2i�1 instead of the 
lassi
al �1�2 are exten-sively dis
ussed in [37℄. In parti
ular, if �1 is a fun
tion [x:
1℄
2, thenh�2i�1 � h�2i[x:
1℄
2. The argument �2 and the abstra
tion [x:
1℄ be-long together: as soon as the intended appli
ation of the fun
tion �1 toits argument is 
arried out, �2 is substituted for x everywhere in 
2. Itis 
onvenient to put expressions that belong together next to ea
h other.In 
lassi
al notation, one writes ([x:
1℄
2)�2, where �2 and [x:
1℄ areseparated from ea
h other by the expression 
2. This makes the stru
tureof the expression less 
lear, in parti
ular if 
2 is a very long expression.We de�ne fv(A) in the same way as for PTSs where also fv(a(�1; : : : ;�n)) def=Sni=1 fv(�i). We adhere to the usual 
onvention that names of bound variablesin an expression di�er from the free variables in that expression. We use � todenote synta
ti
al equivalen
e (up to renaming of bound variables).De�nition 10 If 
;�1; : : : ;�n are expressions (in E), and x1; : : : ; xn are dis-tin
t variables, then 
[x1; : : : ; xn:=�1; : : : ;�n℄ denotes the expression 
 inwhi
h all free o

urren
es of x1; : : : ; xn have simultaneously been repla
ed by�1; : : : ;�n. This is an expression in E (this 
an be proved by indu
tion on thestru
ture of 
). Moreover, type[x1; : : : ; xn:=�1; : : : ;�n℄ is de�ned as type.De�nition 11 (Books and lines) An Aut-68-book (or book) is a �nite list(possibly empty) of (Aut-68)-lines (to be de�ned next). If l1; : : : ; ln are thelines of book B, we write B � l1; : : : ; ln. (See Example 13.)An Aut-68-line (line if no 
onfusion arises) is a 4-tuple (�; k; �1; �2). Here,12



� � is a 
ontext, i.e. a �nite (possibly empty) list x1:�1; : : : ; xn:�n, wherethe xis are di�erent elements of V and the �is are elements of E [ftypeg;� �1 
an be (only): Æ The symbol | (if k 2 V); Æ The symbol pn (if k 2 C)(pn stands for \primitive notion"); Æ An element of E (if k 2 C);� k is an element of V [ C; and �2 is an element of E [ ftypeg.Remark 12 There are three sorts of Automath-lines (see Example 13):1. (�; k;|;�2) with k 2 V . This is a variable de
laration of the variable khaving type �2. This does not really add a new statement to the book,but these de
larations are needed to form 
ontexts.Variables 
an play two roles. First of all they 
an represent an unspe
-i�ed obje
t of a 
ertain type (
ompare this to the mathemati
al way ofspeaking: \let x be a natural number"). Se
ondly, a variable 
an a
t as alogi
al assumption. This happens if the variable has as type the proof ofa 
ertain proposition A. The usual mathemati
al way of speaking in su
ha situation is not \let x be a proof of A", but: \assume A";2. (�; k; pn; �2) with k 2 C. This line introdu
es a primitive notion: a 
on-stant k of type �2. This 
onstant 
an a
t as a primitive notion (for instan
eintrodu
ing the type of natural numbers, or introdu
ing the number 0),or as an axiom. The introdu
tion of k is parametrised by the 
ontext�. For instan
e, if we want to introdu
e the primitive notion of \logi
al
onjun
tion", we do not want to have a separate primitive notion for ea
hpossible 
onjun
tion and(A;B).5 Instead, we want to have one primitivenotion and, to whi
h we 
an add two propositions A and B as parameterswhen we want to form the proposition and(A;B). Therefore, we introdu
eand in a 
ontext � � x:prop; y:prop. Given 
ertain propositions A;B thisenables us to form the Aut-68-expression and(A;B);3. (�; k; �1; �2) with k 2 C and �1 2 E . This line introdu
es a de�nition.The de�niendum k is de�ned by the de�niens �1 and has type �2. De�-nitions are parametrised like primitive notions. They help to:� abbreviate long expressions, 
larify the book stru
ture, and makeexpression manipulations eÆ
ient;� give a name to an expression. For instan
e, we 
an abbreviateS(S(S(S(S(S(S(0))))))) by 7.Example 13 In Figure 3 we give an example of an automath-book that intro-du
es some elementary notions of propositional logi
. We have numbered ea
hline in the example, and use these line numbers for referen
e in our 
ommentsbelow. To keep things 
lear, we have omitted the types of the variables in the
ontext. The book 
onsists of three parts:5Unlike the habit in mathemati
s to use only one 
hara
ter (possibly indexed) for a variable,AUTOMATH adopts the 
onvention of 
omputer s
ien
e to use variables 
ontaining more thanone 
hara
ter. So and represents only one variable, and not the appli
ation of a to n and d.13



? prop pn type (1)? x | prop (2)x y | prop (3)x,y and pn prop (4)x proof pn type (5)x,y px | proof(x) (6)x,y,px py | proof(y) (7)x,y,px,py and-I pn proof(and) (8)x,y pxy | proof(and) (9)x,y,pxy and-O1 pn proof(x) (10)x,y,pxy and-O2 pn proof(y) (11)x prx | proof(x) (12)x,prx and-R and-I(x,x,prx,prx) proof(and(x,x)) (13)x,y,pxy and-S and-I(y,x,and-O2,and-O1) proof(and(y,x)) (14)Figure 3: Example of an automath-book� In lines 1{5 we introdu
e some basi
 material:1. We take the type prop as a primitive notion. This type 
an beinterpreted as the type of propositions;2. We de
lare a variable x of type prop. This variable will be used inthe sequel of the book;3. We similarly de�ne a variable y of type prop within the 
ontextx:prop. For reasons of spa
e, we do not expli
itly mention the typeof x in the 
ontext; if ne
essary we 
an �nd that type in line 2;4. Given propositions x and y, we introdu
e a new primitive notion, the
onjun
tion and(x,y) of x and y;5. Given a proposition x we introdu
e the type proof(x) of the proofsof x as a primitive notion. In this way, we 
an use the pat prin
iple�a la de Bruijn (
f. Se
tion 2.1);� In lines 6{11 we show how we 
an 
onstru
t proofs of propositions of theform and(x; y), and how we 
an use proofs of su
h propositions:6. Given propositions x and y, we assume that we have a px 2 V of typeproof(x). I.e., the variable px represents a proof of x;7. We also assume a proof py of y;8. Given propositions x and y, and proofs px and py of x and y, wewant to 
on
lude that and(x,y) holds. This is a natural dedu
tionaxiom whi
h we 
all and-I (and-introdu
tion). and-I(x,y,px,py)is a proof of and(x,y), so of type proof(and(x,y)).In line 8, we see proof(and) instead of proof(and(x,y)) as the typeof and-I. This is usual in Automath, and keeps lines short. This\default me
hanism" works as follows. As the 
ontext of line 4 hastwo variables x and y, we 
on
lude that and should always 
arry twoparameters. In the expression proof(and) in line 8, no parameters14



are provided for and. It is then assumed that the �rst two variables ofthe 
ontext of line 8 are used as \default parameters". The �rst twovariables of the 
ontext of line 8 are x and y. Therefore, proof(and)in line 8 should be read as proof(and(x,y)).Similarly, we 
an write proof instead of proof(x) in line 6. Fromline 5 (where proof is introdu
ed) we �nd that proof 
arries oneparameter. Writing just proof in line 6 means that we must use the�rst variable of the 
ontext of line 6, x, as a default parameter. Wemust write proof(y) in line 7 be
ause proof would give proof(x);9. To express how we 
an use a proof of and(x,y), �rst we introdu
e avariable pxy that represents an arbitrary proof of and(x,y);10. As we want x to hold when and(x,y) holds, we introdu
e an axiomand-O1 (and-out, �rst and-elimination). Given propositions x,y anda proof pxy of and(x,y), and-O1(x,y,pxy) is a proof of x;11. Similarly, we introdu
e an axiom and-O2 representing a proof of y;� We 
an now derive some elementary theorems:12. We want to derive and(x,x) from x. That is: from a proof of x, we
an 
onstru
t a proof of and(x,x). In line 6, we introdu
ed a variablepx for a proof of x. However, we de
lared px in the 
ontext x,y. Aswe do not want a se
ond proposition y to o

ur in this theorem, wede
lare a new proof variable prx, in the 
ontext x;13. We derive our theorem: the re
exivity of the logi
al 
onjun
tion.Given a proposition x, and a proof prx of x, we 
an use the axiomand-I to �nd a proof of and(x,x): we 
an use and-I(x,x,px,px)thanks to line 8. We give a name to this proof: and-R. If, anywherein the sequel of the book, � is a proposition, and 
 is a proof of �,we 
an write and-R(�;
) for a proof of and(�;�). This is shorter,and more expressive, than the original expression and-I(�;�;
;
);14. We also show that and is symmetri
: whenever and(x,y) holds, wealso have and(y,x). The idea is as follows. Given propositions x,yand a proof pxy of and(x,y), we 
an form proofs and-O1(x,y,pxy) ofx and and-O2(x,y,pxy) of y. We 
an feed these proofs \in reverse or-der" to the axiom and-I: the expression and-I(y,x,and-O2,and-O1)represents a proof of and(y,x). The expression and-O2 should beread as and-O2(x,y,pxy) due to the \default parameter" me
ha-nism. Similarly, and-O1 must be read as and-O1(x,y,pxy).2.4 Corre
t booksNot all books are good books. If (�; k; �1; �2) is a line of a book B, theexpressions �1 and �2 (as long as �1 is not pn or |, and �2 is not type) mustbe well-de�ned, i.e. the elements of V [ C o

urring in them must have beenestablished (as variables, primitive notions, or de�ned 
onstants) in previous15



parts of B. The same holds for the type assignments xi:�i that o

ur in �.Moreover, if �1 is not pn or |, then �1 must be of the same type as k, hen
e�1 must be of type �2 (within the 
ontext �). Finally, there should be only onede�nition of any obje
t in a book, so k should not o

ur in the pre
eding linesof the book. Hen
e we need notions of 
orre
tness and of typing.We write B;? ` ok to indi
ate that a book B is 
orre
t, and B; � ` ok toindi
ate that the 
ontext � is 
orre
t with respe
t to the (
orre
t) book B.6 Wewrite B; � ` �1 : �2 to indi
ate that �1 is a 
orre
t expression of type �2 (orsimply a 
orre
t expression) with respe
t to B and �. We also say: �1 : �2 isa 
orre
t statement with respe
t to B and �. We write `AUT�68 if a 
onfusionof systems arises. The following two interrelated de�nitions are based on [19℄.De�nition 14 (Corre
t books and 
ontexts) A book B and a 
ontext �are 
orre
t if B; � ` ok 
an be derived with the rules below (=�d is given inSe
tion 2.5. The rules use 
orre
t statements of De�nition 15):(axiom) ?;? ` ok(
ontext ext.) B1; (�;x;|;�);B2; � ` okB1; (�;x;|;�);B2; �; x:� ` ok(book ext.: var1) B; � ` okB; (�;x;|; type);? ` ok(book ext.: var2) B; � ` �2 : typeB; (�;x;|;�2);? ` ok(book ext.: pn1) B; � ` okB; (�; k; pn; type);? ` ok(book ext.: pn2) B; � ` �2 : typeB; (�; k; pn; �2);? ` ok(book ext.: def1) B; � ` �1 : typeB; (�; k; �1; type);? ` ok(book ext.: def2) B; � ` �2 : type B; � ` �1 : �02 B; � ` �2 =�d �02B; (�; k; �1; �2);? ` okFor the (book ext.) rules, we assume x 2 V and k 2 C do not o

ur in B or �.De�nition 15 (Corre
t statements) A statement B; � ` � : 
 is 
orre
t ifit 
an be derived with the rules below (the start rule uses the notions of 
orre
t
ontext and 
orre
t book as given in De�nition 14).6As the empty 
ontext will be 
orre
t with respe
t to any 
orre
t book.
16



(start) B; �1; x:�;�2 ` okB; �1; x:�;�2 ` x:�(parameters) B � B1; (x1:�1; : : : ; xn:�n; b; 
1; 
2);B2B; � ` �i:�i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄(i = 1; : : : ; n)B; � ` b(�1; : : : ;�n) : 
2[x1; : : : ; xn:=�1; : : : ;�n℄(abstr.1) B; � ` �1:type B; �; x:�1 ` 
1:typeB; � ` [x:�1℄
1 : type(abstr.2) B; � ` �1:type B; �; x:�1 ` 
1:type B; �; x:�1 ` �2:
1B; � ` [x:�1℄�2 : [x:�1℄
1(appli
ation) B; � ` �1 : [x:
1℄
2 B; � ` �2 : 
1B; � ` h�2i�1 : 
2[x:=�2℄(
onversion) B; � ` � : 
1 B; � ` 
2:type B; � ` 
1 =�d 
2B; � ` � : 
2When using the parameter rule, we assume that B; � ` ok, even if n = 0.Lemma 16 The book of Example 13 (see Figure 3) is 
orre
t.Proof: We prove this for the �rst four lines (we leave lines 5{14 for the reader).We write (m{n) to denote the book that 
onsists of lines m to n of Example 13.1. By (axiom), ?;? ` ok, so (?; prop; pn; type);? ` ok (book ext.: pn1).2. By (parameters), (1{1);? ` prop : type. Therefore by (book ext.: var1),we have: (1{1); (?; x;|; prop);? ` ok.3. By (
ontext ext.), (1{2); x:prop ` ok.Therefore by (book ext.: var1), we have: (1{2); (x:prop; y;|; prop) ` ok.4. By two appli
ations of (
ontext ext.), (1{3); x:prop; y:prop ` ok.By (parameters), we have: (1{3); x:prop; y:prop ` prop:type.Therefore by (book ext.: pn2), we have: (1{4);? ` ok. �2.5 De�nitional equalityWe need to des
ribe the relation =�d (\de�nitional equality"). This notion isbased on the me
hanisms of de�nition and abstra
tion/appli
ation of Aut-68.The abstra
tion/appli
ation me
hanism provides the well-known notion of �-equality, originating from h�i[x:
2℄
1 !� 
1[x:=�℄: We need to des
ribe thede�nition me
hanism of Aut-68 via the notion of d-equality.7De�nition 17 (d-equality) Assume, B; � ` � : �0. We de�ne the d-normalform nfd(�) of � with respe
t to B by indu
tion on the length of B. Assumenfd(�) has been de�ned for all B0 with less lines than B, and all � that are
orre
t with respe
t to B0 and a 
ontext �. By indu
tion on the stru
ture of �:7This de�nition depends on the de�nition of derivability ` whi
h in turn depends onthe de�nition of =�d. The de�nitions of 
orre
t book, 
orre
t line, 
orre
t 
ontext, 
orre
texpression and =�d should be given within one de�nition, using indu
tion on the length ofthe book. This would lead to a 
orre
t but very long de�nition, and that is the reason whythe de�nitions are split into smaller parts (in this paper as well as in [19℄).17



� If � is a variable x, then nfd(�) def= x;� If � � b(
1; : : : ;
n) and the normal forms of the 
is have been de�ned,determine a line (�; b; �1; �2) in the book B (there is exa
tly one su
hline, and it is determined by b). Write � � x1:�1; : : : ; xn:�n. Distinguish:Æ �1 �|. This 
ase doesn't o

ur, as b 2 C;Æ �1 � pn. Then de�ne nfd(�) def= b(nfd(
1); : : : ; nfd(
n));Æ �1 is an expression. Then �1 is 
orre
t with respe
t to B0 that 
ontainsless lines than B (B0 doesn't 
ontain the line (�; b; �1; �2), and alllines of B0 are lines of B), hen
e we 
an assume nfd(�1) has beende�ned. De�ne nfd(�) def= nfd(�1)[x1; : : : ; xn:=nfd(
1); : : : ; nfd(
n)℄;� If � � [x:
1℄
2 then nfd(�) def= [x:nfd(
1)℄nfd(
2);� If � � h
2i
1 then nfd(�) def= hnfd(
2)infd(
1).Write �1 =d �2 if nfd(�1) � nfd(�2)8 and =�d for the smallest equivalen
erelation 
ontaining =� and =d.De�nition 18 �1 and �2 are 
alled de�nitionally equal (with respe
t to a bookB) if �1 =�d �2.9Instead of De�nition 17, we 
an de�ne d-equality via a redu
tion relation.De�nition 19 (Æ-redu
tion) Let B be a book, � a 
orre
t 
ontext with re-spe
t to B, and � a 
orre
t expression with respe
t to B; �. We de�ne �!Æ 
by the usual 
ompatibility rules, and(Æ) If � = b(�1; : : : ;�n), and B 
ontains a line (x1:�1; : : : ; xn:�n; b; �1; �2)where �1 2 E , then �!Æ �1[x1; : : : ; xn:=�1; : : : ;�n℄:� is in Æ-normal form if for no expression 
, �!Æ 
. We de�ne !!Æ, !!+Æ and=Æ as usual. Again, !Æ depends on B, but we drop B if no 
onfusion o

urs.Lemma 20 1. (Chur
h-Rosser) If A1 =Æ A2 then there is B su
h thatA1 !Æ B and A2 !Æ B;2. nfd(�) is the unique Æ-normal form of �;3. � =Æ 
 if and only if � =d 
.4. !Æ is strongly normalising.8Note that the d-normal form nfd(�) of a 
orre
t expression � depends on the book B,and to be 
ompletely 
orre
t we should write nfdB(�) instead of nfd(�). We will, however,omit the subs
ript B as long as no 
onfusion arises.9De�nitional equality of expressions �1 and �2 depends on the book B, so we should write=�dB instead of =�d. As before, we leave out the subs
ript B as long as no 
onfusion arises.18



Proof:1. Aut-68 with !Æ is an orthogonal term rewrite system (see [39℄). Su
h aterm rewrite system has the Chur
h-Rosser property (see [39℄);2. It is not hard to show that � !!Æ nfd(�). By indu
tion on the de�nitionof nfd(�) one shows that nfd(�) is in Æ-normal form. The uniqueness ofthis normal form follows from the Chur
h-Rosser property;3. If � =Æ 
 then by (1) there is 	 su
h that � !Æ 	 and 
 !Æ 	. Thismeans that the Æ-normal forms of � and 
 are equal, so by (2), nfd(�) �nfd(
). On the other hand, if nfd(�) � nfd(
), then � and 
 have thesame Æ-normal forms (by (2)), so � =Æ 
.4. By 2,!Æ is weakly normalising. Moreover, De�nition 17 of nfd(�) indu
esan innermost redu
tion strategy. By a theorem of O'Donnell ([45℄, or pp.75{76 of [39℄), !Æ is strongly normalising. �De�nition 21 � A book B is part of a book B0, notation B � B0, if alllines of B are lines of B0.� A 
ontext � is part of a 
ontext �0, notation � � �0, if all de
larationsx:� of � are de
larations in �0.Lemma 22 (Weakening) If B; � ` � : 
, B � B0, � � �0 and B0; �0 ` okthen B0; �0 ` � : 
.Proof: By indu
tion on the derivation of B; � ` � : 
. �3 From Aut-68 towards a PTS �68We want to give a des
ription of Aut-68 within the framework of the PureType Systems. One of the most important 
hoi
es to be made is whether ornot to maintain the parameter me
hanism (that is: to allow expressions withparameters, as in the se
ond 
lause of De�nition 8). On the one hand, theparameter me
hanism is an important feature ofAutomath. On the other handPTSs do not have a parameter me
hanism, and the parameter me
hanism 
an beeasily imitated by fun
tion appli
ation (
f. the se
ond 
lause of the forth
omingDe�nition 23). Moreover, the des
ription by van Benthem Jutting in [2℄ of thesystems Aut-68 and Aut-QE in a PTS style does not use parameters.In this paper, we provide a translation to PTSs without parameters. In doingso, we 
an explain van Benthem Jutting's des
ription of Aut-68 and Aut-QE.We will see, however, that the way in whi
h we must handle parameters inthe resulting PTS is a bit arti�
ial. Moreover, we think that parameters play animportant role in the Automath systems, and that they 
ould play a similarrole in other PTSs. Therefore, we present extensions of PTSs with parametersin [32, 41, 33℄. These extensions are based on the way in whi
h parameters arehandled in Automath, and it was shown that Automath 
an be des
ribedvery well within these PTSs with parameters.19



To des
ribe Aut-68 as a PTS without parameters (
all it �68), we �rsttranslate the expressions of Aut-68 to typed �-terms (note that the parameterme
hanism of De�nition 8 is repla
ed by repeated fun
tion appli
ation in PTSs):De�nition 23 Re
all that T and V are the set of terms and variables for PTSs.We de�ne a mapping [: : :℄ from the 
orre
t expressions in E (relative to a bookB and a 
ontext �) to T. We assume that C [ V � V.� x def= x for x 2 V ; � b(�1; : : : ;�n) def= b�1 � � ��n; � h
i� def= � 
;� type def= �; � [x:�℄
 def= � �x:�:
 if [x:�℄
 has type type;�x:�:
 otherwiseWith this translation in mind, we want to �nd a type system �68 that \suits"Aut-68, i.e. if � is a 
orre
t expression of type 
 with respe
t to a book Band a 
ontext �, then we want B0;�0 ` � : 
 to be derivable in �68, and vi
eversa. Here, B0 and �0 are some suitable translations of B and �. The sear
hfor a suitable �68 will fo
us on three points: �-formation and parameter types;
onstants and variables; and de�nitions.3.1 The 
hoi
e of the 
orre
t formation (�) rules and theparameter types {x:A:BAs type � �, De�nition 15 
lari�es whi
h �-rules are implied by the abstra
tionme
hanism of Aut-68, the rule on the left translates into the rule on the rightwhi
h is �-rule (�; �; �) (B and � are suitable translations of B and �):B; � ` �1:type B; �; x:�1 ` 
1:typeB; � ` [x:�1℄
1 : type B;� ` �1: � B;�; x:�1 ` 
1:�B;� ` (�x:�1:
1) : � ;It is, however, not immediately 
lear whi
h �-rules are indu
ed by theparameter me
hanism of Aut-68. Let � � b(�1; : : : ;�n) be a 
orre
t ex-pression of type 
 with respe
t to a book B and a 
ontext �. By De�ni-tion 14 there is a line (x1:�1; : : : ; xn:�n; b; �1; �2) in B su
h that ea
h �i isa 
orre
t expression with respe
t to B and �, and has a type that is de�-nitionally equal to �i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄. We also know that 
 =�d�2[x1; : : : ; xn:=�1; : : :�n℄. Now � � b�1 � � ��n, and, assuming that we 
anderive in �68 that �i has type �i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄; it is not unrea-sonable to assign the type �x1:�1 � � ��xn:�ntob:�2. We will abbreviate thislast term by Qni=1 xi:�i:�2. Then we 
an derive (using n times the appli
ationrule that we will introdu
e for �68) that � has type 
 in �68.It is important to noti
e that the type of b, Qni=1 xi:�i:�2, does not ne
es-sarily have an equivalent in Aut-68, as in Aut-68 abstra
tions over type arenot allowed (only abstra
tions over expressions � that have type as type arepossible | 
f. De�nition 15). In other words, the type of b, Qni=1 xi:�i:�2, isnot ne
essarily a �rst-
lass 
itizen of Aut-68 and should therefore have spe
ialtreatment in �68. This is the reason to 
reate a spe
ial sort 4, in whi
h thesetypes of Aut-68 
onstants and de�nitions are stored. This idea originates fromvan Benthem Jutting and was �rstly presented in [2℄.20



If we 
onstru
t �xn:�n:�2 from �2, we must use a rule (s1; s2; s3), wheres1; s2; s3 are sorts. Sort s1 must be the type of �n. As �n � type or �n has typetype, we must allow the possibilities s1 � � and s1 � 2. Similarly, �2 � typeor �2 has type type, so we also allow s2 � � and s2 � 2. As we intended tostore the new type in sort 4, we take s3 � 4.For similar reasons, we introdu
e rules (�;4;4) and (2;4;4) to 
onstru
tQni=1 xi:�i:�2 from �xn:�n:�2 for n > 1. Hen
e, we have the �-rules:(�; �; �); (�; �;4); (2; �;4); (�;2;4); (2;2;4); (�;4;4); (2;4;4):We do not have rules of the form (4; s2; s3) or (s1;4; s3) with s3 � � ors3 � 2. So types of sort 4 
annot be used to 
onstru
t types of other sorts.In this way, we 
an keep the types of the �-
al
ulus part of Aut-68 separatedfrom the types of the parameter me
hanism: the last ones are stored in 4.In Example 5.2.4.8 of [2℄, there is no rule (�; �;4). In prin
iple, this rule issuper
uous, as ea
h appli
ation of rule (�; �;4) 
an be repla
ed by an appli
a-tion of rule (�; �; �). Nevertheless we maintain this rule be
ause:� The presen
e of both (�; �; �) and (�; �;4) in the system stresses the fa
tthat Aut-68 has two type me
hanisms: one provided by the parameterme
hanism and one by the �-abstra
tion me
hanism;� There are te
hni
al arguments to make a distin
tion between types formedby the abstra
tion me
hanism and types that appear via the parameterme
hanism. In this paper, we denote produ
t types 
onstru
ted by theabstra
tion me
hanism in the usual way (so: �x:A:B), whilst we will usethe notation {x:A:B for a type 
onstru
ted by the parameter me
hanism.Hen
e, we have for the 
onstant b above that b : {ni=1 xi:�i:�210. As anadditional advantage, the resulting system will maintain Uni
ity of Types.This would have been lost if we use rules (�; �; �) and (�; �;4) withoutmaking this di�eren
e, as we 
an then derive both�:� ` �: � �:�; x:� ` �:��:� ` (�x:�:�) : � and �:� ` �: � �:�; x:� ` �:��:� ` (�x:�:�) : 4� There is another reason to make a distin
tion between types formed bythe abstra
tion me
hanism and types that appear in the translation viathe de�nition me
hanism. So far, we use Aut-68 without �-appli
ation.In Aut-68 with �-appli
ation (
all this system Aut-68� for the moment;see also Se
tion 5) the appli
ation rule of De�nition 15 (see below on theleft, is repla
ed by the rule on the right, but the rule des
ribing the typeof b(�1; : : : ;�n) is the same as the rule in De�nition 15 (parameters):B; � ` �1:[x:
1℄
2 B; � ` �2:
1B; � ` h�2i�1 : 
2[x:=�2℄ B; � ` �1:[x:
1℄
2 B; � ` �2:
1B; � ` h�2i�1 : h�2i
2 :So if we want to make a translation of Aut-68�, the appli
ation rule for�-terms has to be di�erent from the appli
ation rule for {-terms. Withoutdistin
tion between �-terms and {-terms, it would be impossible to amendthe system to represent Aut-68�. Distinguishing between �-terms and10we use {ni=1 xi:�i:�2 as an abbreviation for {x1:�1 � � � {xn:�n:�221



{-terms makes it possible to obtain a translation of Aut-68� from thetranslation of Aut-68 in a simple way.3.2 The di�erent treatment of 
onstants and variablesWhen we seek to translate the Aut-68 judgement B; � ` � : 
 in �68, we mustpay attention to the translation ofB, as there is no equivalent of books in PTSs.Our solution is to store the information on identi�ers of B in a PTS-
ontext.Therefore, 
ontexts of �68 will have the form �;�. The left part � 
ontainstype information on primitive notions and de�nitions, and 
an be seen as thetranslation of the information on primitive notions and de�nitions in B. Theright part � has the usual type information on variables.The idea to store the 
onstant information of B in the left part of the
ontext arises naturally. Let B be a 
orre
t Aut-68 book, to whi
h we add aline (�; b; pn; �2). Then � � x1:�1; : : : ; xn:�n is a 
orre
t 
ontext with respe
ttoB, and B; � ` �2:type or �2 � type. In �68 we 
an work as follows. Assumethe information on 
onstants in B has been translated into the left part � ofa �68 
ontext. We have (assuming that �68 is a type system that behaves likeaut-68, and writing � for the translation x1:�1; : : : ; xn:�n of �): �; � ` �2:s(s � � if B; � ` �2:type; s � 2 if �2 � type). Applying the {-formationrule n times, we obtain �;? ` {�:�2 : 4 (if � is the empty 
ontext, then{�:�2 � �2, and �2 has type � or 2 instead of 4. We write {� for {ni=1 xi:�i).As {�:�2 is exa
tly the type that we want to give to b (see the dis
ussion inSe
tion 3.1), we use this statement as premise for the start rule that introdu
esb. As the right part � of the original 
ontext has disappeared when we appliedthe {-formation rules, b:{�:�2 is automati
ally pla
ed at the righthand end of�: The 
on
lusion of the start rule is �; b:{�:�2 ` b:{�:�2:Adding b:{�:�2 at the end of � 
an be 
ompared with adding the line(�; b; pn; �2) at the end of B. This pro
ess 
an be 
aptured by the rule belowwhere s1 2 f�;2g (
ompare: �2:type or �2 � type) and s2 2 f�;2;4g (usually,s2 � 4; the 
ases s2 � �;2 only o

ur if � is empty):�; � ` �2:s1 �;` {�:�2:s2�; b:{�:�2;` b:{�:�2 :3.3 The de�nition system and the translation using xA line (x1:�1; : : : ; xn:�n; b; �1; �2), in whi
h b is a 
onstant and �1 2 E , rep-resents the de�nition: \for all expressions 
1; : : : ;
n (obeying some type 
on-ditions), b(
1; : : : ;
n) abbreviates �1[x1; : : : ; xn:=
1; : : : ;
n℄, and has type�2[x1; : : : ; xn:=
1; : : : ;
n℄:" So in �68, the 
ontext should also mention thatbX1 � � �Xn \is equal to" �1[x1; : : : ; xn:=X1; : : : ; Xn℄, for all terms X1; : : : ; Xn.This 
an be done by writing b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in the 
on-text instead of only b:{ni=1 xi:�i:�2, and adding a Æ-redu
tion rule that unfoldsthe de�nition of b: if b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� 2 � then � ` b !Æ�ni=1 xi:�i:�1. Unfolding the de�nition of b in a term b�1 � � ��n and applying�-redu
tion n times gives �1[x1:=�1℄ � � � [xn:=�n℄. This pro
edure 
orresponds22



exa
tly to the Æ-redu
tion � ` b(�1; : : : ;�n)!Æ �1[x1; : : : ; xn:=�1; : : : ;�n℄ inAut-6811. This method, however, has disadvantages:� In theAut-68 line (x1:�1; : : : ; xn:�n; b; �1; �2), b(�1; : : : ;�n) has for equiv-alent in �68, b�1 � � ��n. If n > 0, this �68-term has B � b�1 � � ��m asa subterm for any m < n. But B has no equivalent in Aut-68: only af-ter B is applied to suitable terms �m+1; : : : ;�n the result B�m+1 � � ��nhas b(�1; : : : ;�n) as its equivalent in Aut-68. Hen
e B is not dire
tlytranslatable into Automath, but only an intermediate result ne
essaryto 
onstru
t the equivalent of b(�1; : : : ;�n). B is re
ognisable as an in-termediate result via its type {ni=m+1 xi:�i:�2, of sort 4 (not � or 2).The method above allows to unfold the de�nition of b already in B, be
auseb�1 � � ��m 
an redu
e to ��ni=1 xi:�i:�1��1 � � ��m, and we 
an �-redu
ethis term m times to ��ni=m+1 xi:�i:�1� [xj :=�j ℄mj=1. It is more in linewith Aut-68 to make su
h unfolding not possible before all n arguments�1; : : : ;�n have been applied to b, so only when the 
onstru
tion of theequivalent of b(�1; : : : ;�n) has been 
ompleted;� Moreover, �ni=1 xi:�i:�1 does not ne
essarily have an equivalent in Aut-68. Take for example the 
onstant b in line (�:type; b; [x:�℄x; [x:�℄�):Then �ni=1 xi:�i:�1 � ��:�:�x:�:x. Its equivalent in Aut-68 would be[�:type℄[x:�℄x, but an abstra
tion [�:type℄ 
annot be made in Aut-68.12This explains why we do not in
orporate �ni=1 xi:�i:�1 as a 
itizen of �68.Therefore we 
hoose a di�erent translation. The line (x1:�1; : : : ; xn:�n; b; �1; �2);where �1 2 E , will be translated using b:= �xni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in-stead of b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in the left part of the translated
ontext �. A redu
tion rule bX1 � � �Xn !Æ �1[x1; : : : ; xn:=X1; : : : ; Xn℄ is addedfor all terms X1; : : : ; Xn. The symbol x is used instead of �. This emphasisesthat, though both xx:A and �x:A are abstra
tions, they are not the same kindof abstra
tion.4 �68Here, we give �68, show that it has the desirable properties of PTSs and thatit is the PTS version of Aut-68.De�nition 24 (�68)1. Let S is the set of sorts f�;2;4g. Terms of �68 are given by T ::= V jC j S j T T j �V :T :T j xV :T :T j �V :T :T j {V :T :T : Free variables fv(T )and \free" 
onstants f
(T ) of term T are de�ned as usual;11We 
an assume that the xi do not o

ur in the �j , so the simultaneous substitution�1[x1; : : : ; xn:=�1; : : : ;�n℄ is equal to �1[x1:=�1℄ � � � [xn:=�n℄.12This situation 
ompares to that of Se
tion 3.1, where we found that the type of b is notne
essarily a �rst-
lass 
itizen of AUT-68. There, we 
ould not avoid that the type of b be
amea 
itizen of �68 (though we made it a se
ond-
lass 
itizen by storing it in the sort 4).23



2. We de�ne the notion of 
ontext indu
tively:� ?;? is a 
ontext; dom (?;?) = ?;� If �; � is a 
ontext, x 2 V , x does not o

ur in �; � and A 2T , then �; �; x:A is a 
ontext (x is a newly introdu
ed variable);dom (�; �) = dom (�; �) [ fxg;� If �; � is a 
ontext, b 2 C, b does not o

ur in �; � and A 2 Tthen �; b:A; � is a 
ontext (in this 
ase b is a primitive 
onstant;dom (�; b:A; �) = dom (�; �) [ fbg;� If �; � is a 
ontext, b 2 C, b does not o

ur in �; �, A 2 T , andT 2 T , then �; b:=T :A; � is a 
ontext (in this 
ase b is a de�ned
onstant; dom (�; b:=T :A; �) = dom (�; �) [ fbg.Note that a semi
olon is used as the separation mark between the twoparts of the 
ontext. A 
omma separates expressions within ea
h part.We de�ne prim
ons (�; �) = fb 2 dom (�; �) j b is a primitive 
onstantg;def
ons (�; �) = fb 2 dom (�; �) j b is a de�ned 
onstantg; andfv(�; �) = dom (; �) :3. We de�ne Æ-redu
tion on terms. Let � be the left part of a 
ontext.If (b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:B)) 2 � and B is not {y:B1:B2, then� ` bX1 � � �Xn !Æ T [x1; : : : ; xn:=X1; : : : ; Xn℄ for all X1; : : : Xn 2 T .We also have the usual 
ompatibility rules on Æ-redu
tion. We use nota-tions like !!Æ;!!+Æ ;=Æ as usual. If no 
onfusion about whi
h � o

urs,we simply write bX1 � � �Xn !Æ T [x1; : : : ; xn:=X1; : : : ; Xn℄;4. We use the usual notion of �-redu
tion;5. Judgements in �68 have the form �;� ` A : B, where �; � is a 
ontextand A and B are terms. In the 
ase that a judgement �; � ` A : B isderivable a

ording to the rules below, �; � is a legal 
ontext and A andB are legal terms. We write �; � ` A : B : C if both �; � ` A : B and�; � ` B : C are derivable in �68. The rules for �68 are given in Figure 5(v, p
, and d
 are shorthand for variable, primitive 
onstant, and de�ned
onstant, respe
tively). The newly introdu
ed variables in the Start-rulesand Weakening-rules are assumed to be fresh. Moreover, when introdu
inga variable x with a \p
"-rule or a \d
"-rule, we assume x 2 C, and whenintrodu
ing x via a \v"-rule, we assume x 2 V . We write �; � `�68 A : Binstead of �; � ` A : B if the latter gives rise to 
onfusion.Note that there is no rule (x). This is be
ause we do not want terms like xx:A:Bto be �rst-
lass 
itizens of �68: they do not have an equivalent in Automath.De�nition 25 We de�ne: �1; �1 ` �2; �2 if and only if� If b:A 2 �2; �2 then �1; �1 ` b:A; � If b:=T :A 2 �2 then �1; �1 ` b:A;� If b:=(xni=1 xi : Ai:U):B 2 �2 and U 6� x y:B:A0 then �1 ` bx1 � � �xn =�Æ U .24



(Axiom) ;` � : 2(Start : v) �; � ` A : s�;�; x:A ` x : A s � �;2(Start : p
) �; � ` B : s1 �;` {�:B : s2�; b:{�:B;` b : {�:B s1 � �;2(Start : d
) �; � ` T : B : s1 �;` {�:B : s2�; b:=(x�:T ):({�:B);` b : {�:B s1 � �;2(Weak : v) �; � `M : N �;� ` A : s�;�; x:A `M : N s � �;2(Weak : p
) �;`M : N �;� ` B : s1 �;` {�:B : s2�; b:{�:B;`M : N s1 � �;2(Weak : d
) �;`M : N �;� ` T : B : s1 �;` {�:B : s2�; b:=(x�:T ):({�:B);`M : N s1 � �;2(�� form) �; � ` A : � �;�; x:A ` B : ��;� ` (�x:A:B) : �({ � form) �; � ` A : s1 �;�; x:A ` B : s2�;� ` ({x:A:B) : 4 s1 � �;2(�) �;� ` �x:A:B : � �;�; x:A ` F : B�;� ` (�x:A:F ) : (�x:A:B)(App1) �; � `M : �x:A:B �;� ` N : A�;� `MN : B[x:=N ℄(App2) �; � `M : {x:A:B �;� ` N : A�;� `MN : B[x:=N ℄(Conv) �; � `M : A �;� ` B : s � ` A =�Æ B�;� `M : BFigure 4: Rules of �68
25



Many properties for PTSs hold for �68 and 
an be proved by the samemethods as for PTSs. Due to the split of 
ontexts and the di�erent treatmentof 
onstants and variables, these properties are on some points di�erently for-mulated than usual. The proofs of Lemmas 26, 27, 30, 31, 32 follow [2℄.Lemma 26 (Free Variable Lemma) Let � � b1:B1; : : : ; bm:Bm (in �, alsoexpressions bi:=Ti:Bi may o

ur, but for uniformity of notation we leave out the:=Ti-part); let � � x1:A1; : : : ; xn:An and �;� `M : N . Then:� The b1; : : : ; bm 2 C and x1; : : : ; xn 2 V are all distin
t;� f
(M); f
(N) � fb1; : : : ; bmg; fv(M); fv(N) � fx1; : : : ; xng;� b1:B1; : : : ; bi�1:Bi�1;` Bi:si for si 2 f�;2;4g;and �;x1:A1; : : : ; xj�1:Aj�1 ` Aj :tj for tj 2 f�;2g.Lemma 27 � (Start) Let �;� be a legal 
ontext. Then�;� ` � : 2, and if b:A 2 �;�, or 
:=T :A 2 �, then �;� ` 
 : A.� (De�nition) Assume �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:B) and�2; � `M : N; where B is not of the form {y:B1:B2. Then�1;x1:A1; : : : ; xn:An ` T : B : s for an s 2 f�;2g.The Transitivity Lemma must be formulated di�erently than usual (
f. 30)be
ause 
ontexts may 
ontain de�nitions. To the usual formulation\Let �1; �1 and �2; �2 be 
ontexts, of whi
h �1; �1 is legal. Assumethat for all b:A 2 �2; �2 and for all b:=T :A 2 �2; �2, �1; �1 ` b:A.Then �2; �2 ` B : C ) �1; �1 ` B : C."we must add a 
lause that b is de�ned in �1; �1 in a similar way as it has beende�ned in �2; �2. The next example shows that things go wrong otherwise:Example 28 Let �1 � b1:�; b2:�; b3:=b1:� and �2 � b1:�; b2:�; b3:=b2:�. Let�1 � �2 � x3:b3. Note that all the assumptions of the traditional formulation ofthe Transitivity Lemma (see above) hold for �1; �1 and �2; �2. Nevertheless,we 
an derive �2; �2 ` x3 : b2 (be
ause �2; �2 ` x:b3 and a

ording to �2,b3 =�d b2, so we 
an use the 
onversion rule). But we 
annot derive �1; �1 `x3 : b2 (be
ause b3 and b2 are not de�nitionally equal a

ording to �1).The following formulation of the Transitivity Lemma is 
orre
t:De�nition 29 We de�ne: �1; �1 ` �2; �2 if and only if� If b:A 2 �2; �2 then �1; �1 ` b:A;� If b:=T :A 2 �2 then �1; �1 ` b:A;� If b:=(xni=1 xi : Ai:U):B 2 �2 and U 6� x y:B:A0 then�1 ` bx1 � � �xn =�Æ U . 26



Lemma 30 � (Transitivity) Assume �1; �1 ` �2; �2 and �2; �2 ` B : C.Then �1; �1 ` B : C.� (Substitution) If �;�1; x:A;�2 ` B : C and �;�1 ` D : A then�;�1;�2[x:=D℄ ` B[x:=D℄ : C[x:=D℄.� (Thinning) Let �1; �1 be a legal 
ontext, and let �2; �2 be a legal 
ontextsu
h that �1 � �2 and �1 � �2. Then �1; �1 ` A : B ) �2; �2 ` A : B.Lemma 31 (Generation Lemma)� If x 2 V and �;� ` x:C then 9s 2 f�;2g and B =�Æ C su
h that�;� ` B : s and x:B 2 �;� If b 2 C and �;� ` b:C then 9s 2 S and B =�Æ C su
h that �;� ` B : s,and either b:B 2 � or 9T su
h that b:=T :B 2 �;� If s 2 S and �;� ` s:C then s � � and C =�Æ 2;� If �;� ` MN : C then 9A;B su
h that �;� ` M : (�x:A:B) or �;� `M : ({x:A:B), and �;� ` N :A and C =�Æ B[x:=N ℄;� If �;� ` (�x:A:b) : C then 9B su
h that �;� ` (�x:A:B) : �, �;�; x:A `b : B and C =�Æ �x:A:B;� Assume �;� ` (�x:A:B) : C. Then C =�Æ �, �;� ` A:� and �;�; x:A `B:�;� If �;� ` ({x:A:B) : C then C =�Æ 4, �;� ` A:s1 for s1 2 f�;2g, and�;�; x:A ` B:s2 for s2 2 f�;2;4g.Lemma 32 � (Uni
ity of Types) If �;� ` A : B1 and �;� ` A : B2then B1 =�Æ B2.� (Corre
tness of Types) If �;� ` A : B then there is s 2 S su
h thatB � s or �;� ` B : s.� If �;� ` A : (�x:B1:B2) then �;� ` B1 : �; and �;�; x:B1 ` B2 : �.� If �;� ` A : ({x:B1:B2) then�;� ` B1 : s1 for s1 2 f�;2g; and �;�; x:B1 ` B2:s2 for some s2.In order to show some properties of the redu
tion relations!� ,!Æ and!�Æand as Æ-redu
tion also depends on books, we �rst have to give a translation ofAut-68 books and Aut-
ontexts to �68-
ontexts:De�nition 33 � Let � be a Aut-68-
ontext x1:�1; : : : ; xn:�n. Then� def= x1:�1; : : : ; xn:�n.� Let B be a book. We de�ne the left part B of a 
ontext in �68 as:� ? def= ?; � B; (�; b; pn; 
) def= B; b:{�:
;� B; (�;x;|;
) def= B; � B; (�; b; �; 
) def= B; b:= x�:�:{�:
.27



prop : �,and : {x:prop.{y:prop.prop,proof : {x:prop.�,and-I : {x:prop.{y:prop.{px:(proof)x.{py:(proof)y.(proof)((and)xy),and-O1 : {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)x,and-O2 : {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)y,and-R := xx:prop.xprx : (proof)x.(and-I)xx(prx)(prx): {x:prop.{prx : (proof)x.(proof)((and)xx),and-S := xx:prop.xy:prop.xpxy:(proof)((and)xy).(and-I)yx((and-O2)xy(pxy))((and-O1)xy(pxy)): {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)((and)yx)Figure 5: Translation of Example 13Example 34 The translation of theAutomath book of Example 13 into �68 isgiven in Figure 5. (Be
ause of the habit in 
omputer s
ien
e to use more than onedigit for a variable, we have to write some additional bra
kets around subtermslike proof to preserve unambiguity). Note that all variable de
larations of theoriginal book have disappeared in the translation. In the original book, theydo not add any new knowledge but are only used to 
onstru
t 
ontexts. In ourtranslation, this happens in the right (instead of the left) part of the 
ontext.Lemma 35 Assume, � is a 
orre
t expression with respe
t to a book B.� 1. �!� �0 if and only if �!� �0;� 2. B `AUT�68 �!Æ �0 if and only if B `�68 �!Æ �0.Proof: An easy indu
tion on the stru
ture of �. �The Chur
h-Rosser property of !�Æ (Theorem 44) will be proved by ParallelRedu
tion )�Æ, �a la Martin-L�of and Tait (see Se
tion 3.2 of [1℄). The nextthree pages are devoted to this proof. We use IH for Indu
tion Hypothesis.De�nition 36 Let � be the left part of a 
ontext. We de�ne a \parallel re-du
tion" relation )�Æ on T : � For x 2 V , � ` x)�Æ x;� For b 2 C, � ` b)�Æ b; � For s 2 S, � ` s)�Æ s;� If � ` P )�Æ P 0 and � ` Q)�Æ Q0, thenÆ � ` �x:P:Q)�Æ �x:P 0:Q0; Æ � ` �x:P:Q)�Æ �x:P 0:Q0;Æ � ` {x:P:Q)�Æ {x:P 0:Q0; Æ � ` PQ)�Æ P 0Q0;� If � ` Q)�Æ Q0 and � ` R)�Æ R0, then � ` (�x:P:Q)R)�Æ Q0[x:=R0℄;� If b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U) 2 �, the term T is not of the form xy:T1:T2,� ` T )�Æ T 0 and � `Mi )�Æ M 0i for i = 1; : : : ; n, then � ` bM1 � � �Mn )�ÆT 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄.Some elementary properties of )�Æ are:Lemma 37 (Properties of )�Æ) Let � be the left part of a 
ontext. Then:1. � `M )�Æ M ; 2. If � `M !�Æ M 0 then � `M )�Æ M 0;3. If � `M )�Æ M 0 then � `M !!�Æ M 0.Proof: All proofs 
an be given by indu
tion on the stru
ture of M . �28



By Lemma 37, !!�Æ (the re
exive and transitive 
losure of !�Æ) in � is thesame relation as the re
exive and transitive 
losure of )�Æ in �. Therefore, ifwe want to prove Chur
h-Rosser!!�Æ, it suÆ
es to prove the Diamond Propertyfor )�Æ. We �rst make some preliminary de�nitions and remarks:Lemma 38 If � `M )�Æ M 0 and � ` N )�Æ N 0 then� `M [y:=N ℄)�Æ M 0[y:=N 0℄.Proof: Indu
tion on the stru
ture of M . �Lemma 39 Assume, � and �;�0 are left parts of legal 
ontexts, and f
(M) �dom (�). Then � `M )�Æ N if and only if �;�0 `M )�Æ N .Proof: By indu
tion on the length of � and by indu
tion on the de�nitionof � ` M )�Æ N . All 
ases in the de�nition of � ` M )�Æ N followdire
tly from IH for � ` M )�Æ N , ex
ept for the 
ase bM1 � � �Mn )�ÆT 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄. As f
(M) � dom (�), we have b 2 dom (�).Write � � �1; b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U);�2.� Noti
e that T is typable in �1;x1:A1; : : : ; xn:An (De�nition Lemma). Bythe Free Variable Lemma: f
(T ) � dom (�1). By IH on the length of� we have �1 ` T )�Æ T 0 i� � ` T )�Æ T 0, and �1 ` T )�Æ T 0 i��;�0 ` T )�Æ T 0;� We 
on
lude: � ` T )�Æ T 0 i� �;�0 ` T )�Æ T 0;� By IH on the de�nition of � ` M )�Æ N , we have � ` Mi )�Æ M 0i i��;�0 `Mi )�Æ M 0i ;� Note that b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U) is an element of both �;�0 and�. Moreover, b 62 dom (�0) (as �;�0 is the left part of a legal 
ontext).Hen
e � ` bM1 � � �Mn )�Æ N i� �;�0 ` bM1 � � �Mn )�Æ N . �For left parts � of 
ontexts and forM 2 T with f
(M) � dom (�), we de�nea termM�. InM�, all �-redexes that exist inM are 
ontra
ted simultaneously(this is a usual step in a proof of Chur
h-Rosser by Parallel Redu
tion), but alsoall Æ-redexes are 
ontra
ted. We will show that � ` N )�Æ M� for any N with� `M )�Æ N ; so M� helps us to show the Diamond Property for )�Æ.De�nition 40 We de�ne M� for any left part � of a 
ontext and any M 2 Tsu
h that f
(M) � dom (�). The de�nition of M� is by indu
tion on thelength of �. So assume M�0 has been de�ned for 
ontexts �0 shorter than �.We use indu
tion on the stru
ture of M :� x� def= x for any x 2 V ; s� def= s for any s 2 S;� M � b. Distinguish:{ b� def= b for any b 2 prim
ons (�; );{ b� def= b for any b 2 def
ons (�; ) that is not a Æ-redex;29



{ If b 2 def
ons (�; ) is a Æ-redex, then � � �1; b:=T :U;�2, whereT 6� xy:T1:T2. By the De�nition Lemma, �1;` T : U , so we 
anassume that T�1 has already been de�ned. Then b� def= T�1 ;� (�x:P:Q)� def= �x:P�:Q�; (�x:P:Q)� def= �x:P�:Q�;({x:P:Q)� def= {x:P�:Q�;� M is an appli
ation term. We distinguish three possibilities:{ M � PQ is not a �Æ-redex. Then we de�ne M� def= P�Q�;{ M is a �-redex (�x:P:Q)R. We de�ne M� def= Q�[x:=R�℄;{ M is a Æ-redex bM1 � � �Mn, and for T is not of the form xy:T1:T2, � is�1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2: So �1;x1:A1; : : : ; xn:An `T : U (by the De�nition Lemma) and we 
an assume that T�1 hasalready been de�ned. Then M� def= T�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄.Lemma 41 Let � be the left part of a legal 
ontext. Then � ` M )�Æ M�for all M with f
(M) � dom (�).Proof: By indu
tion on the de�nition of M�. We only treat the 
ase � `bM1 � � �Mn )�Æ (bM1 � � �Mn)� where bM1 � � �Mn is a Æ-redex. Write � ��1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2, as in the de�nition of (bM1 � � �Mn)�.By indu
tion, we may assume that �1 ` T )�Æ T�1 and � ` Mi )�Æ M�i .By the De�nition Lemma, T is typable in �1;x1:A1; : : : ; xn:An, so by the FreeVariable Lemma, f
(T ) � dom (�1). By Lemma 39, � ` T )�Æ T�1 . So� ` bM1 � � �Mn )�Æ T�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄. �Theorem 42 Let � be the left part of a legal 
ontext. Assume f
(M) �dom (�). If � `M )�Æ N then � ` N )�Æ M�.Proof: Indu
tion on the the de�nition of M�.� M � x. Then N � x and M� � x;� M � b. Distinguish:{ b 2 prim
ons (�; ). Then N � b and M� � b;{ b 2 def
ons (�; ), but b is not a Æ-redex. Then N � b and M� � b;{ b 2 def
ons (�; ), and � � �1; b:=T :U;�2, and T 6� xy:T1:T2. Theneither N � b or N � T 0 where T )�Æ T 0. If N � b then M � N andwe 
an use Lemma 41. If N � T then observe that by IH, �1 ` T )�ÆT�1 , that by Lemma 39 � ` T )�Æ T�1 , and that M� � T�1 ;� M � s. Then N � s and M� � s;� M � �x:P:Q. Then N � �x:P 0:Q0 for some P 0; Q0 with � ` P )�Æ P 0and � ` Q )�Æ Q0. By IH on P and Q we �nd � ` P 0 )�Æ P� and� ` Q0 )�Æ Q�. Therefore � ` �x:P 0:Q0 )�Æ �x:P�:Q�.The 
ases M � �x:P:Q, M � {x:P:Q, and M � PQ where PQ is not a�Æ-redex, are proved similarly; 30



� M is an appli
ation term (and is either a � or a Æ-redex). Distinguish:{ M is a �-redex, M � (�x:P:Q)R. Distinguish:� N � (�x:P 0:Q0)R0 for P 0; Q0; R0 with � ` P )�Æ P 0, � ` Q )�ÆQ0 and � ` R )�Æ R0. By indu
tion, � ` Q0 )�Æ Q� and� ` R0 )�Æ R�. Therefore � ` N )�Æ Q�[x:=R�℄;� N � Q0[x:=R0℄ for Q0; R0 with � ` Q)�Æ Q0 and � ` R)�Æ R0.By indu
tion, � ` Q0 )�Æ Q� and � ` R0 )�Æ R�. By Lemma38, � ` Q0[x:=R0℄)�Æ Q�[x:=R�℄;{ M is a Æ-redex, M � bM1 � � �Mn, and for T 6� xy:T1:T2, we have� � �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2:� N � bM 01 � � �M 0n for M 0i with � ` Mi )�Æ M 0i . By indu
tion,we have � ` M 0i )�Æ M�i . By the De�nition Lemma, T istypable in a 
ontext �1;x1:A1; : : : ; xn:An, so by the Free Vari-able Lemma, f
(T ) � dom (�1). By Lemma 41, �1 ` T )�ÆT�1 . By Lemma 39, � ` T )�Æ T�1 . Hen
e � ` N )�ÆT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄;� N � T 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄ for a T 0 with � ` T )�Æ T 0 andfor M 0i with � ` Mi )�Æ M 0i . By the De�nition Lemma, T istypable in �1;x1:A1; : : : ; xn:An, so by the Free Variable Lemma,f
(T ) � dom (�1). By Lemma 39, �1 ` T )�Æ T 0. By IH on T ,�1 ` T 0 )�Æ T�1 . As �1 ` T )�Æ T 0, f
(T 0) � dom (�1), soby Lemma 39, � ` T 0 )�Æ T�1 . By IH, also � ` M 0i )�Æ M�i .Repeatedly applying Lemma 38, we �nd13� ` T 0[x1; : : : ; xn:=M 01; : : :M 0n℄)�ÆT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄. �Corollary 43 (Diamond Property for )�Æ) Let � be the left part of a
ontext in whi
h M is typable. Assume � ` M )�Æ N1 and � ` M )�Æ N2.Then there is P su
h that � ` N1 )�Æ P and � ` N2 )�Æ P .Proof: Immediately from the theorem above: Take P �M�. �Theorem 44 (Chur
h-Rosser for !�Æ) Let � be the left part of a 
ontextin whi
h M is typable. If � `M !!�Æ N1 and � `M !!�Æ N2 then there is Psu
h that � ` N1 !!�Æ P and � ` N2 !!�Æ P .Proof: Dire
tly from Lemma 37.2, Lemma 37.3 and Corollary 43. �Lemma 45 (Subje
t Redu
tion) Let �;� ` A : B.1. If A!� A0 then �;� ` A0 : B. 2. A!Æ A0 then �;� ` A0 : B.3. If A!!�Æ A0 then �;� ` A0 : B.13We must remark that T 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄ � T 0[x1:=M 01℄ � � � [xn:=M 0n℄ andT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄ � T�1 [x1:=M�1 ℄ � � � [xn:=M�n ℄: This is 
orre
t as we 
anassume that the xi do not o

ur in the M 0j and M�j .31



Proof: The proof for 1. is as in [2℄. The proof for 3. is by indu
tion on the lengthof redu
tion using 1. and 2. As for 2. we de�ne �; �!Æ �;�0 if � � �1; x:A;�2,and �0 � �1; x:A0;�2, and � ` A !Æ A0. We de�ne �; � !Æ �0; � similarly.By indu
tion on the derivation of �; � ` A:B we prove simultaneously:�; � ` A:B and � ` A!Æ A0 ) �;� ` A0:B�;� ` A:B and �; �!Æ �0; � ) �0; � ` A:B�;� ` A:B and �; �!Æ �;�0 ) �;�0 ` A:B;We only treat the 
ase where the last applied rule is the 2nd appli
ation rule,and only prove the �rst of the three statements. Assume:� � �1; b:=� nxi=1xi:Ai:T� :� n{i=1 xi:Ai:B� ;�2 (1)with B 6� {y:B1:B2, and that the 
on
lusion of the 2nd appli
ation rule is�; � ` bM1 � � �Mn : Kn (2)for some Kn, and therefore � ` bM1 � � �Mn !Æ T [xi:=Mi℄ni=1: We must prove:�; � ` T [xi:=Mi℄ni=1 : Kn. We do this in two steps.1. We analyse the stru
ture ofKn, and derive that � ` Kn =�Æ B[xi:=Mi℄ni=1;2. We show that �; � ` T [xi:=Mi℄ni=1 : B[xi:=Mi℄ni=1.Ad 1. We repeatedly apply the Generation Lemma, starting with (2), thusobtaining Kn;Kn�1; : : : ;K1, K 0n;K 0n�1; : : : ;K 01, Ln; Ln�1; : : : ; L1 su
h that�; � ` bM1 � � �Mi�1 : ({xi:Li:K 0i); (3)�; � `Mi : Li; (4)� ` Ki =�Æ K 0i[xi:=Mi℄; (5)� ` Ki�1 =�Æ {xi:Li:K 0i: (6)We end with �; � ` b : ({x1:L1:K 01). By (1) and Generation: � ` {x1:L1:K 01 =�Æ{nj=1 xj :Aj :B: By Chur
h-Rosser we have L1 =�Æ A1 and� ` K 01 =�Æ n{j=2 xj :Aj :B: (7)Hen
e � ` {x2:L2:K 02 (6)=�Æ K1 (5;7)=�Æ �{nj=2 xj :Aj :B� [x1:=M1℄ �{ni=2 xi:Ai[x1:=M1℄:B[x1:=M1℄, so by the Chur
h-Rosser Theorem we haveL2 =�Æ A2[x1:=M1℄. Pro
eeding in this way, we obtain for i = 1; : : : ; n:� ` Li =�Æ Ai[xj :=Mj ℄i�1j=1; (8)� ` K 0i =�Æ n{j=i+1 xj :Aj [xk:=Mk℄i�1k=1:B[xk :=Mk℄i�1k=1;� ` Ki =�Æ n{j=i+1 xj :Aj [xk:=Mk℄ik=1:B[xk :=Mk℄ik=1:32



In parti
ular,� ` Kn =�Æ B[xi:=Mi℄ni=1: (9)Ad 2. We 
al
ulate the type of T [xi:=Mi℄ni=1. By De�nition Lemma on (1):�1;x1:A1; : : : ; xn:An ` T : B: (10)By Start Lemma: �1;x1:A1; : : : ; xi�1:Ai�1 ` Ai:si for sorts si 2 S. Hen
e:�; � ` A1 : s1 (Thinning Lemma);�; �; x1:A1 is legal (Start Rule);�; �; x1:A1 ` A2 : s2 (Thinning Lemma);�; �; x1:A1; x2:A2 is legal (Start Rule);...�; �; x1:A1; : : : ; xn:An is legal. (Start Rule).By Thinning Lemma to (10), �; �; x1:A1; : : : ; xn:An ` T : B: As �; � `M1 : L1(4) and �; � ` A1 : s1, we have �; � ` M1 : A1 by the Conversion ruleand (8). By Substitution Lemma: �; �; x2:A2[x1:=M1℄; : : : ; xn:An[x1:=M1℄ `T [x1:=M1℄ : B[x1:=M1℄; and �; � ` A2[x1:=M1℄ : s2:As �; � ` M2 : L2 (4) and � ` A2[x1:=M1℄ =�Æ L2 (8) we have by 
onversion�; � `M2 : A2[x1:=M1℄, and again by the Substitution Lemma:�; �; x3:A3[xi:=Mi℄2i=1; : : : ; xn:An[xi:=Mi℄2i=1 ` T [xi:=Mi℄2i=1 : B[xi:=Mi℄2i=1�;� ` A3[x1:=M1℄[x2:=M2℄ : s3:Pro
eeding in this way we eventually �nd�; � ` T [xi:=Mi℄ni=1 : B[xi:=Mi℄ni=1: (11)Applying Lemma 32 to (9) we have �; � ` Kn : s. Now use the ConversionRule, (11), and the fa
t that � ` Kn =�Æ B[xi:=Mi℄ni=1: �Lemma 46 Assume s 2 S and M legal. If � `M =�Æ s then M � s.Proof: First assume s 2 f2;4g. If �; � ` M : N for some � and N , and� ` M =�Æ s then by Chur
h-Rosser � ` M !!�Æ s, so by Subje
t Redu
tion�; � ` s : N , 
ontradi
ting the Generation Lemma. If �; � ` N : M and� ` M =�Æ s and M 6� s then we have by Lemma 32 that �; � ` M : P forsome P , so again �; � ` s : P , in 
ontradi
tion with the Generation Lemma.Now assume s � �, �; � ` M : N , and � ` M =�Æ s. By Chur
h-Rosser,� ` M !!�Æ �, say � ` M !�Æ : : : !�Æ M 0 !�Æ �. By Subje
t Redu
tion,�; � `M 0 : N and �; � ` � : N . By Generation � ` N =�Æ 2, so N � 2.33



� M 0 � (�x:A:B)C and � � B[x:=C℄. By Generation 9B0 where � `B0[x:=C℄ =�Æ 2 (so B0[x:=C℄ � 2), �; � ` (�x:A:B) : (�x:A:B0) and�; � ` C : A. C � 2 
ontradi
ts �; � ` C : A, so B0 � 2. By Lemma 32,�; � ` (�x:A:2) : �, so by Generation �; �; x:A ` 2 : �, 
ontradi
tion;� M 0 � bM1 � � �Mn and � ` bM1 � � �Mn !Æ T [xi:=Mi℄ni=1 � � as above.If s � �, �; � ` N : M , and � ` M =�Æ s then by Lemma 32 M � s (and weare done) or �; � `M : s0 (whi
h implies M � s by the above argument). �We prove Strong Normalisation for �Æ-redu
tion in �68 by mapping a typableterm M (in a 
ontext �; �) of �68 to a term jM j� that is typable in a stronglynormalising PTS. The mapping is 
onstru
ted in su
h a way that if M !� N ,jM j� !!+� jN j�, and that if � `M !Æ N , jM j� !!� jN j�.De�nition 47 Let � be the left part of a legal 
ontext and let M 2 T . Wede�ne jM j� by indu
tion on the length of � and the stru
ture of M .� jxj� def= x for x 2 V ; � jsj� def= s for s 2 S � jPQj� def= jP j� jQj�� j�x:P:Qj� def= �x: jP j� : jQj� � j�x:P:Qj� def= �x: jP j� : jQj�� j{x:P:Qj� def= �x: jP j� : jQj� � jbj� def= b for all b 2 C n def
ons (�; )� jbj� def= �ni=1 xi: jAij�1 : jT j�1 if � � �1; b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U);�2The following lemma is useful:Lemma 48 Let �, �1, �2 be left parts of legal 
ontexts and M;N 2 T .1. fv(jM j�) = fv(M).2. If �2 � �1;�0 and f
(M) � dom (�1) then jM j�2 � jM j�1 .3. jM [x:=N ℄j� � jM j� [x:= jN j�℄:Proof: 1. is by indu
tion on the de�nition of jM j�. We show the non trivial
ase where M � b and � � �1; b:=(x�:T ):({�:U);�2 (T 6� x y:T1:T2). Bythe De�nition Lemma, T is typable in �1; �; therefore fv(T ) � dom (�) (FreeVariable Lemma). By IH, fv�jT j�1� � dom (�) and therefore fv(jbj�) = ?.2. is by an easy indu
tion on the de�nition of jM j�1 .3. is by indu
tion on the de�nition of jM j�. In the 
ase M � b and b:=T :U 2�, use the fa
t that fv(jM j�) = fv(M) = ? (Lemma48.1) and thereforejM j� [x:= jN j�℄ � jM j� � jM [x:=N ℄j�. �The purpose of the de�nition of jM j� is explained in the following lemma:Lemma 49 1. If M !� N then jM j� !!+� jN j�.2. If � `M !Æ N , then jM j� !!� jN j�.34



Proof: 1. is by indu
tion on the stru
ture of M . We only treat the 
aseM � (�x:P:Q)R and N � Q[x:=R℄. ThenjM j� � (�x: jP j� : jQj�) jRj� !� jQj� [x:= jRj�℄ 48:3� jQ[x:=R℄j� :2. is by indu
tion on the stru
ture of M . We only treat the 
ase in whi
hM � bM1 � � �Mn; � � �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2; and N �T [x1; : : : ; xn:=M1; : : : ;Mn℄: Note thatjM j� � ��ni=1 xi: jAij�1 : jT j�1� jM1j� � � � jMnj� !!� jT j�1 [xi:= jMij�℄ni=148:2� jT j� [xi:= jMij�℄ni=1 48:3� jT [xi:=Mi℄ni=1j� � jT [x1; : : : ; xn:=M1; : : : ;Mn℄j�.At the last equivalen
e, we must make a remark similar to footnote 13. �Let �SN be the PTS over �-terms with variables from V[C and sorts from S, andthe rules:14 (�; �; �); (�; �;4); (2; �;4); (�;2;4); (2;2;4); (�;4;4); (2;4;4):This is in fa
t the pure type system that is based on the �-formation rules ofSe
tion 3.1. �SN is 
ontained in ECC [2℄. As ECC is �-strongly normalising,also �SN is �-strongly normalising.We present a translation of �68-
ontexts to �SN-
ontexts:De�nition 50 Let �; � be a legal �68-
ontext.� We de�ne j�j by indu
tion on the length of �:� j?j def= ?; � j�; b:U j def= j�j ; b: jU j�; � j�; b:=T :U j def= j�j;� If � � x1:A1; : : : ; xn:An then j�;�j def= j�j ; x1: jA1j� ; : : : ; xn: jAnj�.We see that de�nitions b:=T :U in � are not translated into j�j. This 
or-responds to the fa
t that all these de�nitions are unfolded (repla
ed by theirde�niendum) in jbj�. Now we prove a very important lemma:Lemma 51 If �;� `�68 M : N then j�;�j `�SN jM j� : jN j�.Proof: By indu
tion on the derivation of �; � `M : N . We treat the 
ases:(Start: Primitive Constants) �;� `�68 B : s1 �;`�68 {�:B : s2�; b:{�:B;`�68 b : {�:B s1 = �;2By IH, j�j `�SN j{�:Bj� : s2, so by Start j�j ; b: j{�:Bj� ` b: j{�:Bj� :Observe that j�; b:{�:Bj � j�j ; b: j{�:Bj�, that jbj�;b:{�:B � b and that(by Lemma 48.2) j{�:Bj� � j{�:Bj�;b:{�:B ;(Start: De�ned Constants) �;� `�68 T : B : s1 �;`�68 {�:B : s2�; b:=(�:T ):({�:B);`�68 b : {�:B s1 = �;2By indu
tion j�; j `�SN j{�:Bj� : s2; so (write � � x1:A1; : : : ; xn:An):j�; j `�SN nQi=1xi: jAij� : jBj� : s2: (12)14We 
hoose the name �SN be
ause this system will help us in showing that �68 is SN.35



By indu
tion, we also have j�;�j `�SN jT j� : jBj�, so:j�j ; x1: jA1j� ; : : : ; xn: jAnj� `�SN jT j� : jBj� ; (13)and by repeatedly applying the �-rule on (13) and using the fa
t that, byIH, the types Qnj=i xj : jAj j� : jBj� are all typable, we �nd:j�; j `�SN � n�i=1xi: jAij� : jT j�� : � nQi=1xi: jAij� : jBj�� ; (14)(Appli
ation 1) �;� `�68 M : (�x:A:B) �; � `�68 N : A�;� `�68 MN : B[x:=N ℄ .By IH, j�;�j `�SN jM j� : (�x: jAj� : jBj�) and j�;�j `�SN jN j� : jAj�.By appli
ation j�;�j `�SN jM j� jN j� : jBj� [x:= jAj�℄: By de�nition ofjMN j� and Lemma 48.3, j�;�j `�SN jMN j� : jB[x:=A℄j� : �Theorem 52 (Strong Normalisation) �68 is �Æ-strongly normalising.Proof: Assume, we have an in�nite �Æ-redu
tion path in �68:M1 !�Æ M2 !�Æ M3 !�Æ : : : (15)As Æ-redu
tion is strongly normalising (Lemmas 20 and 35), there must bein�nitely many �-redu
tions in this redu
tion path, so we have a path N1 !�N 01 !!Æ N2 !� N 02 !!Æ N3 !� N 03 !!Æ : : : By Lemmas 49.1 and 49.2, this givesa path jN1j� !!+� jN 01j� !!� jN2j� !!+� jN 02j� !!� jN3j� !!+� jN 03j� !!� : : :whi
h is an in�nite �-redu
tion path in �SN. By Lemma 51, jN1j� is legal in�SN. But as �SN is strongly normalising, this in�nite �-redu
tion path 
annotexist. Hen
e, the in�nite �Æ-redu
tion path (15) does not exist, either. �The next two theorems establish the formal relation between Aut-68 and �68.Theorem 53 Let B be an Automath book and � an Automath 
ontext.� If B; � `AUT�68 ok then B; � is legal;� If B; � `AUT�68 � : 
 then B; � `�68 � : 
.Proof: We prove both statements simultaneously, by indu
tion on the deriva-tion of B; � `AUT�68 ok and B; � ` � : 
 of De�nitions 14 and 15. We onlytreat one 
ase. Assume, the last step is book extension rule def2:B; � `AUT�68 �2:type B; � `AUT�68 �1:�02 B; � `AUT�68 �2 =�d �02B; (�; k; �1; �2);? `AUT�68 ok :By IH, we haveB; � `�68 �2 : � (16)and B; � `�68 �1 : �02: (17)36



By Lemma 35, we haveB `�68 �2 =�Æ �02: (18)Applying the 
onversion rule of �68 to (16), (17) and (18) yieldsB; � `�68 �1 : �2: (19)As B; � is legal, for ea
h x:� 2 � (say: � � �1; x:�;�2) we have B; �1 ` � : sfor an s 2 f�;2g, by the Free Variable Lemma 26. Thus we 
an repeatedlyapply the {-formation rule (starting with (16)) to obtain:B;`�68 {�:�2 : 4 (20)(If � � ? then we apply the {-formation rule zero times, and the type of {�:�2is � instead of 4). Now we 
an apply the (Start: d
) rule on (19), (16) and (20)to obtain: B; k:=(x�:�1):({�:�2);`�68 k : {�:�2;so B; (�; k; �1; �2); � B; k:=(x�:�1):({�:�2); is legal. �Theorem 54 Let �;� `�68 M : N . There is an Automath book B and
ontext �0 su
h that B; �0 `AUT�68 ok, and B;�0 � �;�. Moreover,1. If N � 2 then M � �;2. If �;� `�68 N : 2 then N � � and there is 
 2 E su
h that 
 � M andB; �0 `AUT�68 
 : type;3. If N � 4 then there is �00 � x1:�1; : : : ; xn:�n and 
 2 E [ ftypeg su
hthat: � �0;�00 is 
orre
t with respe
t to B; � M � {�00:
;� 
 � type or B; �0 `AUT�68 
 : type;4. If �;� `�68 N : 4 then there are b 2 C and �1; : : : ;�n 2 E su
h that M �b�1 � � ��n. Moreover, B 
ontains a line (x1:
1; : : : ; xm:
m; b; �1; �2)su
h that: � N � �{mi=n+1 xi:
i:�2� [x1; : : : ; xn:=�1; : : : ;�n℄; � m > n;� B; �0 `AUT�68 �i:
i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄ (1 � i � n);5. If N � � then 9
 2 E su
h that 
 �M and B; �0 `AUT�68 
 : type;6. If �;� `�68 N : � then there are �;
 2 E su
h that � �M and 
 � N ,and B; �0 `AUT�68 � : 
, and B; �0 `AUT�68 
 : type.Proof: Indu
tion on the derivation of �; � `�68 M : N . We treat the 
ases:Weakening: de�nitions Assume the last step is�;`�68 M : N �;� `�68 T : B : s1 �;`�68 {�:B : s2�; b:=(x�:T ):({�:B);`�68 M : N where s1 � �or s1 � 2. Use IH and determine B, �0, �1, �2, 
1, and 
2 su
h thatB � �, �0 � �, �1 � T , �2 � B, 
1 � M and 
2 � N . We know byindu
tion that B; �0 `AUT�68 �2 : type (if s1 � �) or �2 � � (if s2 � 2).Also, B; �0 `AUT�68 �1 : �2. This makes it possible to extend B with anew line, thus obtaining a legal book B; (�0; b; �1; �2). Using Weakeningfor Aut-68 (Lemma 22) and IH on �;`�68 M : N , it is not hard to verifythe 
ases 1{6 for �; b:=(x�:T ):({�:B);`�68 M : N ;37



Appli
ation 2 The last step is �; � `�68 M1 : ({x:A:B) �; � `�68 M2 : A�;� `�68 M1M2 : B[x:=M2℄ :Determine B, �0 su
h that B � � and �0 � �. By Corre
tness of Types32 and Generation Lemma 31, �; � `�68 ({x:A:B) : 4, so by IH (
ase4), there are b;�1; : : : ;�n su
h that M1 � b�1 � � ��n, and there is aline (x1:
1; : : : ; xm:
m; b; �1; �2) in B su
h that m > n, B; �0 `AUT�68�i:
i[xj :=�j ℄i�1j=1 1 � i � n and {x:A:B � �{mi=n+1 xi:
i:�2� [xj :=�j ℄nj=1:Observe: A � 
n+1[xj :=�j ℄nj=1. As B; �0 `AUT�68 
n+1 : type or
n+1 � type, we have �; � `�68 
n+1 : s for an s 2 f�;2g, and by Substi-tution and Transitivity Lemmas we have �; � `�68 
n+1[xj :=�j ℄nj=1 :s, hen
e �; � `�68 A : s. With IH we determine � 2 E su
h thatB; �0 `AUT�68 � : 
n+1[xj :=�j ℄nj=1; and M2 � �.We now treat the most important ones of the 
ases 1{6:4. The only thing that does not dire
tly follow from the results aboveis m > n + 1. Assume, for the sake of the argument, m = n +1. Then B[x:=M2℄ � �2[xj :=�j ℄n+1j=1 . As �; � `�68 B[x:=M2℄ : 4,�2[xj :=�j ℄n+1j=1 is of the form {x:P:Q, whi
h is impossible;6. Note: B[x:=M2℄ � �{mj=n+2 xi:
i:�2� [xj :=�j ℄n+1j=1 . We have �; � `�68B[x:=M2℄ : �. So B[x:=M2℄ 6� {y:P:Q, and hen
e m = n+ 1. There-fore, B; �0 `AUT�68 b(�1; : : : ;�n+1) : �2[xi:=�i℄n+1i=1 . �Remark 55 We explain di�erent 
ases used in the formulation of Theorem 54.� The 
ases N � 2 and �; � ` N : 2 imply that there are no other termsin �68 than � itself at the same level as �. This 
orresponds to the fa
tthat type is the only \top-expression" in Aut-68;� The 
ases N � � and �; � ` N : � give a pre
ise 
orresponden
e betweenexpressions of Aut-68 and terms of �68: If M : N in �68 then there are�;
 in Aut-68 su
h that � : 
 in Aut-68 and � �M and 
 � N ;� The 
ases N � 4 and �; � ` N : 4 
over terms that do not havean equivalent in Aut-68 but are ne
essary in �68 to form terms thathave equivalents in Aut-68. More spe
i�
, this 
on
erns terms of theform {ni=1 xi:Ai:B (needed to introdu
e 
onstants) and terms of the formbM1 � � �Mn, where b is a 
onstant of type {mi=1 xi:Ai:B for 
ertain m > n(needed to 
onstru
t �68-equivalents of expressions like b(�1; : : : ;�m)).We 
on
lude that �68 and Aut-68 
oin
ide as mu
h as possible, and thatthe terms in �68 that do not have an equivalent in Aut-68 
an be tra
ed easily(these are the terms of type 4 and the terms of a type N : 4, and the sorts 2and 4, whi
h are needed to give a type to � and to the {-types).Noti
e that the alternative de�nition of Æ-redu
tion in �68, dis
ussed at theend of Subse
tion 2.5, would introdu
e more terms in �68 without an equivalentin Aut-68, namely terms of the form �ni=1 xi:Ai:B.38



5 More suitable PTSs for Automath systemsRe
all that we related the system Aut-68 to a PTS �68 ignoring the Au-tomath features: parameters, and identifying �s and �s or at least, providingboth �-redu
tion and �-appli
ation. In parti
ular, in De�nition 23, we gaveb(�1; : : : ;�n) def= b�1 � � ��n as �68 does not have dire
t parameters. Also, al-though we had �s and �s in �68, unlike Automath whi
h used expressionsof the form [x:�℄
 for both abstra
tions, we did not allow neither �-redu
tionwhere the redu
tion rule !� works like �-redu
tion as follows:�-redu
tion (�x:A:B)N !� B[x:=N ℄nor �-appli
ation where the �68 rule (App1) is 
hanged into�-appli
ation �;� `M : �x:A:B �;� ` N : A�;� `MN : (�x:A:B)NThere are good reasons to use parameters (
f. [32, 33℄), �-redu
tion and�-appli
ation (
f. [31, 36℄). In Se
tion 5.1 we look at how we might remedy theabove shor
omings to 
reate more faithful interpretations of Aut-68 as PTSs.The system Aut-68 is one of several Automath-systems that have beenproposed. Another frequently used system is aut-QE. In Se
tion 5.2 we 
ompareAut-68 to Aut-QE and des
ribe how we 
an easily adapt �68 to a system �QE.In Se
tion 5.3 we re
e
t on the system �� whi
h is 
laimed by de Bruijn toembra
e all the essential aspe
ts of Automath apart from type in
lusion.5.1 �68 with parameters, �-redu
tion and �-appli
ationPTSs don't usually follow Automath in identifying �s and �s. PTSs don'teven follow Automath in allowing �-redu
tion and �-appli
ation. We havethe following results in the area:� [30℄ showed that as long as the usual appli
ation rule of PTSs is used, aPTS system remains un
hanged whether �-redu
tion is in
luded or not.As a result, if the usual appli
ation rule of PTSs is used, a PTS systemremains un
hanged whether �s and �s are uni�ed or not. [30℄ 
on
ludedthat a PTS system where �s and �s are uni�ed and where the appli
ationis 
hanged to �-appli
ation fa
es the same problem (and inherits the samesolution) as that of the PTSs where �s and �s are not uni�ed but where�-appli
ation and �-redu
tion are used.� [36℄ showed that PTSs with �-redu
tion and �-appli
ation lose Subje
tRedu
tion. For instan
e, one 
an derive �:�; x:� ` (�y:�:y)x : (�y:�:�)x;but it is not possible to derive �:�; x:� ` x : (�y:�:�)x:� [31℄ showed that PTSs with �-redu
tion and �-appli
ation have all thedesirable properties if a de�nition system is used. Let us 
all the PTSwith �-redu
tion and �-appli
ation and de�nitions as in [31℄, ���d.39



Though our system �68 does not have �-redu
tion and �-appli
ation, it iseasy to extend it to a system ��68 by adding these rules:� Changing rule (App1) into �; � `M : �x:A:B �;� ` N : A�;� `MN : (�x:A:B)N(Rule (App2) remains un
hanged | see also the dis
ussion in Se
tion 3.1);� Adding the new redu
tion rule !� by (�x:A:B)N !� B[x:=N ℄:The system ��68 is a
tually mu
h 
loser to Aut-68 than �68.In ��68 we do not have Subje
t Redu
tion, either: it is not hard to derive;�:�; x:� ` (�y:�:y)x : (�y:�:�)xNevertheless, we 
an not derive in ��68;�:�; x:� ` x : (�y:�:�)xThe \restoration" of Subje
t Redu
tion in ���d is only be
ause of the spe-
ial way in whi
h de�nitions are introdu
ed and removed from the 
ontext. In��68, on
e de�nitions have been introdu
ed, they 
annot be removed from theleft part of the 
ontext any more. So, we need to investigate whether the methodof [31℄ 
an be extended to ��68 in order to restore Subje
t Redu
tion in ��68.As for parameters, [32℄ gives a formulation of PTSs with parameters, [33℄formulates PTSs with parameters, �-redu
tion, �-appli
ation, de�nitions �a la[31℄ and expli
it substitutions, [41, 6℄ formulate PTSs with parameters andde�nitions as in Automath and [30℄ gives a formulation of PTSs where �s and�s are uni�ed, and with parameters, �-appli
ation, expli
it substitutions andde�nitions �a la [31℄. All these formulations satisfy the good properties of PTSs.In the above systems, PTSs are extended with parameters by adding termsof the form C(A1; : : : ; An) where C is a set of 
onstants disjoint from the setof variables, and n � 0. Then, in addition to the set of (�-formation) rulesR, a set of parametri
 
onstru
tion rules P is added. Typing rules for dealingwith the new terms are �nally added as follows: (� � x1:B1; : : : ; xn:Bn, �i �x1:B1; : : : ; xi�1:Bi�1 and 
ons (�) is the set of 
onstant de
larations in �):(~C-weak) � `a C : B �;�i `a Bi : si �;� `a A : s�; 
(�) : A `a C : B (si; s) 2 P , 
 62 
ons (�)(~C-app) �1; 
(�):A;�2 `a Ai:Bi[xj :=Aj ℄i�1j=1 (i = 1; : : : ; n)�1; 
(�):A;�2 `a A : s (if n = 0)�1; 
(�):A;�2 `a 
(A1; : : : ; An) : A[xj :=Aj ℄nj=1With this in mind, the Barendregt 
ube of Figure 2 
an be re�ned into theeight smaller 
ubes on the left, and the Automath systems Aut-68 and Aut-QE, as well as the Edinburgh LF and Milner's ML �nd a more a

urate pla
ingin this re�ned 
ube as on the pi
ture on the right (
f. [32, 33, 41℄).40
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rr r rr rFigure 6: LF, ML, Aut-68, and Aut-QE in the re�ned Barendregt Cube5.2 Aut-QEThe system Aut-QE has many similarities with Aut-68, and a few extensions:1. We 
an form abstra
tion expression [x:�℄type (extending De�nition 8);2. Inhabitants of types of the form [x:�℄type are introdu
ed by extendingthe abstra
tion rules 1 and 2 of De�nition 15 with the rule for Aut-QE:B; � ` �1:type B; �; x:�1 ` �2:typeB; � ` [x:�1℄�2 : [x:�1℄type :Noti
e that the expression [x:�1℄type is not typable, just as type is nottypable. In a translation to a PTS, these expressions should get type 2;3. There is a new redu
tion relation on expressions, whi
h is spe
i�
 forAut-QE (whi
h we 
all !QE in the sequel). This relation is given by the rule[x1:�1℄ � � � [xn:�n℄[y:
℄type!QE [x1:�1℄ � � � [xn:�n℄type (for n � 0).The �rst two rules are rather straightforward. They 
orrespond to an extensionof �! to �P in Pure Type Systems. It is also easy to extend �68 with similarrules: We just add the �-formation rule (�;2;2):�; � ` A : � �;�; x:A ` B : 2�;� ` (�x:A:B) : 2 :In Aut-68, pat is implemented in de Bruijn-style (see Se
tion 2.1 and Example13). An implementation of predi
ate logi
 in Howard-style is not possible inAut-68, but due to the extension with types of the form [x:�℄type, su
h animplementation be
omes possible in Aut-QE. See [18℄.The third rule deserves attention, as it is very unusual. It is needed in Aut-QE be
ause that system does not distinguish �s and �s. In aut-68 this did notmatter, as from the 
ontext it 
ould always be derived whether an expression41



[x:�℄
 should be interpreted as �x:�:
 or as �x:�:
. The latter should havetype type, and the �rst should not have type type. In Aut-QE the situationis more 
ompli
ated. An expression [x:�℄
 may have more than one type:Example 56 Let B 
onsist of two lines:(?; �;|; type);(�:type; x;|; �):Noti
e that, using rule (abstr.1) of De�nition 15, we 
an derive thatB;�:type `QE [x:�℄� : type: (21)But using the new abstra
tion rule of Aut-QE we 
an also deriveB;�:type `QE [x:�℄� : [x:�℄type: (22)More generally, we 
an prove that the two statements below are equivalentin Aut-QE (that is: if either of them is derivable then they are both derivable):B; � `QE [x1:�1℄ � � � [xn:�n℄
 : [x1:�1℄ � � � [xn:�n℄type; (23)B; � `QE [x1:�1℄ � � � [xn:�n℄
 : [x1:�1℄ � � � [xm:�m℄type (24)(for m < n). In (23), the expression [x1:�1℄ � � � [xn:�n℄
 should be read as�ni=1 xi:�i:
; in (24) it should be read as �mi=1 xi:�i:Qnj=m+1 xj :�j :
.But this equivalen
e holds only for expressions of the form[x1:�1℄ � � � [xn:�n℄
and not for general expressions � (take, for instan
e, � a variable). In orderthat the equivalen
e holds for general expressions �, de Bruijn introdu
ed a rulefor type in
lusion: B; � `QE � : [x1:�1℄ � � � [xn:�n℄typeB; � `QE � : [x1:�1℄ � � � [xn�1:�n�1℄type :Lists of abstra
tions [x1:�1℄ � � � [xn:�n℄ were also 
alled teles
opes by de Bruijn.In the rule for type in
lusion, we see that one part of the teles
ope \
ollapses".5.3 ��As we saw above, de Bruijn departed from the 
lassi
al notation of the �-
al
ulus and wrote the argument before the fun
tion and used [x : A℄ instead of�x : A or �x : A. So for example, de Bruijn wrote hzi[x : �℄[y : x℄y instead of(�x : �:�y : x:y)z.De Bruijn 
alled items of the form hBi and [x : C℄, A- (for appli
ation)respe
tively T- (for typing) wagons. De Bruijn 
alled hBi[x : C℄, an AT-pair.In de Bruijn's notation, the �-rule (�x : C:A)B !� A[x := B℄ be
omes:hBi[x : C℄A!� [x := B℄A42



Note that the A-wagon hBi and the T-wagon [x : C℄ o

ur NEXT to ea
h other.Here is an example whi
h 
ompares �-redu
tion in both the 
lassi
al and thede Bruijn notation. Wagons that have the same symbol on top, are mat
hed(we ignore types for the sake of simpli
ity):Classi
al Notation De Bruijn's Notation( Æ�x :( +�y : ��z :zD) +C) ÆB) �A �hAi ÆhBi Æ[x℄ +hCi +[y℄ �[z℄ hDiz#� #�(( +�y : ��z :zD) +C) �A �hAi +hCi +[y℄ �[z℄ hDiz#� #�( ��z :zD) �A �hAi �[z℄hDiz#� #�AD hDiAThe bra
keting stru
ture in 
lassi
al notation of (( Æ�x :( +�y : ��z :zD) +C) ÆB) �A),is Æ[1 +[2 �[3 +℄2 Æ℄1 �℄3, where [i and ℄i mat
h. Whereas �hAi ÆhBi Æ[x℄ +hCi +[y℄ �[z℄ hDiz hasthe simpler bra
keting stru
ture �[ Æ[ Æ℄+[ +℄�℄ or even better: [ [ ℄[ ℄ ℄ in de Bruijn'snotation. An A-wagon hBi and a T-wagon [x : C℄ are partners when they mat
h.Non-partnered wagons are ba
helors. A sequen
e of wagons is 
alled a segment.A segment is well balan
ed when it 
ontains only partnered wagons.Moreover, de Bruijn de�ned lo
al �-redu
tion, whi
h keeps the AT-pair anddoes �-redu
tion at one instan
e (instead of all the instan
es). For example (wetake a simpler example than above and again ignore types for simpli
ity):hyi[x℄hxix �-redu
es lo
ally to hyi[x℄hxiy and to hyi[x℄hyix. Doing a furtherlo
al �-redu
tion gives hyi[x℄hyiy. Now that the [x℄ does not bind any variableany more, and hen
e we 
an remove the AT-pair hyi[x℄ obtaining hyiy.Furthermore, de Bruijn generalised the AT-pair to the AT-
ouple where forexample, in hAihBi[x℄hCi[y℄[z℄hDiz, we have the AT-pairs: hBi[x℄ and hCi[y℄and the AT-
ouple hAi[z℄. This de�nition of AT-
ouples leads to a naturalgeneralisation of �-redu
tion as follows:hBis[x : C℄A;� s[x := B℄A where s is a well balan
ed segment.So for example, hAihBi[x℄hCi[y℄[z℄hDiz ;� hBi[x℄hCi[y℄[z := A℄hDiz.The �-
al
ulus �a la de Bruijn has many advantages over the 
lassi
al �-
al
ulus. Some of these advantages are summarised in [37℄.In Aut-SL (
f. B.2 of [44℄), de Bruijn des
ribed how a 
omplete Automathbook 
an be written as a single lambda 
al
ulus formula. The disadvantage ofAut-SL was that in order to put the book into the lambda 
al
ulus framework,it was ne
essary to �rst eliminate all de�nitional lines of the book. De Bruijndid not like this idea as without de�nitions, formulae 
an exponentially grow.For this reason, de Bruijn developped the �� 
al
ulus (
f. B.7 of [44℄), withwhi
h he attempts to embra
e all essential aspe
ts of Automath apart from43



type in
lusion. �� is the lambda 
al
ulus written in his notation (as above)15but where �-redu
tion16 is presented as the result of lo
al �-redu
tions and AT-removals. The reason for this is that the delta redu
tions of Automath 
an be
onsidered as lo
al �-redu
tions, and not as ordinary �-redu
tions.We have fully investigated PTSs and the type free lambda 
al
ulus in deBruijn's notation [35, 37, 7℄. We have also shown that ;� satis�es ni
e prop-erties in the type free lambda 
al
ulus [29℄ and that it loses subje
t redu
tionin PTSs but that subje
t redu
tion 
an be regained if de�nitions are added inthe 
ontexts [7℄. We have not yet studied PTSs with lo
al �-redu
tions andAT-removal, although we have studied the type free lambda 
al
ulus with lo
al�-redu
tion, AT-removal and expli
it substitution [34℄. We leave the study ofPTSs with de Bruijn's lo
al �-redu
tion and AT-removal for future work.6 Con
lusionIn this paper we des
ribed the most basi
Automath-system,Aut-68, in a PTSstyle. Though an attempt at su
h a des
ription has been given before in [2, 22℄,we feel that our des
ription is more a

urate. Moreover, unlike [2, 22℄, ourdes
ription pays attention to the de�nition and parameter systems, whi
h are
ru
ial in Automath. We gave a PTS 
alled �68 whi
h is 
losely related toAut-68. Although �68 does not in
lude �-
onversion (while Automath does),one 
an adapt it to in
lude �-
onversion following the lines of [31℄.The adaptation of �68 to a system �QE, representing theAutomath-systemAut-QE is not hard, either: it requires adaptation of the �-formation rule toin
lude not only the rule (�; �; �) but also (�;2;2) and the introdu
tion of theadditional redu
tion rule of type in
lusion. We leave this as a future work. Wealso leave as a future work the extension of PTSs with lo
al �-redu
tion andAT-removal �a la de Bruijn and hen
e the 
onne
tion between de Bruijn's ��and PTSs with de�nitions.There is no doubt that Automath has had an amazing in
uen
e in the-orem proving, type theory and logi
al frameworks. Automath however, wasdeveloped independently from other developments in type theory and uses a�-
al
ulus and type-theoreti
al style that is unique to Automath. WritingAutomath in the modern style of type theory will enable useful 
omparisonsbetween type systems to take pla
e. There are still many lessons to learn fromAutomath and writing it in modern style is a useful step in this dire
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