
Formalising Strong Normalisation proofs ofExpli
it Substitution Cal
uli in ALFyFairouz Kamareddine (fairouz�ma
s.hw.a
.uk)Mathemati
al and Computer S
ien
es, Heriot-Watt University, Edinburgh, UKHaiyan Qiao (qiao�
s.
halmers.se)Computing S
ien
e, Chalmers University of Te
hnology, G�oteborg, SwedenAbstra
t. The past de
ade has given rise to a number of expli
it substitution (ES)
al
uli. An important question of expli
it substitution
al
uli is that of the termina-tion of the underlying
al
ulus of substitution. Proofs of termination of substitutionsfall under two
ategories. Those that are easy be
ause a de
reasing measure
an beestablished and those that are diÆ
ult be
ause su
h a de
reasing measure is not easyto establish. This paper
onsiders two styles of expli
it substitution: � and s, forwhi
h di�erent termination proof methods apply. The termination of s is guaranteedby a de
reasing weight, while a de
reasing weight for showing the termination of �has not yet been found. These termination methods for � and s are formalised inthe proof
he
ker ALF. During our pro
ess of formally
he
king the termination of� and s we
omment on what is needed to make a proof formally
he
kable.1. Introdu
tionWhat is expli
it substitution? The
lassi
al �-
al
ulus deals withsubstitution in an impli
it way. This means that the
omputations toperform substitution are usually des
ribed with operators whi
h donot belong to the language of the �-
al
ulus. There has however beenan interest in formalising substitution expli
itly in order to providea theoreti
al framework for the implementation of programming lan-guages and theorem provers. Several
al
uli in
luding new operators todenote substitution and new rules to handle these operators have beenproposed (e.g., [10, 2, 17, 30, 4, 5, 21, 22, 28, 13℄). Amongst these
al-
uli we mention C��� (
f. [14℄); the
al
uli of
ategori
al
ombinators(
f. [10℄); ��, ��*, ��SP (
f. [2, 11, 30℄) referred to as the ��-family;'�BLT (
f. [20℄); �� (
f. [4℄) and �� (
f. [28℄) whi
h are des
endantsof the ��-family; �s (
f. [21℄) and �se (
f. [22℄). Most of these
al
uliare des
ribed in de Bruijn notation and
an roughly be
lassi�ed undertwo styles: the �� [2, 17℄ and the �s styles [21, 22℄. The new symbolsadded by expli
it substitution
al
uli to represent operations related tosubstitutions, and the new rules explaining how these operations worky We are grafetful for the useful
omments we re
eived from Martin Ho�mann,Claude Kir
hner, Joe Wells and the anonymous referees.

 2002 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
final.tex; 16/09/2002; 17:43; p.1

2
ompli
ate the rewriting system behind the �-
al
ulus and the questionwhether these new rules terminate arises. This paper
on
entrates onthe proofs of termination of these extra rules in both the �� and �s
al
uli. �� and �s are
hosen be
ause they di�er in style, and be
ausetheir proofs of termination are di�erent: the set s of new rules of �sis shown to terminate via a de
reasing weight whereas no de
reasingweight has yet been found for the set � of new rules of ��.Why expli
it substitutions? Expli
it substitutions allow more
exi-bility in ordering work. Propagating substitutions through a parti
ularsubterm
an wait until the subterm is the fo
us of
omputation. Thisallows all of these substitutions to be done at on
e, thus improvinglo
ality of referen
e. This
exibility also allows postponing unneededwork inde�nitely (i.e., avoiding it
ompletely). This
an yield pro�ts,sin
e impli
it substitution
an be an ineÆ
ient, maybe even explod-ing, pro
ess by the many repetitions it
auses. Another bene�t is thatexpli
it substitution allows formal modelling of the te
hniques used inreal implementations, e.g., environments [18℄. Furthermore, as the im-plementation of substitution in many theorem provers is not based on aformal system, it is not
lear what properties their underlying substitu-tion has. Thus, it helps to have a
hoi
e of expli
it substitution systemswhose properties have already been established. This is witnessed bythe theorem prover ALF, whi
h is based on Martin-L�of's type theorywith expli
it substitutions [24℄. Another justi�
ation for expli
it sub-stitution in theorem proving is the belief that \ta
ti
s"
an be repla
edby in
omplete proofs, whi
h need expli
it substitutions [28, 24℄.Why formalise proofs in a proof
he
ker? The past thirty yearshave seen mu
h work on formalising proofs from paper into a proof
he
ker (e.g., [9, 27, 31, 3℄). Pioneering work on this started in 1967with de Bruijn's in
uential proof
he
ker Automath. Sin
e, many proof
he
kers have been built [7, 15, 24, 29, 8℄ into whi
h many proofs havebeen formalised. Formalisation in a proof
he
ker is useful even if theproof on paper is fully trusted and
orre
t. Reasons for this in
lude:� Some
omplex proofs may be un
onvin
ing unless they are
he
kedby a proof
he
ker.1� Formalisation in a proof
he
ker enables the building of a libraryof readily available proofs that
an be used in di�erent situationsand
an relieve us from repeating the same proofs over and over.� Formalisation helps one to a
tually �nd the proof of
ertain diÆ-
ult theorems that would have been hard to solve just on paper.This paper, adds one further
ase study to formalisations in proof
he
kers. We formalise in ALF [24℄ the termination of the expli
itsubstitutions
al
uli s and �. Our reasons for doing this in
lude:1 We stress that all the proofs that we formalise in this paper are fully trusted.
final.tex; 16/09/2002; 17:43; p.2

3� The development of so many
al
uli of expli
it substitutions andthe intri
a
ies involved in proving their properties
all for methodsthat one
an take of the shelf and use for newly developed
al
uli.� As most
al
uli with expli
it substitutions have rules that are
om-plex and properties whose proofs are intri
ate, it is ne
essary toformalise these
al
uli and
he
k the proofs in some proof
he
ker.These reasons hold in parti
ular for the proofs of termination (a basi
property) of expli
it substitutions. There are various ways to show ter-mination of expli
it substitutions, but the proofs
an be very intri
ate.Termination proofs of expli
it substitutions fall under the following:1. A de
reasing weight
an be found, i.e. when terms are redu
ed,their weights de
rease. Examples of substitutions that have thisproperty in
lude � [4℄, s [21℄, and �* [17℄.2. A stri
t (redu
tion preserving) translation from the
al
ulus wewish to show terminating to another
al
ulus known to be termi-nating
an be found. E.g. the termination of s
an be obtained bya stri
t translation from s to � whi
h is known to be terminating.3. By �nding an indu
tion argument when neither 1 nor 2 above apply,this is, for example, the way � is shown to be terminating in [12℄.In this paper we formalise in ALF, termination proofs for � and s thatfall under 1, 2 and 3 above. There has been previous work on formalisingproperties of expli
it substitutions. For example, Les
anne formalised inCoq, the substitution lemma of �� of [4℄, and Sa��bi formalised ��* [17℄,whi
h is an extension of � with meta-variables, and proved
on
uen
eof ��* and strong normalisation of �* by �nding a de
reasing weight,see [31℄. Our work
on
entrates on di�erent methods of termination ofexpli
it substitutions and
onsiders two di�erent
al
uli � and s.There has been a lot of work on termination of expli
it substitutionsre
ently (e.g., [5, 13, 30, 16, 12, 34, 33℄). Our reasons for
hoosing theproof of [12℄ and the proof
he
ker ALF in
lude:� The interesting proof of [12℄ does not obey a de
reasing weight.Moreover, the proof of [12℄ is very intri
ate and as far as we know,this is the �rst formalisation of su
h an intri
ate method.� The proof of [12℄ had interesting
on
epts su
h as its formulationof a
al
ulus of
ontexts. That formalisation whi
h is basi
 to theproof of [12℄, leads to a
al
ulus of
ontexts that is in line with [6℄.It may also lead to ways of formalising other extensions as in [26℄.It should be noted that we did not
hoose an easy proof to formalise.There are other proofs of termination of the same
al
ulus (e.g., theproof of [34℄ is mu
h simpler to formalise than that of [12℄). But, a fullme
hani
al
he
k of a
ompli
ated proof (whi
h we do in this paper)
an be
onsidered as a valuable a
hievement in itself. We will formalise
final.tex; 16/09/2002; 17:43; p.3

4and implement the whole proof of [12℄ in
luding the
ontext
al
ulus inALF. It would be interesting in the future to attempt and use this workfor proof
he
king other proofs of termination su
h as that of CCL [16℄.That proof would be parti
ularly informative in this
ontext as it wasobtained by
onsidering a lot of weights in an unusual manner.The paper is organised as follows. In Se
tion 2 we re
all �� andits termination proof. In Se
tion 3 we re
all �s and present three dif-ferent termination proofs, two of whi
h are new. Se
tion 4 is a briefintrodu
tion to ALF and to Martin-L�of type theory. In Se
tion 5 wegive formalisations of expli
it substitution
al
uli, their termination andthe lexi
ographi
 order indu
tion prin
iple. In Se
tion 6 we formaliseall termination proofs of s presented in this paper. In Se
tion 7 weformalise a
ontext
al
ulus whi
h is the main part of the terminationproof of �. In Se
tion 8 the termination proof of � is formalised.2. The
al
ulus of �� and the termination proof of ��� provides a setting for expli
it substitutions, with pleasant proper-ties. It is strongly
onne
ted with the
ategori
al understanding of the�-
al
ulus, where a substitution is interpreted as a
omposition [10℄. Inthis se
tion we present the ��-
al
ulus and some of its properties.2.1. Definition of the
al
ulus ��In expli
it substitution
al
uli, substitutions are delayed and expli
-itly re
orded; the appli
ation of substitutions is independent, and not
oupled with the �-rule. If a is a term and s is a substitution then theterm a[s℄, whi
h is
alled a
losure, represents a with the substitution s.When substitutions are made expli
it, the �-rule with delayed substi-tutions,
alled Betav
an be expressed by: (�x:a)b !Betav a[(b=x) � id℄where (b=x) � id is the substitution that repla
es x with b and a�e
tsno other variables (id is the identity substitution).We assume familiarity with de Bruijn indi
es and use substitution
al
uli with these indi
es (as mostly done in expli
it substitution).DEFINITION 1 (The ��-
al
ulus). The ��-
al
ulus is a two-sorted
al
ulus where the set of terms ��t is given by the abstra
t syntaxa; b ::= 1 j ab j �a j a[s℄ and the set of substitutions ��s is given by theabstra
t syntax s; t ::= id j " j s � t j s Æ t.The set � of the rules whi
h propagate the substitutions is given inFigure 2.1. �� is the union of the � rules and (Beta): (�a)b! a[b�id℄.22 Beta eliminates �'s
reating substitutions; the � rules eliminate substitutions.
final.tex; 16/09/2002; 17:43; p.4

5(VrId) 1[id℄! 1 (App) (ab)[s℄! (a[s℄)(b[s℄)(VrCons) 1[a � s℄! a (Abs) (�a)[s℄! �(a[1 � (sÆ ")℄)(IdL) id Æ s! s (Clos) (a[s℄)[t℄! a[s Æ t℄(ShId) " Æid!" (Map) (a � s) Æ t! a[t℄ � (s Æ t)(ShCons) " Æ(a � s)! s (Ass) (s1 Æ s2) Æ s3 ! s1 Æ (s2 Æ s3)Figure 1. The �-RulesIf s represents the in�nite substitution fa1=1; a2=2; a3=3; � � �g, thenthe syntax of substitutions
an be des
ribed intuitively as follows:� id is the identity substitution fi=ig (for all i).� " is the substitution f(i+1)=ig (for all i). E.g., 1["℄ = 2. Thus, n+1
an be en
oded as 1["n℄, where "n is the
omposition: " Æ � � � Æ ".� For all i, i[s℄ is the value of the de Bruijn index i in the substitutions, also written s(i) when s is viewed as a fun
tion.� a � s is the substitution fa=1; s(i)=(i + 1)g (for all i). E.g., a � id =fa=1; 1=2; 2=3; � � �g and 1� "= f1=1; " (1)=2; " (2)=3; � � �g = id.� s Æ t (the
omposition of s and t) is su
h that a[s Æ t℄ = a[s℄[t℄,hen
e s Æ t = fs(i)=ig Æ t = fs(i)[t℄=ig (for all i).2.2. �0: a variant of �, and the proofs of terminationWe dis
uss the strong normalisation (termination/noetherianity) of �.We start with the statement of the theorem that will be proof
he
ked:THEOREM 2 (SN of �). The
al
ulus � is strongly normalising.There are various proofs of this theorem in the literature:1. The �rst strong normalisation proof of � is based on the strongnormalisation of SUBST [16℄, whi
h is, within CCL, the set ofrewriting rules that
ompute the substitutions. See [16℄.2. The proof in [12℄ shows the termination of � via a stri
t translationfrom � to another
al
ulus �0 (Lemma 6) and the termination of�0 (Theorem 7). This proof is given in detail in Se
tion 2.3 as it isthe one that we shall formalise in this paper.3. Zantema gives two proofs in [33, 34℄. The �rst is based on a suitablegeneralisation of polynomial orders to show the termination of the
al
ulus �0 given below (and hen
e the termination of �). These
ond uses semanti
 labelling to show the termination of �.
final.tex; 16/09/2002; 17:43; p.5

6As the proof of [12℄ is given via the strong normalisation of �0 (ane
onomi
 variant of �), and a stri
t translation from � to �0, we givethe de�nition of �0. The
al
ulus �0 is one sorted and treats both Æand [℄ as Æ, observing that Æ and [℄ behave in the same way.DEFINITION 3 (The �0-
al
ulus). The set of terms ��0 of the �0-
al
ulus has the abstra
t syntax s; t ::= 1 j id j "j �s j s Æ t j s � t.The set, denoted �0, of rules of the
al
ulus is the following:(VrId) 1 Æ id! 1 (ShId) " Æid!"(VrCons) 1 Æ (s � t)! s (Abs) (�s) Æ t! �(s Æ (1 � (tÆ ")))(ShCons) " Æ(s � t)! t (Map) (s � t) Æ u! (s Æ u) � (t Æ u)(IdL) id Æ s! s (Ass) (s Æ t) Æ u! s Æ (t Æ u)REMARK 4. �0 is a parti
ular
ase of the system Subst of CCL.Rules (V rId) and (ShId) are parti
ular
ases of the right identity rule.We shall often interpret a
al
ulus C1 into another
al
ulus C2. We
all stri
t interpretation a fun
tion whi
h maps a redu
tion step ofC1 into one or many redu
tion steps in C2. Termination of C2 and theexisten
e of a stri
t interpretation of C1 into C2 yield termination of C1.The interpretation fun
tion from �� to ��0 is given by the following:DEFINITION 5 (Interpreting �� in ��0). Let F : �� ! ��0 be:F (1) = 1 F (ab) = F (a) � F (b) F (�a) = �(F (a))F (") =" F (a � s) = F (a) � F (s) F (a[s℄) = F (a) Æ F (s)F (id) = id F (s Æ t) = F (s) Æ F (t)Then we have the following lemma that was easily
he
ked in ALF:LEMMA 6 (F preserves redu
tions). If a!� b then F (a)!�0 F (b).Of
ourse, with Lemma 6, it is enough to show the termination of �0in order to guarantee the termination of �. Hen
e the next theorem:THEOREM 7 (SN of �0). The
al
ulus �0 is strongly normalising.2.3. The proof of [12℄[12℄ notes that it is easy to de�ne an R.P.O to show the terminationof �0 � f(Abs)g but that it was not possible to extend this R.P.O. toall of �0. Hen
e, they prove that those terms whi
h do not
ontain �sterminate. For this, they start by the following de�nition:
final.tex; 16/09/2002; 17:43; p.6

7DEFINITION 8 (W-terms and L-terms). In �0 a term is
alled a W-term if no � o

urs in it. Otherwise it is
alled a L-term.It is obvious that in �0, a term is either a W-term or an L-term.Now, the following lemma is shown in [12℄ (SN is the set of stronglynormalising terms in ��0):LEMMA 9 (SN of W-terms).1. For s 2 ��0, �s 2 SN i� s 2 SN.2. For s; t 2 ��0, s � t 2 SN i� both s 2 SN and t 2 SN.3. The �0-redu
ts of W-terms are also W-terms.4. For s; t W-terms, if s 2 SN and t 2 SN then s Æ t 2 SN .5. If s is a W-term, then s 2 SN.But we want to show that all �0-terms are strongly normalising. To doso, the (Abs) rule must be handled. [12℄ hen
e
omes to the
on
lusionthat what remains for this to be shown is to establish the property:(�) if s 2 SN; then sÆ "2 SN:Proving (�) is diÆ
ult and one needs to prove a more general result: any\in
rement" of a strongly normalising term is strongly normalising. Inother words, (�) needs to be strengthened in order to make an indu
tionargument work. To this end, [12℄ introdu
ed the notion of \
ontext"and a ma
hinery for the
ontexts when the \in
rement" is redu
ed. Ofparti
ular relevan
e are the notions of (very) good
ontexts (see below).The basi
 idea of the
ontext
al
ulus is to think of a term t asa \
ontext" with multi-holes �lled by its sub-terms, and to
he
k thema
hinery of these
ontexts while redu
ing t.DEFINITION 10 (Contexts). Contexts with multi-holes are given in-du
tively by: Cont ::= �n j 1 j id j " j �C j C �D j C ÆDwhere n � 1 and �n denotes a hole.NOTATION 11. Let
 be an o

urren
e within the
ontext C. Thenotation C=
 stands for the sub
ontext of C at the o

urren
e
 andCf
 sg stands for the
ontext obtained by repla
ing in C the sub
on-text C=
 by the term s. An analogous notation is used for terms: s=
and sf
 sg. When C=
 is a hole, then C[s℄
 is written instead ofCf
 sg. The notation �k 2 C means that there exists an o

urren
e
 in the set of o

urren
es of C su
h that C=
 = �k.DEFINITION 12 (Hole �lling). Let C be a
ontext, nC = maxfm :�m 2 Cg, n � nC and u = (u1; : : : un) a tuple of terms. Then C[u℄ =C[u1; : : : ; un℄ is the term obtained by pla
ing uk in all the holes �k ofC for 1 � k � n.
final.tex; 16/09/2002; 17:43; p.7

8NOTATION 13. Let C be a
ontext and q � 0. Cq denotes the
ontextobtained from C by renaming the holes �k as �k+q.Let u = (u1; � � � ; um) and v = (v1; � � � ; vn). The juxtaposition of uand v will be denoted by u�v = (u1; � � � ; um; v1; � � � ; vn). We will denotethe length of u by Lg(u) or juj.EXAMPLE 14. Let C = ((��4)�(�2Æ "))�(1��4), s = (�(1Æ "))�(1�id)and t =" Æ�1. Then:C=1 = (��4) � (�2Æ ") Cf12 tg = ((��4) � (" Æ�1)) � (1 ��4)C=12 = �2Æ " sf11 tg = (�(" Æ�1)) � (1 � id)s=2 = 1 � id C[t℄121 = ((��4) � ((" Æ�1)Æ ")) � (1 ��4)s=11 = 1Æ " C3 = ((��7) � (�5Æ ")) � (1 ��7)t=21 = 1 C["; 1 � id; " � "; 1℄ = ((�1) � ((1 � id)Æ ")) � (1 � 1)Now we de�ne the relation between
ontexts and terms:DEFINITION 15 (Relative
ontexts). A
ontext C relative to s is a
ontext su
h that s = C[u℄ for some u. A hole �m in a
ontext Crelative to s is
alled a W-hole if the
orresponding sub-term um is aW-term, otherwise it is
alled a L-hole.DEFINITION 16 (In
ations). An in
ation of s is a pair (C;w) whereC is a
ontext and w an n-tuple of W-terms su
h that there is a n-tupleof terms u whi
h satis�es s = C[u℄. We shall also say (s; C; u; w) or(C; u;w) is an in
ation.The result of in
ation (s; C; u; w) is s0 = C[u0℄ where u0 is given by:u0k = � wk if uk is a W-termuk Æ wk otherwiseWe shall also
all the result s0 = C[u0℄ as an in
rement of s.One
an
onsider 0 as an operator whi
h takes u and w and givesba
k u0. The phrase '(C;w) is an in
ation of s = C[u℄' will stand for'(C;w) is an in
ation of s and u is Lg(w)-tuple su
h that s = C[u℄'.REMARK 17. C[u0℄ = C[v0℄ if (C;w) is an in
ation of s = C[u℄ = C[v℄.Below we give the restri
tions on
ontexts. These restri
tions wereintrodu
ed in [12℄ in order to prove the Preservation Theorem 24.3 Amotivating example for introdu
ing these restri
tions is the following:Let C = �1 Æ �2 and s = C[t; �u℄ where t is not a W-term. Takethe in
ation (C(w1; w2)) of s whose result is (t Æw1) Æ ((�u) Æw2). It ispossible to have (t Æw1) Æ ((�u) Æw2)! t Æ (w1 Æ ((�u) Æw2)), but su
h3 Espe
ially when
onsidering the (Abs)
ase whose non-straightforwardness was
ommented on at the begin of this se
tion.
final.tex; 16/09/2002; 17:43; p.8

9a redu
tion must be forbidden be
ause the redu
t
annot be treated asthe result of an in
ation of s, when w1 Æ ((�u) Æ w2) is not a W-term.The solution [12℄ proposed for this problem is to prevent �2 frombeing a �-hole. Hen
e, the following de�nition whi
h says that a
ontextC is good for s if it is a
ontext for s, and whenever AÆB is a sub-
ontextof C and there exists a hole in A, then B must be a W-hole.DEFINITION 18 (Good
ontexts). A good
ontext relative to s is a
ontext C relative to s whi
h satis�es the
ondition that: for every o
-
urren
e
 of a
omposition in C, if there exists a hole at an o

urren
eof the form
1�, then C=
2 is a W-hole.Now we introdu
e the se
ond restri
tion on
ontexts whi
h saysthat a
ontext C for s is very good if it is good, and whenever C=
 isa W-hole, s=Æ is an L-term for any proper-pre�x Æ of
.DEFINITION 19 (Very good
ontexts). A very good
ontext C relativeto s is a good
ontext relative to s su
h that if s = C[u℄ and uk is aW-term, then for every o

urren
e
 su
h that C=
 = �k and for everyÆ proper pre�x of
, s=Æ is not a W-term.DEFINITION 20 (Good/Very good in
ation). An in
ation of s is agood/very good in
ation if its
ontext relative to s is good/very good.EXAMPLE 21. The in
ation (�1; ") is very good and for s an L-term,sÆ " is the result of this very good in
ation of s[12℄ gives two important lemmas (22 and 23) whi
h say that goodin
ations behave ni
ely and that one
an pass from good in
ations tovery good ones. Lemma 22 (resp. Lemma 23) is en
oded in ALF as inFigure 13 (resp. Figure 14) and proved in Lemma 51 (resp. Lemma 52).LEMMA 22 (Redu
tion of
ontexts preserves good in
ations). Let s0be the result of the good in
ation (C;w) of s = C[u℄. Let D be a
ontextsu
h that C ! D, and let t = D[u℄ (hen
e, s ! t and s0 ! t0). Thenthere exists a good in
ation (D0; w0) of t whose result is t0.LEMMA 23 (Very good in
ations with same results as good in
ations).Let K
(C) be the number of the holes in C. If (C; u;w) is a good in
a-tion of s with result s0, then there exists a very good in
ation (C 0; u0; w0)of s with result s0 that K
(C 0) � K
(C).THEOREM 24 (Preservation of SN). Let s 2 SN and let s0 be theresult of a very good in
ation (C;w) of s = C[u℄. Then s0 2 SN.
final.tex; 16/09/2002; 17:43; p.9

10See Page 34 for a proof of Theorem 24 and Se
tion 8 for the ALF proofof Corollary 25.COROLLARY 25 (� and �0 are strongly normalising). The
al
uli �and �0 are strongly normalising (i.e. Theorems 2 and 7 are now proved).Proof: First, we prove this
orollary for �0. By Example 21 and The-orem 24, if s is an L-term, and s 2 SN, then sÆ "2 SN. But, if s is aW-term, then sÆ " is also a W-term and hen
e by Lemma 9, sÆ "2 SN.Hen
e, in all
ases, if s 2 SN, then sÆ "2 SN. Hen
e, property (�) isproved. Now, one
an easily prove that if s; t 2 SN, then s Æ t 2 SN.Finally, use Lemma 9 to show that if s 2 ��0 then s 2 SN. Now, for �,simply use the strong normalisation of �0 and Lemma 6. 23. The
al
ulus �s and the termination proofs of sWe present the
al
ulus �s [21℄ in this se
tion and give three strongnormalisation proofs of the s-
al
ulus, ea
h using a di�erent method.The proof of Se
tion 3.4 was given in [21℄ and is by a stri
t translationfrom s to � (and the strong normalisation of the
al
ulus �). In Se
-tions 3.2 and 3.3 we give two new proofs. In this paper, we formaliseall these proofs in ALF. For
omparison between �s and ��, see [23℄.3.1. The
al
ulus �sDEFINITION 26 (The �s-
al
ulus). The terms �s of the �s-
al
ulusare given by: a; b ::= N j ab j �a j a�ib j 'ika where i � 1; k � 0.The set, denoted �s, of rules of the
al
ulus is given in Figure 2.The
al
ulus of substitutions asso
iated with the �s-
al
ulus,
alled thes-
al
ulus, is the rewriting system whose rules are �sn f�-generationg.THEOREM 27 (SN of s). The s-
al
ulus is strongly normalizing.3.2. Interpretations for the termination of the
al
ulus sThe interpretation method
an be used to prove the termination of s.DEFINITION 28 (Polynomial interpretation of s). The polynomial in-terpretations for s are de�ned by indu
tion on the stru
ture of the termsin �s: [[n℄℄ = 2; [[ab℄℄ = [[a℄℄ + [[b℄℄ + 1; [['ika℄℄ = 2[[a℄℄;[[�a℄℄ = [[a℄℄ + 1; [[a�ib℄℄ = [[a℄℄([[b℄℄ + 1)Now we
an prove Theorem 29 whi
h gives another termination proofof s. It was
he
ked in ALF by some trivial inequalities like: \For anya 2 �s, [[a℄℄ � 2" (proved by indu
tion on the stru
ture of terms of s).
final.tex; 16/09/2002; 17:43; p.10

11(�-generation) (�a)b! a�1b(�-�-transition) (�a)�ib! �(a�i+1b)('-�-transition) 'ik(�a)! �('ik+1a)(�-app-transition) (a1a2)�ib! (a1�ib)(a2�ib)('-app-transition) 'ik(a1a2)! ('ika1)('ika2)(�-destru
tion) n�ib! 8>><>>: n� 1 if n > i'i0b if n = in if n < i('-destru
tion) 'ikn! (n+ i� 1 if n > kn if n � kFigure 2. Rules of �sTHEOREM 29. For any a; b 2 �s, if a!s b then [[a℄℄ > [[b℄℄.3.3. Another termination proof of s by indu
tionNow we give the dire
t proof that s is strongly normalising. This proofis reminis
ent of the method of Redu
ibility Candidates. It is done bystru
tural indu
tion, the method used to prove strong normalisation of�0 (the proof is easier for s). Let SN be the set of all strongly normalisingterms. For t 2 SN, dpth(t) is the length of the longest derivation4,lgth(t) is the number of variables and operations de�ned as follows:lgth(n) = 1lgth(�a) = lgth(a) + 1 lgth(ab) = lgth(a) + lgth(b) + 1lgth('ika) = lgth(a) + 1 lgth(a�ib) = lgth(a) + lgth(b) + 1Sin
e there are no rules of the
al
ulus s whi
h
ontain \�" or \ap-ply" as head symbol, in order to prove that all terms are terminat-ing, we need only to
he
k that if a; b 2 SN, then 'ika 2 SN anda�ib 2 SN whi
h we prove in Lemma 30 by lexi
ographi
 indu
tion on(dpth(a); lgth(a))) and (dpth(a); lgth(a); dpth(b); lgth(b)) respe
tively.LEMMA 30. Let a; b 2 �s. We have (i� stands for if and only if):1. ab 2 SN i� a 2 SN and b 2 SN. Also, �a 2 SN i� a 2 SN.2. If a 2 SN, then 'ika 2 SN for all i � 1, k � 0.3. If a; b 2 SN, then a�ib 2 SN for all i � 1, k � 0.4 dpth(t) is well de�ned for t 2 SN by K�onig Lemma. Note also that when a; bare terminating and a �!+ b, then dpth(a) > dpth(b). However, we do not need thenotion of \depth" when formalising the lexi
ographi
 indu
tion prin
iple in ALF.
final.tex; 16/09/2002; 17:43; p.11

123.4. A termination proof of s via termination of �[21℄ shows strong normalisation of s by giving a stri
t translation froms to � (Theorem 32 below) whi
h we formalise in ALF in Se
tion 6.The termination proof of � will be given in Se
tion 8.DEFINITION 31. We introdu
e some notations:� Let k � 0, i � 1. De�ne ski = 1 � 2 � ::: � k� "k+i�1 (write s0i ="i�1).� Let b 2 ��t. We de�ne a family of substitutions (bk)k�1 as follows:b1 = b[id℄ � id b2 = 1 � b["℄� " ... bi+1 = 1 � 2 � ::: � i � b["i℄� "i� Let �� = ��t [��s. De�ne the fun
tion T : �s! �� by:T (n) = n T (ab) = T (a)T (b) T ('ika) = T (a)[ski℄T (�(a) = �(T (a)) T (a�ib) = T (a)[T (b)i℄THEOREM 32. If a!s b then T (a)!+� T (b).4. The proof assistant ALF4.1. About Martin-L�of's Type TheoryIn Martin-L�of's type theory [25℄ predi
ate logi
 is interpreted withintype theory through Pat, the Curry-Howard-de Bruijn interpretationof propositions as types (sets). A proposition is interpreted as a setwhose elements represent the proofs of the proposition. Hen
e, a falseproposition is interpreted as the empty set and a true proposition as anon-empty set. To prove a proposition is to prove the set is inhabited.There are two ways of introdu
ing types in Martin-L�of's type the-ory: fun
tion types and indu
tively de�ned sets of the type Set. Thefun
tion types make it possible to express rules in a natural dedu
tionstyle and logi

an then be introdu
ed by the Pat prin
iple.For every indu
tively de�ned set, one �nds one formation rule (ex-pressing how to form a set), introdu
tion rules (expressing how toform the elements of the set), and one elimination rule (giving theindu
tion prin
iple for this set, i.e. how to prove all the elements of theset satisfy some property). Basi
ally one states in the elimination rulethat if for every
onstru
tor one
an show the property holds, then theproperty holds for all the elements of the set. Another way to look atthe elimination rule is that it says there are no other obje
ts in this setex
ept those given by the introdu
tion rules. There is a general s
hemeto derive the elimination rule from the introdu
tion rules of a set.As an example, we give the formation, elimination and introdu
tionrules of the set of natural numbers N. First, we give some notations:
final.tex; 16/09/2002; 17:43; p.12

13NOTATION 33. A fun
tion f whi
h takes arguments x1 2 A1; : : : ; xn 2An and returns f(x1; : : : xn) 2 B, is written as f 2 (x1 2 A1; : : : ; xn 2An)B. E.g., the su

essor fun
tion on natural numbers is written assu

 2 (n 2 N)N. I.e., it takes n 2 N and returns su

(n) 2 N.Now, the set N is formed by the formation rule: N 2 SetThe elements of the set N are de�ned by two introdu
tion rules:5zero 2 N a 2 Nsu

(a) 2 NThe elimination rule of N is just the indu
tion prin
iple:C(v)set[v 2 N℄a 2 Nd 2 C(zero)e(x; y) 2 C(su

(x))[x 2 N; y 2 C(x)℄natre
(a; d; e) 2 C(a)In ALF (see Se
tion 4.2), the introdu
tion rules of N look like:N 2 Setzero 2 Nsu

 2 (n 2 N)NWe present rules in a natural dedu
tion style or in ALF style above.We use a 2 A or a : A to denote a is an element (obje
t) of the set(type) A. A proposition is proved by
onstru
ting a proof obje
t, or anelement of the set in ALF. Obje
ts of a type are formed from
onstantsand variables using appli
ation (app) and abstra
tion (abs) given by:
 2 (x 2 A)B a 2 A
(a) 2 B[x := a℄ (app) b 2 B[x 2 A℄[x℄b 2 (x 2 A)B (abs)4.2. The proof assistant ALFALF [24, 32℄ implements a monomorphi
 version of type theory whereall type information is in the term. As a result there is a lot of redundantor uninteresting type information, and the size of the proofs
an bevery large. However, the user
an instru
t ALF to suppress unwantedtype information when displaying proofs. ALF emphasizes the intera
-tive development of type-theoreti

onstru
tions, i.e. proof obje
ts andprograms, using a window-based user interfa
e. Thus ALF supports anarbitrary mixture of top-down and bottom-up development.The basi
 metaphor of ALF is the re�nement of an in
omplete proofobje
t whi
h is displayed in a window (s
rat
h area). Using the mouse,5 Here N is a set having two
onstru
tors: the nullary zero and the unary su

,whi
h is a fun
tion from N to N.
final.tex; 16/09/2002; 17:43; p.13

14the user
an �ll in pla
eholders by pointing at them and then sele
tinga previously
onstru
ted obje
t from a menu. In ALF pla
e-holders areused to represent those parts of obje
ts whi
h are to be �lled in. Theexpression ? 2 A expresses a state of an ongoing pro
ess of �nding anobje
t in the type A. There are four ways of re�ning a pla
eholder:� The pla
eholder is repla
ed by a
onstant
. This is
orre
t if thetype of
 is equal to A.� The pla
eholder is repla
ed by a variable x, where x must be inthe lo
al s
ope of the pla
eholder.� The pla
eholder is repla
ed by an abstra
tion [x℄? 2 A if A is equalto fun
tion type (y 2 B)C. We are
onstru
ting a solution to theproblem C under the assumption that we have a solution to B.� The pla
eholder
an be repla
ed by an appli
ation
(?1; : : : ; ?n).In this
ase we
an divide the problem to several subproblems.We have used Window ALF whi
h was implemented by Magnusson[24℄. By the Pat prin
iple, to prove a theorem in ALF is the sameas writing a program \witnessing" the truth of the theorem. This is afundamental di�eren
e between ALF and HOL (and many other proof-assistants), where the proof is presented as a sequen
e of ta
ti
s.5. Formalising expli
it substitution
al
uli in ALFIn this se
tion we give the implementations of �0, � and s, and presentthe notion of termination and the well-founded indu
tion prin
iple.5.1. Expli
it substitution
al
uli in ALFAn expli
it substitution
al
ulus is de�ned by a set of terms (substi-tutions) and a set of rules. Ea
h set is indu
tively de�ned by its intro-du
tion rules in ALF. There is an elimination rule for ea
h indu
tivelyde�ned set, whi
h gives the indu
tion prin
iple on the set.For �0, the set of terms ��0 and the redu
tion rules R�0 (
f. De�-nition 3) are given below. Note that in ALF, we should use somethinglike Sig0Term instead of ��0, but for readability, we write the latter inthis paper and follow the same abuse of notation for all other names:
final.tex; 16/09/2002; 17:43; p.14

15��0 2 Set R�0 2 (s; t 2 ��0)Set1 2 ��0 V rId 2 R�0(1 Æ id; 1)id 2 ��0 V rCons 2 R�0(1 Æ (s � t); s)" 2 ��0 Abs 2 (s; t 2 ��0)R�0((�s) Æ t; �(s Æ (1 � (tÆ "))))� 2 (a 2 ��0)��0 IdL 2 R�0(id Æ s; s)Æ 2 (s; t 2 ��0)��0 ShId 2 R�0(" Æid; ")� 2 (s; t 2 ��0)��0 ShCons 2 R�0(" Æ(s � t); t)Map 2 R�0((s � t) Æ u; (s Æ u) � (t Æ u))Ass 2 R�0((s Æ t) Æ u; s Æ (t Æ u))For readability, we will not be using the real syntax of ALF in thispaper. The reader
an refer to [1℄ for all the
ode in ALF. We abusethe notation of ALF and write some operators as in�x rather thanpre�x, we use the same names of the original
al
ulus rather than namesallowed by the syntax of ALF, and we suppress some arguments of the
onstru
tors. The real implementation in ALF looks as follows:R�0 2 (s; t 2 ��0)SetV rId 2 R�0(Com(V1; Id); V1)V rCons 2 (s; t 2 ��0)R�0(Com(V1; App(s; t)); s)Abs 2 (s; t 2 ��0)R�0(Com(Lam(s); t); Lam(Com(s;App(V1; Com(t; Shift))))): : :One step redu
tion ! is formalised as follows:!2 (s; t 2 ��0)SetDire
t 2 (R�0(s; t))s! t�Compa 2 (s! t)�s! �tÆCompL 2 (s1 ! s2)s1 Æ t! s2 Æ tÆCompR 2 (s1 ! s2)t Æ s1 ! t Æ s2�CompL 2 (s1 ! s2)s1 � t! s2 � t�CompR 2 (s1 ! s2)t � s1 ! t � s2The
al
uli � and s are formalised in the same way.5.2. Termination of expli
it substitutions in ALFLet (A;R) be an expli
it substitution
al
ulus, where R is the one stepredu
tion relation. Termination is de�ned as a family of sets indu
tivelyde�ned in ALF by the Formation, Introdu
tion6 and elimination rulesgiven in Figure 3. E.g., we give the de�nition of SN for �0 in Figure 4.The introdu
tion rule says that an element a is strongly normalisingif whenever it is one step redu
ed to a term b, b is also strongly nor-malising. This is a re
ursive de�nition. SNintr is the
onstru
tor. Wewill write SN(a) or a 2 SN when the term a is strongly normalising.Let C be a proposition on SN(a) for a 2 A. The elimination rulesays that to prove C holds for sn 2 SN(t) and t 2 A, we need to show:6 This is a typi
al
onstru
tive way to des
ribe in�nite obje
ts. We have hiddenthe arguments A and R in the introdu
tion rule.
final.tex; 16/09/2002; 17:43; p.15

16 a : ASN(a) : Set (Formation)a : ASNintr : (a : A;h : (b : A;R(a; b))SN(b))SN(a) (Introdu
tion)C : (t : A; SN(t))Setd : (x : A; b : (y : A;R(x; y))SN(y); b1 : T1)T2yt : Asn : SN(t)SNelim(C; b; t; sn) : C(t; sn) (Elimination)y: where T1 � (y : A; a : R(x; y))C(y; b(y; a)) and T2 � C(x; SNintr(x; b))Figure 3. TerminationSN 2 (a 2 ��0)SetSNintr 2 (a 2 ��0; (b 2 ��0; a! b)SN(b))SN(a)Figure 4. De�nition of SN for �0� if whenever x is one step redu
ed to y then y is strongly normalisingand there is a proof of C(y; b(y; a)), then we
an get a proof ofC(x;SNintr(x; b)) (note that b is the indu
tion hypothesis).We will use the non-dependent version of the re
ursor Re
SN given inFigure 5 to simulate indu
tion over the length of the longest redu
tionof a strongly normalising term. Re
SN as an indu
tion prin
iple saysthat SN is the smallest set of terms
losed under one step redu
tion.In later se
tions we will need to prove propositions like SN(a) impliesSN(a0). To prove su
h propositions using the indu
tion prin
iple ofFigure 5 we
an try to �nd a predi
ate P su
h that SN(a) implies P(a),and P(a) implies SN(a0). To prove SN(a) implies P(a), by the indu
tionprin
iple we need only to prove P is
losed under one step redu
tion. Wewill use this te
hnique to prove some lemmas in Se
tion 6. Alternatively,we de�ne a � b if b! a. Then a redu
tion! is strongly normalising ifand only if the order � is well founded. Hen
e the indu
tion prin
ipleRe
SN is just the well founded indu
tion prin
iple.P : (a : A)Seth : (m : A; (n : A;R(m;n))SN; (n : A;R(m;n))P (n))P (m)m1 : Asn : SN(m1) Re
SN(P; h;m1; sn) : P (m1)Figure 5. Re
SN
final.tex; 16/09/2002; 17:43; p.16

17�s 2 Set [[℄℄ 2 (�s)NV ar 2 (n 2 N;n > zero))�s [[V ar(n)℄℄ � su

(su

(zero))ap 2 (s; t 2 �s)�s [[st℄℄ � su

(plus([[s℄℄; [[t℄℄))� 2 (s 2 �s)�s [[�t℄℄ � su

([[t℄℄)� 2 (s 2 �s; j 2 N; j > zero); t 2 �s)�s [[s�jt℄℄ �Multiply([[s℄℄; su

([[t℄℄))' 2 (i; k 2 N; i > zero); s 2 �s)�s [['iks℄℄ �Multiply(su

(su

(zero)); [[s℄℄)Figure 6. The (sugared) Implemenation of the
al
ulus s6. Formalising the termination proof of s in ALF6.1. Formalising the Interpretations for termination of sThe implementation of the interpretations for the termination of s isnot diÆ
ult. All we need is some inequalities about the addition andmultipli
ation of natural numbers. See Se
tion 3.2.The (sugared) implementation of the
al
ulus s (De�nition 26) andof its interpretation (De�nition 28) is given in Figure 6 (again, by abuseof notation, we write ab instead of ap(a; b)).We formalise Theorem 29 as: Prop1 2 (a; b 2 �s; a! b)[[a℄℄ > [[b℄℄:All the details of this proof of termination of s using interpretation(see Se
tion 3.2) have been fully formalised in ALF. See [1℄.6.2. Formalising the indu
tion termination proof of sNow let us see how to implement the strong normalisation proof of sgiven in Se
tion 3.3. We use SNs for strong normalisation in �s.Theorem 27 is proved by indu
tion on the stru
ture of terms, orusing the elimination rule:�s elim : (C : (�s)Set)(e1 : C(V ar(n)))(e2 : (a; b : �s;C(a);C(b))C(ab))(e3 : (a : �s;C(a))C(�a)(e4 : (a : �s; i; k : N ;C(a))C('ika)(e5 : (a; b : �s; i : N ;C(a);C(b))C(a�ib)(a : �s)C(a)To this end we need Lemma 36 below whi
h gives the proof obje
ts ofe1; e2; e3; e4 and e5 when C is SNs. Intuitively, SNs holds for all normalforms be
ause for them the premise of the introdu
tion rule for SNs isva
uously true. Sin
e every variable is strongly normalising, e1 is easyto get. After proving Lemma 36, we �nish the proof of Theorem 27 byindu
tion on the stru
ture of terms.
final.tex; 16/09/2002; 17:43; p.17

18REMARK 34. By using pattern mat
hing, we do not need to write theelimination rule of �s. Theorem 27 reads in ALF: SNs : (a : �s)SNs(a).By pattern mat
hing on the argument a, we get the following equations:SNs : (a : �s)SNs(a)SNs(V ar(n)) =?e1SNs(ab) =?e2SNs(�(a)) =?e3SNs('ika) =?e4SNs(a�ib) =?e5Here we have the same tasks to give those proof obje
ts e1; � � � ; e5.REMARK 35. It is easy to prove Lemma 36 in
lassi
al logi
 usingthe de�nition \there are no in�nite derivations". But when proving itin ALF, we
an't use the
lassi
al law of refutation. In ALF, we mustuse introdu
tion and elimination rules to give a
onstru
tive proof.LEMMA 36. The following hold:1. ab 2 SNs if and only if a 2 SNs and b2 SNs.2. �a 2 SNs if and only if a 2 SNs.3. For any i � 1; k � 0, 'ika 2 SNs if and only if a 2 SNs.4. For any i � 1, a�ib 2 SNs if and only if a; b 2 SNs.Proof: Cases 1 and 2 are by indu
tion on the derivation sequen
es,that is by SNs elimination. Cases 3 and 4 need to
ombine the SNselimination and term elimination, whi
h
orrespond to indu
tion on(dpth(a), lgth(a)).7 Below, we only give the ALF proof of
ase 2.Case 2: We prove �rst the \only if" part. We de�ne a predi
ate P1(a) �8x 2 �s((a = �(x))) SNs(x)). We will prove the following fa
ts:1. 8x 2 �s(P1(�(x))) SNs(x)): 2. 8x 2 �s(SNs(x)) P1(x)).1. It is easy to see that P1(�(a)) implies SNs(a) by de�nition of P1.This is proved in ALF by giving a fun
tion whi
h for any proof ofP1(�(a)) gives a proof of SNs(a):Suppose we have a proof h : P1(�(a)); by the elimination rule of 8,we have a proof: Forall elim(h; �(a)) : (�(a) = �(a))) SNs(a)). Bythe elimination rule of) and a proof r : �(a) = �(a), we get a proofof SNs(a). The �nal proof of P1(�(a))) SNs(a) for any a 2 �slooks like: Imply intro([h℄Imply elim(Forall elim(h; �(a)); r). Usingintrodu
tion rule of 8, we get the proof of 2.7 Re
all that dpth(a) is the number of redu
tions in the longest derivation pathstarting from term a, however we don't need to formalise dpth(a), whi
h is a partialfun
tion de�ned only on strongly normalising terms.
final.tex; 16/09/2002; 17:43; p.18

192. We must prove that 8x 2 �s(SNs(x)) P1(x)). This is by theindu
tion prin
iple Re
SNs, whi
h amounts to indu
tion on deriva-tions. We should prove that P1(x) is
losed under one step redu
-tion, i.e.: m : �s;h : (n : �s;m! n)P1(n)? : P1(m)Note that we denote statemens of the form: \under assumption A,�nd a proof of type B" by: A? : BP1(m) is solved by introdu
tion rules of universal quanti�er, implyand by �nding a proof obje
t of type SNs(x): x : �s;m � �(x)? : SNs(x)The problem SNs(x) is solved by the introdu
tion rule of SNs and�nding a proof obje
t of type SNs(b): b : �s;h2 : x! b? : SNs(b)This is proved using the proofs of P1(�(b))) SNs(b) and P1(�(b)).The proof of P1(�(b))
omes from the proof h : (n : �s;m !n)P1(n), where m = �(x); n = �(b) and m! n be
ause h2 : x! b.The \if" dire
tion is proved in the same way: Suppose P2(x) � SNs(�(x)),then we
an prove that P2(x) is
losed under one step redu
tion. Byredu
tion on derivations, we prove that 8x 2 �s(SNs(x)) P2(x)).Finally, it is easy to see that P2(x) implies SNs(�(x)). 2Again, all the details of this indu
tion termination proof of s (seeSe
tion 3.3) have been fully formalised in ALF. See [1℄.6.3. Formalising the termination proof of s via �In this se
tion, we formalise in ALF, the strong normalisation of s bygiving a translation from s to � (see Se
tion 3.4). The translation T ofDe�nition 31 is formalised in ALF as follows (in sugared notation):T 2 (a 2 �s)��T (V ar(n)) �
ode(n)T (st) � T (s)T (t)T (�t) � �T (t)T (s�jt) � T (s)[T (tj℄T ('iks) � T (s)[ski℄Theorem 32 is
he
ked, whi
h is implemented in ALF (again in sugarednotation) as: SigSimulateS 2 (a; b 2 �s; p 2 a! b)T (a)!+� T (b).The ALF proof of this theorem is by
ase analysis on the proofobje
t p. We should
he
k when any of the seven ! redu
tion rulesfor p, the theorem is
orre
t. One of the main tasks is, when
oming tothe rule Dire
t for one step redu
tion in s (see page 15), to prove thetheorem holds for any of the redu
tion rules of s. We
an use indu
tionto prove other
ases, i.e. the
ompatible rules. For instan
e, we shouldprove the following propositions hold when we are at �-destru
tion:
final.tex; 16/09/2002; 17:43; p.19

20 Proje
tion1 : (n : N ; b : ��t)n[bn℄!+� b["n℄Proje
tion2 : (n; i : N ; i > n; b : ��t)n[bi℄!+� nProje
tion3 : (n; i : N ;n > i; b : ��t)n[bi℄!+� n� 1It is easy to see that they are intuitively true. However when provingthem in ALF, there are a lot of details whi
h we need to
he
k. Let ustake these proje
tions to see some details of the ALF proof.First of all, we should have a denotation for bi for any i � 1. Whenwe write bi, we a
tually refer to a fun
tion bi : ��t �N ! ��s. In thefollowing we will feel free to use the
onvention notation bi de�ned by:bi = Con
aFinite(i; b["i�1℄� "i�1) where:Con
aFinite : (n : N ; s : ��s)��sCon
aFinite(0; s) = s;Con
aFinite(n+ 1; s) = Con
aFinite(n; n � s)Alternatively we
ould give bi by two simultaneously de�ned fun
tions" Subs and " term: b01 = b[id℄ � id and b0i+1 = 1� " Subs(b0i) where" Subs : (s : ��s)��s " term : (a : ��t)��t" Subs(id) =" " term(1) = 1["℄" Subs(") =" Æ " " term(ab) =" term(a) " term(b)" Subs(a � s) =" term(a)� " Subs(s) " term(�a) = �(a[1 � (" Æ ")℄)" Subs(s Æ t) = sÆ " Subs(t) " term(a[s℄) = a[" Subs(s)℄LEMMA 37. For any a 2 ��t, s 2 ��s and n 2 N, the following hold:1: a["℄!?�" term(a): 2: sÆ "!?�" Subs(s).3: " Subs("n) ="n+1 : 4: " term(n) = n+ 1:Proje
tion1 is proved by Lemma 38, whi
h is shown by indu
tion on n:LEMMA 38. "n ÆCon
aFinite(n; s)!+� s for any s 2 ��s and n > 0.LEMMA 39. Proje
tion1 : (n : N ;n > 0; b : ��t)n[bn℄!+� b["n℄.Proof: By indu
tion on n.� For n = 1, 1[b1℄ = 1[b[id℄ � id℄ ! b[id℄ = b["0℄ by the rule (VrCons).� For n+1, (n+1)[bn℄ = 1["n℄[bn℄ ! 1["n Æbn℄! 1[b["n℄� "n℄! b["n℄by the rule (Clos) and Lemma 38. 2Similarly, Proje
tion2 is proved by indu
tion on n.� For n = 1 we need to prove: 1[Con
aFinite(b; i)℄! 1This is proved by the rule (VrCons) in one step. This is be
ausebi = 1 � s for some substitution s when i > 1. However, bi isde�ned by the fun
tion Con
aFinite, we need to prove this fa
t. Itis immediate if we use the notation b0i.
final.tex; 16/09/2002; 17:43; p.20

21� For n+1, we should prove: 1["n℄[bi℄!+� 1["n℄.By the
losure rule, we have: 1["n℄[bi℄!� 1["n Æbi℄.Intuitively "n Æbi = (n + 1) � ::: � b["i�1℄� "i�1, and Proje
tion2 issolved by the rule VarCons.Therefore we should prove that "n Æbi = (n+ 1) � ::: � b["i�1℄� "i�1Now there should be a notation for (n+ 1) � ::: � b["i�1℄� "i�1So we de�ne another notation Con
aFinite3:Con
aFinite3 : (n; i : N ; s : ��s)��sCon
aFinite3(n; 0; s) = n � sCon
aFinite3(n; i + 1; s) = Con
aFinite3(n; i; (n+ i+ 1) � s)LEMMA 40. Let n 2 N, s 2 ��s and i > n.� Con
aFinite3(0; n; s) = Con
aFinite(n+ 1; s)� "n ÆCon
aFinite(i; s)!+� Con
aFinite3(n; i� n� 1; s).We have to prove that Con
aFinite3(n; i; s) has the form n � s forsome substitution s expli
itly.LEMMA 41. Let i; n 2 N, s 2 ��s, LS1(n; i+1; s) = Con
aFinite3(n+1; i; s) and LS1(n; 0; s) = s. Con
aFinite3(n; i; s) = n � LS1(n; i; s).LEMMA 42. Proje
tion2 : (n; i : N ; i > n; b : ��t)n[bi℄!+� n.Proje
tion3 is proved by indu
tion on the proof obje
t p : n > i basedon proving the following lemma:LEMMA 43. "n+1+i Æbi !+� "n+i for any i; n 2 N.This is be
ause n[bi℄ = 1["n�1℄[bi℄! 1["n�1 Æbi℄! 1["n�2℄.LEMMA 44. Proje
tion3 : (n; i : N ;n > i; b : ��t)n[bi℄!+� n� 1.Having proved T is a stri
t interpretation, we
an
on
lude Theo-rem 27 using of
ourse the proof of termination of � (Se
tion 8).Again, all the details of this termination proof of s via terminationof � (see Se
tion 3.3) have been fully formalised in ALF. See [1℄.7. Formalising the
ontext
al
ulus of �0 in ALFIn this se
tion we formalise in ALF all the notions informally given in[12, 30℄. In [12℄, many notions were taken for granted and not intro-du
ed, and many lemmas were left unproven. To formalise the proofsof [12℄ we had to rewrite all the intuitions and informal notions, and to
final.tex; 16/09/2002; 17:43; p.21

22 = : (C 2 Cont;
 2 L)Cont = : (s 2 ��0;
 2 L)��0C=nil = C t=nil = t�m=f1; 2g
 = 1
1
=f1; 2g
 = 1
 1=f1; 2g
 = 1id
=f1; 2g
 = id
 id=f1; 2g
 = id"
 =f1; 2g
 ="
 " =f1; 2g
 ="�
(C)=f1; 2g
 = C=
 �(s)=f1; 2g
 = s=
C �
 D=1
 = C=
 s � t=1
 = s=
C �
 D=2
 = D=
 s � t=2
 = t=
C Æ
 D=1
 = C=
 s Æ t=1
 = s=
C Æ
 D=2
 = D=
 s Æ t=2
 = t=
Figure 7. Formulation of Notation 11
he
k a lot of details. Sometimes we had to
hange the implementationto make the proofs go through. We shall dis
uss some of the implemen-tations during the pro
ess of the formalisation in this se
tion.8 Whenformalising on a ma
hine, nothing
an be left to the intuition.The
ontexts of De�nition 10 are formalised in ALF as follows:Cont 2 Set� 2 (n 2 N;n � 1)Contid
; 1
; "
2 Cont�
 2 (C 2 Cont)Cont�
; Æ
 2 (C;D 2 Cont)ContLet f1; 2g mean 1 or 2. Let L be the set of lists of f1; 2g. L is also
alled the set of o

urren
es. Figure 7 formalises Notation 11. This isdone by the position of the sub-
ontext, whi
h is a list of f1; 2g (also
alled an o

urren
e). In Figure 7 whi
h implements the notion of sub-
ontext, we write C=
 instead of =(C;
), whi
h denotes the sub-
ontextof C at
. Similarly we de�ne the sub-terms of a term by its o

urren
esof the sub-terms.
0 �
 denotes
0 is a proper pre�x of
.7.1. Substitutions of the
ontextThere are several ways to think of a term t as a
ontext �lled with itssub-terms. We �rst de�ne the substitutions of
ontexts with tuples ofterms Subst 2 (C 2 Cont;n 2 N;u 2 ��n0)��0 and implement Cq byLiftCont : (C 2 Cont; q 2 N)Cont. We use C[u℄ for Subst(C;Lg(u); u)8 Pages 33{53 of [30℄ are simply the Fren
h version of Se
tions 2{7 of [12℄.
final.tex; 16/09/2002; 17:43; p.22

23T1 � (C 2 Cont;
 2 L;B 2 Cont)Cont T2 � (s 2 ��0;
 2 L; t 2 ��0)��0SubSub
on : T1 SubSubtm : T2Cfnil Bg = B sfnil tg = t�mff1; 2g
 Bg = �mid
ff1; 2g
 Bg = id
 idff1; 2g
 tg = id1
ff1; 2g
 Bg = 1
 1ff1; 2g
 tg = 1"
 ff1; 2g
 Bg ="
 " ff1; 2g
 tg ="�
(C)ff1; 2g
 Bg = �
Cf
 Bg) �(s)ff1; 2g
 tg = �(Cf
 tgC �
 Df1
 Bg = (Cf
 Bg) �
 D s1 � s2f1
 tg = s1f
 tg � s2C �
 Df2
 Bg = C �
 (Df
 Bg) s1 � s2f2
 tg = s1 � s2f
 tgC Æ
 Df1
 Bg = (Cf
 Bg) Æ
 D s1 Æ s2f1
 tg = s1f
 tg Æ s2C Æ
 Df2
 Bg = C Æ
 (Df
 Bg) s1 Æ s2f2
 tg = s1 Æ s2f
 tgFigure 8. Formulation of substitutions in
ontexts and terms(
f. De�nition 12 and Notation 13)). We use uk to denote Proj(n; k; u),the kth-proje
tion of the n-tuple u. We take K
(C) to be the numberof the holes in C, and N
(C) to be the largest hole index in
ontext C.The next lemma states some basi
 fa
ts about the substitution C[u℄:LEMMA 45. Let u = (u1; � � � ; um) and v = (v1; � � � ; vn). We have:1. Proj(m+ n;m+ k; u�v) = Proj(n; k; v).2. C[u�v℄ = C[u℄ if N
(C) � Lg(u).3. Cm[u�v℄ = C[v℄.4. If K
(C) = 0, then C[u℄ = C[v℄ for any u and v.Intuitively they are all true, but to formally prove them, we need to
he
k a lot of
ases by indu
tion. For all the ALF proofs see [1℄.Substitutions in
ontexts is a basi
 operation in the
ontext
al
u-lus. We use Cf
 Dg for the
ontext obtained by repla
ing in Cthe sub-
ontext C=
 by the
ontext D, and sf
 tg for the termobtained by repla
ing in s the sub-term s=
 by the term t. We againabuse notation and write in the ALF de�nition, Cf
 Bg instead ofSubSub
on(C;
;B).9 Substitution is given in Figure 8.We
onsider both substitutions on variables (holes) and on \posi-tions", where we only substitute some o

urren
es of a variable.9 TmtoCont(s) will denote the
ontext when thinking of term s as a
ontextwithout any hole. We shall use Cf
 tg instead of Cf
 TmtoCont(t)g.
final.tex; 16/09/2002; 17:43; p.23

247.2. Relations on
ontextsIn this se
tion we formalise in ALF many of the notions of Se
tion 2.3(e.g., relative
ontexts, good (very good)
ontexts, in
ations, et
.) andwe prove in ALF many of the properties of these notions that arene
essary for our main proof in ALF (in parti
ular of Theorems 2and 24). We will write all these formalisations in sugared notation andrefer the reader to [1℄ for the full details and non sugared
ode.10Let N1 be the singleton set and I is the intensional equalityI 2 (a; b 2 A)Setr 2 (A 2 Set; a 2 A)I(a; a)The
onstru
tive de�nition of the relation relative of De�nition 15, isde�ned indu
tively on the stru
ture of C as follows:Relative : (C : Cont; s : ��0)SetRelative(�m; s) = N1Relative(id
; s) = I(s; id)Relative(1
; s) = I(s; 1)Relative("
; s) = I(s; ")Relative(�
(C); s) = 9h(I(s; �(h)) ^Relative(C; h))Relative(C �
 D; s) = 9a; b(I(s; a � b) ^Relative(C; a) ^Relative(D; b))Relative(C Æ
 D; s) = 9a; b(I(s; a Æ b) ^Relative(C; a) ^Relative(D; b))Let R(C; s) stand for C is a
ontext relative to s. Let G(C; s) (resp.V(C; s)) stand for C is a good (resp. very good)
ontext relative to s.The next lemma relates sub-
ontexts and sub-terms:LEMMA 46 (Preservation of relative
ontexts in terms). Let C;D be
ontexts, s; t be terms, u be a tuple of terms and
 be an o

urren
e.� R(C; s) if and only if R(�
(C); �(s)).� R(C �
 D; s � t) if and only if R(C; s) and R(D; t).� R(C Æ
 D; s Æ t) if and only if R(C; s) and R(D; t).� IfR(C; s with u) then R(Cq; s with v�u) for any v = (v1; � � � ; vq).� If D[u℄ = E[u℄ then Cf
 Dg[u℄ = Cf
 Eg[u℄.� If R(C; s) then R(Cf
 tg; sf
 tg).The notion of in
ations of De�nition 16 is de�ned as a relation inALF in Figure 9 (where WtmTuple(w) means w is a W-Tuple, i.e. atuple of W-terms). Figure 9 also de�nes a fun
tion in ALF to expressthe prime operation of De�nition 16.The next lemma relates
ontext operations to in
ations:LEMMA 47 (Preservation of in
ations in the stru
ture of terms). LetC;D be
ontexts, s; t be terms, u; u1; u2; w;w1; w2 be tuples of terms.10 Many lemmas of the
ontext
al
ulus were proved in ALF by analysing if aterm is a W-term or L-term.
final.tex; 16/09/2002; 17:43; p.24

25In
ation 2 (s 2 ��0;C 2 Cont;n 2 N;u; w 2 ��n0))SetIn
ation(s; C; n; u; w) � (n � NumofHoles(C)) ^ I(s; C[u℄) ^WtmTuple(w)~Æ : (u; w : ��n0)��n0u~Æw = one< a; b > ~Æ < a1; b1 >=< a~Æa1; IfThEl(b; b1; b Æ b1) >where IfThEl : (s 2 ��0; t1; t2 : ��0)��0IfThEl(s; t1; t2) = t1 if s is a W-termIfThEl(s; t1; t2) = t2 otherwiseFigure 9. In
ations and the prime operation of De�nition 16GoodCont : (C : Cont; s : ��0)SetGoodCont(�m; s) = N1GoodCont(id
; s) = I(s; id)GoodCont(1
; s) = I(s; 1)GoodCont("
; s) = I(s; ")GoodCont(�
(C); s) = 9h(I(s; �(h)) ^ GoodCont(C; h))GoodCont(C �
 D; s) = 9a; b(I(s; a � b) ^ GoodCont(C; a) ^ GoodCont(D; b))GoodCont(C Æ
 D; s) = 9a; b(I(s; a Æ b) ^GoodCont(C; a) ^GoodCont(D; b)^(((9l)IsHole(C; l))! W-hole(D)))Figure 10. Good
ontexts De�nition 18� In
ation(s; C; u; w) if and only if In
ation(�(s); �(C); u; w).� If In
ation(s; C; u1; w1) and In
ation(t;D; u2; w2), thenIn
ation(s � t; C �
 Dm; u1�u2; w1�w2).� If In
ation(s; C; u1; w1) and In
ation(t;D; u2; w2), thenIn
ation(s Æ t; C Æ
 Dm; u1�u2; w1�w2).� If K
(C) = 0 then In
ation(C[u℄; C; n; u; w) for any u;w.A good
ontext (De�nition 18) is de�ned as a set on C and s (seeFigure 10) where IsHole(C; l) denotes C=l is a hole and W-hole(D)denotes that D is a W-hole. We shall also say a
ontext C is goodfor a term s where we mean that C is a good
ontext for s. A goodIn
ation De�nition 20 will be de�ned in ALF as in Figure 11. A verygood
ontext (De�nition 19) is de�ned in ALF as in Figure 12.Many fa
ts about good
ontexts are needed when proving someimportant lemmas in Se
tion 7.3:
final.tex; 16/09/2002; 17:43; p.25

26 GoodIn
ation 22 (s 2 ��0;C 2 Cont;n 2 N;u;w 2 ��n0))SetGoodIn
ation(s; C; n; u; w) � GoodCont(C; s) ^ In
ation(s;C; n; u; w)Figure 11. Good In
ations De�nition 20VeryGoodCont(C; s) i� GoodCont(C; s) ^ ((8
(IsHole(C;
))! 8(Æ �
)Lterm(s=Æ)))Figure 12. Very Good Contexts of De�nition 19LEMMA 48. Suppose that C;D are
ontexts, and s; t;
; d; e are terms.� If R(C; s) and K
(C) = 0 then G(C; s).� G(C; s) if and only if G(�
(C); �(s)).� G(C �
 D; s � t) if and only if G(C; s) and G(D; t).� If G(C Æ
 D; s Æ t) then G(C; s) and G(D; t).� If G(C; s), K
(C) = 0, and G(D; t) then G(C Æ
 D; s Æ t).� If G(C; s) and t is a W-term, then G(C Æ
 �m; s Æ t).� If G(C Æ
D; a Æ b), K
(C) � 1, and G(E; e); then G(E Æ
D; e Æ b).� If G(C; s), then G(Cm; s) for any m 2 N.� If G((C �
D)Æ
E; (
�d)Æe), then G((CÆ
E)�(DÆ
E); (
Æe)�(dÆe)).� If G((C Æ
 D) Æ
 E; (
 Æ d) Æ e) then G(D Æ
 E; d Æ e).� If G((C Æ
 D) Æ
 E; (
 Æ d) Æ e) and K
(C) = 0, thenG(C Æ
 (D Æ
 E);
 Æ (d Æ e)).The following lemma will be needed when the main
ase of the Preser-vation Theorem 56 is
he
ked:LEMMA 49. Let C;D be
ontexts, s; t be terms ,
 be an o

urren
eand m 2 N.1. If G(C; s), C=
 is a W-hole, t is a W-term, then G(Cf
 �mg; sf
 tg). Moreover, G(Cf
 �mg; s).2. If G(C; s), C=
 is �-hole and G(D; t) then G(Cf
 Dg; sf
 tg).3. If V(C; s) then V(C=
; s=
).4. If V(C; s), C=
 is a �-hole, and t is an L-term, then V(Cf
 tg; sf
 tg).5. Let R(C; s). If K
(C) = 0 then V(C; s).6. If K
(C) = 0, V(C; s) and V(D; t). If s � t is an L-term then V(C �
D; s � t). If s Æ t is an L-term then V(C Æ
 D; s Æ t).7. If V(C; s) and C=
(
 6= nil) is a hole, then s is an L-term.8. If V(C; s) then V(Cm; s) for any m 2 N.9. If s is an L-term, t is a W-term and V(C; s) then V(C Æ
�m; sÆ t).10. If V(C; s) then V(Cf
 �mg; s).11. If V(C; s), C=
 is a � � hole, t is an L-term and V(D; t) thenV(Cf
 Dg; sf
 tg).
final.tex; 16/09/2002; 17:43; p.26

277.3. Redu
tion of
ontextsThe main theorem in this se
tion, the Preservation Theorem, basi
allysays, the redu
t of an in
rement of a strongly normalising term is still anin
rement of a strongly normalising term, and is smaller in some sense.Hen
e we are interested in the properties of
ontext redu
tion. We de-�ne a notion of
ontext redu
tion su
h that C ! D ifC[u℄! D[u℄. This
ontext redu
tion is de�ned as (C ! D denotes ContOneStep(C;D)):ContOneStep : (Cont; Cont)Setid
 Æ
 D! D1
 Æ
 id
 ! 1
1
 Æ
 (C �
 D)! C"
 Æ
id
 !"
"
 Æ
(C �
 D)! D�
(C) Æ
 D ! �
(C Æ
 (1
 �
 (DÆ
 "
)))(C �
 D) Æ
 E ! (C �
 E) Æ
 (D �E)(C Æ
 D) Æ
 E ! C Æ
 (D Æ
 E)�
(C)! �
(D) if C ! DC �
 D! C0 �
 D if C ! C0C �
 D! C �
 D0 if D ! D0C Æ
 D! C0 Æ
 D if C ! C0C Æ
 D! C Æ
 D0 if D ! D0LEMMA 50. Suppose that C;D are
ontexts,
 is an o

urren
e.1. f C ! D and D=
 is a hole, then there is Æ su
h that C=Æ is a hole.2. If C ! D and K
(C) = 0, then K
(D) = 0.The next lemma is the formalisation of lemma 22. Figure 13 gives itsexpli
it version in ALF.LEMMA 51. Let s0 be the result of the good in
ation (C;w) of s =C[u℄, D be a
ontext where C ! D, and t = D[u℄ (hen
e, s !t and s0 ! t0). There is a good in
ation (D0; w0) of t whose result is t0.Proof: This is proved by indu
tion on Lg(C). Let us see how the
aseC = A Æ B is proved. Let s = C[u℄ = A[u℄ Æ B[u℄ = a Æ b, and m = juj.When C = A Æ B ! D, there are three possibilities a

ording to theposition of the redex. (We drop
 when no
onfusion arises.)1. The redex is within A. Suppose that A ! E, by I.H. there exists(E0; u0; w0) whi
h is the good in
ation of E[u℄, and E0[u0~Æw0℄ =E[u~Æw℄. There are two
ases: K
(A) = 0 or K
(A) � 1.a) K
(A) = 0. We have the following fa
ts:� If C ! D and K
(C) = 0, then K
(D) = 0. So K
(E) = 0.� (E Æ Bq; u0�u;w0�w) is a good in
ation E[u℄ Æ B[u℄ by Lem-mas 48 and 47, where q = ju0j.� The equality is
he
ked by Lemma 45: (EÆBq)[(u0�u)~Æ(w0�w)℄= (EÆBq)[(u0~Æw0)�(u~Æw)℄ = (E[u0~Æw0℄)Æ(B[u~Æw℄) = (E[u~Æw℄)Æ(B[u~Æw℄) = (E Æ B)[u~Æw℄.
final.tex; 16/09/2002; 17:43; p.27

28 b) K
(A) � 1. We have the following fa
ts:� B is a hole and B[u℄ is a W-term by de�nition.� (E0Æ�m+1; u0�B[u℄; w0�B[w℄) is a good in
ation of E[u℄ÆB[u℄by Lemmas 48 and 47.� The equality is
he
ked: (E0 Æ�m+1)[(u0�B[u℄)~Æ(w0�B[w℄)℄ =(E0[u0~Æw0℄)Æ(B[u℄~ÆB[w℄) = (E[u~Æw℄)Æ(B[u~Æw℄) = (EÆB)[u~Æw℄.2. The redex is within B. Suppose B ! E. We have these fa
ts:� If C ! D, then C is not a hole. Therefore B is not a hole.� If C ÆD is good for a Æ b and D is not a hole, then K
(C) = 0.Hen
e K
(A) = 0 here as A ÆB is good and B is not a hole.By I.H. there is a good in
ation (E0; u0; w0) of b su
h that b0 =E0[u0~Æw0℄ = E[u~Æw℄. From Lemma 48 A Æ E0m is good for s =A[u℄ Æ E[u℄. Now we have: (A Æ E0m)[(u�u0)~Æ(w�w0)℄ = (A[u~Æw℄) Æ(E0[u0~Æw0℄) = (A[u~Æw℄) Æ (E[u~Æw℄) = (A Æ E)[u~Æw℄. Hen
e (A ÆE0m; u�u0; w�w0) is the good in
ation of (A Æ E)[u℄ in the lemma.3. The redex is A Æ B. We argue a

ording to the rule:(Ass): C = (E Æ F) Æ B. Two
ases arise:a) K
(E) = 0. We
an prove that (E Æ F) Æ B is good for(aÆ b)Æ
 implies that E Æ (F ÆB) is good for aÆ (bÆ
) (seeLemma 48). Thus (E Æ (F ÆB); u; w) is the good in
ation.b) K
(E) � 1. Then F [u℄ Æ B[u℄ is a W-term, and the goodin
ation is (E Æ�m+1; u�(F [u℄ ÆB[u℄); w�(F [w℄ ÆB[w℄)).(Abs): C = (�(E))ÆB and D = �(E Æ (1 � (BÆ "))). Two
ases:a) If K
(E) = 0, (�(E Æ (1 � B Æ �m+1)); u� "; w� ") is thegood in
ation.b) If K
(E) � 1, (�(E Æ �m+1); u�(1 � (B[u℄Æ ")); w�(1 �(B[w℄Æ ")) is the good in
ation.(Map): C = (E �F) ÆB and D = (E ÆB) � (F ÆB). ((E ÆB) � (F ÆB); u; w) is the good in
ation, as by Lemma 48 if (E � F) Æ Bis good for (a � b) Æ
 then (E Æ B) � (F Æ B). ((E Æ B) is goodfor (a Æ
) � (b Æ
) and the equality is
he
ked easily. 2The next lemma is the formalisation of Lemma 23. Figure 14 givesits expli
it ALF version.LEMMA 52. If (C; u;w) is a good in
ation of s with result s0, thenthere exists a very good in
ation (C 0; u0; w0) of s with result s0 thatK
(C 0) � K
(C).Proof: Indu
tion on the stru
ture of C. K
(C 0) � K
(C) ensures thatindu
tion
an be done. (Note that
 is dropped if no
onfusion arises.)
final.tex; 16/09/2002; 17:43; p.28

291. C = �(A). By I.H. there exists a very good in
ation (A0; u0; w0) fors = A[u℄. Then we simply
hoose (�(A0); u0; w0).2. C = AÆB. Suppose that (A0; uA; wB) and (B0; uB ; wB) are the verygood in
ations for A[u℄ and B[u℄ respe
tively, and A0[uA~ÆwA℄ =A[u~Æw℄ and B0[uB~ÆwB ℄ = B[u~Æw℄. Two
ases arise:a) (A Æ B)[u℄ is a W-term, if there is no hole in A Æ B, then(A ÆB; u;w) is the very good in
ation, otherwise (�1; (A Æ B)[u℄; (A ÆB)[u~Æw℄) is the very good in
ation. By Lemma 49, for the W-termC[u℄, we always have C[u℄ = C[u~Æw℄.b) (A Æ B)[u℄ is an L-term.� If K
(A0) = 0, then A0 ÆB0q is very good for A[u℄ ÆB[u℄ by 49,and (A0 Æ B0q; uA�uB ; wA�wB) is a good in
ation for A[u℄ ÆB[u℄, where q = juAj. The equality
an be
he
ked:(A0ÆB0q)[(uA�uB)~Æ(wA�wB)℄ = (A0ÆB0q)[(uA~ÆwA)�(uB~ÆwB)℄= A0[uA~ÆwA℄ Æ B0[uB~ÆwB ℄ = A[u~Æw℄ Æ B[u~Æw℄. K
(A0 Æ B0q) �K
(A Æ B) be
ause K
(B0q) = K
(B0).� K
(A0) � 1. Then K
(A) � 1, and B is a w-hole, this alsoimplies that A[u℄ is an L-term be
ause A Æ B is very good.A Æ�q+1 is a very good
ontext for A[u℄ ÆB[u℄ by Lemma 49.(AÆ�q+1; uA�B[u℄; wA�B[w℄) is the very good in
ation. Theequality is
he
ked easily. K
(A0Æ�q+1) = K
(A0)+1 � K
(AÆB) as K
(B) = 1.3. C = A � B. Similarly to the above
ase. 2Combining the last two lemmas, we get the following lemma whi
h isneeded in Lemma 56. See Figure 15 for the expli
it ALF representation.LEMMA 53. Suppose that s0 is the result of a very good in
ation(C; u;w) of s = C[u℄, C ! D, and t0 = D[u~Æw℄, then there exists a verygood in
ation (D0; u0; w0) of t = D[u℄ su
h that D0[u0~Æw0℄ = D[u~Æw℄.Proof: This follows dire
tly from Lemmas 51 and 52, and the ALFproof is not big, but it took some time to
he
k. 2(Note: VeryGoodIn
ation(C[u℄; A; u; w0) = GoodIn
ation(C[u℄; A; u; w0)^V eryGood(A;C[u℄) and EX4 denotes four existential quanti�ers.)Now let us see what is happening when a term s = C[u℄ is redu
ed.Intuitively there are three possibilities: the redex is in C, the redex isin some uk or there is an intera
tion between C and u. For our purposeand simpli
ity, we only
onsider the redu
tion C[u~Æw℄! t. In this
ase,three
ases arise a

ording to the o

urren
e of the redex:1. The redu
tion is in the
ontext, i.e. C ! D and t = D[u~Æw℄.
final.tex; 16/09/2002; 17:43; p.29

30Prop6 2 (C;D 2 Cont;n Nat;u;w 2 ��n0 ;C ! D; GoodIn
ation(C[u℄; C; n; u; w))AuxProp6(C;D; n; u; w)whereAuxProp6 2 (C;D 2 Cont;n Nat;u;w 2 ��n0)SetAuxProp6 � [C;D; n; u; w℄EX4(Cont; [h℄N; [h; h1℄��h10 ; [h; h1; h2℄��h10 ;[h; h1; h2; h3℄GoodIn
ation(D[u℄; h; h1; h2; h3) ^ I(D[u~Æw℄; h[h2~Æh3℄)EX4 2 (A 2 Set;B 2 (A)Set;C 2 (h 2 A;B(h))Set;D 2 (h 2 A;h1 2 B(h);h2 2 C(h; h1))Set;D 2 (h 2 A;h1 2 B(h);h2 2 C(h; h1);h3 2 D(h; h1; h2))Set)Set GoodIn
ation(C; u; w);C ! DEX4(A;m; u0; w0)(GoodIn
ation(A; u0; w0) ^ I(D[u~Æw℄; A[u0~Æw0℄))Figure 13. En
oding Lemma 51 (or Lemma 22) in ALFProp7 2 (C;D 2 Cont;n Nat;u;w 2 ��n0 ; GoodIn
ation(C[u℄; C; n; u; w))AuxProp7(C; n; u; w)where AuxProp7 2 (C 2 Cont;n Nat;u; w 2 ��n0)SetAuxProp7 � [C; n; u; w℄EX4(Cont; [h℄N; [h; h1℄��h10 ; [h; h1; h2℄��h10 ; [h; h1; h2; h3℄)GoodIn
ation(C[u℄; h; h1; h2; h3) ^VeryGoodCont(h;C[u℄)^I(C[u~Æw℄; h[h2~Æh3℄) ^K
(C) � K
(h)GoodIn
ation(C;u; w)EX4(A;m;u0; w0)Twhere T � VeryGoodIn
ation(C[u℄; A; u; w0) ^ I(C[u~Æw℄; A[u0~Æw0℄) ^ K
(C) � K
(A)Figure 14. En
oding Lemma 52 (or Lemma 23) in ALFProp67 2 (C;D 2 Cont;n Nat;u; w 2 ��n0 ;C ! D; GoodIn
ation(C[u℄; C; n; u; w))AuxProp7(D;n; u; w)GoodIn
ation(C;u; w);C ! DEX4(A;m; u0; w0)Twhere T � VeryGoodIn
ation(D[u℄; A; u; w0) ^ I(D[u~Æw℄; A[u0~Æw0℄) ^K
(D) � K
(A)Figure 15. En
oding Lemma 53 in ALF
final.tex; 16/09/2002; 17:43; p.30

312. The redex is in some hole �k, (u Æ w)k ! r and t = C 0[(u~Æw)�r℄where C 0 is the
ontext by repla
ing the square �k, where uk isredu
ed to r, by �N
(C)+1;3. There is an intera
tion between C and u~Æw. It is not easy to statethis
ase
learly. There are three
ases whi
h may
ause intera
tion:�(�m ÆD)[u~Æw℄! b. �(1 Æ�m)[u~Æw℄! b. �(" Æ�m)[u~Æw℄! bIf C is a very good
ontext of C[u℄, 3.b) and 3.
) turn to
ase 2.The
ase 3.a) happens only when the rule (Ass.) is applied, and(u~Æw)m = um Æ wm. This means there exists a very good in
ationfor C[u℄ and the result is still C[u~Æw℄, whi
h is what we want forproving the Preservation Theorem.LEMMA 54. Let (C; u;w) is a very good in
ation and C[u~Æw℄ ! b.One of the following holds:1. There exists a
ontext D su
h that C ! D and b = D[u~Æw℄.2. There is
 2 L;
 2 ��0 su
h that C=
 is a hole, C[u~Æw℄=
 !
and b = (Cf
 �qg)[u�
℄.3. There exist D 2 Cont; n 2 N; u0; w0 2 ��n0 su
h that (D;u0; w0) isa very good in
ation of C[u℄, b = D[u0~Æw0℄, Lg(D) > Lg(C) andK
(D) � K
(C).Proof: By indu
tion on the stru
ture of C. Let us see how the lemmais proved when C = A Æ B. We prove this
ase by analysing the rule(A Æ B)[u~Æw℄. We shall use the notation C(n;
) = Cf
 �g.1. The redex is in A[u~Æw℄ and A[u~Æw℄! b. Three
ases by I.H.:a) There exists a
ontext A0 su
h that A! A0. Therefore AÆB !A0 Æ B and b = (A0 ÆB)[u~Æw℄.b) A=
 is a hole and A[u℄=
 ! a0 and b = A(n;
)[(u~Æw)�a0℄. ThenA ÆB=1
 is a hole, (A ÆB)[u℄=1
 ! a0 ÆB[u℄ and b ÆB[u~Æw℄ =((A ÆB)f1
 �kg)[(u~Æw)�a0℄.
) There is a very good in
ation (A[u℄; A0; u0; w0) su
h that b =A0[u0~Æw0℄. Two
ases arise:i) K
(A0) = 0. If K
(B) = 0, then we take the in
ation(A0 ÆB; u;w). The result of the in
ation is (A0 ÆB)[u0~Æw0℄ =bÆB[u~Æw℄ be
ause K
(A0) = 0, A0[u0~Æw0℄ = A0[u~Æw℄. Other-wise, we take the in
ation (A0ÆBq; u0�u;w0�w). The resultis bÆB[u~Æw℄. In both
ases they are very good in
ations byLemma 49 with the same result b ÆB[u~Æw℄.ii) K
(A0) � 1. We take the in
ation (A0Æ�q; u0�B[u℄; w0�B[w℄).In this
ase, K
(A) � 1, hen
e B is W-hole. By Lemma 49,it is a very good in
ation. The result is b ÆB[u~Æw℄.For both
ases the two equalities are true.
final.tex; 16/09/2002; 17:43; p.31

322. The redex is in B[u~Æw℄, it is similar to the above
ase.3. The redex is (A Æ B)[u~Æw℄.(IdL
): C = id Æ B ! B, (id Æ B)[u~Æw℄! B[u~Æw℄. Hen
e the �rst
ase of the lemma holds.(V rId
): C = 1 Æ id! 1. The �rst
ase of the lemma holds.(V rCons
): C = 1 Æ (A � B) and 1 Æ (A � B)! A. The �rst
ase ofthe lemma holds.(1 Æ�k): C = 1 Æ�k. In this
ase we have the following fa
ts:� If C Æ D is very good for a Æ b and K
(C Æ D) � 1, thena Æ b is an L-term; hen
e uk is an L-term be
ause 1 Æ �kis very good for 1 Æ uk;� (1 Æ�k)[u~Æw℄ = 1 Æ (uk Æwk) be
ause uk is an L-term andhen
e (u~Æw)k = uk Æ wk� If 1 Æ (a Æ b) !
, then
 = 1 Æ d where a Æ b ! d. This
on
ludes that the redex is in (u~Æw)k = uk Æ wk.Therefore the se
ond
ase of the lemma holds,
 = 2 and1 Æ (uk Æ wk)=2!
.(" Æ�k): C =" Æ�k, it is the same as the
ase above.(ShId
): C =" Æid!". The �rst
ase of the lemma holds.(ShCons): C =" Æ(A �B)! B. The �rst
ase of the lemma holds.(Intera
tion): C = �k ÆB. The following fa
ts were proved:� B is a W-hole and uk is an L-term as �k ÆB is very good.� b = uk Æ (wk Æ B[u~Æw℄)� (uk Æ�n+1; u�B[u℄; w�(wk Æ B[w℄)) is a good in
ation.� uk Æ�n+1 is a very good
ontext for (uk Æ�n+1)[u℄.� b = (uk Æ�n+1)[u~Æw℄.� Lg(uk Æ�n+1) = Lg(uk) + 1 > 1 = Lg(�k ÆB).� K
(uk Æ�n+1) = 1 < 2 = �k ÆB.All these fa
ts mean that the third
ase of the lemma holds.Now, ea
h of the
ases below imply the �rst
ase of the lemma.(Abs): C = �(A) Æ B ! �(A Æ (1 � (BÆ "))).(Map): C = (A � B) Æ E ! (A Æ E) � (B Æ E).(Ass): C = (A ÆB) Æ E ! A Æ (B Æ E). 2REMARK 55. The se
ond statement was
hanged many times in or-der to present all the information when it is applied. What we shouldpresent is the most original information whi
h
an derive other infor-mation when it is needed. In this
ase, the most original informationis presented in terms of the \position". The �rst statement is:
final.tex; 16/09/2002; 17:43; p.32

33There exist
 2 L; k 2 N;
 2 ��0 su
h that (u~Æw)k !
 and b =(Cf
 �qg)[u�
℄.Then one need the information that C=
 is a hole, and k � n = jujand C[u~Æw℄=
 = (u~Æw)k, whi
h we have when the lemma is proved.However, it is not enough still. One need to say that C[u℄=
 = uk andC[w℄=
 = wk, whi
h we
an not get from the revised statement. In fa
tall the information is stored in the following statement:There exist
 2 L;
 2 ��0 su
h that C=
 is a hole, and C[u~Æw℄=
 !
 and b = (Cf
 �qg)[u�
℄.The following lemma, whi
h is proved by analysing the position ofthe redex of s0 based on Lemma 54, enables us to use indu
tion on thetriple �s;s0 = (dp(s); lg(s) � lg(C);��kdp(wk)) to prove Theorem 24.LEMMA 56. If s0 is the result of a very good in
ation (C; u;w) ofsome term s, and s0 ! t0, then:� there exists a term t su
h that s! t and t0 is the result of a verygood in
ation of t; or� t0 is the result of a very good in
ation (D; a; b) of s and lg(D) >lg(C); or� there exists some term r su
h that wk ! r and t0 is the result ofthe very good in
ation (C 0; u�uk; w�r) of s where C 0 = Cf
 �ng and n = Lg(u) + 1.Proof: This is proved by analysing the position of the redex of s0 basedon Lemma 54. We will prove that for any t0 su
h that s0 = C[u~Æw℄! t0,t0
an be the result of a very good in
ation of some t su
h that �t;t0 <�s;s0, so the I.H.
an be applied. There are three
ases by Lemma 54:1. The redu
tion is in the
ontext. By Lemma 53, t = D[u℄, s! t andthere is a very good in
ation (D0; u0; w0) of t. The result remains t0.2. The redu
tion is in some hole of
ontext C, i.e. there is
 2 L; k 2 Nsu
h that C[u~Æw℄=
 = (u~Æw)k and (u~Æw)k ! t0. Let C 0 = Cf
 �ng. Two
ases arise: (u~Æw)k is either an L- or a W-term.a) (u~Æw)k is an L-term. In this
ase, (u~Æw)k = ukÆwk and uk mustbe an L-term. We argue a

ording to the redex. Five
ases arise:(Ass): Let uk = a Æ b, and so, s = C 0[u�(a Æ b)℄ and s0 =C 0[(u~Æw)�((aÆb)Æwk)℄. Then t0 = C 0[(u~Æw)�(aÆ(bÆwk))℄,where C 0 = Cf
 �ng. Take C 00 = Cf
 aÆ�ng and thein
ation (C[u℄; C 00; u�a;w�wn), where wn = IfThEl(b; b Æwk; wk), whi
h is a W-term. The next fa
ts (whi
h give the2nd
ase of Lemma 56) are proved:� C[u℄f
 (a Æ�n)[u�b℄g = C[u℄� C 00 is a very good
ontext of C[u℄ by Lemma 49;
final.tex; 16/09/2002; 17:43; p.33

34 � (C[u℄; C 00; u�b; w�wk) is a very good in
ation;� t0 = C 0[(u~Æw)�(a Æ (b Æ wk))℄ = C 00[((u�b)~Æ(w�wn))℄;� Lg(C 00) > Lg(C).(Abs): Take uk = �(a), C 00 = Cf
 ��ng and the in
ation(C[u℄; C 00; u�a;w�wn) where wn = IfThEl(a; aÆ (1 � (wkÆ ")); 1 � (wkÆ ")), whi
h is a W-term. The next fa
ts (whi
hgive the 2nd
ase of Lemma 56) are proved:� C[u℄f
 (��n)[u�a℄g = C[u℄.� C 00 is good for C[u℄ by Lemma 49.� C 00 is very good for C[u℄ by lemma 49.� Lg(C 00) > Lg(C).(Map): Take uk = a�b, C 00 = f
 �n��n+1g and the in
ationI = (C[u℄; C 00; u� < a; b >;w� < wn; wn+1 >), wherewn = IfThEl(a; aÆwk; wk), wn+1 = IfThEl(b; bÆwk; wk). Wehave the next fa
ts (whi
h give the 2nd
ase of Lemma 56):� C[u℄f
 a Æ bg = C[u℄.� C 00 is good for C[u℄ by Lemma 49.� C 00 is very good for C[u℄ by Lemma 49.� (C[u℄; C 00; u� < a; b >;w� < wn; wn+1 >) is a verygood in
ation.� C 00[(u� < a; b >)~Æ(w� < wn; wn+1 >)℄ = C 0[(u~Æw)�((aÆwk) � (b Æ wk))℄ = t0.� Lg(C 00) > Lg(C).(ComL): The redex is in uk, and uk ! a. Let t = C 0[u�a℄.Then s! t. By Lemma 49 C 0 is a good
ontext for t.i) If a is an L-term. (Cf
 �ng; u�a;w�wk) is a verygood in
ation with the result(Cf
 �ng)[(u~Æw)�(a Æ wk)℄.ii) If a is a W-term, Cf
 �ng is a good
ontext for t =(Cf
 �ng)[u�a℄, then (Cf
 �ng; u�a;w�(a Æwk) is a good in
ation. By Lemma 52 there is a verygood in
ation with the same result. Therefore the �rst
ase of the Lemma holds.(ComR): In this
ase, wk ! b, and (C[u℄; C 0; u�uk; w�b) isthe very good in
ation with the result C 0[(u~Æw)�(uk Æ b)℄.The third
ase of the lemma holds.b) (u~Æw)k is a W-term, hen
e uk is also a W-term. So (u~Æw)k = wk,wk ! b, and b is a W-term. By Lemma 49 Cf
 �ng is verygood for C[u℄(
; b). Then the in
ation (Cf
 �ng; u�uk; w�b)is very good, and the result is (Cf
 �ng)[(u~Æw)�wk℄.3. For the 3rd
ase of Lemma 54, use the 2nd
ase of the lemma. 2Now we are in the position to prove Theorem 24. See Figure 16 forits ALF representation.Proof: By indu
tion over a triple �s;s0 = (dp(s); lg(s)�lg(C);��kdp(wk))where �k =
ardf
 : C=
 = �kg, i.e. the number of o

urren
es of �k
final.tex; 16/09/2002; 17:43; p.34

35Preservation-Th 2 (u;w 2 ��n0 ; GoodIn
ation(C[u℄; C; n; u; w);VeryGoodCont(C;C[u℄); SN(C[u℄))SN(C[u~Æw℄)Preservation-Th(u;w; h; h1; SN-intr(�; h3)) �SN-intr(C[u~Æw℄[b; h2℄Or-elim([h4℄SN(b);[x℄Preservation-Th1(u;w; b; h; h1; SN-intr(C[u℄; h3)h2; x)[h4℄Preservation-Th2(u;w; b; h; h1; SN-intr(C[u℄; h3)h2; h4)IH-Preservation(C; n; u; w; b; h; h1; h2)))Figure 16. Preservation Theoremin C. By Lemma 56, there are three
ases. 1) b is a very good in
ation oft and the �rst
omponent de
reases and t is strongly normalising,hen
eI.H. applies. 2) b is the result of a very good in
ation of s and the se
ond
omponent de
reases, hen
e I.H. applies. 3) b is a result of a very goodin
ation of s and the third
omponent de
reases, so I.H. applies. 28. Formalising the termination proof of � in ALFNow we give the strong normalisation proofs of �0 and � in ALF.8.1. Termination of �0 in ALFThe strong normalisation of �0 is proved by the elimination rule of ��0.The diÆ
ulty is in the proof e5 : (a; b : ��0; SN(a); SN(b))SN(a Æ b), ormore pre
isely when
oming to the rule: (Abs) : (�s) Æ t! �(s Æ (1 �(tÆ "))). If we prove (�) : If s 2 SN then sÆ "2 SN, then indu
tion on(dpth(s); lgth(s); dpth(t); lgth(t)) gives the proof obje
t e5. To solve (�),we introdu
ed a
ontext
al
ulus in Se
tion 7. Now we give the proofof (�) by the Preservation Theorem. It is easy to prove that redu
tionwhi
h does not involve the rule (Abs) is strongly normalising.LEMMA 57. Let s; t 2 ��0.1. �(t) are strongly normalising if and only if t is strongly normalising.2. s � t is strongly normalising if and only if s and t are stronglynormalising.3. If sÆt is strongly normalising, then s and t are strongly normalising.4. Let s; t be W-terms. If s and t are strongly normalising, then s Æ tis strongly normalising.5. If tÆ " is strongly normalising whenever t is, then s Æ t is stronglynormalising for any strongly normalising terms s and t.
final.tex; 16/09/2002; 17:43; p.35

366. Any W-term is strongly normalising.In ALF, this lemma was proved by indu
tion on depth and length.We gave the details of the indu
tion proof in Se
tion 6 when we provedthe termination of the
al
ulus s. Now we
ome to the lemma wherethe Preservation Theorem is used and the problem (�) is solved:LEMMA 58. Let s be a L-term, then sÆ " is the result of the very goodin
ation (�1; ") of s. So if s is strongly normalising then sÆ " is stronglynormalising. In ALF: Com SN3 2 (s 2 ��0;Lterm(s); SN(s)))SN(sÆ ")It is easy to see that sÆ " is the result of a very good in
ation (�k; ")of s when s is not a W-term, and it is strongly normalising by thepreservation theorem. If s is a W-term, then sÆ " is also a W-term, andit is strongly normalising. Hen
e we have the following lemma:LEMMA 59. If s is strongly normalising, then sÆ " is strongly nor-malising. In ALF: Com SN4 2 (s 2 ��0; SN(s))SN(sÆ ")The next lemma gives the proof obje
t e5. It is proved by indu
tionon (dpth(s); lgth(s); dpth(t); lgth(t))LEMMA 60. If s; t are strongly normalising, then s Æ t is stronglynormalising. In ALF:Com SN5 2 (s; t 2 ��0; SN(s);SN(t)))SN(s Æ t)Com SN5(s; t; h; h1) �Com SN1(Forall intr([x℄Imply intr([h2℄Com SN4(x; h2)); s; t; h; h1)where Com SN1 2(Forall(��0; [h℄Imply(SN(h); SN(hÆ "))); s; t 2 ��0;SN(s);SN(t))SN(s Æ t)Having got all the proof obje
ts e1; � � � ; e6, we prove Theorem 7, thestrong normalisation of �0 by indu
tion on the stru
ture of �0-terms:SN 2 (s 2 ��0)SN(s)SN(1) � L4W (1;
1)SN(id) � L4W (id;
1)SN(") � L4W (";
1)SN(�(a)) � L4�(a; SN(a))SN(s1 Æ t) � ComSN5(s1; t; SN(s1); SN(t))SN(App(s1; t)) � L4App(s1; t; SN(s1); SN(t))whereL4W 2 (a 2 ��0;Wterm(a))SN(a)L4� 2 (a 2 ��0;SNs0(a))SN(�(a))L4App 2 (a; b 2 ��0;SN(a);SNs0(b))SN(App(a; b))

final.tex; 16/09/2002; 17:43; p.36

378.2. Termination of � in ALFHaving proved that the
al
ulus �0 is terminating, now we
an provethat the
al
ulus � is terminating. Let F 0 and F 00 be the translationsin ALF of the fun
tion F from � to �0 in De�nition 5, where F 0 2(��t)��0 F 00 2 (��s)��0 are de�ned in the obvious way followingDe�nition 5. Then, we get the strong normalisation of � by
he
kingthat the translation is really a stri
t interpretation from � to �0, i.e.by proving Lemma 6 in ALF:S1 2 (a; b 2 ��t; a! b)F 0(a)! F 0(b)S2 2 (a; b 2 ��s; a! b)F 00(a)! F 00(b)Hen
e, �nally, we have:THEOREM 61. The
al
ulus � is strongly normalising.9. Con
lusion and future workIn this paper we gave formal proofs of the strong normalisation of � ands in ALF. To prove � is strongly normalising, we formalised the notionsand
he
ked all the proofs of [12℄. Some of these proofs were informaland needed to be
he
ked formally, e.g. Lemma 54. For the
al
ulus s,we gave three formal proofs of strong normalisation, whi
h follow theusual ways of proving strong normalisation of expli
it substitutions.Two of these proofs are given for the �rst time in this paper.The formalisation of this paper lead us to remark that:� During formalisations, one has to explain how to move from the
lassi
al logi
 used in informal proofs to a
onstru
tive logi
. Forexample, Lemma 36 is easy to prove using
lassi
al logi
 be
auseone
an resort to the de�nition of the absen
e of in�nite deriva-tions. However, in a proof
he
ker based on the Pat prin
iple, it isnot possible to use the
lassi
al laws of refutation and hen
e, proofsare
onstru
tive and are done via introdu
tion and eliminationrules. See the ALF proof of Lemma 36 dis
ussed in Se
tion 6.3.� Many of the intuitively true statements required
he
king a lotof details in ALF. For example, Proje
tion1 � Proje
tion3 in Se
-tion 6.3) needed mu
h details some of whi
h are given in Se
-tion 6.3. Similarly, Lemma 45 lists some basi
 fa
ts about substi-tution that are intuitively true but we needed to
he
k a lot of
ases by indu
tion to be able to formally prove them.
final.tex; 16/09/2002; 17:43; p.37

38� The
ontext
al
ulus of [12℄ demanded mu
h work during the for-malisation. In [12, 30℄, many notions were not introdu
ed, andmany lemmas were left unproven. To formalise the proofs in [12℄we had to rewrite all the intuitions and informal notions, and to
he
k a lot of details. We often had to
hange the implementationto make the proofs go through. For example, the se
ond statementof Lemma 54 was
hanged several times in order to present all thedetails when this lemma is applied (see Remark 55).A lot of work has been done on proof
he
king in various proof
he
kers (e.g., ALF, Coq, Lego). Advantages of this work in
lude:1. Helping people prove theorems whose proofs are
umbersome. Inthe proof pro
ess, one only gives some orders to the prover and theprover
arries out the detailed
omputations and reasoning. Forinstan
e, when �lling a hole, the user
an give only the name ofthe lemma and the prover itself will �ll in all the parameters byuni�
ations. However, one needs to do more work to give a formalproof. In the strong normalisation proof of �, many lemmas are trueintuitively, but involve mu
h work to prove formally. For instan
e,in Lemma 54, the position of a redex
an o

ur in three
ases. InLemma 49, when repla
ing a �-hole in a
ontext C, whi
h is verygood for s, with a L-term t, the resulting
ontext is very good forthe term repla
ing the sub-term at the same position with t.2. Investigating the pro
esses of mathemati
al proofs, to help peo-ple understand mathemati
al reasoning and to build automati
theorem provers. In fa
t, it is during the implementation of the-orem provers and during the
he
king of proofs that one under-stands more about mathemati
al proofs. In the
ase of terminationof expli
it substitutions, we hope to understand why de
reasingmeasures
an be found for some
al
uli but not for others.It is interesting to �nd a general way to prove properties of expli
itsubstitutions su
h as strong normalisation,
on
uen
e and preserving�-strong normalisation and to develop a pa
kage of spe
ial tools todeal with
al
uli of expli
it substitutions, e.g. to help resear
hers toprove the above properties. In our formalisation, we tried to remain asgeneral as possible with the intention that our proof should be adaptedto other existing
al
uli of substitutions. The fa
t that during ourformalisation of the four di�erent proofs of termination we shared alot of implemented proofs, means that our work
an well be adapted toformalising other proofs of terminations of other substitution
al
uli.Of
ourse, there is the question of portability of our proofs of thispaper to other theorem provers. Although we did not attempt to run
final.tex; 16/09/2002; 17:43; p.38

39our proofs on any of these other provers, we believe that the top level(that is �lling in the intuition by formal details)
an be used by anyother prover, given the right translation between the formalism of thatother prover and ALF. And, looking at those lemmas whose proofs inALF depart from the proofs on paper (like those mentioned above,Lemmas 36, 45, 54 and 49), it seems that they
an be dealt withsimilarly in a prover based on Pat su
h as Coq.Referen
es1. ftp://ftp.
s.
halmers.se/users/
s/qiao/Sigma/.2. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expli
it substitutions.Journal of Fun
tional Programming, 1(4):375{416, 1991.3. B. Barras. Auto-validation d'un syst�eme de preuves ave
 familles indu
tives.Th�ese de do
torat, Universit�e Paris 7, November 1999.4. Z. Benaissa, D. Briaud, P. Les
anne, and J. Rouyer-Degli. ��, a
al
ulus of ex-pli
it substitutions whi
h preserves strong normalisation. Journal of Fun
tionalProgramming, 6(5):699{722, September 1996.5. R. Bloo and K. Rose. Preservation of strong normalisation in named lambda
al
uli with expli
it substitution and garbage
olle
tion. In CSN-95: ComputerS
ien
e in the Netherlands, November 1995.6. M. Bognar and R. de Vrijer. The
ontext
al
ulus lambda-
. Workshop onLogi
al Frameworks and Meta-languages, 1999.7. R. L. Constable, S. Allen, H. Bromely, W. Cleveland, et al. Implementing Math-emati
s with the Nuprl Development System. Prenti
e-Hall, In
., EnglewoodCli�s, NJ, 1986.8. Proje
t Coq. The Coq proof assistant referen
e manual, version 6.1. Te
hni
alreport, INRIA, 1996.9. C. Coquand. From semanti
s to rules: A ma
hine assisted analysis. InE. B�orger, Y. Gurevi
h, and K. Meinke, editors, Pro
eedings of the 7th Work-shop on Computer S
ien
e Logi
, pages 91{105. Springer-Verlag LNCS 832,1993.10. P.-L. Curien. Categori
al Combinators, Sequential Algorithms, and Fun
tionalProgramming. Progress in Theoreti
al Computer S
ien
e. Birkh�auser, Boston,2nd edition, 1993. (1st ed., Pitman Publishing, London, and J. Wiley and Sons,New York).11. P-L Curien, T. Hardin, and J-J. L�evy. Con
uen
e properties of weak andstrong
al
uli of expli
it substitutions. Te
hni
al Report RR 1617, INRIA,Ro
quen
ourt, 1992.12. P-L Curien, T. Hardin, and A. R��os. Strong normalisation of substitutions.Logi
 and Computation, 6:799{817, 1996.13. R. David and B. Guillaume. The lambda l
al
ulus. Se
ond InternationalWorkshop on Expli
it Substitutions, Theory and Appli
ations, 1999.14. N. de Bruijn. A namefree lambda
al
ulus with fa
ilities for internal de�nitionof expressions and segments. Te
hni
al report, Department of Mathemati
s ,University of Eindhoven, Netherlands, 1978.15. M. J. C. Gordon and T. F. Melham. Introdu
tion to HOL: A theorem provingenvironment for higher order logi
. Cambridge University Press, 1993.
final.tex; 16/09/2002; 17:43; p.39

4016. T. Hardin and A. Laville. Proof of termination of the rewriting system SUBSTon CCL. Theoreti
al Computer S
ien
e, 46(2-3):305{312, 1986.17. T. Hardin and J.-J. L�evy. A
on
uent
al
ulus of substitutions. Fran
e-JapanArti�
ial Intelligen
e and Computer S
ien
e Symposium, De
ember 1989.18. T. Hardin, L. Maranget, and B. Pagano. Fun
tional runtime systems withinthe lambda-sigma
al
ulus. Fun
tional Programming, 8(2):131{176, 1998.19. M. Hashimoto and A. Ohori. A typed
ontext
al
ulus. Type theory and itsappli
ations to
omputer systems (Japanese), 1023:76{91, 1998.20. F. Kamareddine and R. P. Nederpelt. On stepwise expli
it substitution.International Journal of Foundations of Computer S
ien
e, 4(3):197{240, 1993.21. F. Kamareddine and A. R��os. A �-
al
ulus a la de Bruijn with expli
it substi-tutions. In PLILP95, Le
ture Notes in Computer S
ien
e, volume 982, pages45{62. Springer-Verlag, 1995.22. F. Kamareddine and A. R��os. Extending a �-
al
ulus with expli
it substitutionwhi
h preserves strong normalisation into a
on
uent
al
ulus on open terms.Journal of Fun
tional Programming, 7(4):395{420, July 1997.23. F. Kamareddine and A. R��os. Relating the ��- and �s-styles of expli
itsubstitutions. Logi
 and Computation, 10(3):349{380, 2000.24. L. Magnusson. The Implementation of ALF|A Proof Editor Based on Martin-L�of's Monomorphi
 Type Theory with Expli
it Substitution. PhD thesis,Chalmers University of Te
hnology and G�oteborg University, January 1995.25. P. Martin-L�of. An intuitionisti
 theory of types. Logi
 Colloquium '73, 1975.26. Yukiyoshi Kameyama Masahiko Sato, Takafumi Sakurai. A simply typed
on-text
al
ulus with �rst-
lass environments. Fifth International Symposium onFun
tional and Logi
 Programming, FLOPS'01, 2001.27. J. M
Kinna and R. Polla
k. Pure type systems formalised. In M. Bezem andJ. F. Groote, editors, Pro
eedings 1st Intl. Conf. on Typed Lambda Cal
uli andAppli
ations, TLCA'93, Utre
ht, The Netherlands, 16{18 Mar
h 1993, volume664 of Le
ture Notes in Computer S
ien
e, pages 289{305. Springer-Verlag,Berlin, 1993.28. C. Mu~noz. Con
uen
e and preservation of strong normalisation in an expli
itsubstitutions
al
ulus (extended abstra
t). In Pro
eedings of the Eleven AnnualIEEE Symposium on Logi
 in Computer S
ien
e, New Brunswi
k, New Jersey,July 1996. IEEE Computer So
iety Press.29. L. C. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio Odifreddi,editor, Logi
 and Computer S
ien
e, pages 361{386. A
ademi
 Press, 1990.30. A. R��os. Contribution �a l'�etude des �-
al
uls ave
 substitutions expli
ites. PhDthesis, Universit�e de Paris 7, 1993.31. A. Sa��bi. Formalisation of a �-
al
ulus with expli
it substitutions in Coq. InP. Dybjer, B. Nordstr�om, and J. Smith, editors, Pro
eedings of the InternationalWorkshop on Types for Proofs and Programs, pages 183{202, B�astad, Sweden,June 1994. Springer-Verlag LNCS 996.32. B. Nordstr�om T. Altenkir
h, V. Gaspes. A user's guide to alf. Te
hni
al report,University of G�oteborg, 1994.33. H. Zantema. Termination of term rewriting: interpretation and type elim-ination. Journal of Symboli
 Computation, 17(1):23{50, January 1994.Conditional term rewriting systems (Pont-�a-Mousson, 1992).34. H. Zantema. Termination of term rewriting by semanti
 labelling. FundamentaInformati
ae, 24:89{105, 1995.
final.tex; 16/09/2002; 17:43; p.40

