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Abstract. The past decade has given rise to a number of explicit substitution (ES)
calculi. An important question of explicit substitution calculi is that of the termina-
tion of the underlying calculus of substitution. Proofs of termination of substitutions
fall under two categories. Those that are easy because a decreasing measure can be
established and those that are difficult because such a decreasing measure is not easy
to establish. This paper considers two styles of explicit substitution: o and s, for
which different termination proof methods apply. The termination of s is guaranteed
by a decreasing weight, while a decreasing weight for showing the termination of o
has not yet been found. These termination methods for o and s are formalised in
the proof checker ALF. During our process of formally checking the termination of
o and s we comment on what is needed to make a proof formally checkable.

1. Introduction

What is explicit substitution? The classical A-calculus deals with
substitution in an implicit way. This means that the computations to
perform substitution are usually described with operators which do
not belong to the language of the A-calculus. There has however been
an interest in formalising substitution explicitly in order to provide
a theoretical framework for the implementation of programming lan-
guages and theorem provers. Several calculi including new operators to
denote substitution and new rules to handle these operators have been
proposed (e.g., [10, 2, 17, 30, 4, 5, 21, 22, 28, 13]). Amongst these cal-
culi we mention CA¢ (cf. [14]); the calculi of categorical combinators
(cf. [10]); Ao, Aoy, Aosp (cf. [2, 11, 30]) referred to as the Ao-family;
woBLT (cf. [20]); Av (cf. [4]) and A (cf. [28]) which are descendants
of the Ao-family; As (cf. [21]) and As, (cf. [22]). Most of these calculi
are described in de Bruijn notation and can roughly be classified under
two styles: the Ao [2, 17] and the As styles [21, 22]. The new symbols
added by explicit substitution calculi to represent operations related to
substitutions, and the new rules explaining how these operations work
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complicate the rewriting system behind the A-calculus and the question
whether these new rules terminate arises. This paper concentrates on
the proofs of termination of these extra rules in both the Ao and As
calculi. Ao and As are chosen because they differ in style, and because
their proofs of termination are different: the set s of new rules of As
is shown to terminate via a decreasing weight whereas no decreasing
weight has yet been found for the set o of new rules of A\o.

Why explicit substitutions? Explicit substitutions allow more flexi-
bility in ordering work. Propagating substitutions through a particular
subterm can wait until the subterm is the focus of computation. This
allows all of these substitutions to be done at once, thus improving
locality of reference. This flexibility also allows postponing unneeded
work indefinitely (i.e., avoiding it completely). This can yield profits,
since implicit substitution can be an inefficient, maybe even explod-
ing, process by the many repetitions it causes. Another benefit is that
explicit substitution allows formal modelling of the techniques used in
real implementations, e.g., environments [18]. Furthermore, as the im-
plementation of substitution in many theorem provers is not based on a
formal system, it is not clear what properties their underlying substitu-
tion has. Thus, it helps to have a choice of explicit substitution systems
whose properties have already been established. This is witnessed by
the theorem prover ALF, which is based on Martin-Lo6f’s type theory
with explicit substitutions [24]. Another justification for explicit sub-
stitution in theorem proving is the belief that “tactics” can be replaced
by incomplete proofs, which need explicit substitutions [28, 24].

Why formalise proofs in a proof checker? The past thirty years
have seen much work on formalising proofs from paper into a proof
checker (e.g., [9, 27, 31, 3]). Pioneering work on this started in 1967
with de Bruijn’s influential proof checker Automath. Since, many proof
checkers have been built [7, 15, 24, 29, 8] into which many proofs have
been formalised. Formalisation in a proof checker is useful even if the
proof on paper is fully trusted and correct. Reasons for this include:

— Some complex proofs may be unconvincing unless they are checked
by a proof checker.!

— Formalisation in a proof checker enables the building of a library
of readily available proofs that can be used in different situations
and can relieve us from repeating the same proofs over and over.

— Formalisation helps one to actually find the proof of certain diffi-
cult theorems that would have been hard to solve just on paper.

This paper, adds one further case study to formalisations in proof
checkers. We formalise in ALF [24] the termination of the explicit
substitutions calculi s and o. Our reasons for doing this include:

! We stress that all the proofs that we formalise in this paper are fully trusted.
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— The development of so many calculi of explicit substitutions and
the intricacies involved in proving their properties call for methods
that one can take of the shelf and use for newly developed calculi.
— As most calculi with explicit substitutions have rules that are com-
plex and properties whose proofs are intricate, it is necessary to
formalise these calculi and check the proofs in some proof checker.
These reasons hold in particular for the proofs of termination (a basic
property) of explicit substitutions. There are various ways to show ter-
mination of explicit substitutions, but the proofs can be very intricate.
Termination proofs of explicit substitutions fall under the following:
1. A decreasing weight can be found, i.e. when terms are reduced,
their weights decrease. Examples of substitutions that have this
property include v [4], s [21], and oy [17].
2. A strict (reduction preserving) translation from the calculus we
wish to show terminating to another calculus known to be termi-
nating can be found. E.g. the termination of s can be obtained by
a strict translation from s to o which is known to be terminating.
3. By finding an induction argument when neither 1 nor 2 above apply,
this is, for example, the way o is shown to be terminating in [12].
In this paper we formalise in ALF, termination proofs for o and s that
fall under 1, 2 and 3 above. There has been previous work on formalising
properties of explicit substitutions. For example, Lescanne formalised in
Coq, the substitution lemma of Av of [4], and Saibi formalised Aoy, [17],
which is an extension of o with meta-variables, and proved confluence
of Aoy and strong normalisation of o by finding a decreasing weight,
see [31]. Our work concentrates on different methods of termination of
explicit substitutions and considers two different calculi o and s.

There has been a lot of work on termination of explicit substitutions
recently (e.g., [5, 13, 30, 16, 12, 34, 33]). Our reasons for choosing the
proof of [12] and the proof checker ALF include:

— The interesting proof of [12] does not obey a decreasing weight.
Moreover, the proof of [12] is very intricate and as far as we know,
this is the first formalisation of such an intricate method.

— The proof of [12] had interesting concepts such as its formulation
of a calculus of contexts. That formalisation which is basic to the
proof of [12], leads to a calculus of contexts that is in line with [6].
It may also lead to ways of formalising other extensions as in [26].

It should be noted that we did not choose an easy proof to formalise.
There are other proofs of termination of the same calculus (e.g., the
proof of [34] is much simpler to formalise than that of [12]). But, a full
mechanical check of a complicated proof (which we do in this paper)
can be considered as a valuable achievement in itself. We will formalise
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and implement the whole proof of [12] including the context calculus in
ALF. It would be interesting in the future to attempt and use this work
for proof checking other proofs of termination such as that of CCL [16].
That proof would be particularly informative in this context as it was
obtained by considering a lot of weights in an unusual manner.

The paper is organised as follows. In Section 2 we recall Ao and
its termination proof. In Section 3 we recall A\s and present three dif-
ferent termination proofs, two of which are new. Section 4 is a brief
introduction to ALF and to Martin-Lo6f type theory. In Section 5 we
give formalisations of explicit substitution calculi, their termination and
the lexicographic order induction principle. In Section 6 we formalise
all termination proofs of s presented in this paper. In Section 7 we
formalise a context calculus which is the main part of the termination
proof of . In Section 8 the termination proof of ¢ is formalised.

2. The calculus of Ao and the termination proof of o

Ao provides a setting for explicit substitutions, with pleasant proper-
ties. It is strongly connected with the categorical understanding of the
A-calculus, where a substitution is interpreted as a composition [10]. In
this section we present the Ao-calculus and some of its properties.

2.1. DEFINITION OF THE CALCULUS Ao

In explicit substitution calculi, substitutions are delayed and explic-
itly recorded; the application of substitutions is independent, and not
coupled with the S-rule. If a is a term and s is a substitution then the
term a[s], which is called a closure, represents a with the substitution s.
When substitutions are made explicit, the S-rule with delayed substi-
tutions, called Beta, can be expressed by: (Az.a)b — peta, a[(b/z) - id]
where (b/x) - id is the substitution that replaces z with b and affects
no other variables (id is the identity substitution).

We assume familiarity with de Bruijn indices and use substitution
calculi with these indices (as mostly done in explicit substitution).

DEFINITION 1 (The Ao-calculus). The Ao-calculus is a two-sorted
calculus where the set of terms Ao' is given by the abstract syntaz
a,b::=1]ab| Aa | a[s] and the set of substitutions Ao® is given by the
abstract syntax s, t :=1id |1|s-t|sot.

The set o of the rules which propagate the substitutions is given in
Figure 2.1. Ao is the union of the o rules and (Beta): (A\a)b — a[b-id].?

2 Beta eliminates \’s creating substitutions; the o rules eliminate substitutions.
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(Vild)  1fid] > 1 (App)  (ab)[s] — (als))(Bls)
(VrCons) lfa-s] = a ( (Aa)[s] = A(a[l - (so1)])
(IdL) idos — s (Clos) (a[s])[t] — a[s o]

(ShId) 1 oid =7 ( (a-s)ot—alt]-(sot)
(ShCons) To(a-s) — s ( (s1089) 083 — s10(s9083)

Figure 1. The o-Rules

If s represents the infinite substitution {a1/1,a2/2,a3/3,---}, then
the syntax of substitutions can be described intuitively as follows:
— id is the identity substitution {i/i} (for all 7).
— 1is the substitution {(¢+1)/:} (for all¢). E.g., 1[1] = 2. Thus, n+1
can be encoded as 1[1"], where 1" is the composition: T o---0 1.
— For all 4, i[s] is the value of the de Bruijn index 7 in the substitution
s, also written s(z) when s is viewed as a function.
— a- s is the substitution {a/1,s(i)/(i + 1)} (for all i). E.g., a -id =
{a/131/272/3a"'} and 1- 1= {1/1?¢‘(1)/27¢‘(2)/37"'} = id.
— sot (the composition of s and t) is such that a[s o t] = a[s][t],
hence sot = {s(i)/i} ot = {s(3)[t]/i} (for all 7).

2.2. 0¢9: A VARIANT OF 0, AND THE PROOFS OF TERMINATION

We discuss the strong normalisation (termination/noetherianity) of o.
We start with the statement of the theorem that will be proof checked:

THEOREM 2 (SN of 0). The calculus o is strongly normalising.

There are various proofs of this theorem in the literature:

1. The first strong normalisation proof of ¢ is based on the strong
normalisation of SUBST [16], which is, within CCL, the set of
rewriting rules that compute the substitutions. See [16].

2. The proof in [12] shows the termination of o via a strict translation
from o to another calculus o¢ (Lemma 6) and the termination of
09 (Theorem 7). This proof is given in detail in Section 2.3 as it is
the one that we shall formalise in this paper.

3. Zantema gives two proofs in [33, 34]. The first is based on a suitable
generalisation of polynomial orders to show the termination of the
calculus o( given below (and hence the termination of o). The
second uses semantic labelling to show the termination of o.
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As the proof of [12] is given via the strong normalisation of oy (an
economic variant of o), and a strict translation from o to oy, we give
the definition of oy. The calculus o( is one sorted and treats both o
and [ ] as o, observing that o and [] behave in the same way.

DEFINITION 3 (The ogp-calculus). The set of terms Aoy of the oy-
calculus has the abstract syntax s,t :=1|id || As|sot|s-t.
The set, denoted oqy, of rules of the calculus is the following:

(Vild)  loid —1 (ShId) 1 oid -1

(VrCons) lo(s-t) — s (Abs)  (As)ot— A(so (1-(to1)))
(ShCons) to(s-t) =t (Map) (s-t)ou— (sou)- (towu)
(IdL) idos— s (Ass) (sot)ou — so(tou)

REMARK 4. ¢ s a particular case of the system Subst of CCL.
Rules (Vrld) and (ShId) are particular cases of the right identity rule.

We shall often interpret a calculus C; into another calculus Co. We
call strict interpretation a function which maps a reduction step of
C' into one or many reduction steps in Cs. Termination of Cy and the
existence of a strict interpretation of C into C5 yield termination of C'.
The interpretation function from Ao to Aoy is given by the following:

DEFINITION 5 (Interpreting Ao in Aoy). Let F': Ao — Aoy be:
F()=1 F(ab) = F(a) - F(b) F(Xa) = A(F(a))
(1) =t Fla-s)=F(a)-F(s)  Fl(a[s]) = F(a) o F(s)
F(id)y=1id F(sot)= F(s)o F(t)

Then we have the following lemma that was easily checked in ALF:
LEMMA 6 (F preserves reductions). If a =, b then F(a) =4, F(b).

Of course, with Lemma 6, it is enough to show the termination of oy
in order to guarantee the termination of o. Hence the next theorem:

THEOREM 7 (SN of 0g). The calculus oq is strongly normalising.

2.3. THE PROOF OF [12]

[12] notes that it is easy to define an R.P.O to show the termination
of o9 — {(Abs)} but that it was not possible to extend this R.P.O. to
all of og. Hence, they prove that those terms which do not contain As
terminate. For this, they start by the following definition:
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DEFINITION 8 (W-terms and L-terms). In oy a term is called a W-
term if no A occurs in it. Otherwise it is called a L-term.

It is obvious that in 0g, a term is either a W-term or an L-term.
Now, the following lemma is shown in [12] (SN is the set of strongly
normalising terms in Aoyg):

LEMMA 9 (SN of W-terms).
1. For s € Aog, As € SN iff s € SN.
2. For s,t € Aoy, s-t € SN iff both s € SN and t € SN.
3. The og-reducts of W-terms are also W-terms.
4. For s,t W-terms, if s € SN andt € SN then sot € SN.
5. If s is a W-term, then s € SN.

But we want to show that all op-terms are strongly normalising. To do
so, the (Abs) rule must be handled. [12] hence comes to the conclusion
that what remains for this to be shown is to establish the property:

(%) if s € SN, then so 1€ SN.

Proving (x) is difficult and one needs to prove a more general result: any
“increment” of a strongly normalising term is strongly normalising. In
other words, (*) needs to be strengthened in order to make an induction
argument work. To this end, [12] introduced the notion of “context”
and a machinery for the contexts when the “increment” is reduced. Of
particular relevance are the notions of (very) good contexts (see below).

The basic idea of the context calculus is to think of a term t as
a “context” with multi-holes filled by its sub-terms, and to check the
machinery of these contexts while reducing ¢.

DEFINITION 10 (Contexts). Contexts with multi-holes are given in-
ductively by: Cont ==0,, | 1 | id | 1+ | A\C | C-D | CoD
where n > 1 and O,, denotes a hole.

NOTATION 11. Let v be an occurrence within the context C. The
notation C/v stands for the subcontext of C at the occurrence v and
C{y < s} stands for the context obtained by replacing in C' the subcon-
text C/vy by the term s. An analogous notation is used for terms: s/~
and s{y < s}. When C/v is a hole, then C[s], is written instead of
C{v < s}. The notation Oy € C means that there exists an occurrence
7y in the set of occurrences of C' such that C/vy = O.

DEFINITION 12 (Hole filling). Let C' be a context, nc = maz{m :
Om € C}, n > ne and u = (uy,...uy,) a tuple of terms. Then Clu] =
Cluy, ..., uy] is the term obtained by placing uy in all the holes Oy of
C for1 <k <n.
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NOTATION 13. Let C be a contezt and g > 0. C,; denotes the context
obtained from C by renaming the holes L}, as Ujq.

Let u = (u1,--,up) and v = (vi,---,vy,). The juztaposition of u
and v will be denoted by uQv = (U1, -, Um, V1, -, V). We will denote
the length of u by Lg(u) or |ul.

EXAMPLE 14. Let C = ((Adyg)- (00 1))-(1-04), s = (A(1o 1)) (1-4d)
and t =1 oAl. Then:

C/1 = (Ay) - (Op0 1) C{12 =t} = ((A4) - (T 0AL)) - (1-Ty)

C/12 = Oyo 1 s{11 « t} = (A(1 oAL)) - (1 - id)

s/2=1-id Clthar = ((ADy) - (1 oAL)o 1)) - (1 - Cly)

s/l =1lo 1 Cy = ((ADy) - (D50 1)) - (1-Or)

t/21 = 1 O, 1-id, 1 - 1,1] = (A1) - (L - id)o 1)) - (1 - 1)

Now we define the relation between contexts and terms:

DEFINITION 15 (Relative contexts). A context C relative to s is a
context such that s = Clu] for some u. A hole O, in a context C
relative to s is called a W-hole if the corresponding sub-term ., is a
W-term, otherwise it is called o L-hole.

DEFINITION 16 (Inflations). An inflation of s is a pair (C,w) where
C is a context and w an n-tuple of W-terms such that there is a n-tuple
of terms u which satisfies s = Clu]. We shall also say (s,C,u,w) or
(C,u,w) is an inflation.

The result of inflation (s, C,u,w) is s' = C[u'] where u' is given by:

o — { W if ug is a W-term

k up o wy otherwise

We shall also call the result s' = C[u'] as an increment of s.

One can consider ' as an operator which takes u and w and gives
back u'. The phrase (C,w) is an inflation of s = Clu]’ will stand for
(C,w) is an inflation of s and u is Lg(w)-tuple such that s = Clu]".

REMARK 17. C[u'] = C[v'] if (C,w) is an inflation of s = C[u] = C|v].

Below we give the restrictions on contexts. These restrictions were
introduced in [12] in order to prove the Preservation Theorem 24.3 A
motivating example for introducing these restrictions is the following:

Let C = O; o Oy and s = C[t, Au] where t is not a W-term. Take
the inflation (C'(wq,w2)) of s whose result is (t o wy) o ((Au) ows). It is
possible to have (towq) o ((Au) o ws) — to (wy o ((Au) o ws)), but such

3 Especially when considering the (Abs) case whose non-straightforwardness was
commented on at the begin of this section.
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a reduction must be forbidden because the reduct cannot be treated as
the result of an inflation of s, when wy o ((Au) o wy) is not a W-term.

The solution [12] proposed for this problem is to prevent [y from
being a A-hole. Hence, the following definition which says that a context
C'is good for s if it is a context for s, and whenever AoB is a sub-context
of C and there exists a hole in A, then B must be a W-hole.

DEFINITION 18 (Good contexts). A good context relative to s is a
context C relative to s which satisfies the condition that: for every oc-
currence v of a composition in C, if there exists a hole at an occurrence
of the form yla, then C/v2 is a W-hole.

Now we introduce the second restriction on contexts which says
that a context C for s is very good if it is good, and whenever C/v is
a W-hole, s/J is an L-term for any proper-prefix ¢ of .

DEFINITION 19 (Very good contexts). A very good context C relative
to s is a good context relative to s such that if s = Clu] and uy is a
W-term, then for every occurrence y such that C'/y = Oy and for every
d proper prefiz of vy, s/0 is not a W-term.

DEFINITION 20 (Good/Very good inflation). An inflation of s is a
good/very good inflation if its context relative to s is good/very good.

EXAMPLE 21. The inflation (O1,1) is very good and for s an L-term,
so 1 s the result of this very good inflation of s

[12] gives two important lemmas (22 and 23) which say that good
inflations behave nicely and that one can pass from good inflations to
very good ones. Lemma 22 (resp. Lemma 23) is encoded in ALF as in
Figure 13 (resp. Figure 14) and proved in Lemma 51 (resp. Lemma 52).

LEMMA 22 (Reduction of contexts preserves good inflations). Let s
be the result of the good inflation (C,w) of s = C[u]. Let D be a context
such that C' — D, and let t = D[u] (hence, s — t and ' — t'). Then
there exists a good inflation (D', w'") of t whose result is t'.

LEMMA 23 (Very good inflations with same results as good inflations).
Let K (C) be the number of the holes in C. If (C,u,w) is a good infla-
tion of s with result s', then there exists a very good inflation (C',u',w')
of s with result s’ that K (C") < K.(C).

THEOREM 24 (Preservation of SN). Let s € SN and let s’ be the
result of a very good inflation (C,w) of s = C[u]. Then s’ € SN.
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See Page 34 for a proof of Theorem 24 and Section 8 for the ALF proof
of Corollary 25.

COROLLARY 25 (0 and oy are strongly normalising). The calculi o
and og are strongly normalising (i.e. Theorems 2 and 7 are now proved).

Proof: First, we prove this corollary for og. By Example 21 and The-
orem 24, if s is an L-term, and s € SN, then so 7€ SN. But, if s is a
W-term, then so 1 is also a W-term and hence by Lemma 9, so € SN.
Hence, in all cases, if s € SN, then so € SN. Hence, property () is
proved. Now, one can easily prove that if s, € SN, then s ot € SN.
Finally, use Lemma 9 to show that if s € Aoy then s € SN. Now, for o,
simply use the strong normalisation of oy and Lemma 6. a

3. The calculus As and the termination proofs of s

We present the calculus As [21] in this section and give three strong
normalisation proofs of the s-calculus, each using a different method.
The proof of Section 3.4 was given in [21] and is by a strict translation
from s to o (and the strong normalisation of the calculus o). In Sec-
tions 3.2 and 3.3 we give two new proofs. In this paper, we formalise
all these proofs in ALF. For comparison between As and Ao, see [23].

3.1. THE CALCULUS As

DEFINITION 26 (The As-calculus). The terms As of the As-calculus
are given by: a,b == N |ab| Aa | ac'd | pLa where i > 1,k > 0.

The set, denoted As, of rules of the calculus is given in Figure 2.
The calculus of substitutions associated with the As-calculus, called the
s-calculus, is the rewriting system whose rules are As\ {o-generation}.

THEOREM 27 (SN of s). The s-calculus is strongly normalizing.

3.2. INTERPRETATIONS FOR THE TERMINATION OF THE CALCULUS s

The interpretation method can be used to prove the termination of s.

DEFINITION 28 (Polynomial interpretation of s). The polynomial in-
terpretations for s are defined by induction on the structure of the terms
in As: [n] =2, [ab] = [a] + 0] + 1, [[(p}'ca]] = 2[a],

[Aa] = [al + 1,  [ao"b] = [a]([b] + 1)

Now we can prove Theorem 29 which gives another termination proof
of s. It was checked in ALF by some trivial inequalities like: “For any
a € As, [a] > 27 (proved by induction on the structure of terms of s).
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(o-generation) Aa)b — aolb
(o-A-transition) (Aa)atb — A(ac*t1b)
(p-A-transition) o (Aa) = A}, a)
(o-app-transition) (a1a2)c'd — (a10'b)(az0"b)
(p-app-transition) ¢k (a1az) = (¢Lar)(phaz)
n—1 ifn >4
(o-destruction) no'b — { @b ifn =i
n itn <i
. ; n+i—1 ifn>k
(p-destruction) oL — { " ifn <k

Figure 2. Rules of As

THEOREM 29. For any a,b € As, if a —5 b then [a] > [b].

3.3. ANOTHER TERMINATION PROOF OF $ BY INDUCTION

Now we give the direct proof that s is strongly normalising. This proof
is reminiscent of the method of Reducibility Candidates. It is done by
structural induction, the method used to prove strong normalisation of
oo (the proofis easier for s). Let SN be the set of all strongly normalising
terms. For t € SN, dpth(t) is the length of the longest derivation®,

lgth(t) is the number of variables and operations defined as follows:
lgth(n) =1
lgth(Aa) =lgth(a) +1 lgth(ab) = lgth(a) + lgth(b) +1
lgth(pta) = lgth(a) + 1 lgth(ac'b) = lgth(a) + lgth(b) + 1

Since there are no rules of the calculus s which contain “A\” or “ap-
ply” as head symbol, in order to prove that all terms are terminat-
ing, we need only to check that if a,b € SN, then go};a € SN and
ao'b € SN which we prove in Lemma 30 by lexicographic induction on
(dpth(a),lgth(a))) and (dpth(a),lgth(a),dpth(b),lgth(b)) respectively.

LEMMA 30. Let a,b € As. We have (iff stands for if and only if):
1. ab € SN iff a € SN and b € SN. Also, Aa € SN iff a € SN.
2. If a € SN, then <p§ca €SN forallt>1, k> 0.
3. If a,b € SN, then ac’b € SN for all i > 1, k > 0.
* dpth(t) is well defined for ¢t € SN by Kénig Lemma. Note also that when a,b

are terminating and a —* b, then dpth(a) > dpth(b). However, we do not need the
notion of “depth” when formalising the lexicographic induction principle in ALF.
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3.4. A TERMINATION PROOF OF s VIA TERMINATION OF o

[21] shows strong normalisation of s by giving a strict translation from
s to o (Theorem 32 below) which we formalise in ALF in Section 6.
The termination proof of o will be given in Section 8.

DEFINITION 31. We introduce some notations: .
o Let k>0,i>1. Define sp; =1-2-...- k- 1+ (write so; =1471).
o Let b € Ao'. We define a family of substitutions (bg)g>1 as follows:

by =blid] -id by =1-b[1]- 1+ ... big1=1-2-..-0-b1] 1
o Let Ao = Ao’ U Ao®. Define the function T : As —).AO' by:
T(n) =n T(ab) =T()T(b)  T(ppa) =T(a)|sk]

T(Ma) =AMT(a)) T(ac’b) =T(a)[T(D);]

THEOREM 32. Ifa —s b then T(a) —F T(b).

4. The proof assistant ALF

4.1. ABouT MARTIN-LOF’S TYPE THEORY

In Martin-Lof’s type theory [25] predicate logic is interpreted within
type theory through PAT, the Curry-Howard-de Bruijn interpretation
of propositions as types (sets). A proposition is interpreted as a set
whose elements represent the proofs of the proposition. Hence, a false
proposition is interpreted as the empty set and a true proposition as a
non-empty set. To prove a proposition is to prove the set is inhabited.

There are two ways of introducing types in Martin-Lof’s type the-
ory: function types and inductively defined sets of the type Set. The
function types make it possible to express rules in a natural deduction
style and logic can then be introduced by the PAT principle.

For every inductively defined set, one finds one formation rule (ex-
pressing how to form a set), introduction rules (expressing how to
form the elements of the set), and one elimination rule (giving the
induction principle for this set, i.e. how to prove all the elements of the
set satisfy some property). Basically one states in the elimination rule
that if for every constructor one can show the property holds, then the
property holds for all the elements of the set. Another way to look at
the elimination rule is that it says there are no other objects in this set
except those given by the introduction rules. There is a general scheme
to derive the elimination rule from the introduction rules of a set.

As an example, we give the formation, elimination and introduction
rules of the set of natural numbers N. First, we give some notations:
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NOTATION 33. A function f which takes arguments x1 € Aq,...,x, €
A, and returns f(x1,...x,) € B, is written as f € (r1 € Ay,..., 2, €
Ap)B. E.g., the successor function on natural numbers is written as
succ € (n € N)N. Le., it takes n € N and returns succ(n) € N.

Now, the set N is formed by the formation rule: NESet
The elements of the set N are defined by two introduction rules:®
a €N
zero € N succ(a) € N

The elimination rule of N is just the induction principle:
C(v)set[v € N]
a €N
d € C(zero)
e(z,y) € C(succ(z))[z € N,y € C(z)]
natrec(a, d,e) € C(a)

In ALF (see Section 4.2), the introduction rules of N look like:
N € Set

zero € N
succ € (n € N)N
We present rules in a natural deduction style or in ALF style above.
We use a € A or a: A to denote a is an element (object) of the set
(type) A. A proposition is proved by constructing a proof object, or an
element of the set in ALF. Objects of a type are formed from constants
and variables using application (app) and abstraction (abs) given by:

ce(zeA)B acA b€ Bz € A
c(a) € B[z = q @pp) e (v e A)B

(abs)

4.2. THE PROOF ASSISTANT ALF

ALF [24, 32] implements a monomorphic version of type theory where
all type information is in the term. As a result there is a lot of redundant
or uninteresting type information, and the size of the proofs can be
very large. However, the user can instruct ALF to suppress unwanted
type information when displaying proofs. ALF emphasizes the interac-
tive development of type-theoretic constructions, i.e. proof objects and
programs, using a window-based user interface. Thus ALF supports an
arbitrary mixture of top-down and bottom-up development.

The basic metaphor of ALF is the refinement of an incomplete proof
object which is displayed in a window (scratch area). Using the mouse,

5 Here N is a set having two constructors: the nullary zero and the unary succ,
which is a function from N to N.
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the user can fill in placeholders by pointing at them and then selecting
a previously constructed object from a menu. In ALF place-holders are
used to represent those parts of objects which are to be filled in. The
expression 7 € A expresses a state of an ongoing process of finding an
object in the type A. There are four ways of refining a placeholder:

— The placeholder is replaced by a constant c. This is correct if the
type of ¢ is equal to A.

— The placeholder is replaced by a variable z, where x must be in
the local scope of the placeholder.

— The placeholder is replaced by an abstraction [z]? € A if A is equal
to function type (y € B)C. We are constructing a solution to the
problem C under the assumption that we have a solution to B.

— The placeholder can be replaced by an application ¢(7q,...,7,).
In this case we can divide the problem to several subproblems.

We have used Window ALF which was implemented by Magnusson
[24]. By the PAT principle, to prove a theorem in ALF is the same
as writing a program “witnessing” the truth of the theorem. This is a
fundamental difference between ALF and HOL (and many other proof-
assistants), where the proof is presented as a sequence of tactics.

5. Formalising explicit substitution calculi in ALF

In this section we give the implementations of o¢, o and s, and present
the notion of termination and the well-founded induction principle.

5.1. EXPLICIT SUBSTITUTION CALCULI IN ALF

An explicit substitution calculus is defined by a set of terms (substi-
tutions) and a set of rules. Each set is inductively defined by its intro-
duction rules in ALF. There is an elimination rule for each inductively

defined set, which gives the induction principle on the set.

For oy, the set of terms Aoy and the reduction rules Roy (cf. Defi-
nition 3) are given below. Note that in ALF, we should use something
like Sig0Term instead of Aog, but for readability, we write the latter in
this paper and follow the same abuse of notation for all other names:
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Aop € Set Royo € (s,t € Aoo)Set
1€ Aoy Vrld € Roo(loid, 1)
id € Aog VrCons € Rog(1o (s-t),s)
1€ Aoo Abs € (s,t € Aog)Roo((As) ot,A(so (1-(to1))))
A € (a € Aog)Aoo IdL € Roy(ido s, s)

o € (s,t € Aoo)Aoo Shld € Roo(1 oid, T)

- € (s,t € Aog)Aoo ShCons € Roo(1 o(s - t),t)

Map € Roo((s-t)owu,(sou)- (tou))
Ass € Roo((sot)owu,so(tou))

For readability, we will not be using the real syntax of ALF in this
paper. The reader can refer to [1] for all the code in ALF. We abuse
the notation of ALF and write some operators as infix rather than
prefix, we use the same names of the original calculus rather than names
allowed by the syntax of ALF, and we suppress some arguments of the
constructors. The real implementation in ALF looks as follows:

Roo € (s,t € Aoo)Set
Vrld € Roo(Com(V1,Id), V1)
VrCons € (s,t € Agg)Roo(Com(Vi, App(s,t)), s)
Abs € (s,t € Aog)Roo(Com(Lam(s),t), Lam(Com(s, App(V1, Com(t, Shift)))))

One step reduction — is formalised as follows:
—¢€ (s,t € Aoo)Set

Direct € (Roo(s,t))s — ¢
ACompa € (s = t)As = At
oCompL € (s1 — s3)s1 0t — 590t
oCompR € (s1 — s2)t 0 s1 — t 052
-CompL € (s; — s2)s1-t — sz -t
:CompR € (s1 = s2)t-s1 > t- 2

The calculi o and s are formalised in the same way.

5.2. TERMINATION OF EXPLICIT SUBSTITUTIONS IN ALF

Let (A, R) be an explicit substitution calculus, where R is the one step
reduction relation. Termination is defined as a family of sets inductively
defined in ALF by the Formation, Introduction® and elimination rules
given in Figure 3. E.g., we give the definition of SN for oy in Figure 4.
The introduction rule says that an element a is strongly normalising
if whenever it is one step reduced to a term b, b is also strongly nor-
malising. This is a recursive definition. SNintr is the constructor. We
will write SN(a) or a € SN when the term a is strongly normalising.
Let C be a proposition on SN(a) for a € A. The elimination rule
says that to prove C holds for sn € SN(¢) and ¢t € A, we need to show:

6 This is a typical constructive way to describe infinite objects. We have hidden
the arguments A and R in the introduction rule.
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A .
m (Format 1011)

a . .
SNt (a: A7 (b - A; B(a,8))SN(5))SN(q) (ntroduction)

C: (t: A;SN(t))Set
d:(x:A;b: (y: A;R(z,y))SN(y); by : T1)To'
t: A
sn : SN(t)
SNelim(C, b, t, sn) : C(t, sn)
t: where T1 = (y : A;a: R(z,y))C(y,b(y, a)) and T> = C(z, SNintr(z,b))

— if whenever z is one step reduced to y then y is strongly normalising
and there is a proof of C(y,b(y,a)), then we can get a proof of
C(z,SNintr(x,b)) (note that b is the induction hypothesis).

(Elimination)

Figure 3. Termination

SN € (a € Aog)Set
SNintr € (a € Aoo; (b € Aog;a — b)SN(b))SN(a)

Figure 4. Definition of SN for oo

We will use the non-dependent version of the recursor RecSN given in
Figure 5 to simulate induction over the length of the longest reduction
of a strongly normalising term. RecSN as an induction principle says
that SN is the smallest set of terms closed under one step reduction.

In later sections we will need to prove propositions like SN(a) implies
SN(a'). To prove such propositions using the induction principle of
Figure 5 we can try to find a predicate P such that SN(a) implies P(a),
and P(a) implies SN(a'). To prove SN(a) implies P(a), by the induction
principle we need only to prove P is closed under one step reduction. We
will use this technique to prove some lemmas in Section 6. Alternatively,
we define a < bif b — a. Then a reduction — is strongly normalising if
and only if the order < is well founded. Hence the induction principle
RecSN is just the well founded induction principle.

P:(a:A)Set
h: (77114 A; (n: A; R(m,n))SN; (n : A; R(m,n))P(n))P(m)
snlz'SN(ml)

RecSN(P, h,m1, sn) : P(m1)

Figure 5. RecSN
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As € Set Il € (As)N

Var € (n € N;n > zero))As [Var(n)] = succ(succ(zero))

ap € (s,t € As)As [st] = suce(plus([s], [t]))

A€ (s €As)As [At] = suce([t])

o € (s € As;j € N;j > zero);t € As)As| [so?t] = Multiply([s], succ([t]))

¢ € (i,k € N;i > zero); s € As)As [¢Ls] = Multiply(succ(suce(zero)), [s])

Figure 6. The (sugared) Implemenation of the calculus s

6. Formalising the termination proof of s in ALF

6.1. FORMALISING THE INTERPRETATIONS FOR TERMINATION OF s

The implementation of the interpretations for the termination of s is
not difficult. All we need is some inequalities about the addition and
multiplication of natural numbers. See Section 3.2.

The (sugared) implementation of the calculus s (Definition 26) and
of its interpretation (Definition 28) is given in Figure 6 (again, by abuse
of notation, we write ab instead of ap(a,b)).

We formalise Theorem 29 as: Propl € (a,b € As;a — b)[a] > [b].

All the details of this proof of termination of s using interpretation

(see Section 3.2) have been fully formalised in ALF. See [1].

6.2. FORMALISING THE INDUCTION TERMINATION PROOF OF s

Now let us see how to implement the strong normalisation proof of s

given in Section 3.3. We use SN for strong normalisation in As.

Theorem 27 is proved by induction on the structure of terms, or
using the elimination rule:

As_elim : (C : (As)Set)
(e1 : C(Var(n)))

e2: (a,b: As; Cla
es: (a: As;C(a))C(X
ea:(a:Asyi,k: N;C(a))C(pha)
es: (a,b:As;i: N;C(a); O(b))C(ac'h)
a: As)
C(a)

NN AN N S

To this end we need Lemma 36 below which gives the proof objects of
e1, €9, e3,e4 and es when C' is SNg. Intuitively, SNg holds for all normal
forms because for them the premise of the introduction rule for SNy is
vacuously true. Since every variable is strongly normalising, e; is easy
to get. After proving Lemma 36, we finish the proof of Theorem 27 by
induction on the structure of terms.
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REMARK 34. By using pattern matching, we do not need to write the
elimination rule of As. Theorem 27 reads in ALF: SN; : (a: As)SN(a).
By pattern matching on the argument a, we get the following equations:

SN; : (a : As)SNs(a)

Here we have the same tasks to give those proof objects eq,-- -, es.

REMARK 35. It is easy to prove Lemma 36 in classical logic using
the definition “there are no infinite derivations”. But when proving it
in ALF, we can’t use the classical law of refutation. In ALF, we must
use introduction and elimination rules to give a constructive proof.

LEMMA 36. The following hold:
1. ab € SNg if and only if a € SNg and b€ SNs.
2. Aa € SNg if and only if a € SNg.
8. For any i > 1,k >0, pta € SNy if and only if a € SN.
4. For any i > 1, ao'b € SNy if and only if a,b € SNs.

Proof: Cases 1 and 2 are by induction on the derivation sequences,
that is by SNg elimination. Cases 3 and 4 need to combine the SNg
elimination and term elimination, which correspond to induction on
(dpth(a), lgth(a)).” Below, we only give the ALF proof of case 2.
Case 2: We prove first the “only if” part. We define a predicate Pj(a) =
Vz € As((a = A(x)) = SNg(x)). We will prove the following facts:

1. Vz € As(Py(A(z)) = SNg(z)). 2. Vz € As(SNg(z) = Pi(z)).

1. It is easy to see that Pj(A(a)) implies SNg(a) by definition of P;.
This is proved in ALF by giving a function which for any proof of
Py (A(a)) gives a proof of SNg(a):

Suppose we have a proof h : P;(A(a)); by the elimination rule of V,
we have a proof: Forall_elim(h, A(a)) : (A(a) = A(a)) = SNs(a)). By
the elimination rule of = and a proofr : A(a) = A(a), we get a proof
of SNg(a). The final proof of P,(A(a)) = SNs(a) for any a € As
looks like: Imply_intro([h|Imply _elim(Forall_elim(h, A(a)),r). Using
introduction rule of V, we get the proof of 2.

" Recall that dpth(a) is the number of reductions in the longest derivation path
starting from term a, however we don’t need to formalise dpth(a), which is a partial
function defined only on strongly normalising terms.
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2. We must prove that Vo € As(SNg(z) = Pi(z)). This is by the
induction principle RecSNg, which amounts to induction on deriva-
tions. We should prove that P;(x) is closed under one step reduc-

m:As;h: (n:As;m — n)Pi(n)

7: Pi(m)

Note that we denote statemens of the form: “under assumption A,

tion, i.e.:

find a proof of type B” by: - AB

Py (m) is solved by introduction rules of universal quantifier, imply
x: As;m = Mx)

7 SNg(z)
The problem SNg(z) is solved by the introduction rule of SNy and
b:As;ho:z—b

7 : SNs(b)
This is proved using the proofs of P;(\(b)) = SNg(b) and Py (A(b)).
The proof of P;(A(b)) comes from the proof h : (n : As;m —
n)Pi(n), where m = \(z),n = A(b) and m — n because hy : © — b.

and by finding a proof object of type SNg(z):

finding a proof object of type SNy(b):

The “if” direction is proved in the same way: Suppose P»(z) = SNg(A(x)),
then we can prove that Py(x) is closed under one step reduction. By
reduction on derivations, we prove that Vo € As(SNg(z) = P»(z)).
Finally, it is easy to see that Py(z) implies SNg(A(z)). O

Again, all the details of this induction termination proof of s (see
Section 3.3) have been fully formalised in ALF. See [1].

6.3. FORMALISING THE TERMINATION PROOF OF s VIA o

In this section, we formalise in ALF, the strong normalisation of s by
giving a translation from s to o (see Section 3.4). The translation 7" of
Definition 31 is formalised in ALF as follows (in sugared notation):

T € (a € As)Ao

T(Var(n)) = code(n)

T(st) =T(s)T(t)

T(\) = A1)

T(so't) = T(s)[L(t;]

T(pks) = T(s)[sni]
Theorem 32 is checked, which is implemented in ALF (again in sugared
notation) as: SigSimulateS € (a,b € As;p € a — b)T(a) =T T(b).

The ALF proof of this theorem is by case analysis on the proof
object p. We should check when any of the seven — reduction rules
for p, the theorem is correct. One of the main tasks is, when coming to
the rule Direct for one step reduction in s (see page 15), to prove the
theorem holds for any of the reduction rules of s. We can use induction
to prove other cases, i.e. the compatible rules. For instance, we should
prove the following propositions hold when we are at o-destruction:
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Projection; : (n: N;b: Aot)n[b,] —F b[1"]

Projectiony : (n,4: N;i > n;b: Aot)n[b)] =5 n

Projectiong : (n,i: N;n > i;b: Ao®)n[b;] =5 n—1

It is easy to see that they are intuitively true. However when proving
them in ALF, there are a lot of details which we need to check. Let us
take these projections to see some details of the ALF proof.

First of all, we should have a denotation for b; for any ¢« > 1. When
we write b;, we actually refer to a function b; : Aot x N — Ac®. In the
following we will feel free to use the convention notation b; defined by:
b; = ConcaFinite(i, b[1""!]- 171) where:

ConcaFinite : (n: N;s: Ao®)Ac?®
ConcaFinite(0, s) = s;
ConcaFinite(n + 1, s) = ConcaFinite(n,n - s)

Alternatively we could give b; by two simultaneously defined functions
T Subs and 1 term: b} = bfid] - id and b}, = 1- T Subs(b;) where

1 Subs: (s: Ao®)Ac® tterm : (a : Aot)Ao?
1 Subs(id) =1 T term(1) = 1[1]
1 Subs(1) =t o 1 1 term(ab) =1 term(a) 1 term(b)
1 Subs(a - s) =1 term(a)- 1 Subs(s) T term(Aa) = A(a[l- (T o 1))
1 Subs(s o t) = so 1 Subs(t) 1 term(a[s]) = a[T Subs(s)]

LEMMA 37. For any a € Ac?, s € Ao® and n € N, the following hold:
L. a[t] =51 term(a). 2. so t—=7%1 Subs(s).
3. 1 Subs(1") =ttt . 4. 1 term(n) =n+ 1.

Projection, is proved by Lemma 38, which is shown by induction on n:

LEMMA 38. 1" oConcaFinite(n,s) —F s for any s € Ao® and n > 0.
LEMMA 39. Projection; : (n: N;n > 0;b: Act)n[b,] —F b[1"].
Proof: By induction on n.
— For n =1, 1[by] = 1[b[id] - id] — b[id] = b[1°] by the rule (VrCons).
— For n+1, (n+1)[by] = 1[1"][bp] — 1[1" oby] — 1[b[1"]- "] — b[1"]
by the rule (Clos) and Lemma 38. O

Similarly, Projection, is proved by induction on n.
— For n = 1 we need to prove: 1[ConcaFinite(b,7)] — 1
This is proved by the rule (VrCons) in one step. This is because
bj = 1-s for some substitution s when ¢ > 1. However, b; is

defined by the function ConcaFinite, we need to prove this fact. It
is immediate if we use the notation b}.
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— For n+1, we should prove: 1[1"][b;] =1 1[1"].
By the closure rule, we have: 1[1"][b;] = L[1™ ob;].
Intuitively 17 ob; = (n + 1) - ... - b[1*~!]- 17!, and Projection, is
solved by the rule VarCons.
Therefore we should prove that 17 ob; = (n +1) - ... - b[1¢71]- 471

Now there should be a notation for (n + 1) - ... - b[t71]- 1171
So we define another notation ConcaFinite3:
ConcaFinite3 : (n,i: N;s: Ao®)Ao®
ConcaFinite3(n,0,s) = n - s
ConcaFinite3(n,: + 1, s) = ConcaFinite3(n,¢,(n+:¢+1) - s)

LEMMA 40. Letn € N, s € Ao® and i > n.
— ConcaFinite3(0, n, s) = ConcaFinite(n + 1, s)
— 1" oConcaFinite(z, s) =1 ConcaFinite3(n,i —n — 1, s).

We have to prove that ConcaFinite3(n,i,s) has the form n - s for
some substitution s explicitly.

LEMMA 41. Leti,n € N, s € Ao®, LS1(n,i+1, s) = ConcaFinite3(n+
1,i,s) and LS1(n,0,s) = s. ConcaFinite3(n,i,s) = n - LS1(n,i,s).

LEMMA 42. Projection, : (n,i: N;i > n;b: Aot)n[b;] =% n.

Projectiong is proved by induction on the proof object p : n > ¢ based
on proving the following lemma:

LEMMA 43. 1*F1 ob; 547+ for any i,n € N.

This is because n[b;] = 1[1" !][b;] — 1[1" ! ob;] — 1[t" 2]

LEMMA 44. Projectiong : (n,i: Nyn > i;b: Aot)n[b;] —F n— 1.

Having proved T is a strict interpretation, we can conclude Theo-
rem 27 using of course the proof of termination of o (Section 8).

Again, all the details of this termination proof of s via termination
of o (see Section 3.3) have been fully formalised in ALF. See [1].

7. Formalising the context calculus of oy in ALF
In this section we formalise in ALF all the notions informally given in
[12, 30]. In [12], many notions were taken for granted and not intro-

duced, and many lemmas were left unproven. To formalise the proofs
of [12] we had to rewrite all the intuitions and informal notions, and to
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/ : (C € Cont;~y € £)Cont [ : (s € Aoo;y € L)Aoo
C/nil =C t/nil =t
On/{1,2}y =1,
1./{1,2}y =1, 1/{1,2}y=1
ide/{1, 2}y =ide id/{1,2}y=id
Te /{1, 2}y =1 /AL 2k =1
A(O)/{1, 2}y =C/vy A(s)/{1, 2}y = s/
C-.D/1y=C/~ s-t/ly=s/vy
C-.D/2y=D/y s-t/2y =t/y
Co.D/1y=C/v sot/ly=s/y
Co.D/2y =D/~ sot/2y=t/y

Figure 7. Formulation of Notation 11

check a lot of details. Sometimes we had to change the implementation
to make the proofs go through. We shall discuss some of the implemen-
tations during the process of the formalisation in this section.® When
formalising on a machine, nothing can be left to the intuition.
The contexts of Definition 10 are formalised in ALF as follows:
Cont € Set

O € (n € N;n > 1)Cont

tdc, e, Tc€ Cont

Ae € (C € Cont)Cont

‘¢,% € (C,D € Cont)Cont

Let {1,2} mean 1 or 2. Let £ be the set of lists of {1,2}. £ is also
called the set of occurrences. Figure 7 formalises Notation 11. This is
done by the position of the sub-context, which is a list of {1,2} (also
called an occurrence). In Figure 7 which implements the notion of sub-
context, we write C'/~y instead of /(C, ), which denotes the sub-context
of C' at . Similarly we define the sub-terms of a term by its occurrences
of the sub-terms. 4" < « denotes 7' is a proper prefix of ~.

7.1. SUBSTITUTIONS OF THE CONTEXT

There are several ways to think of a term t as a context filled with its
sub-terms. We first define the substitutions of contexts with tuples of
terms Subst € (C € Cont;n € N;u € Aog)Aop and implement Cy by
LiftCont : (C € Cont; q € N)Cont. We use C[u] for Subst(C, Lg(u),u)

8 Pages 33-53 of [30] are simply the French version of Sections 2-7 of [12].
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T = (C € Cont;y € L; B € Cont)Cont | Tb = (s € Aoo;y € L5t € Aoo)Aoo

SubSubcon : T SubSubtm : T5
C{nil <~ B} =B s{nil + t} =t
On{{1,2}y « B} =0,

ide{{1,2}y «+ B} =1id. id{{1,2}y «+t} =id
1.{{1,2}y+ B} =1, 1{{1,2}y ¢t} =1
Te {{1,2}y & B} =t. T{{1,2}y <t} =1

A(O){{1,2}y = B} = AC{y <= B}) | Mo){{1,2}y =t} = MC{7y « t}
C-.D{ly+ B}=(C{y+ B})-.D s1-82{ly <t} =s1{y <t} s
C-.D{2y+«+ B} =C - (D{y+ B}) s1-82{2y  t} = s1- s2{y + t}
Co.D{ly« B} = (C{y« B})oc D | s10s2{ly <t} =s1{y<t}oss
C o, D{2y < B} = C o, (D{y < B}) | s1082{27y <t} =51 0s82{y <t}

Figure 8. Formulation of substitutions in contexts and terms

(cf. Definition 12 and Notation 13)). We use uy to denote Proj(n, k, u),
the kth-projection of the n-tuple u. We take K.(C) to be the number
of the holes in C, and N.(C) to be the largest hole index in context C.

The next lemma states some basic facts about the substitution C|u]:

LEMMA 45. Let u = (u1,--+,up) and v = (v1,---,v,). We have:
1. Proj(m + n,m + k,u@Qu) = Proj(n, k,v).
2. Clu@u] = Clu] if No(C) < Lg(u).
3. Cppu@u] = Cu].
4. If K(C) =0, then Clu] = Cv] for any u and v.

Intuitively they are all true, but to formally prove them, we need to
check a lot of cases by induction. For all the ALF proofs see [1].

Substitutions in contexts is a basic operation in the context calcu-
lus. We use C{y < D} for the context obtained by replacing in C
the sub-context C/y by the context D, and s{y <« t} for the term
obtained by replacing in s the sub-term s/ by the term ¢. We again
abuse notation and write in the ALF definition, C{y < B} instead of
SubSubcon(C, v, B).? Substitution is given in Figure 8.

We consider both substitutions on variables (holes) and on “posi-
tions”, where we only substitute some occurrences of a variable.

® TmtoCont(s) will denote the context when thinking of term s as a context
without any hole. We shall use C{vy < t} instead of C{y + TmtoCont(¢)}.
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7.2. RELATIONS ON CONTEXTS

In this section we formalise in ALF many of the notions of Section 2.3
(e.g., relative contexts, good (very good) contexts, inflations, etc.) and
we prove in ALF many of the properties of these notions that are
necessary for our main proof in ALF (in particular of Theorems 2
and 24). We will write all these formalisations in sugared notation and
refer the reader to [1] for the full details and non sugared code.!”
Let N; be the singleton set and I is the intensional equality
€ (a,b € A)Set
€ (A € Set;ac A)l(a,a)

The constructive definition of the relation relative of Definition 15, is
defined inductively on the structure of C' as follows:

Relative : (C : Cont; s : Agy)Set

Relative(Oy,, s) = N

Relative(ldc, s) =1I(s,id)

Relative(1c, s) = I(s,1)

Relative(TC, s) =1I(s,1)

Relative(Ac(C), s) = 3h(I(s,A(h)) A Relative(C, h))

Relative(C - D, s) = Ja,b(I(s,a - b) A Relative(C, a) A Relative(D, b))
(

Relative(C o, D, s) = Ja, b(I(s,a o b) A Relative(C, a) A Relative(D, b))

Let R(C,s) stand for C is a context relative to s. Let G(C,s) (resp.
V(C,s)) stand for C is a good (resp. very good) context relative to s.
The next lemma relates sub-contexts and sub-terms:

LEMMA 46 (Preservation of relative contexts in terms). Let C,D be
contexts, s,t be terms, u be o tuple of terms and v be an occurrence.

— R(C, s) if and only if R(A:(C), A(s)).
- R C D,s-t) if and only if R(C s) and R(D,t).

— R(C o. D,sot) if and only if R(C,s) and R(D,t).
IfR(C, s with u) then R(Cy, s with vQu) for any v = (vi,---,vq).

If D[u] = Efu] then C{vy < D}[u] = C{vy + E}[u].
— If R(C,s) then R(C{y « t},s{y « t}).

The notion of inflations of Definition 16 is defined as a relation in
ALF in Figure 9 (where WtmTuple(w) means w is a W-Tuple, i.e. a
tuple of W-terms). Figure 9 also defines a function in ALF to express
the prime operation of Definition 16.

The next lemma relates context operations to inflations:

LEMMA 47 (Preservation of inflations in the structure of terms). Let
C.D be contexts, s,t be terms, u,uy,us,w,wy,wy be tuples of terms.

10 Many lemmas of the context calculus were proved in ALF by analysing if a
term is a W-term or L-term.
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Inflation € (s € Aoo; C € Cont;n € N;u,w € Aojy))Set
Inflation(s, C, n, v, w) = (n > NumofHoles(C)) A I(s, C[u]) A WitmT uple(w)

S: (u,w: Aog)Aoy
udw = one
<a,b>3d<ai,b >=<aday, [fThEl(b,b1,bob) >
where  IfThEl: (s € Aoo;ti,t2 : Aog)Aog
IfThEI(s,t1,t2) = t1 if s is a W-term
IfThEIl(s,t1,t2) =t otherwise

Figure 9. Inflations and the prime operation of Definition 16

GoodCont : (C : Cont; s : Aog)Set
GoodCont(L,, s) = Ny

GoodCont(id., s) = I(s,id)

GoodCont(lc,s) I(s,1)

GoodCont(fe, s) = I(s, 1)

GoodCont(A:(C), s) = Fh(I(s, A(h)) A GoodCont(C, h))

GoodCont(C -c D, s) = Ja,b(I(s,a - b) A GoodCont(C,a) A GoodCont(D, b))

GoodCont(C o, D, s) = Ja, b(I(s,a o b) A GoodCont(C, a) A GoodCont(D, b)A

(((a1)IsHole(C, 1)) - W-hole(D)))

Figure 10. Good contexts Definition 18

— Inflation(s, C,u,w) if and only if Inflation(A(s), \(C), u, w).
— If Inflation(s, C, uy1,w1) and Inflation(t, D, us, ws), then
Inflation(s - t, C' - Dy, u1 Qug, wy Quy).

— If Inflation(s, C, u1,w1) and Inflation(t, D, us, ws), then
Inflation(s o t, C op Dy, w1 Qug, w1 Qus).

— If Kc(C) = 0 then Inflation(C[u], C,n, u,w) for any u,w.

A good context (Definition 18) is defined as a set on C and s (see
Figure 10) where IsHole(C,l) denotes C/I is a hole and W-hole(D)
denotes that D is a W-hole. We shall also say a context C' is good
for a term s where we mean that C is a good context for s. A good
Inflation Definition 20 will be defined in ALF as in Figure 11. A very
good context (Definition 19) is defined in ALF as in Figure 12.

Many facts about good contexts are needed when proving some
important lemmas in Section 7.3:
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GoodInflation €€ (s € Aog; C € Cont;n € N;u,w € Aogy))Set
GoodInflation(s, C, n, u, w) = GoodCont(C, s) A Inflation(s, C, n, u, w)

[VeryGoodCont(C, s) iff GoodCont(C, s) A ((¥+(IsHole(C, 7)) — ¥(5 < 7)Lterm(s/5))]|

Figure 11. Good Inflations Definition 20

Figure 12. Very Good Contexts of Definition 19

LEMMA 48. Suppose that C, D are contexts, and s,t,c,d, e are terms.

— If R(C,s) and K (C) =0 then G(C,s).
- QEC ,8) if and only zfg( (C), A\(9)).
G(C-.D,s-t) if and only zfg(C s) and Q(D t).
- Ifg COCD sot) then G(C,s) and G(D,t
— IfGg(C, 3;, KC(C) =0, and G(D,t) then Q(C o.D,sot).
— If G(C,s) and t is a W-term, then G(C o. Oy, s0t).
— IfG(Coc.D,aob), K (C) > 1 and G(FE,e); then G(E o, D,eob).
— If G(C,s), then G(C,, s) for any m € N.
~ G((C D)o B, (e-doe), then G((CouB)-(Do ), (coe)-(doc)).
— IfggECo D;o E, gcocl;oe; then G(D o, E,d o e).
— If G((Coe D)o, E,(cod
G(C o (Do, E), CO(doe))

The following lemma will be needed when the main case of the Preser-
vation Theorem 56 is checked:

and K (C) =0, then

oe

LEMMA 49. Let C,D be contexts, s,t be terms , v be an occurrence
and m € N.
1. IfG(C,s), C/v is a W-hole, t is a W-term, then G(C{y < Op}, s{y <
t}). Moreover, G(C{vy < O}, s).
2. If G(C,s), C/v is A-hole and G(D, t) then G(C{vy < D}, s{y < t}).
3. If V(C,s) then V(C/~v,s/7).
4. If V(C,s), C/vy is a A-hole, and t is an L-term, then V(C{y <«
t}s{y < t}).
Let R(C,s). If K(C) =0 then V(C, s).
If K (C) =0, V(C,s) and V(D,t). If s-t is an L-term then V(C -,
D,s-t). If sot is an L-term then V(C o. D,sot).
If V(C,s) and C/y(y # nil) is a hole, then s is an L-term.
If V(C,s) then V(Cp,s) for any m € N.
If s is an L-term, t is a W-term and V(C, s) then V(Co.O, sot).

10. If V(C,s) then V(C{vy < On},s).
11. If V(C,s), C/vy is a A — hole, t is an L-term and V(D,t) then
V(C{y < D}, s{y « t}).

S &

L > =N
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7.3. REDUCTION OF CONTEXTS

The main theorem in this section, the Preservation Theorem, basically
says, the reduct of an increment of a strongly normalising term is still an
increment of a strongly normalising term, and is smaller in some sense.
Hence we are interested in the properties of context reduction. We de-
fine a notion of context reduction such that C' — D if C[u] — D[u]. This
context reduction is defined as (C' — D denotes ContOneStep(C, D)):
ContOneStep : (Cont; Cont)Set

idc oo D — D

1o o0 ide — 1c

leo. (Ce D) = C

Tc ocidc _>Tc

te Oc(C e D) — D

Ac(C)oc D = Ac(Coc (1c e (Doc 1e)))

(C.D)o. E— (C - E)o. (D-E)

(CocD)oc E — Co. (Do, E)

Ae(C) = (D) if C = D

C.D—=C . .DifC =

C.D—>C..D ifD—D

Co.D—=C'o.Dif C = C'

Co.D—Co,D if D— D'

LEMMA 50. Suppose that C, D are contexts, v is an occurrence.
1. fC — D and D/~ is a hole, then there is § such that C/§ is a hole.

2. If C - D and K.(C) =0, then K.(D) = 0.

The next lemma is the formalisation of lemma 22. Figure 13 gives its
explicit version in ALF.

LEMMA 51. Let s be the result of the good inflation (C,w) of s =
Clu], D be a context where C — D, and t = Dlu] (hence, s —
t and s — t'). There is a good inflation (D', w') of t whose result is t'.

Proof: This is proved by induction on Lg(C). Let us see how the case
C = Ao B is proved. Let s = Clu] = A[u] o Blu] = ao b, and m = |u.
When C = Ao B — D, there are three possibilities according to the
position of the redex. (We drop . when no confusion arises.)

1. The redex is within A. Suppose that A — E, by I.H. there exists
(E',u',w") which is the good inflation of E[u], and E'[u/ow'] =
E[udw]. There are two cases: Kc(A) =0 or Kc(A4) > 1.

a) K (A) = 0. We have the following facts:

- IfC—)DandKFC—OthenKFgD)—O So E)=0.
— (E o By, u'Qu,w is a good inflation Efu u] by Lem-

mas 48 and 47, where ¢ = |u/|. B
—  The equality is checked by Lemma 45: (EoB,)[(u'Qu)s(w'Qu)]

= (EoBy)[(v'ow')Q(udw)] = (E[u'ow'])o(Bludw]) = (E[udw])o
(Bludw]) = (E o B)[udw].
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b) K.(A) > 1. We have the following facts:
— DB is a hole and Blu] is a W-term by definition.

— (E'o0p41,w' @B[u],w'@Bw]) is a good inflation of F[u]o B[u]
by Lemmas 48 and 47.

— The equality is checked: (E' o O, 41)[(v'@QB[u])d(w' @B[w])] =
(E'[u'sw'])o(B[u]e Blw]) = (E[usw])o(Bludw]) = (EoB)[usw].

2. The redex is within B. Suppose B — E. We have these facts:
— If ¢ — D, then C is not a hole. Therefore B is not a hole.
— IfCoD isgood for aob and D is not a hole, then K.(C) = 0.
Hence K (A) = 0 here as A o B is good and B is not a hole.

By LH. there is a good inflation (E’,u',w’) of b such that b’ =
E'[v'suw'] = E[udw]. From Lemma 48 A o E/ is good for s =
Alu] o E[u]. Now we have: (Ao E] )[(uv@Qu')o(w@u')] = (A[udw]) o
(E'[u'suw']) = (A[udw]) o (E[udw]) = (A o E)[udw]. Hence (A o
E],, u@u' w@u') is the good inflation of (A o E)[u] in the lemma.

3. The redex is A o B. We argue according to the rule:

(Ass): C = (FE o F)o B. Two cases arise:
a) Kc(F) = 0. We can prove that (£ o F') o B is good for
(aob)oc implies that E o (F o B) is good for ao (boc) (see
Lemma 48). Thus (E o (F o B),u,w) is the good inflation.

b) K.(E) > 1. Then Flu] o Blu] is a W-term, and the good
inflation is (£ o 0,41, u@(F[u] o Blu]), wQ(F[w] o B[w])).
(Abs): C = (A(E))oB and D = A(Eo(1-(Bo 1))). Two cases:
a) f K(E) =0, ( A(Fo(l-BoOyy1)),u@ T,w@ 1) is the
good inflation.
b) If K (E) > 1, (AME o Oppg1),u@(1 - (Blujo 1)), w@(1
(Blw]o 1)) is the good inflation.
(Map): C=(E-F)oBand D= (FEoB)-(FoB).(EoB)-(Fo
B), u,w) is the good inflation, as by Lemma 48 if (F' - F') o B
is good for (a-b) oc then (Eo B)-(F o B). ((E o B) is good

for (aoc) - (boc) and the equality is checked easily. 0

The next lemma, is the formalisation of Lemma 23. Figure 14 gives
its explicit ALF version.

LEMMA 52. If (C,u,w) is a good inflation of s with result s', then
there exists a very good inflation (C',u',w") of s with result s' that

K (C") < K (CO).

Proof: Induction on the structure of C. K.(C") < K.(C) ensures that
induction can be done. (Note that . is dropped if no confusion arises.)
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1. C = A(A). By LH. there exists a very good inflation (A4’ v’ w') for
s = Alu]. Then we simply choose (A(A"), v, w").

2. C = AoB. Suppose that (A", u4,wp) and (B',upg,wp) are the very
good inflations for A[u] and B[u| respectively, and A'[ugowy] =
Aludw] and B'[ugdbwp] = Bludw]. Two cases arise:

a) (Ao B)[u] is a W-term, if there is no hole in A o B, then( Ao
B,u,w) is the very good inflation, otherwise (O, (A o B)[ul, (A o
B)[udw]) is the very good inflation. By Lemma 49, for the W-term
Clu], we always have Clu] = C[udw].

b) (Ao B)[u] is an L-term.

— IfK¢(A') =0, then A’o By is very good for A[u]o Blu] by 49,
and (A’ o By, usQup, wsQup) is a good inflation for Afu] o
Blu], where g = |u]|. The equality can be checked:
(A'oBy)[(uaQup)d(waQupg)] = (A'oB;)[(uadwa)Q(updwp)]
= A'lugdwy] o B'lupdwp] = Aludw] o Bludsw]. Kc(A" o By) <
K¢(A o B) because K¢(B;) = K¢(B').

— K¢(A’) > 1. Then K.(A4) > 1, and B is a w-hole, this also
implies that Afu] is an L-term because A o B is very good.
Aoy is a very good context for Afu] o Blu] by Lemma 49.
(AoOg41,ua@Blu], wa@B[w]) is the very good inflation. The
equality is checked easily. K¢(A o041 1) = Kc(A")+1 < K¢(Ao
B) as K¢(B) = 1.

3. C' = A- B. Similarly to the above case. a

Combining the last two lemmas, we get the following lemma which is
needed in Lemma 56. See Figure 15 for the explicit ALF representation.

LEMMA 53. Suppose that s’ is the result of a very good inflation
(Cyu,w) of s = Clu], C — D, and t' = D[udw], then there exists a very
good inflation (D', u',w") of t = D[u] such that D'[u'ow'] = D[udw].

Proof: This follows directly from Lemmas 51 and 52, and the ALF
proof is not big, but it took some time to check. O
(Note: VeryGoodInflation(Clu|, A, u, w") = GoodInflation(C[u], A, u, w'")
AVeryGood(A, Clu]) and EX, denotes four existential quantifiers.)

Now let us see what is happening when a term s = C[u] is reduced.
Intuitively there are three possibilities: the redex is in C', the redex is
in some wy, or there is an interaction between C' and w. For our purpose
and simplicity, we only consider the reduction C[udw] — t. In this case,
three cases arise according to the occurrence of the redex:

1. The reduction is in the context, i.e. C — D and t = D[udw].
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Prop6 € (C,D € Cont;n Nat;u,w € Aog; C — D; GoodInflation(Clu], C, n, u, w))
Auz props(C, D, nyu, w)
where
Auzprops € (C, D € Cont;n Nat;u,w € Ao )Set
Auz props = [C, D, n, u, w]EX4(Cont, [R]N, [h, hi]Act®, [h, b1, ha]Aol?,
[h, a1, ha, hs]Goodluflation(D[u], h, hy, ha, hs) A L(D[uw], h[h25hs])

EX4 € (A € Set;

B € (A)Set;

C € (h € A; B(h))Set;

D€ (h € A;hy € B(h); hs € C(h, h1))Set;

De(he A € B(h);ha € C(h,h1); hs € D(h, hy, h»))Set

)Set
GoodInflation(C, u, w); C — D
EX4(A, m,u,w")(GoodInflation(A4, u", w") A I(D[usw], Alu'sw']))

Figure 13. Encoding Lemma 51 (or Lemma 22) in ALF

Prop7 € (C,D € Cont;n Nat;u,w € Aoy ; GoodInflation(C[u], C, n, u, w))
AUz prop7(C, m, u, w)
where Auzpropr € (C € Cont;n Nat;u,w € Aoy )Set
Auz propr = [C, n, u, w]EX4(Cont, [A]N, [h, hi]Acl® [k, ha, ho]Ackt [h, i, he, ha))
GoodlInflation(Clul], k, h1, ha, h3) A VeryGoodCont(h, Clu])A
I(Cludw], h[h25hs]) AKc(C) < Kc(h)

GoodInflation(C, u, w)
EX4(A, m,u ,w"T
where T = VeryGoodInflation(C[u], 4, u, w') A I(Cludw], Alu'dw']) A Ko(C) > Ko(A)

Figure 14. Encoding Lemma 52 (or Lemma 23) in ALF

Prop67 € (C,D € Cont;n Nat;u,w € Aog; C — D; GoodInflation(Clu], C, n, u, w))

Auz prop7(D,m,u, w)

GoodInflation(C, u, w); C — D
EX4(A,m, v, w")T
where T = VeryGoodInflation(D[u], A, u,w’) A I(D[udw], Alu'sw']) A Kc(D) > Kc(A)

Figure 15. Encoding Lemma 53 in ALF
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The redex is in some hole O, (uow)r — r and ¢t = C'[(udw)@Qr]
where C' is the context by replacing the square Oy, where uy is
reduced to r, by Un (c)+1;

. There is an interaction between C' and uow. It is not easy to state

this case clearly. There are three cases which may cause interaction:
(0, oD)udw] = b. e(loOy,)udw] —b. (1 oy,)[udw] — b

If C is a very good context of C[u], 3.b) and 3.c) turn to case 2.
The case 3.a) happens only when the rule (Ass.) is applied, and
(udW )y = U © Wy, This means there exists a very good inflation
for Clu] and the result is still Cludw], which is what we want for
proving the Preservation Theorem.

LEMMA 54. Let (C,u,w) is a very good inflation and C[udw] — b.
One of the following holds:

1.
2.

3.

There exists a context D such that C — D and b = D[udw].

There is v € L,c € Aoy such that C/v is a hole, Cludw]/y — ¢
and b = (C{y + Og})[uQc].

There exist D € Cont,n € N,u',w'" € Aol such that (D,u',w') is
a very good inflation of Clu], b = D[u'ow'|, Lg(D) > Lg(C) and
Ke(D) < Ke(O).

Proof: By induction on the structure of C. Let us see how the lemma
is proved when C' = A o B. We prove this case by analysing the rule
(A o B)[udw]. We shall use the notation C(n,vy) = C{y « O}.

1.

The redex is in A[udw] and A[udw]| — b. Three cases by I.H.:
a) There exists a context A’ such that A — A’. Therefore Ao B —

A'oB andb—éA’oB uow
b) A/visaholeand Afu]/y — a "and b = A(n,'y)[(uSw)@a’]. Then

Ao B/lyis ahole, (Ao B)[u]/1y — a' o B[u] and bo Bludw] =
((Ao B){ly + Dk})[(uaw)@a’].

¢) There is a very good inflation (Afu], A’,u',w") such that b =
A'lu'3w']. Two cases arise:

i) Kc(A') = 0. If K((B) = 0, then we take the inflation
(Ao B, u,w). The result of the inflation is (A’ o B)[u'ow'] =
bo Bludw] because K (A") =0, A'[u'6w'] = A'[udw]. Other-
wise, we take the inflation (Ao By, u'@Qu, w'@w). The result
is bo Bludw]. In both cases they are very good inflations by
Lemma 49 with the same result b o Bludw].

i) Kc(A') > 1. We take the inflation (A'o0y, v'QB(u], w'QBlw]).
In this case, K.(A) > 1, hence B is W-hole. By Lemma 49,
it is a very good inflation. The result is b o B[udw].

For both cases the two equalities are true.
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2. The redex is in Bludw], it is similar to the above case.
3. The redex is (A o B)[udow].
(IdL.): C =ido B — B, (id o B)[udw| — B[uow]|. Hence the first

case of the lemma holds.
(Vrld.): C =10id — 1. The first case of the lemma holds.

(VrCons;): C =10 (A-B) and 1o (A-B) — A. The first case of
the lemma holds.
(100g): C =100. In this case we have the following facts:

— If C oD is very good for a o b and K.(C o D) > 1, then
a o b is an L-term; hence u; is an L-term because 1 o [y,
is very good for 1 o ug;

— (1oOg)[udw] = 1o (ug owy) because uy is an L-term and
hence (udw)g = uy o wy,
— Iflo(aob) = ¢, then ¢ = 1 od where aob — d. This
concludes that the redex is in (udw); = uy o w.
Therefore the second case of the lemma holds, v = 2 and
Lo (ugowg)/2 — c.
(1 og): C =1 oy, it is the same as the case above.
(ShId.): C =1 oid —1. The first case of the lemma holds.
(ShCons): C =1 o(A-B) — B. The first case of the lemma holds.
(Interaction): C' = O o B. The following facts were proved:
— B is a W-hole and uy, is an L-term as [, o B is very good.
— b= uy o (wy o Bludw])
— (ug o Opy1, u@B[u], w@(wy, o Blw])) is a good inflation.
— wug o,y is a very good context for (ug o Oyq1)[ul.
— b= (ug o Opt1)[udw].
— Lg(ug o Opy1) = Lg(ug) + 1 > 1 = Lg(Og 0 B).
— Ke(ugoOpy1) =1<2=0oB.
All these facts mean that the third case of the lemma holds.
Now, each of the cases below imply the first case of the lemma.
(Abs): C =AX(A)oB = A(Ao(1-(Bo1))).
(Map): C=(A-B)oE — (AoE)-(BoE).
(Ass): C=(AoB)oE — Ao (BoE). O

REMARK 55. The second statement was changed many times in or-
der to present all the information when it is applied. What we should
present is the most original information which can derive other infor-
mation when it is needed. In this case, the most original information
is presented in terms of the “position”. The first statement is:

final.tex; 16/09/2002; 17:43; p.32



33

There exist v € L,k € N,c € Aoy such that (udw), — ¢ and b =
(Cly O hluad.

Then one need the information that C /v is a hole, and k < n = |u]
and Cludw]/y = (udw)g, which we have when the lemma is proved.
However, it is not enough still. One need to say that Clu]/y = ug and
Clw]/y = wg, which we can not get from the revised statement. In fact
all the information is stored in the following statement:

There ezisty € L,c € Aog such that C/v is a hole, and Cludw]/y —
c and b = (C{y « Oy})[uQc].

The following lemma, which is proved by analysing the position of
the redex of s’ based on Lemma 54, enables us to use induction on the
triple 0, o = (dp(s),lg(s) — lg(C), Surdp(wy)) to prove Theorem 24.

LEMMA 56. If s’ is the result of a very good inflation (C,u,w) of
some term s, and s’ — t', then:
— there exists a term t such that s — t and t' is the result of a very
good inflation of t; or
— t' is the result of a very good inflation (D,a,b) of s and lg(D) >
lg(C); or
— there exists some term v such that wy — v and t' is the result of
the very good inflation (C',uQuy, w@r) of s where C' = C{vy +
O,} and n = Lg(u) + 1.

Proof: This is proved by analysing the position of the redex of s’ based

on Lemma 54. We will prove that for any ¢’ such that s’ = Cludw] — ¢/,

t' can be the result of a very good inflation of some ¢ such that 6,y <
fs s, so the L.H. can be applied. There are three cases by Lemma 54:

1. The reduction is in the context. By Lemma 53, t = D[u], s — t and

there is a very good inflation (D', u’,w') of t. The result remains ¢'.

2. The reduction is in some hole of context C, i.e. thereisy € L,k € N

such that Cludw]/y = (udw); and (udw), — t'. Let C" = C{vy +

O, }. Two cases arise: (udw)y, is either an L- or a W-term.

a) (udw)y is an L-term. In this case, (uow)y = ugowy, and uy must

be an L-term. We argue according to the redex. Five cases arise:

(Ass): Let uy = aob, and so, s = C'[u@(a o b)] and s’ =

C'[(usw)@((aob)owy)]. Then t' = C'[(udw)@(ao (bowy))],

where C' = C{y < O,}. Take C" = C{y < aold, } and the

inflation (Cfu],C", u@a, wQuwy,,), where w,, = IfThEl(b,b o

Wk, Wi ), which is a W-term. The next facts (which give the

2nd case of Lemma 56) are proved:
= Clul{y + (a0 0y)[u@b]} = Clu]
— (" 1s a very good context of C[u] by Lemma 49;
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— (Clul, C",u@b, wQuy,) is a very good inflation;
= Of(usw)8(a o (b o we))] = C]((u@b)5(wew,)]:
— Lg(C") > Lg(C).

(Abs): Take uy = A(a), C" = C{y + A,} and the inflation
(Clu], C", u@Qqa, wQuy,) where w, = IHThEl(a,ao (1-(wgo T
))s1 - (wgo 1)), which is a W-term. The next facts (which
give the 2nd case of Lemma 56) are proved:

— Clul{y + (A\d,)[u@a]} = Clul.

— C" is good for Clu] by Lemma 49.

— C’" is very good for C[u] by lemma 49.
C" ) > Lg(C

(Map eur = a- = {7 < O,-0y41} and the inflation
I = ( [u], C", u@ < a,b >, wQ < wp,wypy1 >), where
wy, = IfThEl(a, aowy, wk), wp+1 = HThEL(b, bowy, wy). We
have the next facts (which give the 2nd case of Lemma 56):
— Clul{y + aob} =Clul.

— (" is good for Clu] by Lemma 49.
— (" is very good for C[u] by Lemma 49.
- (Cul,C",u@ < a,b > wQ@ < wy,w,y1 >) IS a very
good inflation.
— C’"[(u@ < a,b>)5(wQ < wy, wyy1 >)] = C'(udw)Q((ao
- (bowy))] = .
- LQ(C") > Lg(C).
(ComL): The redex is in uy, and ur, — a. Let t = C'[u@aq].

Then s — t. ]Z Lemma 49 C' is a_good context for t.
i) If a is an L-term. (C'{y < 0O, }, u@Qa, w@uwy) is a very

good inflation w1th the result

Cfy — On)l(usw)(a o wy)].
gf ais a Wnterm Ci{y <+ O, 11s a good context for t =

(C{vy « Dn})[u@a], then (C{y « O,},uQa,w@(a o
wy) is a good inflation. By Lemma 52 there is a very
good inflation with the same result. Therefore the first

case of the Lemma holds. )
(ComR): In this case, wxy — b, and (Clu],C', uQuy, w@b) is

the very good inflation with the result C'[(udw)@(uy o b)].
The third case of the lemma holds.

b) (udw)y is a W-term, hence uy is also a W-term. So (uow)y = wg,
wy, — b, and b is a W-term. By Lemma 49 C{vy < 0O,} is very
good for C[u](7, b). Then the inflation (C{y < O, }, uQuj, wQb)
is very good, and the result is (C'{y < O, })[(udw)Quy].

3. For the 3rd case of Lemma 54, use the 2nd case of the lemma. O

Now we are in the position to prove Theorem 24. See Figure 16 for
its ALF representation.
Proof: By induction over a triple 05 o = (dp(s),lg(s)—1lg(C), Spurdp(wy))
where py = card{y : C/y = O}, i.e. the number of occurrences of [y
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Preservation-Th € (u,w € Aog; GoodInflation(Clu], C, n, u, w);
VeryGoodCont(C, C[u]); SN(Cu]))SN(Cludw])
Preservation-Th(u, w, h, h1, SN-intr(—, h3)) =

SN-intr(C[udw][b, h2]

Or-elim([h4]SN(b),
[z]Preservation-Th1(u, w, b, h, b1, SN-intr(C[u], ha)hz, x)
[h4]Preservation-Th2(u, w, b, h, h1, SN-intr(Cu], hs)hz, ha)

IH-Preservation(C, n, u, w, b, h, h1, h2)))

Figure 16. Preservation Theorem

in C. By Lemma 56, there are three cases. 1) b is a very good inflation of
t and the first component decreases and ¢ is strongly normalising,hence
L.H. applies. 2) b is the result of a very good inflation of s and the second
component decreases, hence I.H. applies. 3) b is a result of a very good
inflation of s and the third component decreases, so I.H. applies. O

8. Formalising the termination proof of ¢ in ALF
Now we give the strong normalisation proofs of oy and ¢ in ALF.

8.1. TERMINATION OF oy IN ALF

The strong normalisation of oy is proved by the elimination rule of Aoy.
The difficulty is in the proof es : (a,b: Aog; SN(a); SN(b))SN(a o b), or
more precisely when coming to the rule: (Abs) : (As)ot — A(so(L-
(to 1))). If we prove (x) : If s € SN then so t€ SN, then induction on
(dpth(s),lgth(s),dpth(t),lgth(t)) gives the proof object e5. To solve (x),
we introduced a context calculus in Section 7. Now we give the proof
of (%) by the Preservation Theorem. It is easy to prove that reduction
which does not involve the rule (Abs) is strongly normalising.

LEMMA 57. Let s,t € Aoy.
1. X(t) are strongly normalising if and only if t is strongly normalising.

2. s -t is strongly normalising if and only if s and t are strongly
normalising.

3. If sot is strongly normalising, then s and t are strongly normalising.

4. Let s,t be W-terms. If s and t are strongly normalising, then sot

18 strongly normalising.
5. If to 1 1is strongly normalising whenever t is, then s ot is strongly

normalising for any strongly normalising terms s and t.
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6. Any W-term is strongly normalising.

In ALF, this lemma was proved by induction on depth and length.
We gave the details of the induction proof in Section 6 when we proved
the termination of the calculus s. Now we come to the lemma where
the Preservation Theorem is used and the problem (x) is solved:

LEMMA 58. Let s be a L-term, then so 1 is the result of the very good
inflation (O1,71) of s. So if s is strongly normalising then so 1 is strongly
normalising. In ALF: Com_SN$ € (s € Aoo; Lterm(s); SN(s)))SN(so 1)

It is easy to see that so 1 is the result of a very good inflation (O, 1)
of s when s is not a W-term, and it is strongly normalising by the
preservation theorem. If s is a W-term, then so 1 is also a W-term, and
it is strongly normalising. Hence we have the following lemma:

LEMMA 59. If s is strongly normalising, then so 1 is strongly nor-
malising. In ALF: Com_SNj € (s € Aao; SN(s))SN(so 1)

The next lemma, gives the proof object es. It is proved by induction
on (dpth(s),lgth(s),dpth(t),lgth(t))

LEMMA 60. If s,t are strongly normalising, then s ot is strongly
normalising. In ALF:

Com_SN5 € (s,t € Aoo; SN(s); SN(t)))SN(sot)
Com_SN5(s,t,h,h1) =
Com_SN1(Forall_intr([z]Imply_intr([he] Com_SN4(z, h2)), s, t, h, h1)
where Com_SN1 €
(Forall(Aoo, [h]Imply(SN (h), SN (ho 1))); s,t € Aoo; SN(s); SN(t))SN(sot)

Having got all the proof objects ey, - - -, eg, we prove Theorem 7, the
strong normalisation of oy by induction on the structure of og-terms:

SN € (s € Aog)SN(s)
N(1) = L4W (1, cl)
N(id) = LAW (id, ¢1)
N(1) = LW (1, c1)
N(A(a)) = L4X(a, SN(a))
N(s1 0ot) = ComSN5(s1,t,SN(s1),SN(t))
N(App(s1,t)) = L4App(s1,t, SN(s1), SN(t))
Where
L4W € (a € Aoo; Wterm(a))SN(a)
L4 € (a € Aop; SNs0(a))SN(A(a))
L4App € (a,b € Aoo; SN(a); SNsO(b)) SN (App(a, b))
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8.2. TERMINATION OF o IN ALF

Having proved that the calculus o( is terminating, now we can prove
that the calculus o is terminating. Let F' and F" be the translations
in ALF of the function F' from o to og in Definition 5, where F’' €
(Aodt)Aoy F" € (Ao®)Aog are defined in the obvious way following
Definition 5. Then, we get the strong normalisation of ¢ by checking
that the translation is really a strict interpretation from o to oy, i.e.
by proving Lemma 6 in ALF:

S, € (a,b € Aot a = b)F'(a) = F'(b)
Sy € (a,b € Ao®,a = b)F"(a) = F"(b)

Hence, finally, we have:

THEOREM 61. The calculus o is strongly normalising.

9. Conclusion and future work

In this paper we gave formal proofs of the strong normalisation of o and
s in ALF. To prove o is strongly normalising, we formalised the notions
and checked all the proofs of [12]. Some of these proofs were informal
and needed to be checked formally, e.g. Lemma 54. For the calculus s,
we gave three formal proofs of strong normalisation, which follow the
usual ways of proving strong normalisation of explicit substitutions.
Two of these proofs are given for the first time in this paper.
The formalisation of this paper lead us to remark that:

— During formalisations, one has to explain how to move from the
classical logic used in informal proofs to a constructive logic. For
example, Lemma 36 is easy to prove using classical logic because
one can resort to the definition of the absence of infinite deriva-
tions. However, in a proof checker based on the PAT principle, it is
not possible to use the classical laws of refutation and hence, proofs
are constructive and are done via introduction and elimination
rules. See the ALF proof of Lemma 36 discussed in Section 6.3.

— Many of the intuitively true statements required checking a lot
of details in ALF. For example, Projection; — Projection; in Sec-
tion 6.3) needed much details some of which are given in Sec-
tion 6.3. Similarly, Lemma 45 lists some basic facts about substi-
tution that are intuitively true but we needed to check a lot of
cases by induction to be able to formally prove them.
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— The context calculus of [12] demanded much work during the for-
malisation. In [12, 30], many notions were not introduced, and
many lemmas were left unproven. To formalise the proofs in [12]
we had to rewrite all the intuitions and informal notions, and to
check a lot of details. We often had to change the implementation
to make the proofs go through. For example, the second statement
of Lemma 54 was changed several times in order to present all the
details when this lemma is applied (see Remark 55).

A lot of work has been done on proof checking in various proof
checkers (e.g., ALF, Coq, Lego). Advantages of this work include:

1. Helping people prove theorems whose proofs are cumbersome. In
the proof process, one only gives some orders to the prover and the
prover carries out the detailed computations and reasoning. For
instance, when filling a hole, the user can give only the name of
the lemma and the prover itself will fill in all the parameters by
unifications. However, one needs to do more work to give a formal
proof. In the strong normalisation proof of o, many lemmas are true
intuitively, but involve much work to prove formally. For instance,
in Lemma 54, the position of a redex can occur in three cases. In
Lemma 49, when replacing a A-hole in a context C, which is very
good for s, with a L-term ¢, the resulting context is very good for
the term replacing the sub-term at the same position with t.

2. Investigating the processes of mathematical proofs, to help peo-
ple understand mathematical reasoning and to build automatic
theorem provers. In fact, it is during the implementation of the-
orem provers and during the checking of proofs that one under-
stands more about mathematical proofs. In the case of termination
of explicit substitutions, we hope to understand why decreasing
measures can be found for some calculi but not for others.

It is interesting to find a general way to prove properties of explicit
substitutions such as strong normalisation, confluence and preserving
B-strong normalisation and to develop a package of special tools to
deal with calculi of explicit substitutions, e.g. to help researchers to
prove the above properties. In our formalisation, we tried to remain as
general as possible with the intention that our proof should be adapted
to other existing calculi of substitutions. The fact that during our
formalisation of the four different proofs of termination we shared a
lot of implemented proofs, means that our work can well be adapted to
formalising other proofs of terminations of other substitution calculi.

Of course, there is the question of portability of our proofs of this
paper to other theorem provers. Although we did not attempt to run
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our proofs on any of these other provers, we believe that the top level
(that is filling in the intuition by formal details) can be used by any
other prover, given the right translation between the formalism of that
other prover and ALF. And, looking at those lemmas whose proofs in
ALF depart from the proofs on paper (like those mentioned above,
Lemmas 36, 45, 54 and 49), it seems that they can be dealt with
similarly in a prover based on PAT such as Coq.
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