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Abstract. Ezpansion was introduced at the end of the 1970s for calculat-
ing principal typings for A-terms in intersection type systems. FExpansion
variables (E-variables) were introduced at the end of the 1990s to simplify
and help mechanise expansion. Recently, E-variables have been further sim-
plified and generalised to also allow calculating other type operators than
just intersection. There has been much work on semantics for intersection
type systems, but only one such work on intersection type systems with E-
variables. That work established that building a semantics for E-variables is
very challenging. Because it is unclear how to devise a space of meanings for
E-variables, that work developed instead a space of meanings for types that
is hierarchical in the sense of having many degrees (denoted by indexes).
However, although the indexed calculus helped identify the serious prob-
lems of giving a semantics for expansion variables, the sound realisability
semantics was only complete when one single E-variable is used and fur-
thermore, the universal type w was not allowed. In this paper, we are able
to overcome these challenges. We develop a realisability semantics where
we allow an arbitrary (possibly infinite) number of expansion variables and
where w is present. We show the soundness and completeness of our proposed
semantics.

1 Introduction

Expansion is a crucial part of a procedure for calculating principal typings and
thus helps support compositional type inference. For example, the A\-term M =
(Az.z(A\y.yz)) can be assigned the typing &1 = ((z : a) F (((a — b) — b) — ¢) — ¢),
which happens to be its principal typing. The term M can also be assigned the
typing @2 = {(z : a1 Mag) F (((a1 — b1) — b1) M ((az — b2) — b2) — ¢) — ¢), and
an expansion operation can obtain @, from ®,. Because the early definitions of
expansion were complicated [4], E-variables were introduced in order to make the
calculations easier to mechanise and reason about. For example, in System E [2],
the above typing @7 is replaced by &3 = {(z : ea) F e((((a — b) — b) — ¢) — ¢)),
which differs from @, by the insertion of the E-variable e at two places, and @5 can
be obtained from @3 by substituting for e the expansion term:
E=(a:=a1,b:=0b1)MN(a:=az,b:=by).

Carlier and Wells [3] have surveyed the history of expansion and also E-variables.
Kamareddine, Nour, Rahli and Wells [12] showed that E-variables pose serious chal-
lenges for semantics. In the open problems published in the proceedings of the Lec-
ture Notes in Computer Science symposium held in 1975 [6], it is suggested that an
arrow type expresses functionality. Following this idea, a type’s semantics is given
as a set of closed A-terms with behaviour related to the specification given by the
type. In many kinds of semantics, the meaning of a type T is calculated by an ex-
pression [T], that takes two parameters, the type T' and a valuation v that assigns



to type variables the same kind of meanings that are assigned to types. In that way,
models based on term-models have been built for intersection type systems [7,13,
11] where intersection types (introduced to type more terms than in the Simply
Typed Lambda Calculus) are interpreted by set-theoretical intersection of mean-
ings. To extend this idea to types with E-variables, we need to devise some space of
possible meanings for E-variables. Given that a type eT can be turned by expan-
sion into a new type S1(T") M S2(T'), where S; and Sy are arbitrary substitutions
(or even arbitrary further expansions), and that this can introduce an unbounded
number of new variables (both E-variables and regular type variables), the situation
is complicated.

This was the main motivation for [12] to develop a space of meanings for types
that is hierarchical in the sense of having many degrees. When assigning meanings
to types, [12] captured accurately the intuition behind E-variables by ensuring that
each use of E-variables simply changes degrees and that each E-variable acts as a
kind of capsule that isolates parts of the A\-term being analysed by the typing.

The semantic approach used in [12] is realisability semantics along the lines in
Coquand [5] and Kamareddine and Nour [11]. Realisability allows showing sound-
ness in the sense that the meaning of a type T contains all closed A-terms that
can be assigned T as their result type. This has been shown useful in previous
work for characterising the behaviour of typed A-terms [13]. One also wants to show
the converse of soundness which is called completeness (see Hindley [8-10]), i.e.,
that every closed A-term in the meaning of T' can be assigned T as its result type.
Moreover, [12] showed that if more than one E-variable is used, the semantics is
not complete. Furthermore, the degrees used in [12] made it difficult to allow the
universal type w and this limited the study to the Al-calculus. In this paper, we
are able to overcome these challenges. We develop a realisability semantics where
we allow the full A-calculus, an arbitrary (possibly infinite) number of expansion
variables and where w is present, and we show its soundness and completeness. We
do so by introducing an indexed calculus as in [12]. However here, our indexes are
finite sequences of natural numbers rather than single natural numbers.

In Section 2 we give the full A-calculus indexed with finite sequences of natural
numbers and show the confluence of 3, fn and weak head reduction on the indexed
A-calculus. In Section 3 we introduce the type system for the indexed A-calculus
(with the universal type w). In this system, intersections and expansions cannot
occur directly to the right of an arrow. In Section 4 we establish that subject
reduction holds for . In Section 5 we show that subject SB-expansion holds for
F but that subject m-expansion fails. In Section 6 we introduce the realisability
semantics and show its soundness for . In Section 7 we establish the completeness
of - by introducing a special interpretation. We conclude in Section 8. Omitted
proofs can be found in the appendix.

2 The pure A\*"-calculus

In this section we give the A-calculus indexed with finite sequences of natural num-
bers and show the confluence of 3, fn and weak head reduction.

Let n,m, 1, j, k,[ be metavariables which range over the set of natural numbers
N = {0,1,2,...}. We assume that if a metavariable v ranges over a set s then
v; and v',v”, etc. also range over s. A binary relation is a set of pairs. Let rel
range over binary relations. We sometimes write x rel y instead of (x,y) € rel. Let
dom(rel) = {z / (x,y) € rel} and ran(rel) = {y / (x,y) € rel}. A function is a
binary relation fun such that if {{x,y), (z,2)} C fun then y = z. Let fun range over
functions. Let s — s = {fun / dom(fun) C s Aran(fun) C s'}. We sometimes write
x : s instead of x € s.



First, we introduce the set Ly of indexes with an order relation on indexes.

Definition 1. 1. An index is a finite sequence of natural numbers L = (n;)1<i<i.

We denote Ly the set of indexes and @ the empty sequence of natural numbers.
We let L, K, R range over Ly.

If L = (n;)1<i<i and m € N, we use m :: L to denote the sequence (1;)1<i<i+1
where ry = m and for alli € {2,...,I+1}, r; = n;—1. In particular, k :: © = (k).
If L = (ni)1<i<n and K = (m;)1<i<m, we use L 2 K to denote the sequence
(Ti)1<i<nt+m where for alli € {1,...,n}, r; =n; and for alli € {n+1,...,n+
m}, r; = mi_pn. In particular, L:: @ =@ :: L= L.

We define on Ly a binary relation <X by:

Ly = Ly (or Ly = Ly) if there exists Ly € Ly such that Ly = Ly :: L.

Lemma 2. < is an order relation on Ly.

The next definition gives the syntax of the indexed calculus and the notions of

reduction.

Definition 3. 1. Let V be a countably infinite set of variables. The set of terms

+~

5.

M, the set of free variables fv(M) of a term M € M, the degree function
d: M — Ly and the joinability M ¢ N of terms M and N are defined by
simultaneous induction as follows:
— Ifz €V and L € Ly, then ¥ € M, fv(zl) = {al} and d(2*) = L.
—If M,N € M, dM) = d(N) and M o N (see below), then M N € M,
fV(MN) =1tv(M)Utv(N) and d(M N) = d(M).
—Ifz € V, M € M and L = d(M), then \exl' .M € M, fv(\zl. M) =
fv(M)\ {=F} and d\x*.M) = d(M).
— Let M, N € M. We say that M and N are joinable and write M o N iff for
allz €V, if 2¥ € fv(M) and ¥ € fv(N), then L = K.
— If X C M such that for all M, N € X, M o N, we write, oX.
— If X C M and M € M such that for all N € X, M o N, we write, M ¢ X.
The o property ensures that in any term M, variables have unique degrees.
We assume the usual definition of subterms and the usual convention for paren-
theses and their omission (see Barendregt [1] and Krivine [13]). Note that every
subterm of M € M is also in M. We let xz,y, z, etc. range over V and M, N, P
range over M and use = for syntactic equality.
The usual substitution M [zl := N] of N € M for all free occurrences of x* in
M € M only matters when d(N) = L. Similarly, M[le1 = Ny,...,xkn = N,
the simultaneous substitution of N; for all free occurrences of xf mn M only
matters when for alli € {1,...,n}, d(N;) = L;. In a substitution, we sometimes
write (mf := N;),, instead of lel = Ny,...,zkn = N,.
We take terms modulo a-conversion given by:
Mol M = ML (Mxl = y*]) where y* & fv(M).
Moreover, we use the Barendregt convention (BC) where the names of bound
variables differ from the free ones and where we rewrite terms so that not both
el and A\x™ co-occur when L # K.
A relation rel on M is compatible iff for all M, N, P € M:
— If M rel N and Az .M, \x™' .M € M then (\z™.M) rel (A\x".N).
— If M rel N and MP,NP € M (resp. PM, PN € M), then (M P) rel (NP)
(resp. (PM) rel (PN)).
The reduction relation >g on M is defined as the least compatible relation closed
under the rule: (\z*.M)N >5 M[zY := N] if d(N) = L
The reduction relation >, on M is defined as the least compatible relation closed
under the rule: Ax®.(M z*) >, M if 2l ¢ fv(M)
The weak head reduction >}, on M is defined by:
(A . M)NNy...N, >, M[z" := N]N;...N,, wheren >0



9. Welet >g, =>gUDy,. Forr e {8,n,h, Bn}, we denote by >} the reflexive and
transitive closure of >, and by ~, the equivalence relation induced by >.

Theorem 4. Let M € M and r € {3, 8n, h}.

L If ML N, then N € M, fv(N) = fv(M) and d(M) = d(N).
2. If M>X N, then N € M, fv(N) C fv(M) and d(M) = d(N).

As expansions change the degree of a term, indexes in a term need to in-
crease/decrease.

Definition 5. Let: € N and M € M.

1. We define M** by:

.(xL)Jri = gl ‘(Ml M2)+i _ Ml-i-v M2+z O()\xL.M)H = A\t L pfte
2. If d(M) =i :: L, we define M~* by:

o(z )7t = oK o(My My)™" = M My oA\ K M)t = A\ M

Normal forms are defined as usual.

Definition 6. 1. M € M is in S-normal form (Bn-normal form, h-normal form
resp.) if there is no N € M such that M >g N (M >, N, M >, N resp.).

2. M € M is B-normalising (Bn-normalising, h-normalising resp.) if there is an
N € M such that M >5 N (M >p, N, M >, N resp.) and N is in $-normal
form (Bn-normal form, h-normal form resp.).

Theorem 7 (Confluence). Let M, My, My € M and r € {3, 8n, h}.

1. If M > My and M >* Ms, then there is M’ such that My>* M’ and Ma>7:M'.
2. My ~, My iff there is a term M such that My > M and My >) M.

3 Typing system

This paper studies a type system for the indexed A-calculus with the universal type
w. In this type system, in order to get subject reduction and hence completeness,
intersections and expansions cannot occur directly to the right of an arrow (see U
below).

The next two definitions introduce the type system.

Definition 8. 1. Let a countably infinite set A of atomic types and € = {egp, €1, ...}
a countably infinite set of expansion variables. We define sets of types T and U,
such that T C U, and a function d: U — Ly by:

— Ifa€ A, thena €T and d(a) = @.

—IfUeUandTeT, thenU =T €T and dU —-T) = 0.

— If L € Ly, then w* € U and d(w*) = L.

— If U1,Us; € U and d(Ul) = d(UQ), then Uy MUy € U and d(Ul M UQ) =

d(Ur) = d(Uz).

—U€cUande; €&, then e;U € U and d(e;U) =i :: d(U).
Note that d remembers the number of the expansion variables e; in order to keep
a trace of these variables.

We let T range over T, and U,V,W range over U. We quotient types by taking
M to be commutative (i.e. Uy MUy = U MUy ), associative (i.e. Uy M (U MUs) =
(U1NU2)NUs) and idempotent (i.e. UNU = U ), by assuming the distributivity
of expansion variables over M (i.e. e;(Uy MUy) = e;Uy Me;Us) and by having w’
as a neutral (i.e. wE*T1U = U). We denote U, MU,41 ..MUy, by M U; (when
n < m). We also assume that for all i >0 and K € Ly, ewi = WK,
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Fig. 1. Typing rules / Subtyping rules

2. We denote e;, ...e;, by ex, where K = (i1,...,1,) and Uy, M Upy1 ... MUy, by
nm, U; (whenn < m).

Definition 9. 1. A type environment is a set {lel :Ury. .., xkn 2 UL} such that
forallie{l,...,n}, d{U;) = L; and for all i,j € {1,...,n}, zfxf = a:JLJ then
Ui =U;}. We use I', A to range over environments and write () for the empty
environment. We define dom(I") = {al /¥ : U € T'}. If dom(I1)Ndom(I%) =
0, we write I, Iy for I U Iy. We write I'a® : U for I''{z* : U} and 2* : U
for {z¥ : U}. We denote 22 - Uy,... akr - U, by (zX - U),.

2. Ifi\/[ € M and tv(M) = {z, ... 2L}, we denote env¥, the type environment
(z% : wli),.

3. Let Iy = (zXt 2 U, Iy, Tn = (xF' - U}y, I and dom(I7}) N dom(Iy) = §.
We denote I't M Iy the type environment (le U, MU, I, Iy, Note that
dom(Iy MI%) = dom(Iy) Udom(ls) and that, on environments, M is commuta-
tive, associative and idempotent. ‘

4. Let T = (xF : Ui)1<i<n and ej € . We denote e;T" = (x°
Note that ej(Fl I FQ) = ejfl I ejfg.

5. We write I o Iy iff 2 € dom(I'}) and ¥ € dom(I%) implies K = L.

6. We follow [3] and write type judgements as M : (I' b U) instead of the tradi-
tional format of I' = M : U, where & is our typing relation. The typing rules
of - are given on the left hand side of Figure 6. In the last clause, the binary
relation C is defined on U by the rules on the right hand side of Figure 6. We
let @ denote types in U, or environments I' or typings (I' = U). When & C &',
then @ and &' belong to the same set (U/environments/typings).

7. IfL €Ly, UeUand I' = (zX' : Uy), is a type environment, we say that:

— d(I") = L if and only if for alli € {1,...,n}, d(U;) = L; = L.
— d{(I'"+U)) = L if and only if d(I") = L and d(U) = L.

L; .
tejUi)i<i<n.

To illustrate how our indexed type system works, we give an example:



Ezample 10. Let U = e3(ea(e1((egd — ¢) — (ep(aM(a — b)) — ¢)) — d) —
(((ead — a) M b) — a)) where a,b,¢,d € A,
[1=3:0=xLy=3:2:0=xL3=3:2:1:0:20
and
M = b2 My (ylr (of2 aube  ols (uls (vls vls)))).
We invite the reader to check that M : (() - U).

Just as we did for terms, we decrease the indexes of types, environments and
typings.
Definition 11. 1. If d(U) = L, then if L =@ then UL =U else L =i :: K and
we inductively define the type U™ as follows:
(U NUy) 5K = UK nuy =* (e;U) K =U—K
We write U~" instead of Uf%i).
2. If I' = (lei : Uik and d(I') = L, then for all i € {1,...,k}, Ly = L :: L, and
we denote 'L = (a7 U5
We write I'" instead of I'~(").
3. If U is a type and I' is a type environment such that d(I") = K and d(U) = K,
then we denote ((I' = U)K = (F—X - U—K).

The next lemma is informative about types and their degrees.

Lemma 12. 1. If T €T, then d(T) = ©.
2. Let U € U. If dU) = L = (ni)m, then U = w’ or U = e, Me_, T; where p > 1

and for alli € {1,...,p}, T; € T.

3. Let U1 EUQ

(a) d(Ur) = d(Us).

(b) If Uy = W& then Uy = w¥.

(c) If Uy = exU then Uy = exU’ and U C U’.

(d) If Uy = exU then Uy = ex U’ and U C U’

(e) IfUy = _ex (U; — T;) wherep > 1 then Uy = w orUs = I_IgzleK(Uj'. —
T}) where ¢ > 1 and for all j € {1,...,q}, there exists i € {1,...,p} such
that Ujf CU; and T, C Tj(.

4. If U € U such that d({U) = L then U C w’.
5. IfU CU{NU} then U = Uy MUy where Uy C Uy and Us T UJ.
6. If T C YNNIy then I' =11 M 1Ty where It E I and I's C T,

The next lemma says how ordering or the decreasing of indexes propagate to
environments.

Lemma 13. 1. IfTC I, UC U’ and 2% ¢ dom(I') then I, (zL : U) C I, (2 :
U).

LTI iff I = (aF - Uy, IV = (X 1 U!),, and for every 1 <i<mn, U; C U,

CFUYC (U f I'ET and UC U

. If dom(I") = fv(M), then I' C envy,

. IfT'o A and d(I),d(A) = K, then K o A=K,

. IfUCU and dU) = K then UK C UK,

If T C I and d(I') = K then 'K C 1"—K,

The next lemma shows that we do not allow weakening in .

Lemma 14. 1. For every I' and M such that dom(I") = fv(M) and d(M) = K,
we have M : (I" - w’).

2. If M : (I"' = U), then dom(I") = tv(M).

3. IfMl : <F1 H U> and Mg : <F2 - U> then Fl <>F2 iﬁMloMg,

Proof 1.Byw, M : (env$, - w¥). By Lemma 13.4, I C envY,. Hence, by C and

E(), M : <F |—(,LJK>.

2. By induction on the derivation M : (I + U).

3. If) Let ¥ € dom(I) and ¥ € dom(I%) then by Lemma 14.2, 2 € fv(M)

and ¥ € fv(Ms) so I o Is. Only if) Let 2 € fv(M;) and ¥ € fv(Mz) then by

Lemma 14.2, z&' € dom(I") and 2% € dom(I%) so M; o Ms. O

D G o e
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The next theorem states that within a typing, degrees are well behaved.
Theorem 15. Let M : (I' - U).

1. d(I") = d(U) = d(M).
2. If dU) = K then M~ % : (I=K - U—K).

Finally, here are two derivable typing rules.

M:<F1|_U1> M<F2|_U2>
M:<F1|_|F2|_U1|_|U2>

2. The rule az’ is derivable.
2d@) <(xd(U) :U) R U)

Remark 16. 1. The rule r; is derivable.

4 Subject reduction properties

In this section we show that subject reduction holds for . The proof of subject
reduction uses generation and substitution. Hence the next two lemmas.

Lemma 17 (Generation for I).

1 Ifob (T U), then ' = (2 : V) and VC U.

2. If el .M - (I = U), 2 € v(M) and dU) = K, then U = w& or U =
Mt_ex(Vi — Ti) where p > 1 and for all i € {1,...,p}, M : (I at : ex Vi F
eKﬂ>.

S If \et .M (I = U), o ¢ tv(M) and d(U) = K, then U = w¥ or U =
M_,ex(V; = T;) where p>1 and for alli € {1,...,p}, M : (' - exT;).

4. If M 2l - ([, (22 : U) - T) and z* € tv(M), then M : (' U — T).

Lemma 18 (Substitution for ). If M : (I,al : U R V), N: (A U) and I'o A
then M[z¥ := N]: (M AR V).

Since - does not allow weakening, we need the next definition since when a term
is reduced, it may lose some of its free variables and hence will need to be typed in
a smaller environment.

Definition 19. If I' is a type environment and U C dom(I"), then we write I' |y

for the restriction of I' on the variables of U. If U = tv(M) for a term M, we write

I’ [y instead of I er(JVI)'
Now we are ready to prove the main result of this section:

Theorem 20 (Subject reduction for &). If M : (' U) and M >}, N, then

N (' [nyFU).

Corollary 21. 1. If M :(I'FU) and M >} N, then N : (I' [N U).
2. If M : (I'-U) and M >} N, then N : (I' [nF U).

5 Subject expansion properties

In this section we show that subject [-expansion holds for F but that subject 7-
expansion fails.
The next lemma is needed for expansion.

Lemma 22. If M[zl := N]: (' - U), d(N) = L and = € fv(M) then there exist
a type V and two type environments I'1, Iy such that d(V) = L and:
M : (I, 2"V FU) N :(ILFV) Ir'=nnrly



Since more free variables might appear in the (-expansion of a term, the next
definition gives a possible enlargement of an environment.

Definition 23. Let m > n, I' = (zX' : Uy), and U = {2, .. zlm}. We write

1Y for a:lLl 2 UL, ey wln Un,xij_ll cwherr gEm s e If dom(1) C fv(M),

we write I'T™ instead of FTfV(M).

We are now ready to establish that subject expansion holds for § (next theorem)
and that it fails for 7 (Lemma 26).

Theorem 24 (Subject expansion for ). If N : (I' - U) and M >} N, then
M (I'TM - U).

Corollary 25. If N : (I' - U) and M 1>} N, then M : ('™ + U).

Lemma 26 (Subject expansion fails for 7). Let a be an element of A. We
have:

1. MyP \x®.y%z? >, \y@.y®
2. M2y? () Fa—a).
3. It is not possible that
Ay A2 .y%z% . () Fa — a).
Hence, the subject n-expansion lemmas fail for .
Proof 1. and 2. are easy. For 3., assume A\y? \z?.y?z? : (() F a — a).
By Lemma 17.2, A\z%.y?z? : ((y : a) F— a). Again, by Lemma 17.2, a = w® or
there exists n > 1 such that a = M, (U; — T;), absurd. O

6 The realisability semantics

In this section we introduce the realisability semantics and show its soundness for
F.
Crucial to a realisability semantics is the notion of a saturated set:

Definition 27. Let X,y C M.

We use P(X) to denote the powerset of X, i.e. {¥ /Y C X}.

We define XTt = {M*" / M € X}.

We define X ~Y ={M M /M N €Y for all N € X such that M ¢ N}.
We say that XY iff for all M € X ~ )Y, there exists N € X such that M o N.
Forr € {B,8n, h}, we say that X is r-saturated if whenever M>*N and N € X,
then M € X.

SRS

Saturation is closed under intersection, lifting and arrows:

Lemma 28. 1. (XY N)Y)t=xTinyti

. If X, Y are r-saturated sets, then X NY is r-saturated.

. If X is r-saturated, then XT° is r-saturated.

. If Y is r-saturated, then, for every set X, X ~» Y is r-saturated.
(X ~ y)+’? C Xt Y,

CIFXTLYT, then X1~ YT C (X~ )T

S Grde o o

We now give the basic step in our realisability semantics: the interpretations
and meanings of types.

Definition 29. Let Vi, Vs be countably infinite, Vi N Vo =0 and V = V1 U V.

1. Let L € Ly. We define ML = {M € M/d(M) = L}.
2. Let x € V1. We define NV = {zF Ny..N, € M/ k > 0}.



3. Letr € {83, 8n,h}. An r-interpretation T : A — P(M@) is a function such that
for all a € A:

e Z(a) is r-saturated and oz € V. N2 C I(a).
We extend an r-interpretation Z to U as follows:

o I(wh) = MFE e Z(e;U)=Z(U)*™

e Z(U1 NU2) =Z(Uy) NZ(Us) e Z(U—-T)=Z(U)~Z(T)

Let r-int = {Z / T is an r-interpretation}.
4. Let U € U and r € {3, n, h}. Define [U],, the r-interpretation of U by:
U], ={M € M | M is closed and M € (\z¢,_int Z(U)}

Lemma 30. Letr € {3,0n,h}.

1. (a) For any U € U and T € r-int, we have Z(U) is r-saturated.
(b) If d({U) = L and T € r-int, then for allx € Vi, NF C T(U) C ML,
2. Letr € {B,0n,h}. If T € r-int and U TV, then Z(U) C Z(V).

Here is the soundness lemma.

Lemma 31 (Soundness). Let r € {3,0n,h}, M : <($ij 2 Uj)n FUY, T € r-int
and for all j € {1,...,n}, N; € Z(U;). We have M[(z;” := Nj),] € Z(U).

Corollary 32. Let r € {8,0n,h}. If M : () F U), then M € [U],.

Proof By Lemma 31, M € Z(U) for any r-interpretation Z. By Lemma 14,
fv(M) = dom(()) = 0 and hence M is closed. Therefore, M € [U],. O

Lemma 33 (The meaning of types is closed under type operations).
Let r € {8, 8n,h}. On U, the following hold:

1. [e;U], = [U]

2. [Unv], =[U],N[V]:

3. If U — T € U then for any interpretation T, Z(U)VZ(T).
Proof 1. and 2. are easy. 3. Let d(U) = K, M € Z(U) ~ Z(T) and = € V; such
that for all L, zL & fv(M), hence M ¢ ¥ and z¥ € Z(U). O

The next definition and lemma put the realisability semantics in use.
Definition 34 (Examples). Let a,b € A where a #b. We define:

— Idy =a — a, Idy = e1(a — a) and Id} = eja — eja.

— D= (aM(a—0b))—0b.

— Naty = (a — a) — (a — a), Nat; = e1((a — a) — (a — a)),
and Naty = (e1a — a) — (e1a — a).

Moreover, if M,N are terms and n € N, we define (M)™ N by induction on n:
(M) N =N and (M)™T* N =M ((M)™ N).

Lemma 35. 1. [Ido]lp ={M € M? / M >} \yy?}.

[Idi]g = [Idi]g ={M € MY / M5 xy® yM}. (Note that Id; ¢ U.)

[D]g = {M € M? / M >} \y®.y2y?}.

[Natolg = {M € M? /M>EAfO.fO or MBENfO Ny@.(f9)"y? wheren > 1}
[Nat)g = {M € M®) / M PYARN AL or M >} MO Az® (FOYny (D) here
n > 1}. (Note that Naty ¢ U.)

[Nathls = {M € M? /M >4 AfO.f2 or M >3 Af2. M foyM},

o

SRS

)



7 The completeness theorem

In this section we set out the machinery and prove that completeness holds for F.
We need the following partition of the set of variables {y*/y € Vs }.

Definition 36. 1. Let L € Ly. We define U = {U € U/d(U) = L} and V' =
{al/z € Va}.
2. Let U € U. We inductively define a set of variables Vi as follows:
— If d(U) = © then:
o Vi is an infinite set of variables of degree @.
e fU#V and dU) = d(V) =@, then Vy NVy = ().
* Uyeve Vv = V2.
— If d(U) = L, then we put Vi = {y* /y? € V- }.

Lemma 37. 1. If d{U),dV) =L and UL =V~L thenU =V.

2. If d({U) = L, then Vi is an infinite subset of VL.

3. IfU#V and dU) = d(V) = L, then Vy NVy = 0.

4. UUEUL Vy = V.

5. Ify* € Vy, then y*F € V1.

6. If y*L € Vy, then y* € V.
Proof 1.If L = (n;)m, we have U = ey, ...e,, U’ and V = ey, ...e,,,, V'. Then
U L=0U",V"Lt=V"and U' = V’'. Thus U = V. 2. 3. and 4. By induction on L
and using 1. 5. Because (e;U)~% = U. 6. By definition. O

Our partition of the set V5 as above will enable us to give in the next definition

useful infinite sets which will contain type environments that will play a crucial role
in one particular type interpretation.

Definition 38. 1. Let L € Ly. We denote GL' = {(yL : U) /U € UL and y* €
Vu} and HE = gy GX. Note that G* and HY are not type environments
because they are infinite sets.

2. Let L€ Ly, M € M and U € U, we write:
— M : (HE - U) if there is a type environment I' C HE where M : (I' = U)
— M:(HEFU) if M5, N and N 2 (HE FU)

Lemma 39. 1. If I’ C H” then e;I" C H*L.

2. If I C H*L then I'"* C HE.

3. If I cHE, I c HYX and L < K then I Ty C HE,

Proof 1.and 2. By lemma 37. 3. First note that HX C HE. Let (2% : Uy NUy) €

I NIy where (2% : Uy) € It € HY and (2% : U,) € Iy ¢ HX C HF, then

d(U;) = d(Uy) = R and 2% € Vy, N Vy,. Hence, by lemma 37, U; = U, and

F1|_|F2:F1UF2CHL. O
For every L € Ly, we define the set of terms of degree L which contain some

free variable ¥ where z € V; and K > L.

Definition 40. For every L € Ly, let OF = {M € ML /2% € fv(M), x € Vy and
K = L}. It is easy to see that, for every L € Ly and x € V1, NE C OF.

Lemma 41. 1. (OL)*i = O#L,

2. If y € Vo and (My¥) € OF, then M € OF

3. IfM e O MoN and L < K = d(N), then MN € OF.

4. IfdM)=L,L=<K, MoN and N € OK then MN € OF.

The crucial interpretation I for the proof of completeness is given as follows:

Definition 42. 1. Letlg, be the Bn-interpretation defined by: for all type variables
0, Isn(a) = 0P U{M € M® / M : (H® -+ a)}.



2. Let Iz be the B-interpretation defined by: for all type variables a, Ig(a) = OP U
{MeM?®/M:(H?l a)}.

3. Let ., be the h-interpretation defined by: for all type variables a, I (a) = 09 U
{MeM?®/M:(Hl a)}.

The next crucial lemma shows that I is an interpretation and that the interpre-
tation of a type of order L contains terms of order L which are typable in these
special environments which are parts of the infinite sets of Definition 38.

Lemma 43. Let r € {On,8,h} and r' € {3, h}

1. IfI, € r-int and a € A then L.(a) is r-saturated and for all x € Vi, N2 C I,(a).

2. IfU € U and d(U) = L, then Ig,(U) = OF U{M € M* / M : (H" - U)}.

3. IfU €U and d(U) = L, then L. (U) = OF U {M € M" / M : (HE - U)}.
Proof 1. We do two cases:
Case r = (. It is easy to see that Vo € Vi, N2 C 09 C I3,(a). Now we show that
Ign(a) is Bn-saturated. Let M >3, N and N € Ig,(a).

—If N € 09 then N € M? and 3L and = € V; such that 2 € fv(N). By
theorem 4.2, fv(N) C fv(M) and d(M) = d(N), hence, M € O?

—IfNe{MeM?/M:(H?F a} then N>j N and 3" C H?, such
that N': (I" - a). Hence M >, N and since by theorem 4.2, d(M) = d(N’),
Me{MeM?®/M:(H?H+* a)}.

Case r = (. It is easy to see that Vo € V1, N2 C 09 C Ig(a). Now we show that
I5(a) is B-saturated. Let M >5 N and N € Ig(a).

—If N € 09 then N € M? and 3L and = € V; such that 2 € fv(N). By
theorem 4.2, fv(N) C fv(M) and d(M) = d(N), hence, M € O?

-~ Ne{MeM?/)M: (H?F a)} then 3" C H?, such that N : (I" - a).
By theorem 24, M : (I't™ F a). Since by theorem 4.2, fv(N) C fv(M), let
fv(N) = {zf*, ...z} and fv(M) = fv(N) U {afner o alntmy So DM =

n+1 »“n+m
T, (xﬁ_ﬁl cwhnrr ,xﬁ_’ﬁn’f s whntm) ¥n +1 <4 < n+m, let U; such that
z; € Vy,. Then I, (zX05 : Ungty oy it 2 Upgm) © H? and by C, M :

(I, (a:ﬁ_f{l t Unit, - - ,xﬁ_’ﬁn’f : Uptm) F a). Thus M : (H® F a) and since by
theorem 4.2, d(M) =d(N), M € {M € M? /| M : (H? |- a)}.

2. By induction on U.

— U = a: By definition of Ig,.
— U = w’: By definition, Ig, (w”) = M¥. Hence, OF U{M € ML / M : (HF +*
wh)} C Igy(w").
Let M € Ig,(w") where fv(M) = {217, ...z} We have M : ((zFi : whi),
wL> and M € MF. V1 < i <n,let U; the type such that lei € Vy,. Then
I'= (zF . U;), € HE. By lemma 14, M : (I' + w%). Hence M : (H' - wb).
Therefore, I(wl) C {M € ME | M : (HF F* wh)}.
We deduce Ig,(wF) = OL U{M € ML | M : (HE F* wE)}.
- U =¢V:L =4: K and d(V) = K. By IH and lemma 41, Ig,(e;V) =
Ly (V) = (OF G{M € MK /M : (HF 1 V)1 =
oLy ({M e ME ) M . (HE - V)T
o If M € M¥X and M : (HX F* V), then M >%, N and N : (I' = V) where
I' C HX. By e, lemmas 46 and 39, N*i : (e;" - e;V), Mt >%, NT* and
e;I’ C HE. Thus M+* € MY and M*: (HE -+ U).



o If M € MEF and M : (HL F* U), then M3, N and N : (I' = U) where
I' C H*. By lemmas 46, 13, and 39, M —* >5, N~ N*i A"+ V) and
-t ¢ HX. Thus by lemma 46, M = (M~ and M~% € {M € MK /
M : (HE = V)}.

Hence ({M € ME / M : (HE - V)T = {M e MV ) M : (H* +* U)} and
Ig,(U) = O U{M e ME | M : (HE +* U)}.

- U= U1 M UQZ By IH, Hﬁn(Ul M UQ) = ]Iﬁn(Ul) ﬂ]lgn(UQ) = ( {M S ML /
M (HE = U))n(OFu{M e ME ) M : (HE = Uy)}) = 0F u({M € MT
/M :(HEFUDIN{M e MY/ M 2 (HE =+ Us)}).

o If M € MM, M - (H" F* Uy) and M : (H* +* Us), then M % Ny,
MDE’I NQ, Ny <F1 [ U1> and N : <F2 H U2> where Fl,FQ C HE. By
confluence theorem 7 and subject reduction theorem 20, M’ such that
MDEWM’, M’ (It [pF Uy and M’ : (I [aF Uz). Hence by Remark 16,
M’ : <(F1|_|F2) [ b U1|_|U2> and, by lemma 39, (Fll_l_rg) [vC TNy C HE.
Thus M : (HF =+ Uy N Uy).

o If M e M" and M : (H" +* Uy NUs), then M >3 N, N : (I = Uy 1 Uy)
and ' C HY. By C, N: (' Uy) and N : (I F Us).

Hence, M : (HL -* Uy) and M : (HL =+ Uy).
We deduce that I, (U NTz) = OL U{M € ME /| M : (HE = U N U)}.

— U=V ->T:Let d(T) =2 < K =d(V). By IH, I3,(V) = OK u{M € MK /
M : (HE =+ V)} and 1g,(T) = O2 U{M € M? /| M : (H? * T)}. Note that
Lon(V = T) = Tpy(V) ~ Ty (T).

e Let M €1g,V) ~ Ig,T) and, by lemma 37, let y* € Vy such that VK, y* ¢
fv(M). Then M o y%. By remark 16, y* : ((y® : V) * V). Hence y&
(HE F* V). Thus, y% € I3, (V) and My® € 15,(T).

* If My® € O, then since y € Vs, by lemma 41, M € O9.
« If My" € {M € M® / M : (H® -* T)} then My >% N and N : (I' -
T), hence, Ay My¥ > 5 AyE.N. We have two cases:
- If y& € dom(I"), then I' = A, (y¥ : V) and by —7, \yK.N : (A
V—-T).
- If y® ¢ dom(I"), let A =T. By =4, \yE.N: (AF wE — T). By
C, since (A wf - T)C (AFV — T), we have \yE.N : (A -
V—-T).
Note that A C G. Since )\yK.MyKDZ;T’M and AyK.MyKDZn)\yK.N, by
theorem 7 and theorem 20, there is M’ such that Mrj, M’ K. N >3y,
M', M (A p-V —T). Since A [pCACH?, M : (H? -V —
T).

e Let M € OPU{M e M? /M : (H® H* V — T)} and N € I, (V) =

OK U{M e ME / M : (HX -* V)} such that M o N. Then, d(N) = K.
* If M € O9, then, by lemma 41, MN € O°.
IfME{MEM@/M (H® -* V — T)}, then
- If N € OX| then, by lemma 41, M N € O%.
- If N e {M € MK / M : (HX I—* V)} then M >3 My, N >p, Ni,
My : (It +V — T) and Ny : (I = V) where I} C H? and
I'y ¢ HX. By lemma 46, MN >3, My Ny and, by — g, M1 Ny : (I'1 M
Ib B T). By lemma 39, It 1 Iy C H?. Therefore MN : (H? +* T).
We deduce that Ig,(V —=T)=0%U{M e M® / M : (H° -*V — T)}.

3. We only do the case r = 8. By induction on U.

— U = a: By definition of I3.



— U = w’: By definition, Iz(wl) = ME. Hence, OF U{M € MY / M : (HL +
wh)} € Is(w").
Let M € Tg(w”) where fv(M) = {21, ...,zL»}. We have M : (X : W), F
why and M € M. v 1 <i < n, let U; the type such that xlh € Vy,. Then
I' = (zF . U;), € HE. By lemma 14, M : (I' - w¥). Hence M : (H" - w&).
Therefore, [(wh) C{M € M¥ | M : (HF F wh)}.
We deduce Ig(w?) = OL U{M € ME | M : (HE - wh)}.

- U =¢V:L =14 : Kand d(V) = K. By IH and lemma 41, Ig(e;V) =
(Is(V)T = (OF U{M e M /| M : (HX FV)})T =
Ot u({M e MK/ M (HX FV)}HT

o If M € MX and M : (HX + V), then M : (I' - V) where I' C HE.
By e and 39, M+ : (e;I" - e;V) and e;I" C H*. Thus M** € MF and
M+ (HE F U).

e If M €¢ ML and M : (HF F U), then M : (I' - U) where I' C HE. By
lemmas 13, and 39, M~¢ : (I'"* = V) and I'"* C H¥. Thus by lemma 46,
M = (M~)* and M~ € {M € M® / M : (HX - V)}.

Hence ({M € M¥ / M : (HE FV)HY ={M e ML /) M : (HE - U)} and
Ig(U)=0tu{M e ML ) M : H+U)}L

— U = Ui NUy: By IH, Ig(U; NUs) = Ig(Uy) N1g(U2) = (OL U{M € ME /
M:(HE U N (OFu{M e ME ) M : (HY - Up)}) = OFu ({M e M/
M:(HEFUDIN{M e ME ) M (HL - U)Y).

o If M ¢ M, M : (H* - Uy) and M : (HY F Us), then M : (I F Uy) and
M : (I & Us) where Iy, Iy C H¥. Hence by Remark 16, M : (I'y M Iy
U; MUs) and, by lemma 39, I M I C HE. Thus M : (HY - U; M Uy).

o If M € MEand M : (HL - Uy NMUs), then M : (I' = Uy NMUs) and I' C HE,
By C, M : (I' - Uy) and M : (I'  Us). Hence, M : (H* + U;) and
M : (HE F US).

We deduce that Ig(Uy NTh) = otu{Me ML ) M (HEFU MUY

~ U=V — T: Let d(T) = jK:d(V).ByIH,Hg(V):OKU{MEMK
/ M : (HE = V)} and I5(T ) =0%U{M e M? /) M : (H?F T)}. Note that
LoV = T) = Iy(V) - I(T).

e Let M €13V) ~~ I5T) and, by lemma 37, let y* € Vy such that VK, y* ¢
fv(M). Then M o y%. By remark 16, y* : ((y® : V) * V). Hence y*
(HEX V). Thus, y¥ € 15(V) and My"X € I5(T).

x If My € O, then since y € Vs, by lemma 41, M € O9.

* If MyX ¢ {M e M? / M : (H® - T)} then MyX : (I" = T). Since by
lemma 14, dom(I") = fv(MyX) and y& € fv(My¥), I = A, (v : V).
Since (y& : V') € H?, by lemma 37, V = V'. So MyX : (A, (y¥ : V) F
T) and by lemma 17 M : (A + V — T). Note that A C H?, hence
M:(H?FV —T).

elet M € OPU{M e M? / M : (H? vV — T)} and N € I, (V) =
OK U{M e ME / M : (HX I V)} such that M ¢ N. Then, d(N) = K.

* If M € O9, then, by lemma 41, MN € O°.

s M e{MeM? ) M:(H?FV —T)}, then
- If N € OX| then, by lemma 41, MN € O%.

N € (M e MK /M (HK b V) then M : (It b V —
T) and N : (It = V) where I} C H? and I, C HX. By —g,
MN : (Ih1 NIy = T). By lemma 39, I'j 11 I, C H?. Therefore
MN : (H? |- T).
We deduce that Ig(V = T) =0°U{M e M? / M : (H° -V — T)}.



Now, we use this crucial I to establish completeness of our semantics.
Theorem 44 (Completeness of ). Let U € U such that d(U) = L.

1. [Ulgy ={M € M* / M closed, M >%, N and N : (() F U)}.

2. Ug=[Ulph={MeME/M:{()FU)}.

3. [Ulgy is stable by reduction. Le., If M € [U]g, and M >}, N then N € [Ulgy.
Proof Let r € {3,h,0n}.

1. Let M € [Ulgy. Then M is a closed term and M € I, (U). Hence, by Lemma
43, M € Ot u{M € MY ) M : (HL +* U)}. Since M is closed, M ¢ OF.
Hence, M € {M € M* / M : (HF +* U) and so, Mrp, Nand N : (" U)
where I' C HZ. By Theorem 4, N is closed and, by Lemma 14.2, N : (() F U).
Conversely, take M closed such that M >3 N and N : (() - U). Let T € (-int. By
Lemma 31, N € Z(U). By Lemma 30.1, Z(U) is 8n-saturated. Hence, M € Z(U).
Thus M € [U].

2. Let M € [U]g. Then M is a closed term and M € Ig(U). Hence, by Lemma 43,
M e Otu{M e MY / M : (H* - U)}. Since M is closed, M ¢ OF. Hence,
Me{MeML ) M: (HEFU) and so, M : (I' + U) where I C HY. By
Lemma 14.2, N : (() - U).

Conversely, take M such that M : (() - U). By Lemma 14.2, M is closed. Let
T € (-int. By Lemma 31, M € Z(U). Thus M € [U]g.
It is easy to see that [U]g = [U]p.

3. Let M € [U] such that M >3, N. By 1, M is closed, M >, P and P : (() - U).
By confluence Theorem 7, there is @ such that P > 5 Q and N > 5, Q. By
subject reduction Theorem 20, @ : (() - U). By Theorem 4, N is closed and,
by 1, N € [U].

|

8 Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitution.
Moreover, expansion is a crucial part of a procedure for calculating principal typings
and helps support compositional type inference. Because the early definitions of
expansion were complicated, expansion variables (E-variables) were introduced to
simplify and mechanise expansion. The aim of this paper is to give a complete
semantics for intersection type systems with expansion variables.

The only earlier attempt (see Kamareddine, Nour, Rahli and Wells [12]) at giving
a semantics for expansion variables could only handle the AI-calculus, did not allow
a universal type, and was incomplete in the presence of more than one expansion
variable. This paper overcomes these difficulties and gives a complete semantics for
an intersection type system with an arbitrary (possibly infinite) number of expansion
variables using a calculus indexed with finite sequences of natural numbers.
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A

Proofs of Section 2

The next lemma is needed in the proofs.

Lemma 45. Let M, N, Ny,..., N, € M.

1. If M o N and M’ is a subterm of M then M' o N.

2. If d(M) = L and X occurs in M, then K = L.

3. Let X = {M}U{N;/1 < i <n}. IfVl <i<n,dN;) = L; and oX, then
M[(zF == N;),] € M and d(M[(zF = N;),,]) = M)

4. Let X = {M, N}U{N/l <i<n}. IfVl <i<n,dN;) = L; and oX then
M{(k = Np)aJo Nl(zk = N2

Proof

1. By induction on M.

— Case M = z! is trivial.

— Case M = Azl P where VK € Ly,z% ¢ fv(N). If M’ = M then nothing
to prove. Else M’ is a subterm of P. If we prove that P ¢ N then we can
use IH to get M’ ¢ N. Hence, now we prove P ¢ N. Let y € V such that
y¥ € fv(P) and y*' € fv(N). Since X" ¢ fv(N), then = # y and v # 27
Hence y® € fv(M) and since M o N then K = K'. Hence, Po N.

— Case M = M Ms. Let i € {1,2}. First we prove that M; o N: let = € V,
such that z¥ € fv(M;) and z¥ € fv(N), then 2 € fv(M) and so L = K.
Now, if M’ = M then nothing to prove. Else

e Either M’ is a subterm of M; and so by IH, since M; ¢ N, M’ o N.
e Or M’ is a subterm of My and so by IH, since My o N, M’ o N.
2. By induction on M.

— If M = 2% then d(M) = K and since = is an order relation, K = K.

— If M = My M5 then d(M) = d(M;). Let L' = d(Ms) so L' = L. By IH, if
2¥ occurs in My then K = L and if 2% occurs in My then K > L’. Since
2% occurs in M, K > L.

— If M = Xz¥* .My then Ly = d(M;) = d(AxF1.My) = L. If 2% occurs in M,
then X = 21 or ¥ occurs in M;. By IH, if X occurs in M then K > L.

3. By induction on M.

n, then M{[(z%i —N)] NieM

—IfM =y¥ thenify —xL Jforl1 <i < ;
= L; = K. Else, M[( =Ny =K €
).

and d(M[(a% := N;),]) = A(V;)
M and d(M[(z 1L i= Ni)n]) = d(y

— If M = M;Ms then d(M) = d(M;) and M[(zX" := N;),] = My[(zF =
Ni)n]Ma[(zF := N;),,]. Since VN € X, M o N, by 1., VN € X, M; o N and
My o N. Since My, My € M, by TH, My[(zF := N;),], Ma[(zF := N;),) €
M, d(My[(zF = Ny),]) = d(M;) and d(My[(zL == Ny),]) = d(Ms).
Let 2% € fv(My[(zF" := N;),]) and 25" € tv(My[(aF = Ny),)). If o€
fV(Ml) then by 1., o({M1, Mo }U{N;/1 <i<n})hence K = K'.Let 1 <: <
n. Ifx € tv(N;) then by 1 , o({Ma} U{N;/1 <i<n}) hence K =K' So
M[(zl == N;)n) o My[(zF := N;),,]. Furthermore, d(Ms[(zX" :== N;),, ])
d(Ma) = d(My) = d(M;[(zL* := N;),]) hence Ml[(xff = N) ]Mg[( Li =
Ni)p] € M and d(Mi[(z) i= Ni)p)Mo[(zf := Ny)p]) = d(Mq[(z)' =
Ni)a)) = d(My) = d(M).

— If M = \yK.M; where K = d(M;) and V1 < i < n, y 7& x; and VK’ € L,

K" & fy(N;) then M|[(zF N) ] = MK My [(zF Ni)n ] Since M; €
M then by 1. and IH Ml[( Li .= N;),] € M and d(Ml[(x = Ny)n]) =
d(My). So Ay .M [(zF Nl)n] € M and Ay .My [(zF = Ny),)) =

d(Mi[(f" = Ni)a]) = d(Ml) = d(M).



4. By 3., M[( Lii= Ny)o), N[(zF := Ni)n] € M. Let o € tv(M[(zF =
andx fV(N[(f -_N) ]). So & € fv(M) U fv(Ny) U va(Nn) and

Ni)n])

K e fv(N)Ufv(N1) U ... U fv(N,). Since oX, then K = L. Hence, M](zFi =

)] N[(z{* := Ni)a]
O

Proof [Of Theorem 4]

1. By induction on M >; N, we only do the induction step:

— M = Xzl Nzt >, N and 2@ ¢ fv(N). By definition N € M, fv(M) =

fv(NzP) \ {zF} = fv(N) and d(M) = d(Nzt) = d(N).

— M = \aE M, >, Axb Ny = N and M; >, Ny. By TH, Ny € M, fv(Ny) =

fv(M7) and d(M;1) = d(Ny). By defintion d(M;) < L, so d(IN1) = L hence
N € M. By defintion d(M) = d(M;) = d(N1) = d(N) and fv(N) =
fv(Ny) \ {2l} = fv(My) \ {2L} = fv(M).

M = MlMQDanMQ =N, MyoMs, NyoMsy and M1|>nN1. By IH, N, € M,
fv(N1) = fv(M1) and d(M;) = d(N1). Since d(Ny) = d(M;) = d(M2),
N € M. By defintion, fv(N) = fv(Ny)Utv(Ms) = fv(M;)Ufv(Mz) = fv(M)
and d(M) = d(M;) = d(Ny) = d(N).

M = MlMQDanNQ = N, MyoMs, M10No and M2|>nN2. By IH, Ny € M,
fv(N2) = tv(Mz) and d(Mz) = d(Nz). Since d(M;) < d(Mz) = d(Na),
N € M. By defintion, fv(N) = fv(M;)Utv(Ny) = fv(M;)Utv(Mz) = fv(M)
and d(M) = d(M;) = d(N).

2. Case r = (3. By induction on M >% N, we only do the induction step:

— M = (\eL.My)My 5 My[al = M) = N and d(Ms) = L. (AaL. M) o M,

by definition, so M7 ¢ My by lemma 45.1 and N € M by lemma 45.3. If
zl € fv(My) then fv(N) = (fv(M) \ {zL}) U fv(Ms) = fv(M). If 2L ¢
fv(My) then fv(N) = fv(My) = fv(My) \ {zF} C fv(M). By definition,
d(M) = d(M\z*.M;) = d(M;) and by lemma 45, d(N) = d(M;).

M = Xzl My g AzE Ny = N and M; >3 Nq. By IH, N; € M, fv(N;) C
fv(M,) and d(M;) = d(Ny). By defintion d(M;) < L, so d(N1) < L hence
N € M. By defintion d(M) = d(M;) = d(N1) = d(N) and fv(N) =
F(N1)\ o} € fo(M)) \ {b } = v (M),

M = M1M2l>5N1M2 = N, M1<>M2, NioMs5 and M1l>5N1. By IH, Ny € M,
fv(N1) C tv(My) and d(M;) = d(Ny). Since d(Ny) = d(M;) = d(Mz),
N € M. By defintion, fv(N) = fv(Ny)Ufv(Mz) C fv(M;)Utv(Mz) = fv(M)
M = M1M2l>5M1N2 = N, M1<>M2, Mi0N5 and M2l>,3N2. By IH, Ny € M,
fV(NQ) Q fV(Mg) and d(Mg) = d(NQ) Since d(Ml) j d(Mg) = d(Ng),
N € M. By defintion, fv(N) = fv(M;)Utv(Ngy) C fv(M;)Ufv(Mz) = fv(M)
and d(M) = d(M;) = d(N).

Case r = fn, by the 8 and 7 cases. Case r = h, by the 3 case.

O

The next lemma is again needed in the proofs.

Lemma 46. Let M, N, N1, Na,..., Ny € M, »'€ {5, By, gy, 5, >0, D5, b, BE
(>3, By gy Bay 5, B0, B, 4}, and 4,p > 0. We have:

G oo =

M+ e M and X occurs in M iff K =i :: L and " occurs in M.
I MoN then M+io N+i.
d(M*) =i = d(M) and (M)~ = M.
L; i i i L i
(M[(z;? = N;j))** = M+ [(xj = N;_ )p)-

J

If M » N, then M+ip N+,



6. If dM) =1 : L, then:
(a) M = P** for some P € M, dM~%) =L and (M~%)*" = M.
(b) If V1 < j <p,d(N;) =1i: Kj, then
(M2 = Nj)p) ™" = M~ [(2]7 = N, ).
(c) If M » N then M~ » N—°.
7. If Mw» N, P»Q and M o P then N ¢ Q
8. If M » NT°, then there is P € M such that M = Pt and P » N.
9. If M™* » N, then there is P € M such that N = Pt* and M » P.
10. If M » N and d(P) = L, then M[z" := P] » N[zl := P].
11. If N »' P and d(N) = L, then M[z" := N] »’ M[z" := P].
12. If M »' M’', Pw»' P’ and d(P) = L, then Mzl := P] »' M'[z* := P'].

Proof

1. We only prove M+* € M, by induction on M:

— If M = oL then M+ = gL € M.

— If M = Ax% .M then M = \a# L M. By TH, M, € M, so \a™* . M €
M.

— If M = My Ms then M+ = M;""M,*. By TH, M, M € M. If y¥1 ¢
fv(M;F) and y*2 € fv(My?), then Ky =i =2 K/, Ko =i :: Kb, 251 € fv(M))
and 2 € fv(My). Thus K| = K}, so K; = Ky. Hence M; o M and so,
M*ie M

2. Easy, using 1.
3. By induction on M.
4. By induction on M:

— Let M = y¥. IfV1<j<p,y ;éxjtheny [( 7= N;),] = y¥. Hence
<yK[(a:ff = Nl =y =y G = NF,) I3 < <y =
J then y [( 7= Nj),] = Nj. Hence (yK[(xJL7 = N;),) T = NJ-H =

yl K2l = NjJrl);D]'

— Let M = \y%. M. M[(xJLJ = N;),| = M. Ml[( L= Nj),] where V1

§<py™ & Ny By IH, (My[(z)’ = Nj),))* M“[( F =N,
Hence, (M[(z;” = N;),)) " = Ay'sK (My[(2}7 := Ny =
Ay M (2 = NF,) = Qg M) () = N,

— Let M = My Ms. M[(a]" := Nyl = Mal(z; D= Ny IMe[(z) = Ny,
By TH, (My[(z}” = Nj)p))*™* = M{[(af L Ni),) and (Ma|(z) =
Nj)p) M“[( J = N,

Hence <M[<x§j = NJ»)p]w‘ <M1[<xf-f: N T (Ma[(2]7 = Nj)))* =
M [( = NI (@57 1= N, ) = MF (™ = N,

IA

5. — Let » be Dg. By induction on M l>5 N.
e Let M = (/\Z‘ Ml)Mg \>5 Ml[ = MQ] N where d(Mg) = L, then
M= (\x™E MIJ”)MQ+z >3 M“[ = MY = (My[zh := Mo]) ™.

o Let M = Azt Mgzt N1 N where M1 >gNi. By IH, M“ >3 N,
hence M+% = Aa#F M >3 AL N = N1
o Let M = MM, >g N1M2 =N Where My o My, Nio My and M, >g Ni.
By IH, M, >3 N, hence M** = MM >5 NV M, = Nt
o Let M = MM, >3 MyNs; = N where M1<>M2, M7 o Ny and Mo >3 Ns.
By TH, M >3 N, hence M+ = MP' M >5 N My = N+
— Let » be 3. By induction on B>7. using >>g.
— Let » be >,. We only do the basic case. The inductive cases are as for > 3.
Let M = Azl .Nz¥>, N where 2% ¢ fv(N). Then M+¢ = \g®: L Ntigiby
N



— Let » be i>7. By induction on >} using >,.

n

— Let » be >g,, >3, , Bp or . By the previous items.
6. (a) By induction on M:

Let M = y*L. Let N =y* € M, thenN“—M.

Let M = \y®.Mj. Since d(M;) = d(M) =i :: L, by TH, M; = P*? for
some P € M, d(M;") = L and (M; ")t = Ml. Moreover, K =i :: L
hence K = i == L :: K’ for some K'. Let Q = A\yX*X .P. Since P =
(Pt~ = M{*, d(P) = L. Since L < L :: K', Q € M and Q™" = M
d(M~7) = d\y= K P) = d(P) = L and (M~%)*i = pti = M.,

Let M = My Ms. Then d(M) = d(M;) < d(Ma), so d(Mg) =i¢uLaL
for some L'. By IH M; = P} for some P, € M, d(M; ") = L and
(M1 Ot = M. Agam by TH, My = P for some P € /\/l d(My") =
L L' and (M; ") = My. If y¥1 € fv(P)) and y¥2 € fv(P%), then
K| =i Ky, Ky =i Ky, 251 € tv(M;) and 52 € fv(My). Thus
K| = K3, s0 K1 = Ky and Py o P,. Hence M = P1+1P+1 (P Py)*e.
Let Q= PPy e M. d(P) = d(M{ ) =L < L:: L' = d(M;") = d(P»),
soQEMand QT =M. d(M~) =d(Q) =d(P,) = L and (M%) =
Q=M

(b) By induction on M:

Let M =yl If V1 < j < p,yL # xK then yi::L[( K= N, =
i in i K — —1
y*l. Hence (y™L[(z777 == Nj),))~" = y* [( = N; )p)- If

31 < j < pyk —j x; I then i (] v Nj)j] N;. Hence
(L@ = Ny~ = Ny =yt (a] KN )1

Let M = \y™ .My M[(«}™ = N;),] = )\y ~M1[( = N;),] where
V1< j <p,y" ¢ N, By IH, (M[(x]" := Ny)yl) M [ =
N{i)p]. Since d(i :: L) X K, K =1q: L K’ for some K'.

Hence, (M[(x}" = Nj),))~™" = M=K (M [ = N;),))~ =
My BE M (= N;i) ]=( My) = (2] = N7, ).

Let M = My M M(x Ni)p ] My [(25 = >]M2[< =
Nj),). By IH, ( 1[<; = Nl — = M) = sz>,,] and
(Ma[(a™ == Ny), 1)~ = M, W = N;"),]. Hence

(M](z} K N)pl) ™ <M1[< N>p) (M](2" = Ny, )~
= M [(2;7 = Ny, IMy (2] = N0l = M~i{(a) 7 = Nj7),).

=N

Let » be >. By fnduction on’M >3 K.

o Let M = (/\33‘ Ml)Mg >3 Ml[ K
Since i : L = d(M) = d(Ml) K =
R MM o M T = 0] = (A o M)

o Let M = XeF. M, >3 Az N, = N where M; >3 Ni. Since ¢ :
L—d(M)—d(Ml) <K, K =i: L : K for some K'. By IH,
M{ "> Ny ', hence M~ ’—)\xL K M DgAxL KNl =N""

° Let M = MM, >g NiMy = N Where M o MQ, Ny ¢ My and
My > Ny Since i i L = d(M) = d(Mh), by IH, M >5N; ", hence
M~ = M{'My >3 N;"My"=N—"

o Let M = M1M2l>5M1N2 N where M1<>M2, M1<>N2 and M2|>5
Ny. Since i :: L = d(M) = d(My) = d(Ma), by IH, M5" >3 Ny,
hence M=% = M; "My >3 Ny My = N—°.

Let » be 7. By inductlon on [>7. using >g3.

Let » be r>,,. We only do the basic case. The inductive cases are as for
>g. Let M = \ef . NzK >, N where 2% ¢ fv(N). Since i = L =
d(M) = d(N) = K, K =i = L :: K’ for some K'.Then M~% =
)\xL::K'.NfixL::K' >y Nt

] N where d(M>) = K.
L K. ThenM t=



7.

— Let » be i>7. By induction on >} using [>,.
— Let » be >g,, >, >h or >}.. By the previous items.
Let X € fv(N) C fv(M) and X¥ € fv(Q) C fv(P), since M o P, L = K. Hence
NoQ.
U

Next we give a lemma that will be used in the rest of the article.

Lemma 47. 1. If My’ := 2| >3 N then M >3 N’ where N = N'[yr := zL].

2.
3.

4.

If M[y" := 2] is B-normalising then M is 3-normalising.

Let k> 1. If folxé’“ is B-normalising, then M is B3-normalising.

Let k > 1,1 < i < k, 1l >0, xiLiNl...Nl be in normal form and M be
closed. If Ma:lLlaré’“ DE xiLiNl...Nl, then for some m > i andn <1, M I>g
/\lel..../\a:Tan.a:iL'iMl...Mn where n+k=m+1, M; ~g N; for every1 <j<n
and Npyj ~g xfn’r;’ for every 1 < j < k —m.

Proof

1.
2.
3.

4.

By induction on M[yr = 2L >45 N.
Immediate by 1.
By induction on k£ > 1. We only prove the basic case. The proof is by cases.

o If Mal" > M’ 21" where M’z is in B-normal form and M >% M’ then
M’ is in B-normal form and M is B-normalising.

o If Mzl >% Ayt .N) 2l > N[yl o= 2] 5 P where P is in -normal
form and M >} Ay“t.N then by 2, N has a $-normal form and so, Ay“*.N
has a B-normal form. Hence, M has a -normal form.

By 3, M is -normalising and, since M is closed, its S-normal form is
/\lel..../\a:,an.arﬁ”Ml...Mn forn,m>0and 1 <p<m.

Since by theorem 7, 2L Ny...N; ~g ()\lel....)\xfnm.xﬁ”Ml...Mn)lel...xé"' then
m < k, xFt Ni..N; ~p xﬁ"Manx,Lﬁr*llxﬁ’“ Hence, n < [, i = p < m,
l=n+k—m,for every 1 < j <mn, Mj ~g N; and for every 1 < j <k —m,
Nitj g 08

m-+j *
]

A.1 Confluence of l>z;, >7 and > 5y

In this section we establish the confluence of 7, >} and >3, using the standard
parallel reduction method for > and >3, -

Definition 48. Let r € {3, 8n}. We define on M the binary relation 25 by:

M2 M

If M 25 M7 then A M 25 Xzl M.

If M2 M, N2 N and Mo N then MN 25 M'N’

IfM 25 M, N2 N', d(N) =L and M o N, then (A\z™.M)N 25 M'[z" .= N’
If M "2 M, VL € Ly, " & fv(M) and L = d(M) then Az™.Ma" "3 M’

We denote the transitive closure of 25 by £5%. When M 25 N (resp. M 25 N),

we

can also write N 22 M (resp. N &~ M). If R,R’ € {ﬂ,ﬁé,f)—r,«pi}, we write

M RMyR' Ms instead of MyRMy and MaR' Ms.

Lemma 49. Let M € M.

1.

If M >, M', then M 25 M’.



2. If M 25 M, then M' € M, M >* M, fv(M') C fv(M) and d(M) = d(M’).
8. If M2 M, N2 N and M o N then M’ o N’
Proof 1. By induction on the derivation M >, M’. 2. By induction on the

derivation of M 5 M’ using theorem 4 and lemma 46. 3. Let z* € fv(M’) and
K ¢ fv(N'). By 2., fv(M') C fv(M) and fv(N') C fv(N). Hence, since M o N,
L=K,so M oN'. O

Lemma 50. Let M,N € M, Mo N and N 25 N'. We have:

1. Mzt = N] LN Mzt = N'].
2. If M 25 M’ and d(N) = L, then M[z" := N] 25 M'[z" := N'].
Proof 1. By induction on M:

— Let M = yX. If y¥ = 2L, then M[z* N] N, M|zt N’] N’ and by
hypothesis, N 25 N'. If y& # zF, then M[ N] = M, M[ =N]=M
and by definition, M 25 M.

— Let M = \y®.M;. M[z" := N] = \y® .My [z" := N] and since M; ¢ N, by IH,
M [z" .= N] 25 My [z := N'] and so A\y® .M [z? := N] 25 Ay M [22 = N']

— Let M = My M. Mzl := N] = My[z" := N]M;[zL := N] and since M; ¢ N
and My o N, by IH, Mi[z" := N] 2 Mi[2" := N'| and M[z" = N]
Ms[z® = N’]. By lemma 45.4, M;[zt = N]o Mylzl := NJ], so My[zF =
N]Ms[zt .= N| 25 My[zl .= N'|My[z? = N'].

2. By induction on M 25 M.

— If M = M’, then 1..

— If B M 25 My M’ where M 25 M, then by IH, M(z" N] 5 M'[zt =
N'). Hence (\y .M)[z" := N] = \y® . M[z" .= N] & /\y .M'[x = N'] =
Ay .Mzl .= N'] where y¥ & fv(N') C fv(N).

—If PQ 25 P'Q where P25 P, Q 5 @' and P o Q, then by IH, Pzt =

N] 2 P’z := N'] and Q[ = N] 25 Q'[z" := N']. By lemma 45.4, P[z" :=
N]oQ[z" := NJ, so P[ = N|Q[zF = N]ﬂP’[mL = N'|Q'[zL := N'].

- (WEP)Q B P [ Q'] where P 5 P', Q 25 @', PoQ and d(Q) = K,
then by IH, Pzt := N] LN Pzt .= N'], Q[zF := N] LiN Q'[xL := N’]. More-

over, (\yE.P)Q)[z := N] = (\WE.P)[zl := N|Q[zF := N] = \yK.Plal =
N]Q[zY := N] where y% & fv(N') C fv(N). By lemma 45.4, Plzl := N]o
Q[zY = NJ] and by lemma 45.3 d(Q) = d(Q[z¥ := NJ]) so \yK.P[zt =
NQ[z" := N] % P'lz" := N'|[y" := Q'[¢+" = N']| = P'[y* = Q’][xL = N].

— If \yK MyE 2 M where M "2 M', K = d(M) and VK € Ly, yX & tv(M
then by TH M[zl := N] = 2y Mzl := N’]. Moreover, (\yX.My®)[zF = N]
MK Mzl == NJyX[zF .= N] = K. Mzl := N]yX where VK € Ly,y*
fv(N’) C fv(N). Since by lemma 45.3 d(M) = d(M[zX := N]), A\y®.M[zL :
N)yX 5y M'[zt = N

||7<R||‘-’

O

Lemma 51. 1. If2X 25 N, then N = 2.
2. If el . P& P50 N then one of the following holds:
— N = \eL P’ where P3P
- P= P’xL where YL € Ly, 2" & tv(P'), L = d(P') and P' "2 N.
3. If Azl P 28 N then N = X\aL.P’ where P 25 P'.
4. If PQ 25 N, then one of the following holds:



~-N=PQ,PZP,Q%Q and P Q.
—P=Xl P N=P'lzl:=Q, PP P", Q™ Q, P'oQ and d(Q) = L.
Proof 1. By induction on the derivation = 5N,
2. By induction on the derivation Az”.P 2o N.
3. By induction on the derivation \z*.P 28 N.
4. By induction on the derivation PQ 25 N. U

Lemma 52. Let M, My, My € M.

1. If My 22 M 25 My, then there is M € M such that My 25 M’ 2= M.
2. If Mo £ M 2% My, then there is M € M such that My 25 M’ 22 M.
Proof 1. By induction on M:

— Let r = pn:

o If M = 2", by lemma 51, M; = My = 2*. Take M’ = 2*.

o If NuP, "2 NP2 Ny P, where No 22 N2 Ny, P, "2 P2 P, and NoP
then, by IH, 3N’, P’ such that Ny “%' N’ 2 Ny and P, "2 P/ "2 p,. By
lemma 49.3, N7 o P, and N» o P, hence NoPy 22 N'P' "2 N, Py

o If M2l .P)Q1 2 \aE.P)Q ™3 Pyl := Qs] where Azl P "X Mal Py,
PPy Q"2 Q" Q,, d(Q) = L, (MaxL.P)oQ and P o Q then, by
lemma 51, P 2 P;. By IH, 3P/, such that P, “2 P’ "2’ P, and @, "%
Q' ren Q2. By lemma 49.2, d(@Q1) = d(Q2) = d(Q) = L. By lemma 49.3,
Py o Q. Hence, (\z".Py)Q, Py Pzt = Q).

Moreover, since P, °2 P', Q2 "2 @', d(Q2) = L and by lemma 49.3, P30 Q>,
then, by lemma 50.2, Py[zl := Qo] "2 P'[2 := Q).

o If Pi[zl = Q1] "2 (\al.P)Q ™2 Py[ak := Qu] where P, %22 P "% p,,
QL2 Q"™ Q,, d(Q) = L and P ¢ @, then, by IH, 3P, Q" where P; ey
P2 pyand Q1 %2 Q' "2 Qy. By lemma 49.2, d(Q1) = d(Qs) = d(Q) =
L. By lemma 49.3, P; ¢ Q1 and P, ¢ Q2. Hence, by lemma 50.2, P; [zl :=
Q1] ™% Pzt = Q"2 Pyfat = Q).

o If \el Ny 22 Aal N "2 A2zl Ny where N, 2" N 72 Ny, by IH, there is N
such that No "2 N’ %2 Ny. Hence, Az .No "2 AxL N’ "2 \al . Ny.

o If My "2 ol Pal 2 M, where VL € Ly, 2F & fv(P), L = d(P) and
My "2 P %20 My, then, by IH, there is M’ such that My "2 M’ 2% M.

o If M, 8 \gL pgl 7% Mzl P’ where P Py M, Pzt P22 P and VI €
Ly, z" & fv(P) and L = d(P). By lemma 51 there are two cases:

x P! = Pzl and P "2 P". By IH, there is M’ such that P" "2 M 2
M;. By lemma 49.2, VL € Ly,2l ¢ fv(P") and L = d(P"), hence,
Aeb P = At Pt T M M.

« P =MEQ, Q™ Q,Qozl and P = Q'[y" := 2%]. So we have
My 22 2l (OyE.Q)aE 2 Aa Q' [y" = 2] where My "2 Ayl.Q =
Ml .Qyl = z¥] since VL € Ly, zL ¢ fv(P).

By lemma 50.2, Ax.Q[y* = 2] 2y Aol .Q'[y" := x]. Hence by IH,
there is M’ such that My 2 M 27 Xl .Q'[y~ = 2L).
— Let r =

o If M = 2%, by lemma 51, M; = My = 2*. Take M’ = z*.

o If NoP, 22 NP 28 N P, where Ny &2 N 22 Ny, P, 22 P28 Pl and N o P,
then, by IH, 3N’, P’ such that No 23 N’ 22 N, and P, 22 P 22 P,. By
lemma 49.3, Ny o P; and Ny o Py. Hence, NoPy 22 N'P' 22 N, P,.



If M2l P)Q1 & (AL .P)Q 22 Pyl := Q,] where AzE. P 28 Xzl P, P23
Py, Q1 22 Q% Q,, d(Q) =L, PoQ and (A\zl.P) o Q, then, by lemma 51,
P2 p. By IH, 3P, Q such that P, 22 P' 22 P, and Q1 22 Q' 22 Q. By
lemma 49.2, d(Q1) = d(Q2) = d(Q) = L. By lemma 49.3, P; ¢ Q). Hence,
(L P)QL 2 Pt = Q).

Moreover, since P, 23 P, Q- o3 @', d(Q2) = L and by lemma 49.3, P,¢Q>.,
then, by lemma 50.2, Py[z% := Qo] 22 Pz := Q).

If Pyl = Q1] & (k. P)Q 2B Py[ak := Q,] where P, 2 P22 Py, @, &2
Q%5 Q., d(Q) = L and P ¢ @ then by TH, 3P’ Q" where P; 2 prop,
and Q1 22 @ 22 Q,. By lemma 49.2, d(Q1) = d(Q2) = d(Q) = L. By
lemma 49.3, P; ¢ Q1 and P; ¢ Q2. Hence, by lemma 50.2, P, [a:L = Q1] il
Pzl = Q] e Pzt = Q).

If Azt N, 22 \gl. N 28 Mzl N, where Ny 2 N2 N1, by TH, there is N’
such that No 22 N’ 22 N;. Hence, Azl Ny 22 AL N’ 22 Aol N.

2. First show by induction on M 2y My (and using 1) that if My VA e My,
then there is M’ such that M, Ly M. Then use this to show 2 by induction
on M 2% Ms. O

Proof

[Of Theorem 7]

1. For r € {8,0n}, by lemma 52.2, 2 is confluent. by lemma 49.1 and 49.2,
M 2% N iff M >* N. Then >* is confluent.
For r = h, since if M >* My and M > My, My = My, we take M’ = M.

2. If) is by definition of ~,.. Only if) is by induction on M; ~, M>s using 1.

O

B Proofs of section 3

Proof

[Of lemma 12]

1. By definition.
2. By induction on U.

3. (a)
(b)
()

If U =a (d(U) = @), nothing to prove.
IfU=V —T (d(U) = ©), nothing to prove.
If U = w’, nothing to prove.
U =U,NU; (AU) =d(Uy) =d(Usz) = L), by IH we have four cases:
o If Uy = Uy = wk then U = wL.
o If U; = wr andngeLl_If:lTiwherekZ1andV1§i§k,Ti€T
then U = U, (since w’ is a neutral).
o If Uy = wh andU1zeLI_IleTiwherek21andV1§i§k,Ti€T
then U = U; (since w’ is a neutral).
e IfU; =erM_ T, and Uz = e, I_Ifigﬂﬂ; where p,g > 1,V1 <i < pq,
T; € T then U = ey, I_If;rlqﬂ.
IfU=e€,V (L=dU)=ny :d(V) =n; :: K), by IH we have two cases:
s fV=uwK U= emwK = wk.
e If V =exM_ | T, where p > 1 and V1 < i < p, T; € T then U =
er, MP_, T; where p > 1 and V1 <i<p, T; € T.
By induction on U; C Us.
By induction on U; C Us.
By induction on K. We do the induction step. Let U; = e;U. By induction
on e;U C U, we obtain Us = ¢;U’ and U C U".



(d) same proof as in the previous item.
(e) By induction on Uy C Us:
— By 7;ef, U, = Us.
M_ex (Ui — T;) EU UC U, Kk ok
—If T exU, = T)ET) .IfU = w™ then by (b), Uz = w™.
IfU = I_IgzleK(UJ’» — TJ') where ¢ > 1 and V1 < j < ¢, 31 <7 < p such
that UJ'» CU;and T; C Tj( then by IH, Uy = w¥ or Uy = M _,ex (U} —
1)) where r > 1 and V1 < k < r, 31 < j < ¢ such that U}/ C Uj'. and
TJ( C T}'. Hence, by tr, V1 < k <r, 31 <i < p such that U}/ C U; and
T, C TV
— By Mg, Uy = wf or Uy = I‘I?ZleK(UJf — TJ’) where 1 < ¢ < p and
V1 < j <gq, 31 < < p such that UizUJ'- andTizTJf.
— Case M is by IH.
— Case — is trivial.
I M_er (Ui — T;) C Us
M_jex (Ui — T;) C e;Us
so e;Us = wX or Uy = I_IgzleL(UJ’- — Tj) so e;Us = I‘I?ZleK(UJ{ — T7)
where ¢ > 1 and V1 < j < ¢, 91 < ¢ < p such that UJ'- C U; and T; ET;.
L

where K =i :: L then by IH, Us = w! and

4. By Mg and since w” is a neutral.
5. By induction on U C Uy N U3.

— Let U{I‘IUéEU{I‘IUé'Byref’ Uj T Uy and U C U3,

UEU” UNEUIHUI

TEUINTL L2 By IH, U"” = U/ N Uy such that Uy C U]
and Uy C Uj. Again by TH, U = U; MU, such that Uy C Uy and Uy C UY.
So by tr, Uy C U] and Us C US.

— Let O AUET UL By ref, U{ C U and Uj C Uj. Moreover
d(U) = d(U] N UL) = d(U]) then by Mg, U} NU C UL
B IfUlgU{ & U, C U,
U, nUy C U{ I Ué
WEV & ThET
— VST CV, o then U] = U) = Vo — T and U = U; MUs such that
U =U; = ‘{1 — Tl and we are done.
vCcuinu.
— If U T 67:[}{ I_Ieiné then by TH U = U; M Uy such that U; C U{ and
Us T US. So, ;U = e;Uy Me;Us and by C,, e;Up C e;U; and e;Us C e;Us.
6. By induction on I' C '] M I.
— Let F{I‘IFQ’EF{I_IFQ"Byref’ INCIyand I} C T3
rcr” I"ernr
— Let FEL L 2 By IH, I'" = I'// N I} such that I C I
and Iy C Ij. Again by TH, I = '} 11 I, such that Iy} C I and I, C I
So by tr, I C I and I, C T3,
Ui C Uy
— Let where I, (y™ : Up) = I'{ M I5.
L (ym:Uh) C L (y s Us) (" : o) =iN T3
o If Il =17, (y™ : Uj) and Iy = Iy, (y™ : UY) such that Uy = U, M1 UY,
then by 5, Uy = Uj M Uy such that U] E U) and Uy C UJ. Hence
r=1ry/nry and I, (y" : Uy) = It N I3 where I1 = IV, (y" : Uj) and
Iy =14, (y" : U{) such that I3 C I and I C I by C..
o If y" ¢ dom(IY) then I' = I'| M Iy where Iy, (y"™ : Uz) = I'5. Hence,
I, (y" :Uy) = I'1NIy where Iy =T, (y™:Uy). Byref and T, I'f C I
and I, C I7.
o If y™ ¢ dom([}) then similar to the above case.

— Let

there is nothing to prove.




Proof [Of lemma 13] 1. First show by induction on the derivation I" C I that if
I'C I and I, (zF : U) is an environment, then I, (z% : U) C I, (z% : U). Then
use tr.

2. Only if) By induction on the derivation I' C I". If) By induction on n using 1.
3. Only if) By induction on the derivation (I" - U) C (I = U’). If) By Cyy.

4. Let tv(M) = {zf',... 2k} and I' = (¥ : U;),. By definition, envy, =
(zl+,whi),,. Hence, by lemma 12.4 and 2, I" C env;.

5. Let 2l1 € dom(I'"%) and 2z € dom(A~K), then zXL1 € dom(I") and
xK#b2 € dom(A), hence K :: Ly = K :: Ly and so Ly = Lo.

6. Let d(U) =L =K :: K'. By lemma 12:

— If U = w” then by lemma 12.3b, U’ = w” and by ref, UK = & C ¥ =
UK.

—IfU=e, ™ _; T, where p > 1 and V1 < i < p, T; € T then by lemma 12.3c,
U'=erVand_,T; T V. Hence, by C., U K =exM_ T) C eV =U""X.

TLetdI)=L=K: K'.Let I' = (le‘ :Ui)n, so by lemma 13.2, I'" = (a:ZL‘ U
and V1 < i <n, U; CU/. Since d(I") = K,V1 <i<n,d(U;) =L, =d(U]) = K
sod(U)) =d(U)) =K = K'.By 1.,V1<i<n, U7X C U'7" and by lemma 13.2,
FfK EplfK. O
Proof [Of theorem 15]
_ — o — d(+@
1. If 0 (@0 T then d(T') = @ = d(29).
- If Let fv(M) = {zF,... 2L}, so env¥, = (2l :
o oy e O = { }, 50 envsy = (sl

wh),, and by lemma 45, V1 < i < n, L; = d(M).

M:(F,(mL:U)I—T> 7

: b = .
U Sor o o=y then by I (1 (@ U)) = d(T) = d(M). Let
I'=(xF :Up)p,s0V1 <i <n,d(U;) = d(T) =d(U — T) and d(A\z. M) =
dM)=d(T)=4d(U — T).
3 IfM:(FI—T> rl ¢ dom(I)
Al M AT+ wl = T)

(zl - Uy, so V1 < i < n,d(U;) = d(T) = d(w” — T) and d(Az". M) =
d(M) =d(T) = d(w* — T).
M1<F1|_U—>T> M2<F2|_U> F1<>F2

then by IH, d(I") = d(T) = d(M). Let I" =

- If M, (AT then by IH, d(I7) =
dU—-1T) = d(Ml) and d(I3) = d(U) = d(My). Let I} = ( Ui)n, (y5i
Vi) and T = (22 - U, (250 W), so N Ty = (2 - U; 1 U’)n,(yf“ :
Vi), (250 W), and V1 < i < n, d(U; NUY) = d(U;) = d(U — T) = d(T),

V1<i<m,d(V;) =dlU - T)=d(T) and V1 < i < r,d(W;) = d(U) =
d(T'). Moreover d(M; M) = d(M;) =d(U — T) = d(T).
M (' TUy) M :(I"'+Us) _
- If MO A then by TH, d(I") = d(U;) = d(M) and
d(I") = d(Us) =d(M), so d(I") = d(U; NUsz) = d(U;) = d(M).

—If then by TH, d(I") = d(U) = d(M). Let I' = (z

M (I'+0)
Mk . <€kF - ekU>
Uj)n so epl’ = (x?”Lj : exUj)n and since V1 < j < n,d(U;) > d(U) then

L;
J

V'S j < nyd(ely) = k= d(U;) = k = d(U) = d(exU) = k = d(M) =
(Y.
MR APEU)EITEUD b TH, A(T) = d(U) = d(M).

M :(I"FU)
Let I' = (z& : Uy)p, so V1 < i < n,d(U;) = d(U). By lemma 13.2, I =



2.

(xf : Uy and V1 < i < n, U; C U/ so by lemma 12.3a, d(U;) = d(U}).
By lemma 13.3, U C U’ so by lemma 12.3a, d(U) = d(U’). Hence V1 < i <
n,d(UY) = d(U") = d(M).
By induction on M : (I + U). Case K = @ is trivial, consider K = i :: K'.
Let d(U) = K :: L. Since d(U) = K, U~¥ is well defined. Since by 1. d(I") =
d(U) = d(M), M—% and I'¥ are well defined too.

— If . B W,M_K: env®. . - wky.
M : (envy, F wd(M)> y (envy i )
— My is by IH.
M (I'F
— If ( U) . Since d(e;U) = i = K' = L, dU) = K’ = L, so

M+ (e; '+ eU)
d(U) = K’ and by TH, M~ . (I %" + UK so by e, (MT))~K .
<(6iF)7K F (eiU*K>.

. / !

- If M:{rF U>M ; <1<5||__g,>> C{" R U) then by lemma 13.3, I'" C I" and

U C U’ Bylemma12.3a,d(U) = d(U’) = K. By IH, M~ ¥ . (P=K - U~K).
Hence by lemma 13 and C, MK : ("= |- /= K).

O

Proof [Of remark 16]

1. Let M : (It - Uy) and M : (Is F Us). By lemma 14.2, dom(I) = fv(M) =
dom(l%). Let I = (a:ZL‘ : Vi)n and Iy = (le‘ : V/)p. Then, V1 < i < n,
d(V;) =d(V/) = L;. By Ng, V;NV/ C V; and V;NV; C V;. Hence, by lemma 13.2,
Nl E T and I1 M 15 E T and by C and E(), M : <F1|_|F2 H U1> and
M - <F1 nisk- U2> Finally, by My, M : <F1 nisk- U1|_|U2>.

2. By lemma 12, either U = w’ so by w, ol : ((zf : wl) F wl).Or U =1¥_ e, T;
where p > 1, and V1 <i<p, T; € T. Let 1 <4 < p.By ax, 29 : ((z© : T3) - T}),
hence by e, xl : ((zL : e, T;) F eLT;). Now, by 1}, & : ((zL : U) - U).

O

C Proofs of section 4

Proof [Of lemma 17] 1. By induction on the derivation =% : (I' - U). We have
fives cases:

— If @ @ T nothing to prove.

— If , nothing to prove.

b (2l wh) b k)
ol (DU ol (D= Uy)
2L ([ F Uy N Us)
then by rule M, V C Uy N Us,.
oL (r-U) ,

If — . Th H, I = (z": C s0 e, = (L

T el - eall) en by IH, (z%:V)and V E U, so e; (x
e;V) and by C., e;V C ¢;U,

e (MUY (IR U C(CFU)
If 0 .Bylemma 133, T E I" and U' C U
and, by TH, I'" = (2% : V') and V' C U’. Then, by lemma 13.2, I = (L : V),
V E V' and, by rule tr, VC U.

CByIH, I'= (2% : V), VC Uy and V C Uy,

2. By induction on the derivation AzZ. M : (I' - U). We have five cases:

If , nothing to prove.

AxE M : (envy o o, F wdar .0y



M ([l U+ T)
XL M (IFU — T)
el M (T = UL) Mol M (T - Us)

XeL M - ([ F Uy 1 Us)

By IH, we have four cases:

o If U1 = UQ = wK, then U1 |_|U2 :wK.

e If U, = WK, Uy = M_,ex(V; — T;) where p > 1 and V1 < i < p, M :
(Ixl : ex Vi - exT;), then Uy MUy = Us (w" is a neutral element).

o If Uy = WK, Uy = M_,ex(V; — T;) where p > 1 and V1 < i < p, M :
(Ixl : ex Vi - exT;), then Uy MUy = Uy (W is a neutral element).

e If Uy =M_jex(Vi = T;), Uy = 2L e (V; — T;) (hence Uy MU, =
Mt er (Vi — Ti)) where pg > 1, V1 < i < p+q, M : ([z" : exV;
exT;), we are done.

Aol M (T U)

Azl M (e, I e U)
two cases:

o If U = wX' then e, U = k.

o IfU = I_Igzler(Vj — Tj), where p > 1 and for all 1 < j < p, M : (I zL :
ex'V; FexiTj). So e;U = M_ ex(V; — Tj) and by e, for all 1 < j < p,
MY (el 2Lt eV - erT)).

L . / /
AvT M <1;\!C_LU‘;\>4 :<<];J_|_UU>V>E ({r-u > By lemma 13.3, I" C I' and U C
U’ and by lemma 12.3a d(U) = d(U’) = K. By IH, we have two cases:

o If U = w¥, then, by lemma 12.3b, U’ = w¥.

o If U =r1"_jex(Vi — T;), where p > 1 and for all 1 <i <p M : (I al :
exViF exT;). By lemma 12.3e:

x Either U’ = wk.

x* Or U =N{_jex (V] — T)), where ¢ > 1and V1 <i < ¢, 31 < j; <p
such that V/ C V}, and Tj, C T/. Let 1 < ¢ < g. Since, by lemma 13.3,
(rzt . exVj, FexTj,) C (I'", 2% : ex V! - exT!), then M : (I 2% :
eKV;I H eKTi’).

- If

(d(U — T') = @), nothing to prove.

- If

then d(U1 |_|U2) = d(Ul) = d(UQ) =K.

- If

.d(e;U) =i ::d(U) =i :: K' = K. By IH, we have

— Let

3. Same proof as that of 2.
4. By induction on the derivation M x¥ : (I';z’ : U F T'). We have two cases:

M:(TFV —=T) zF (2L :U)FV) To(al:U)
Mt ([, (zL :U)ET)
V). Since V—-TCU — T, wehave M : (I'+-U — T).
Mzt (2E UV (I (2R U RV EA, (22 U) R V)
’ ’ - 1 13).
M 2L (T, (L U)F V) (by lemma 13)
Bylemma 13, TCTI' UCU and V'CV.ByIH, M : (I"+U" — V') and by
C,M:(IFU— V).

— Let

(where, by 1. U C

— Let

O

Proof [Of lemma 18] By induction on the derivation M : (I',xl : U - V).

_ . O[r@ . N1 — N -
M e @ myr AN H(AFT), then aP[® = N] = N: (A T).

- If M~ (omo? oL k) - A0 and N : (A w®) then by w, M[zF :
RO\

NJ : (envirpe._ny wd(M[mL’:N])). By lemma 45 d(M[zF := NJ]) = d(M).
Since zf € fv(M) (and so fv(N) C fv(M[zl := NJ)), by C, M[zt := N] :
NAE wd(M)).

(e (e



M : (I zt K.U+T
)\yK.]\<4 ’ <F,xgvsz I—%’ _>;> where y* & fv(N). By IH, M[z" := NJ :
(I'mA,y¥ .U +=T). By =1, AyE. M)zl .= N] = K. Mzl := N]: (I'nAF
U —T).

M (2t :UT) y® ¢ dom(I, 2l :

<)\;JK.MU: <F7iL yUf oK (—>7T> v) where y& ¢ fv(N). By IH, M [z*

N (IMAFT). By —,, Oy .M)[z" = N] = \yK. M[z" .= N]: ('M A+

wk —T).

M11<F1,J3LIU1|_V—>T> M22<FQ,Z‘LZU2|_V> F10F2

M1M22<F1|_|F2,{ELIU1|_|U2'_T>
fv(My)Ntv(Ms), N : (AF U, NUsy) and (I M 1T5) o A. It is easy to show that
INoAand Ibo A By Mg and T, N : (AFU;) and N : (A F Usz). Now use IH
and —g.

The cases xl € fv(M) \ fv(M2) or z& € fv(Ms) \ fv(M;) are easy.

_IfM:<I’,xL:U|—U1> M : [zt U U)

M :([zt : U+ UL NUs)

. L.

— Let M“]:w(c;fl{’:,xxi“i :[iil;f‘l/jei‘/) where N : (A F ¢;U). By lemma 15, N~ :
(A= = U). By IH, M[z" := N7 : (’'M A~ - V). By e and lemma 46.4,
M*iz#E .= N : (e;T A F e; V).

M: (I 25UV (Db U RVYE L2t URV

(T v VJ\>4 :<<F,7xL : g'_ 7 JEL vev) (lemma 13). By

lemma 13, dom(I") = dom([”), ' T I", U CU' and V' C V. Hence N : (A F

U’y and, by IH, M [zl := N]: (I" M A F V'). It is easy to show that I'TT A C

I"MA. Hence, (I"MAFV'YC(I'MAFV)and M[zF := N]: (I'MAF V).

U

— Let

— Let

— Let where zl €

use IH and Mj.

— Let

The next lemma is needed in the proofs.

Lemma 53. 1. Iffv(N) C fv(M), then envM | n= envl)
2. If tv(M) C dom(I}) and tv(N) C dom(I%), then

(L1 Io) TunC (I Tv) T (L2 IN).
3. ei(I" [m) = (el") T+
Proof 1. Easy. 2. First, note that dom((I1 N 1I%) [am ) tv(MN) = ftv(M) U
ftv(N) = dom(F1 ar) U dom(Fg N) = dom((I’1 M) ( )) Now, we show by
cases that if (z¥ : Uy) € (I M I%) [pyn and (2 2 Us) € (I [ar) N ( In) then
U1 E UQZ

— If 2l € fv(M)Nfv(N) then (zX : Uj) € I, (2l : U) € [ and Uy = Uj MUY =
Us.

— If 2 € fv(M) \ fv(N) then
o If 2 € dom(I%) then (zl : Us) € I, (2L : U]) € I'y and Uy = U{MUs C Us.
o If 2% ¢ dom(I%) then (aF : Us) € I and Uy = Us.

— If 2 € fv(N) \ fv(M) then
o If 2 € dom(I}) then (2L : U]) € I, (2L : Us) € Iy and Uy = U{MU, C Us.
o If 2% ¢ dom(I}) then 2% : Uy € I, and Uy = Us.

3. Let I' = (ij’ 2 Uj)y and let fv(M) = {yi*,...,yEm} where m < n and

Vi<k<mdl < Snsuchthatyf’c fo.SoF [a= (yfk U
and e;(I' [n) = (5% : €;Uk)m. Since e;I" = (x;::Lj : eUj)n, fv(M+i) =
(i, yiey and V1 < k < m 31 < j < nsuch that g% = 27 then

(eil) Tar+i= (y"™* - U)m.-
O



The next two theorems are needed in the proof of subject reduction.

Theorem 54. If M : (I' - U) and M >3 N, then N : (I" [nF U).
Proof By induction on the derivation M : (I" - U).

— Rule w follows by theorem 4.2 and lemma 53.1.
M ([, (2% : U) - T)
— If ’ then N = Az" N’ and M >gN’. By IH, N’ : (T, (z* :
NI M- (I FU STy "N and Mpy N'. By IH, N7+ (I’ (@
U)) Int T). If 2l € fv(N') then N’ : (I’ rfv(N/)\{mL}v(xL :U) + T) and
by —r, Aeb.N' 2 (I [yunk U — T). Else N < (I [y goryF T) 50 by
—h AxE N (T [ apr. nF wl — T) and since by lemma 12.4, U C w’, by C,
)\IEL.N/ : <F r)\a:L.N"_ U — T>
it M:(I'FT) zt ¢ dom(I)
Al M (T wlk - T)
fv(M), by theorem 4.2, zL ¢ fv(N'). By IH, N’ : (I" (v oz 1) s0 by =7,
)\IEL.NI : <F r)\a:L.N"_ wL — T>
T M1<F1|_U—>T> M2<F2'—U> F1<>F2
M, M21<F1|_|F2|—T>
N; and N = Ny M> and case My >g N and N = M N, are easy. Let M; =
Axl M] and N = Mzl := My). If 2% € FV(M]) then by lemma 17.2, M :
(I',z% : U F T). By lemma 18, Mj[zF = My : (Ihn NIy + T). If o2& ¢
FV(M]) then by lemma 17.3, M{[zl := My] = M| : (I} + T) and by C,
N : <(F1 |_|F2) rNFT>
— Case My is by IH.
o M:TEU)
M+t (e; T+ e;U)
that P** = N and M >3 P. By IH, P : (I" | pt- U) and by e and lemma 53.3,
N : <(6l1—’) [NI_ elU>
M:(TFU) (TFUYCT'FU)

then N = Azl'N’ and M >g N’. Since z¥ ¢

. Using lemma 53.2, case M; >g

and M >5 N, then by lemma 46.9, there is P € M such

— . c :
If MO then by IH, lemma 13.3 and C, N
(I InET).

O
Theorem 55. If M : (I' - U) and M >, N, then N : (I' - U).
Proof By induction on the derivation M : (I" + U).
- If then by lemma 4.1, d(M) = d(N) and fv(M) = fv(N)

M : (env%, F wd(D)
and by w, N : (envy, - wd(M)>.
g M ([, (z* :U) - T)
Ml M (I'FU —T)
e M = Nz¥ and so by lemma 17.4, N : (' U — T).
e N = Xz"“N’ and M >, N'. By IH, N’ : (I',(z* : U) + T) and by —,
N:(I'-U—T).
. L
— if Mxﬁj\; Tgﬂ”ﬁ fL d_")“}@ then N = Az’ N’ and M >, N'. By IH, N’ : (I" -
T) and by —4, N : (' wl — T).
_IfM1<F1|—U—>T> M2<F2'_U> F1<>F2
M1M22<F1|_|F2|_T>
e Miy>, Ny and N = N\My. By IH N, : (It F U — T) and by —g,
NZ<F1|_|F2|_T>.
L M2l>nN2 andN:MlNg. ByIHN2<F2|_U> andby—>E,N:<F1I‘IF2|—
T).

then we have two cases:

, then we have two cases:



— Case My is by IH and M;.
M :{It .
— If R <<e7;F |_U;U> then by lemma 46.9, there is P € M such that PT* = N
and M >, P.ByIH, P: (I' - U) and by e, N : {(e;I" F e;U).
_IfM:<FI—U> (r-uyc(r'-=uv’)
M (I U)

then by IH, lemma 13.3 and C, N :
(r'+=u’).
|

The next auxiliary lemma is needed in proofs.

Lemma 56. Leti € {1,2} and M : (I' - U). We have:

1. If (x - Uy) € T and (y¥ : Us) € T, then:
(a) If (xL : Uy) # (y¥ : Ua), then ot # y%.
(b) If v =y, then L = K and Uy = Us.

2. If (% :Uy) € I and (y¥ : Uy) € I' and (2F : Uy) # (y¥ : Uy), then x # y and
al # yK.

Proof 1. By induction on the derivation of M : (I' - U). 2. Corollary of 1. [

Proof [Of theorem 20] Proofs are by induction on derivations using theorem 54
and theorem 55. O

D Proofs for section 5
Proof [Of lemma 22] By induction on the derivation M[z* := N]: (I' - U).

- If then M = 29 and N = y©. By az, 29 : {(z© : T)+ T).
W w? T F ) e

—If - then by lemma 45, d(M) = d(M [zl :=
M|zl := N]: <env“’M[wL::N] F wd(MlzE:=N]))

N,]) By w, M : (env%’v(M)\{xL},(xL cwh) wd(M)> and N : (env F wl) and
it’s easy to see that env%’v(M)\{mL} Menvy = envfﬂmL::N].

L._ N K.

)f\y{[(xM[xLN]: ;\g’ :(?zr I—MV;/) :?> where y% ¢ fv(N). By IH, 3 V type such
that d(V) = L and 3 I', I'; type environments such that M : (I'y,z% : V = T),
N :(Ib FV)yand IyX : W = Il N I Since yX € fv(M) and y¥ & fv(N),
It = Ay, y® : W. Hence M : (A, y% : Wzl . V = T). By rule —7, \yK.M :
(A, 2F VEW — T). Finally I' = Ay M 1.

T M[z* .= N]: (' T) y¥ ¢ dom(I")

AyE Mzl := N|: (' wK — T)
and 3 I, I type environments such that M : (In,z% : V= T), N : (Ix + V)
and I' = Iy M Iy. Since y& # o2& A\y®.M : (I, 2V - V = 0& — T).
B IfMl[xL =N|:(IM+FW —=T) Mzt :=N]: (I W) Iolh
Mzt := N] Ma[zl := N]: (In NIy = T)
M Ms, then we have three cases:

o If 2l € fv(My) Nfv(Ms) then by TH, 3 V4, V5 types and 3 Ay, Ag, Vi, Vs
type environments such that M; : (Aq, (aL : Vi) W — T), My : (Vy, (2 :
‘/é)l‘W% N : <A2|—V1>, N : <V2|—‘/2>, I =A1MAyand I = VM Vs.
Since Iy o I, Ay o Vi and since Ay, (z¥ : V) and Vi, (z¥ : V5) are type
environments, by lemma 56, (A1, (z% : V1)) o (V1, (2L : Va)). Then, by rules
My and —g, MiM, : (Ay 11V, (2% : VinV,) = T) and by C and My,
N : <A2 nVs W eré> Finally, I1 M5 = (Al |_|A2) M (Vl |_|V2).

- If

. By IH, 3 V type such that d(V) =L

where M =



o If 2L € fv(My) \ fv(M3) then by TH, 3 V types and 3 Ay, A; type en-
vironments such that M; : (A, (zL : V) = W — T), N : (Ay F V) and
I'' = Ay A,. Since It o Ip, Aol and since I M1 is a type environment,
by lemma 56, (A1, (x¥ : V) o Iv. By —g, MMy : (A N1y, (x: V) FT)
and I3 M1y = (A1|_|A2)|_|F2.

o If 2l € fv(My) \ fv(M;) then by TH, 3 V types and 3 A;, Ay type en-
vironments such that My : (Aq, (2 : V) = W), N : (A + V) and
Iy = Ay A,. Since It oI, [0 A and since I M1 is a type environment,
by lemma 56, (Ay, (zX : V) o In. By —g, MiMy : (It 1 Ay, (2 : V) = T)
and F1|_|F2:F1|_|(A1|_|A2).

Mzt := N|: (' Uy) M[zt = N]: (I'FUs)
Mzt := N]:(I'F U1 NUs)

3 Ay, Ay, V1, Vs type environments such that M : (A, 2% : Vi = Uy), M :

(Vi, 2l Vo b Ug), N : (Ag = Vi), N : (Vo = Vo), I' = AjMAg and I' = V1MV5.

Then, by rule M}, M : (A1 MV, 2l VinVe F U MU) and N : (A M Vg

Vin Vé> Finally, I' = (Al M Ag) M (Vl M Vg)

Mz .= N]: (' - U)
MH[xJ':[’L — NJr]j] :<<ej1" -, then by IH, 3 V type and 3 I, I5 type
environments such that M : (I't, 2% : VFU), N: (Ib = V) and I' = I M 1%. So
by e, M7 (e; I, 2% s e;V = e;U), N : (ejI2 te;V) and e;I" = e; I MejIb.

L ._ . l ! 1 1
o Ml = N]Mg; LUN>] :<<f} i g>> CATFU) hen by lemma 13.2, I' C I

and U’ C U. By IH, 3 V type and 3 I, I type environments such that M :
(rf,zt : V.= U"), N : (I} = V) and I = I N T}. Then by lemma 12.6,
IF=INMNIyand I1 CI]and Iy C T4 Soby &, M : (I',2% : V - U) and
N :(IL V).

— Let

. By IH, 3 V1, V5 types and

- If

O

The next lemma is basic for the proof of subject expansion for (.

Lemma 57. If M[z" := N] : (' - U), d(N) = L, dU) = K, 2% ¢ fv(N) and
U = tv(Axh . M)N), then \a™ . M)N : (I'Y - U).

Proof By lemma 45 and theorem 15.1, K = d(M[zl := N]) = d(M) =
d((Axl.M)N). We have two cases:

— If 2 € fv(M), then, by lemma 22, 3 V type and 3 I, I type environments
such that M : (I, 2L : V = U), N : (Ib = V) and I' = I'y N I5. By lemma 45,
L>K,so L=K :: K'. By lemma 12, we have two cases :

o If U =wX then by lemma 14.1, (A\zL.M)N : ('Y - U).

o IfU =exM_, T, where p > 1 and V 1 < i < p, T; € T, then by theo-
rem 15.2, M=K . (ITK oK . V-K P T). ByC,V1<i<p M ¥:
(7% 2% VK BT, soby — 7, Ae® MK (7K F VK S T;). Again
by theorem 15.2, N=5 : (I ¥ = V=K) and since Il o Iy, IT5 o I 5 s0
by =g, V1 <i<p, QXK' M- E)N-F . (I7¥nry K +=T). Finally by My
and e, Aol . M)N : (Ih NI = U), so AzE.M)N : ('Y = U).

— If 2L ¢ fv(M), then M : (I" - U) and, by rule —4, el .M : (I' - w* — U).
By rule w, N : (env$ F wl), then, since M o N, by rule —g, (Az*.M)N :
(I’ Menvy = U). Since fv((Axl.M)N) = fv(M[zl := N]) U fv(N), then I'T¥ =
I' M envy.

0



Next, we give the main block for the proof of subject expansion for S.

Theorem 58. If N : (I' = U) and M >g N, then M : (I'TM - U).
Proof By induction on the derivation N : (I" + U).

%) — K K
If 2 (@e T FT) and M >g x®, then M = (A\y™.M;)My where y* &

fv(My) and 29 = M;[y¥ := My]. By lemma 57, M : {(z© : T)1™ - T).

If and M > N, then since by theorem 4.2, fv(N) C fv(M)
N : (env$,  wd()

and d(M) = d(N), (env{)T™ = env¥,. By w, M : {env$, F wd(M)>. Hence,

M : {(env) )M wd(N)>.

It N: ([ zt:UFT)

ML N:(I'FU - T)

o If M = \z.M’ where M’ >4 N, then by TH, M" : (I, (" : U))I™ + T).
Since by theorem 4.2 and lemma 14.2, 2 € fv(N) C fv(M’), then we
have (I, (z : U))TfV(M,) = FTfV(M,)\{mL},(xL : U) and FTfV(M/)\{'”L} =
1M Hence, M’ : (I'2"M (gL . U) + T) and finally, by —,
AxE M (rpetM ey T,

o If M = (\yX.My)My where y¥ ¢ fv(Mz) and Azt N = M [y% = My,
then, by lemma 57, since y* ¢ fv(Ms) and M;[yX := Ms] : (I' - U — T),
we have (\y®.M;)Ms : <FT(A?’K'Ml)M2 FU —T).

N:(I'FT) xt ¢ dom(D)
Al NI+ wl = T)
N1 : <F1 |—U—>T> N2 : <F2'_U> F1<>F2
N1 NQ . <F1|_|F2|_T>

and M > Az.N, then we have two cases:

If

and M > N then similar to the above case.

If

cases:
o M = MlNQ where M1 |>5N1 and M10N2. By IH, M1 . <F1TM1 FU — T> It
is easy to show that (I} M%) 1MN2 = M 1M1y, Since Mo N, [T TMio Iy,
hence use —g.
o M = N; M, where My >g Ns. Similar to the above case.
o M = (Axl.M;)M; where x1 ¢ fv(Ms) and NyNy = Mzt := M,]. By
lemma 57, (AxL. M) My : (I 11 Ty) 10" - MM poy,
N <FZ|\7_ U<1} o Ulj\lil U<21; " Us) and M >z N then use IH.
N (I'+U)
N+j : <€jF" 6jU>
M = P+ and Pg N. By IH, P: (I'? - U) and by e, M : {(e;1)1™ F ¢;U).
. / !
IfN'<F|_U>N:<Z<5||__gI>>E<F mU) and M >3 N. By lemma 13.3, " C I’
and U C U’. It is easy to show that "1™ C I''M and hence by lemma 13.3,
(M = U) C ("™ = U'). By IH, MT™ . (I" - U). Hence, by C(), we have
M ("M - U).

and M >g N1 Na, we have three

If

If

then by lemma 46.8 then there is P € M such that

O

Proof [Of theorem 24] By induction on the length of the derivation M >% N using
theorem 58 and the fact that if fv(P) C fv(Q), then (I'1F)19 = '9. O

E

Proofs of section 6

Proof [Of lemma 28] 1. and 2. are easy. 3. If M >* NT* where N € X, then, by
lemma 46.8, M = P*% and P>, N. As X is r-saturated, P € X and so PT/ = M €
X+,



4. Let M € X ~ Y and N>y M. If P € X such that P o N, then P o M and
NP> MP. Since MP € Y and ) is r-saturated, NP € ). Hence, N € X ~» ).
5. Let M € (X ~» V)% then M = Nt  and N € X ~ Y. If P € X such that
Mo, then P=Q Q€ X, MP=NTQ"" = (NQ)™ and N Q. Hence NQ € Y
and MP € Yt*. Thus M € Xt% ~s Yti,

6. Let M € Xt ~s V¥ such that X Y*. If P € X+ such that M ¢ P, then
MP € Y+ hence MP = Q%' such that Q € Y. Hence, M = M; . Let N, € X
such that M; o Ni. By lemma 46, M o N;~ and we have (M;N;)* = M;*N;" € Y+,
Hence M{N; € Y. Thus M1 € X ~» Y and M = M1+ € (X ~Y)T. O

Proof [Of lemma 30] 1.1a . By induction on T using lemma 28.

1.1b. We prove Vz € V;,Nt C T(U) € ML by induction on U. Case U = a:
by definition. Case U = wl: We have Vz € Vl,./\/xL C ME C MY Case U =
Uy MUy (resp. U = €;V): use IH since d(U;) = d(Usz) (resp. d(U) = i :: 4(V),
Vo € Vi, WE) T = NEK and (ME) T = M#E) Case U =V — T by definition,
K=4V)=dT) = o.

— Let z € Vi, Ny,..., N such that V 1 <14 <k, d(N;) = © and let N € Z(V') such
that (z2N;...N;) o N. By IH, d(N) = K = @. Again, by IH, 29 N;...NyN €
Z(T). Thus 2°N;..N, € Z(V — T).

— Let M € Z(V — T). Let = € V; such that VL, zl ¢ fv(M). By IH, 2 € Z(V),
then Mz®X € Z(T) and, by IH, d(Mz¥) = ©. Thus d(M) = ©.

2. By induction of the derivation U C V. O
Proof [Of lemma 31] By induction on the derivation M : <(ij’ :Uj)n FU).
- If d NeI(T),th ©[z9 := N]= N € Z(T).
x®:<(a:@:T)I—T>an € Z(T), then z°[z ] e I(T)
- If . Let envy, = (ij’ : Uj)p so fv(M) = {2l by

M : (env%, F wd(D)
Since V1 < j < n,d(U;) = L; by lemma 30.1, Z(U;) € M%i hence d(NJ) =Lj.
Then, by lemma 45, d(M[(z;’ := N;),]) = d(M) and M[( o’ = Nj)a] €
Md(M): ( d(M)).
M :((z5 :Uj), (25 - V) ET) ,
— If E— , V1< j<n, Nj €Z(U;) and N € Z(V)
AeB M (27 2 Uj)p BV = T)
such that (\z’. M) o N.
Ot 0, 7= Njal = Al M@ = Nj)a, where V1 < j < n,y¥ ¢
tv(N;). Smce N € Z(V) and by lemma 30.1, Z(V) € M¥X d(N) = K. Hence,
(AR M[(2]? = Nj)a))N > M[(z]’ = Nj)n, (z := N)]. By IH, M[(a]" =
Nj), (25 = N)] € Z(T). Since, by lemma 30.1 Z(T') is r-saturated, then
(A® M7 = Nj) )N € Z(T) and so \aX.M[(z]’ = N;),] € Z(V) ~
(T ) (V= 1T).
M:{(z;? :Uj)n b T) 2 ¢ dom((z)’
MK M : <(xj :Uj)n Fwk = T)
Z(U;) and N € Z(w®) such that (\z%.M) o N.
(Az¥ M)[(xJL7 = Nj),| = )\xK.M[(xJLj = N;)n], where V1 < j < n,y¥ ¢
fv(N;). Since N € Z(w®) and by lemma 30. 1 I(wK) = M¥ then d(N) =
K. Hence, Az M[(z}” := Nj)))N &, M[(x]? := Nj),]. By IH, M[(z}" :
N;)n] € Z(T). Since, by lemma 30.1 Z(T') is r—saturated, then ()\xK.M[(xfj =
N;j)u))N € Z(T) and so A\z® M [(z7 := N;),] € T(w") ~ I(T) = (WK — T).

: Uj)n)

— If V1 <j<n, 2k ;éxL’NE



M1<F1|_V—>T> M2<F2|_V> F1<>F2
M1M21<F1|_|F2|—T>
Vidms To = (27 : U, (257« Wy)p and Ty N1y = (a7 Uy MU, (31
Vidms (257 W)y,
LetV1<]<nP € Z(U; I_IU') V1<ji<mQ; €Z(V;)andV1<j
p,R; € I(W). Let A = Mi[(z}’ = Pj)n, (¥, = Qj)m] and B = My[(z}" :
S
Bj)ns (277 := Rj)y)-
By lemma 14, fv(M;) = dom(Fl) and fv(Msz) = dom(I%). Hence,
SJ
(M My) (2] := P, (47 = Q))m, (57 = Ry)y] = AB.
By IH, A GI(V) ~ (T ) and BeI(V). Hence AB =
L; 35 .
(M M)[(2 = Py, (4, 1= Q) (2] 1= Ry)y) € Z(T).
e M <(fo - Uj)n b V1> M {(x7 - Uy Vi)
M: ((xJLJ :Uj)n F VI V)

Z(Vy) and M[(z}" := N;)u] € Z(Va). Hence, M[(x} := N;)n] € Z(V1 M Va).
M : ((zp* : Up)n - U)
M+i (2] L’“ tejUk)n F e;U)
Then V1 < k < n, Nk—ijherePkEI( Uy). By IH, M[( k= Py)y] €
Z(T). Hence, by lemma 46, M*7[(x] Le— Nyl = (M [(xp* := Pp)a))t €

Z(U)H = (e U).

M:» dC P v
— Let ————— where & = ((z1’

Y ;7 1 Uj)p = U). By lemma 13, we have
P = <(ij9 : UJ’)n F U’), where for every 1 < j < n, U; C Uj'. and U’ C U. By
lemma 30.2, N; € Z(U;), then, by IH, M[(xJL7 := N;)»] € Z(U’) and, by lemma

30.2, M[(2;? == Nj)n] € Z(U).

— Let

where ] = (a?JLJ : Uj)n; (Z/JKJ

IA

By IH, M[(z}’ := N)),] €

— Let

and V1 <k <n, Ny € Z(e;Ty) = Z(T}) "’

O

Proof [Of lemma 35]

1. Let y € Voand X = {M € M? / M > 22Nj...Ni, where k > 0 and = € V;
or M % y?9}. X is B-saturated and Vo € V;,N2 C X C M@. Take an (-
interpretation Z such that Z(a) = X. If M € [Idy]g, then M is closed and
M € X ~ X.Since y© € X and moY® then My? € X and My? >} N;... Ny,
where k > 0 and z € V; or My® >} y©. Since M is closed and 29 # y©, by
lemma 4.2, My? >%y?. Hence, by lemma 47.4, M >3 A\y®.y® and, by lemma 4,
M e M°.

Conversely, let M € M@ such that M >% \y?.y“. Let 7 be an G-interpretation
and N € Z(a). Since Z(a) is f-saturated and MN >3 N, MN € Z(a) and hence
M € I(a) ~ Z(a). Hence, M € [Idy)g.

2. By lemma 33, [Idj]g = [e1a — eia]g = [ei(a — a)lg = [Idi] = [a — d];" =
[Ido]f*. By 1., [Ido] ' = {M € MY | M >5 Ay y M},

3. Let y € Vo, ¥ = {M € M? / M5 y© or M >% 2@Nji...N, where k > 0
and x € Vi} and Y = {M € M9 / M > y2y® or M > 29Ny...Ni or
M > y@(29Ny...Ny,) where k > 0 and z € V1}. X, Y are (-saturated and
Vo € Vi, N2 C X,Y C M?. Let Z be an S-interpretation such that Z(a) = X
and Z(b) = Y. If M € [D]g, then M is closed (hence M ¢ y?) and M €
(XN (X~ Y))~ Y. Since y© € X and y? € X ~ Y, y? € X N (X ~ V) and
My® € Y. Since 29 # y?, by lemma 4.2, My? >3 y“y?. Hence, by lemma 47.4,
My Ay©@.y@y?@ and, by lemma 4, d(M) = @ and M € M.

Conversely, let M € M@ such that M>3A\y©.y?y®. Let T be an B-interpretation
and N € Z(aM(a — b)) = Z(a) N (Z(a) ~ Z(b)). Since Z(b) is [-saturated,



NN € Z(b) and MN >3 NN, we have MN € Z(b) and hence M € Z(a Tl (a —
b)) ~» Z(b). Therefore, M € [D]g.
. Let f,y € Vo and take X = {M € M? | M > (f©)"(x®Ny...Ng) or M >3
(f©)"y® where k,n > 0 and z € V1 }. X is B-saturated and Vz € V;, N9 C X C
M@. Let T be an (-interpretation such that Z(a) = X. If M € [Natyg, then
M is closed and M € (X ~ X) ~ (X ~ X). We have f@ € X ~ X, y©? € X
and o{ M, f©,y®} then M f9y? € X and M f©y? >j (f9)"(¢9Ny1...Ny,) or
M f@y? >3 (f9)"y® where n > 0 and = € Vy. Since M is closed and {29} N
{y©, f2} = 0, by lemma 4.2, M f9y? >} (f9)"y? where n > 1. Hence, by
lemma 47.4, M >3 Af©.f9 or M >3 Af9.\y?.(f©)"y? where n > 1. Moreover,
by lemma 4, d(M) = © and M € M®.
Conversely, let M € M@ such that M >3 A\f?.f9 or M >3 AfO.M\y@.(f9)"y?
where n > 1. Let Z be an S-interpretation, N € Z(a — a) = Z(a) ~ Z(a)
and N’ € Z(a). We show, by induction on m > 0, that (N)™N’ € Z(a). Since
MNN'>%5(N)™N" wherem > 0 and (N)™N' € Z(a) which is -saturated, then
MNN' € Z(a). Hence, M € (Z(a) ~ Z(a)) — (Z(a) ~ Z(a)) and M € [Naty)g.
. By lemma 33, [Nat;] = [eNaty] = [Naty]". Let Z be an -interpretation. By
lemma 33, Z(e;(a — a) — (era — e1a)) = I((a — a) — (a — a))*t! and
hence [Nat;] = [Nato]*'. By 4., [Nat1] = [Nat}] = [Nato]t' = {M € M1 /
M > MO O or M > MDAy D (FD)2y(D) where n > 1}.
. Let f,y € Vo and take X = {M € M? /| M>52° Py... P or M>5f9(29Q1...Qn)
or M >5y? or M > 2y where I,n > 0 and d(Q;) = (1)}. X is S-saturated
and Vo € Vi, N9 C X C M?. Let Z be an S-interpretation such that Z(a) = X.
If M € [Nat{]g, then M is closed and M € (XY™ ~» X) ~ (XT! ~ X). Let
N € X*! such that N o f©. We have N >} s PP or N > yM, then
FONB5 OGP P € X or Nioj fOy) € X, thus f@ € X!~ X We
have f@ € X+~ X,y € X and o{ M, f2,y(MV}, then M f2y() € X. Since
M is closed and {22,2(M} N {yM), 2} =, by lemma 4.2, M @y > oy,
Hence, by lemma 47.4, M >5 A\f©.f9 or M >} MO yM . £24() Moreover, by
lemma 4, d(M) = @ and M € M©.
Conversely, let M € M? and M >3 Af@.f© or M > MO AyWD oy Let T
be an (-interpretation, N € Z(eja — a) = Z(a)™ ~» Z(a) and N’ € Z(a)*!
where o{ M, N, N'}. Since MNN'>35 NN', NN’ € Z(a) and Z(a) is f-saturated,
then MNN’' € Z(a). Hence, M € (Z(a)™ ~ Z(a)) — (Z(a)*! ~ Z(a)) and
M € [Naty).
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