
Using MathLang to Check the Correctness of
Specifications in Object-Z

David Feller, Fairouz Kamareddine, and Lavinia Burski

Heriot Watt University, Edinburgh

Abstract. The importance of thoroughly checking software specifica-
tions is widely recognised in the software industry, particularly for soft-
ware involved in dealing with safety critical systems. The MathLang
project has been successfully used to check large mathematical texts for
correctness in a stepwise fashion. Currently MathLang is being tested
for checking the correctness of formal specifications written in Z. Since
object-orinetation is a vital concept for software specification, it is impor-
tant that the tools available for thoroughly checking specifications can be
used with a language powerful enough to express specifications for object
oriented software. This paper aims to test the usefulness of MathLang
for the computerisation of formal specifications written in Object-Z.

1 Introduction
Inadequate checking of software is a serious problem in the software industry.
According to Frentiu [5]:

Experience shows that more than 75% of finished software products have errors
during maintenance, and deadlines are missed and cost overruns are a rule not
an exception. It was estimated that more than 50% of the development effort
was spent on testing and debugging. Nevertheless, some errors are not detected
by testing, and some of them are never detected. More, there are projects that
have never been finished. And it is not an exception; it is estimated that from
each six large projects two of them are never finished.

Rigorous checking of software systems could help with these issues. This is
of particular importance to the designers of safety critical systems who cannot
afford to find bugs in their software by testing it on users. This is because such
a bug could cause injury or death in the course of being found. According to
MacKenzie [11], the total number of computer-related accidental deaths, world-
wide, to the end of 1992, can be expressed, in conventional format, as 1,100 +/-
1,000. One can easily imagine other cases where a high degree of confidence that
a piece of software will always function as intended is needed before it can be
used (e.g. software dealing with sensitive information). This paper is concerned
with creating software which aids in the formal proof of software correctness.

1.1 Why Formally Prove Software Correctness?

Formally proving that a piece of software is correct can give us a high degree of
confidence that it will function as intended; checking the validity of that proof,

2

even more so. Testing and debugging can fail because of some condition that the
software developers forgot to check. As Dijkstra [4] observed: program testing can
be used to show the presence of bugs, but never to show their absence. Testing
and debugging can take much longer than expected to locate those errors that
are hard to isolate and hence fixing those errors can only happen late in the
development cycle. However, a specification that has been proven correct should
function as defined, provided that said proof is correct.

1.2 The Difficulties of Formally Proving Correctness

For large systems, formally proving correctness can be repetitive and labour
intensive. It is not guaranteed that software developers have a great deal of
experience with formal proof and it is certainly not guaranteed that every de-
veloper working on a large piece of software could aid in the formal checking
of software correctness. As [12] states, many software engineers reject the use
of formal methods for software validation, arguing that it is too complex and
time-consuming a process for most programmers. Further it is still possible for
such proofs to be subject to human error. As such, it is important that we have
good tools to aid in formally checking the correctness of software specifications.

Contributions This paper presents the first step in the development of a new
tool to aid in a stepwise easy to use fashion in the formal checking of the correct-
ness of software specifications written in the specification language Object Z [10,
16]. This first step allows for the type checking and grammatical correctness of
documents written in Object Z. We present a development path for expansion
of the tool to aid in more complete checking of specifications in Object Z where
also logical and rethorical correctness can be checked. We also explain why our
proposed method might provide a basis for development of tools for checking
correctness in other specification languages.

1.3 Related Work
One usually formalises a Z [6] specification into a complete proof right away [17,
18, 1, 2], as shown by arrow e in Figure 1. The thickness of the arrow here repre-
sents the level of difficulty, the huge expertise needed, and the amount of work
necessary to take that path. Our proposal is to carry out the correctness check-
ing in smaller steps, each of which is more focused and very simple to carry out.
These smaller steps are based on MathLang [7]. MathLang is a system for com-
puterising mathematical texts which aims to reduce the complexity of checking
the correctness of a text by breaking down the process into more manageable
steps which can be easily completed with the aid of a computer. MathLang starts
by separating out the work that needs to be done in computerising a mathemati-
cal text into three main aspects. These are the Core Grammatical aspect (CGa),
the Document Rhetorical aspect (DRa) and the Text and Symbol aspect (TSa).

The CGa checks the internal grammatical structure of a text is correct by
capturing the structures and common concepts with a finite set of concepts

3

which are derived from weak type theory. The TSa captures the mathematical
relations which hold between the parts of the text as represented by the CGa. The
DRa captures the logical roles that are held by chunks of text that tell us where
they feature in an argument or proof. This information can be used to generate
a proof skeleton in a theorem prover making the move from document to formal
checking much simpler. Further it allows simple checking of the grammar and
general structure of the document to be performed automatically.

MathLang for Z (ZMathLang) [3], divides e into a number of smaller paths via
a, b, c and d. Following this path the user would apply the Z core grammatical
aspect (ZCGa) and the Z document rhetorical aspect (ZDRa), to show that
the specification is weakly type checked and is also rhetorically correct (i.e.
no loops in the reasoning). Then the user would take the ZCGa and ZDRa
annotated specification into a general proof skeleton, then a ‘half-baked’ proof
and ultimately a complete proof. Breaking this down would allow a user with
minimal theorem prover expertise to obtain a fully proved Z specification.

Unlike MathLang for mathematics, ZMathLang does not require a Text-
Symbolic aspect (TSa) as the mathematical relations in Z are already formal.

Fig. 1. The different steps taken to achieve a full proof using the ZMathLang method.

Object-Z Object-Z [13] is an extension of the Z language for writing formal
specifications that has added functionality for dealing with object oriented con-
cepts. Both Z and Object-Z have been designed to make formally proving the
correctness of specifications relatively easy. They each have a standard notation
which can be easily manipulated in a mathematical fashion, allowing for proof
of correctness using standard mathematical methods.

Z allows specifications to be split up into different schema boxes - each of
which represent individual functions within the software. The input, output and

4

manipulation of data is expressed through a mathematical notation based around
set theory. Object Z introduces class boxes, which allow a specification to be
identified with a class of objects and standard notation for creating instances of
objects and for initialising and running methods within a specification.

Why choose Object-Z over Z as a Specification Language for Correct-
ness Checking? Object oriented programming allows developers to separate
out programs into modules whose functions and interactions are (relatively) easy
for developers to understand and whose contents are easier to alter without need-
ing to change too much of the rest of the code. This is especially important for
large pieces of software with multiple developers whose code can quickly grow
unmanageable and difficult for humans to interpret. Most popular languages in
use today are object oriented. Examples include Java, Python, C++, Visual
Basic .NET and Ruby. It is important, therefore, that our tool for checking for-
mal correctness works for specifications of object oriented languages. Smith [13]
noted the following benefits of an object oriented specification language:

– The modularity it brings to system design. Modularity increases the clarity
of specifications by allowing a reader to focus on one part at a time.

– It provides a precise methodology for system design. This methodology in-
volves the specification of a system by first specifying the behaviour of its
constituent objects by classes, and by utilizing inheritance and polymor-
phism where appropriate

– Seamless development - the use of common concepts and system structuring
at each stage of system development: from the specification right through to
the implementation. This is possible when using an object-oriented approach
to specification and then implementing in an object-oriented programming
language. It makes the specification more accessible to the programmer, who
may not be a formalist, and facilitates his or her task of transforming the
specification to implementation.

Another reason to prefer Object-Z over Z when using MathLang to check the
correctness of formal specifications is that checking the correctness of Object-Z
gives us much more confidence that MathLang is well suited to checking the
correctness of software specifications than checking the correctness of Z alone
does, as object oriented models might present unique problems for conversion
into a framework like that of MathLang due to the subtyping of objects.

Tools for Object-Z TOZE [14] is a graphical editor for Object-Z documents
which allows syntax and type checking without demanding experience with La-
TeX or requiring the user to save the specification and use tools outside the text
editor. Kimber [8] gives a tool which maps 80% of Object-Z to perfect developer
[15] allowing the direct verification of the soundness of simple specifications.

By checking Object-Z in MathLang, one allows some flexibility in whether to
perform syntax and weak type checking, or check that simple dependencies are
fulfilled, or provide a full proof. Another benefit especially when the soundness of

5

an Object-Z specification is difficult to verify directly, consists of the MathLang
automated layers which are crucial to embed the entire specification into a the-
orem prover. This could particularly be useful in large software projects where
no or very few individuals are familiar with a theorem prover, and it would take
a long time to translate the full specification into a theorem prover by hand.

1.4 Overview

In section 2 we create a new weak typing system for MathLang to incorporate
Object-Z specifications. We give the weak types and the rules in which we check
specifications. In section 2.2 we give a step by step example of how we can check
for weak typing errors in an object-Z specification. We explain how to label the
specification and how to run the weak type checker on the specification. Section 3
goes on to explain how we implemented the Object-Z Core Grammatical aspect
(OZCGa), and how it has been tested. The problems encountered and how they
were dealt with is described in section 3.4. Finally, our conclusion along with
benefits and limitations is described in section 4.

2 Adapting MathLang to include Object-Z
We look at the first aspect of the ZMathLang framework (CGa) extended to
weak type check Object-Z specifications.

OZCGa includes 7 weak types Spec, Γ, T , S, Z, E , D,O,M corresponding to

specification , schematext , term , set , declaration , expression , definition ,

object and method respectively. We categorise the parts of the Z syntax using

these types in order to define the core grammatical aspect OZCGa.
We have three types of variables in our syntax:

– V = V T , Variables giving terms.
– V = V S, Variables giving sets.
– V = V O, Variables giving objects.

We have three types of constants in our syntax:

– C = C T , Constants for terms.
– C = C S, Constants for sets.
– C E , Constants giving expressions. These can be further broken down into

the following:

• C bool , constants ⊆, =, 6= taking expressions as parameters.
• C termop , constant term operators <, ≤, =, >, ≥, 6= taking two terms as

parameters.
• C setop , constant set operators ⊆, =, 6=, partition taking a set and a

sequence of sets as parameters.
• C termsetop , constant term/set operators ∈, 6∈ taking one term and one

set as parameters.
• C objop , constant object operators =, 6= taking two objects as parameters.

6

• C objsetop , constant object/set operators ∈, 6∈ taking one object and one
set as parameters.

We have three types of constants for our Object-Z syntax:

– C = CO, Constants for objects.
– C = CM, Constants for methods.
• C = C obop , constant for object operator taking an object as a parameter.
• C = C methop , constant for method operator o

9 taking two methods as
parameters.

We have three types of binders in Z:

– BS, the binder ∪ giving sets and taking sets as parameters.
– BE , binders ∃, ∀ giving expressions and taking expressions as parameters.
– ↓, gives an object and takes an object as its parameter.

Definitions in Object-Z can define constants including those of the form CO

which take a specification as its parameter.
Declarations express the relationship between something and its type. In the

ZCGa we have two kinds of declarations, these can be SET (the type of all sets)
or a particular set. We write either V S : SET , V T : S or V O : S.

Expressions, terms and sets in Z are given as described in our rules for con-
stants variables and binders.

A schematext can be empty or it can contain a declaration, expression or
method. A declaration in a schematext represents the introduction of a new
variable of a known type.

A specification is either empty or it consists of schematext and definitions
where the parts of the schematext which are not defined inside the schematext
itself have a corresponding definition in the specification.

2.1 A Formalization of these Typing Rules

If we formally represent these typing rules we see that they are a subset of the
typing rules of MathLang. The only differences [3] are that we change book to
specification, context becomes schematext and statements become expressions.
We eliminate nouns and adjectives and only have one syntax for definition.

We use the notation :: for typing between an entity and its weak type and
` to denote derivability. Here are some examlpes (we only state the meaning of
the first 3 and leave the rest as obvious):

1. spec is a weakly typed specification:
` spec :: Spec

2. Γ is a weakly well typed paragraph relative to specification spec:
spec ` Γ :: Γ

3. t is a weakly typed term, relative to specification spec and schematext Γ :
spec; Γ ` t :: T

7

4. spec; Γ ` s :: S
5. spec; Γ ` Z :: Z
6. spec; Γ ` e :: E
7. spec; Γ ` D :: D
8. spec; Γ ` o :: O
9. spec; Γ ` m :: M

The next definition is crucial for analysing the grammatical correctness of the
specification since it collects the defined constants and declared variables of
specifications and paragraphs:
Definition 1.

1. Let θ ∈ spec be a definition paragraph Γ � D where D is of the form
c(x1, ..., xn) := A. We define defcons(D) = c.

2. defcons(spec) = { defcons(D) | Γ � D is a paragraph of spec for some Γ}.
3. Internal constants defined using == are noted as defcons(Γ).
4. We define for parameter P the weak type of P with respect to spec and Γ

as: wtspec; Γ (P) = W if and only if spec;Γ `P::W.
5. Predefined constants such as P, dom and ran are noted as prefcons(spec).
6. We use OK(spec;Γ) to denote ` spec :: Spec and spec ` Γ :: Γ.
7. We define dvar(Γ) as follows:

(a) if Γ = ∅, then dvar(Γ) = ∅.
(b) if Γ = Γ ′, x : A and x 6∈ dvar(Γ), then dvar(Γ) = dvar(Γ ′), x .
(c) Otherwise, if Γ = Γ ′, e, then dvar(Γ) = dvar(Γ ′).

The next definition gives the typing rules that deal with type-orientedness:
Definition 2.

1. Derivation rule for variables:

OK (spec, Γ), x ∈ V T /S/O, x ∈ dvar(Γ)

spec; Γ ` x ::T /S/O
(var)

2. Derivation rule for internal constants:

OK (spec,Γ),Γ�D∈spec,dvar(Γ ′)=(x1,...,xn),defcons(D)=c∈CT /S/O/E/M,

wtspec; Γ (Pi)=wtspec; Γ ′ (xi),for alli=1,...,n

spec; Γ ` c(P1, ...,Pn) :: T /S/O/E/M
(int − cons)

3. Derivation rule for external constants:

OK (spec,Γ), c external to spec, c::k1,...,kn→k ,
spec; Γ`Pi ::ki (i=1,...,n)

spec; Γ ` c(P1, ...,Pn) :: k
(ext − cons)

4. Derivation rule for binders:

OK (spec; Γ ; Z), b ∈ B , b :: k1 → k2, spec; Γ,Z ` E :: k1
spec; Γ ` bz (E) :: k2

(bind)

8

5. Derivation rule for definitions:

spec,Γ`o::O,OK (spec′,Γ ′),
c∈CO,c 6∈prefcons(spec)∪defcons(spec)

spec; Γ ` classbox (c(spec′, Γ ′), o) :: D
(obj − def)

That is, an entity that consists of a set equalling a number of variables bound
by a constant and that has not yet been defined has weak type definition.

6. Derivation rule for an empty schematext is:

` spec:: Spec

spec ` ∅:: Γ
(emp − cont)

7. Derivation rule for adding a set declaration to a paragraph is:

OK (spec; Γ), x ∈ V S, x 6∈ dvar(Γ)

spec ` Γ, x : SET :: Γ
(set − dec)

8. Derivation rule for adding a term declaration is:

OK (spec; Γ), spec; Γ ` s :: S, x ∈ V T , x 6∈ dvar(Γ)

spec ` Γ, x : s:: Γ
(term − dec)

9. Derivation rule for adding an object declaration to a paragraph:

OK (spec; Γ), spec; Γ ` s :: S/O, x ∈ V O, x 6∈ dvar(Γ)

spec ` Γ, x : s:: Γ
(obj − dec)

10. Derivation rule for adding an expression is:

OK (spec; Γ), spec; Γ ` e :: E
spec ` Γ, x : e:: Γ

(assump)

11. Derivation rule for adding methods:

OK (spec; Γ), spec; Γ ` m ::M
spec ` Γ, x : m:: Γ

(meth)

12. Derivation rule for an empty specification:

` ∅:: Spec
(emp − spec)

13. Derivation rule for extending a specification is:

spec ` Γ :: Γ

` spec, Γ :: Spec
(spec − ext)

9

2.2 An Example of an Object-Z Class With Weak Types Labelled
We have implemented the above syntax and type derivation rules to obtain an
OZCGa type checker that checks whether specifications written in Object-Z are
grammatically correct. To use this type checker, we need first to annotate the
Object-Z specification with our weak types. For this, we create commands within
a LATEX package (see Table 1) where each of the weak types, is associated to a
LATEX command and the colour in which the contents appears.

Weak Type Command Colour

specification \specification{...} ...

schematext \text{...} ...

term \term{...} ...

set \set{...} ...

declaration \declaration{...} ...

expression \expression{...} ...
definition \definition{...} ...

object \object{...} ...

method \method{...} ...

Table 1. The LATEX commands to annotate an Object-Z specification with.

We use an example of an Object-Z specification ‘TwoCards’ which describes
an action where the balance is the first card plus the second card. Money is
allowed to be withdrawn on both these cards. An example of the specification is
shown in Figure 5 (source file in Figure 2). We use the commands from Table 1
to annotate this specification, giving us the source code shown in Figure 3.

Colours now appear around each grammatical part of the specification (Fig-
ure 5). These colours can be used to reduce the the complexity of the specification
and can also assist beginners in learning the syntax of Object-Z. More exam-
ples of the labelling and weakly typed Object-Z specification can be found in
Appendix D. Other examples of weakly typed Z specifications are also given in
Appendixes A, B and C.

After the specification has been labelled using the ‘ozcga’ package in LATEX,
our weak type checker goes through the specification an checks it for grammatical
correctness. This weak type checking is run in a terminal through a program
implemented in python.

3 Implementation of the OZCGa

In this section we look at the specific implementation of the Core Grammatical
aspect of MathLang for Object-Z (OZCGa), that we created. We go over the
implementation and the specific examples we used to test it.

10

\begin{schema}{TwoCards}
c1,c2:CreditCard \\
totalbal:\num
\where
c1 \neq c2\\
totalbal = c1.balance + c2.balance
\end{schema}

\begin{schema}{withdraw1}
\where
c1.withdraw
\end{schema}

\begin{schema}{withdraw2}
\where
c2.withdraw
\end{schema}

\begin{schema}{tranferAvail}
\where
c1.withdrawAvail \semi c2.deposit
\end{schema}

Fig. 2. Part of an Object-Z specifica-
tion source code.

\begin{class}{\object{TwoCards}}
\also
\specification{
\begin{schema}{TwoCards}
\text{\declaration{\object{c1},\object{c2}:
\expression{CreditCard}}\\
\declaration{\term{totalbal}:\expression{\num}}}
\where
\text{\expression{\object{c1}\neq\object{c2}}\\
\expression{\term{totalbal}=
\term{\object{c1}.\term{balance}+\object{c2}.
\term{balance}}}}
\end{schema}
\begin{schema}{withdraw1}
\where
\text{\method{\object{c1}.withdraw}}
\end{schema}
\begin{schema}{withdraw2}
\where
\text{\method{\object{c2}.withdraw}}
\end{schema}
\begin{schema}{tranferAvail}
\where
\text{\method{\method{
\object{c1}.withdrawAvail}\semi\method{\object{c2}.
deposit}}}
\end{schema}}
\end{class}

Fig. 3. Part of an Object-Z specifica-
tion labelled in OZCGa source code.
The full version can be found in E.

3.1 Expansion of Existing Functional Software

The LATEX style file used for labelling Object-Z specifications to be checked
by the OZCGa.py is built around the oz style file [19], which is the file the
Community Z Tools website [21] suggests for typesetting Object-Z documents in
LATEX, so it can be easily applied to existing Object-Z documents. The software
for the OZCGa itself is built around the software used for the ZCGa - so we
can be fairly confident that the functionality and reliability of the ZCGa has
been preserved in the adaptation to the OZCGa. In addition it means that Z
specifications which can be checked by the ZCGa do not need changing to be
checked with the OZCGa.

3.2 The style file

The zcga.sty style file used for labelling Z specifications for the ZCGa imports the
zed.sty style file. For the ozcga.sty style file we chose to import the oz.sty style
file to deal with specifications written in Object-Z. We chose oz.sty because it
contained all the commands used in the zed.sty style file so ZCGa specifications
written in LaTeX with the ozcga.sty (see Appendixapp:stylefile) style file in
place of the zcga.sty style file are compatible with the ZCGa. We have also kept
the original weak type labels and used the same format for labelling the two
additional weak types object and method.

11

Fig. 4. Part of an Object-Z specifica-
tion.

Fig. 5. Part of an Object-Z specifica-
tion labelled in OZCGa and compiled
with pdflatex. The full version can be
found in Appendix D

3.3 The Code Structure

We have retained all the original code for the ZCGa python file (though we have
added to several functions within it as well as incorporating new functions). This
makes us much more confident in the backwards compatibility of the OZCGa.
It also gives us a very high degree of confidence that the structures present in
both Z and Object-Z are type checked correctly.

Where possible we have copied the parts of each typing rule for terms as
closely as possible when expanding the rules to deal with objects. Most the
expression constants between objects and sets and between objects and other
objects are the same as those between terms and sets and those between terms
and other terms respectively. Similarly the declaration rule for objects closely
resembles the declaration rules for terms. This allows us to have a high degree
of confidence that these rules are well implemented - as they follow the same
structure as well implemented code.

3.4 Problems Encountered

While the typing rules of Z are perfectly compatible with the object definition
rule of Object-Z the way in which they are realised in the zcga.py file makes the
object declaration rule difficult to implement without extensive restructuring of
the code. The reason for this is that the ZCGa assumes that only one specifica-
tion is checked at a time so the checking of specifications is not separable from
the checking of documents. There are two problems with this approach when

12

checking Object-Z specifications which require that the specifications contained
within them are themselves well typed:

– A document can easily contain two specifications which are individually
badly typed, but together well typed (if types only defined in one speci-
fication are used in the other).

– A document can easily contain two well typed specifications which would be
badly typed if treated like they were one specification (if the same type is
declared in each specification).

Our Solution Since we wanted to retain as much of the structure of the ZCGa
as possible our solution is to ask the user to break down their specification so
that only one class is checked at once. In order to do this all data from other
classes, apart from the declarations of terms called within the class being checked
using object.term should be deleted. An example of how this breakdown is done
can be found in Appendix E.

4 Conclusion
In this paper we described a new translation path from an Object-Z specification
into a theorem prover in a step-wise fashion. We have derived and implemented
a new weak typing system for Object Z and thus completing the first step in
the ZMathLang path. This weak typing system is defined by weak types and
derivation rules for object-orientedness and shows that the system can weakly
type check Object-Z specifications. The style file which was produced also acts as
a clear visual refernece for the typing of an Object-Z specification, many errors
can be caught at the stage of adding these labels.

This paper is concerned with the Core Grammatical aspect of Object-Z. The
next step is taking Object-Z specification through to the Document Rhetorical
aspect to check the document rhetorical correctness (e.g. loops in the reasoning).
Using the DRa we can automatically produce dependencies graphs and the proof
skeleton. Other work which might be of interest is to create the MathLang path
for other languages such as SysML or for specifications which are written non-
formally in natural language.

Limitations to the ZDRa is that specifications need to be labelled by hand
and the program runs on a terminal. Perhaps having a user interface to label
the specification and run the program may make things more friendly to use.

References

1. Brucker, A. D., Rittinger, F. and Wolff, B., HOL-Z 2.0: A Proof Environment for
Z-Specifications. Journal of Universal Computer Science, 9(2), 152–172, 2003.

2. https://www.brucker.ch/projects/hol-z/ (Accessed April 2015).

3. Burski, L. and Kamareddine, F., Translating Z into Isabelle Syntax using Math-
Lang. ULTRA Group, Heriot Watt University, 2015.

13

4. Dijkstra, E. W., Notes on Structured Programming. Technological University Eind-
hoven, Department of Mathematics, 1970.

5. Frentiu, M., Correctness, a very important quality factor in programming. Studia
Universitas Babes-Bolyai, Seria Informatica L(1), 11–20, 2005.

6. ISO/IEC 13568, Information technology Z formal specification notation Syntax,
type system and semantics, 2002,

7. Kamareddine, F., Wells, J., Zengler, C. and Barendregt, H.: Computerising Math-
ematical Text. Computational Logic. Handbook of the History of Logic 9, 343-396,
Elsevier, 2014.

8. Kimber, T., Object-Z to Perfect Developer. Masters Thesis, Imperial College Lon-
don, 2007.

9. Lamar, R., A Partial Translation Path from MathLang to Isabelle. PHD thesis,
Heriot Watt University, 2011.

10. Li, Y., Pan, X., Hu, T., Sung, S. Y., Yuan, H., Specifying Complex Systems in
Object-Z: A Case Study of Petrol Supply Systems. Journal of Software, 9(7), 2014.

11. MacKenzie, D., Computer-related accidental death: an empirical exploration, Sci-
ence and Public Policy, 21(5), 233–248, 1994.

12. De Millo, Richard A. and Lipton, Richard J. and Perlis, Alan J, Social Processes
and Proofs of Theorems and Programs, Commun. ACM, 22(5), 271–280, 1979.

13. Smith, G., The Object-Z Specification Language. Software Verification Research
Centre, University of Queensland, 1999.

14. Parker, T.: TOZE - A Graphical Editor for the Object-Z Specification Lan-
guage with Syntax and Type Checking Capabilities. Masters Thesis, University
of Wisconsin-La Crosse, 2008.

15. http://www.eschertech.com/products/perfect developer.php (Accessed April
2015).

16. Preibusch, S., Kamller, F.: Checking the TWIN Elevator System by Translating
Object-Z to SMV. Formal Methods for Industrial Critical Systems: 12th Interna-
tional Workshop, FMICS, pp 38-57, 2007.

17. Jones, R., Methods and Tools for the Verification of Critical Properties, In 5th
refinement workshop, springer workshops in computing, 2004.

18. Arthan, R., On Formal Specification of a Proof Tool. Lemma 1 Ltd.
19. oz Style File, http://web.mit.edu/tex/stuff/latex-dist/psnfss/oz.sty (Accessed Au-

gust 2015).
20. Spivey, M., notation: a reference manual, Prentice-Hall, 1989.
21. Community Z Tools, http://czt.sourceforge.net/ (Accessed August 2015).

14

A Credit Card ZCGa

limit : N

limit : N

limit = 5000

CreditCard

balance : Z

balance + limit ≥ 0

INIT

balance : Z

balance = 0

Withdraw
∆CreditCard

amount? : N

amount? ≤ balance + limit

balance′ = balance − amount?

Deposit
∆CreditCard

amount? : N

balance′ = balance + amount?

WithdrawAvail
∆CreditCard

amount! : N

amount! = balance + limit

balance′ = − limit

15

B CheckIn ZCGa

[STAFF]

Log

users : P STAFF

in : P STAFF

out : P STAFF

in ∩ out = {}

in ∪ out = users

InitLog

Log ′

users′ = {}

in′ = {}

out′ = {}

CheckIn
∆Log

name? : STAFF

name? ∈ out

in′ = in ∪ { name? }

out′ = out \ { name? }

users′ = users

16

CheckOut
∆Log

name? : STAFF

name? ∈ in

out′ = out ∪ { name? }

in′ = in \ { name? }

users′ = users

QUERY ::= isin | isout

StaffQuery
ΞLog

name? : STAFF

reply! : QUERY

name? ∈ users

(name? ∈ in) ⇒ (reply! = isin)

(name? 6∈ in) ⇒ (reply! = isout)

Register
∆Log

name? : STAFF

name? 6∈ users

users′ = users ∪ { name? }

out′ = out ∪ { name? }

in′ = in

17

C Rich Tea ZCGa

[INGREDIENTS]

TEMP ::= hot | cold

CHOICE ::= earlgrey | englishbreakfast

TeaState

cup : P(INGREDIENTS ∪ CHOICE)

kettle : P INGREDIENTS

plate : P INGREDIENTS

ingrTemp : INGREDIENTS 7→ TEMP

service : P(P INGREDIENTS)

dom ingrTemp ⊆ cup ∪ kettle

cup ∩ kettle = {}

InitTeaState

cup : P(INGREDIENTS ∪ CHOICE)

kettle : P INGREDIENTS

ingrTemp : INGREDIENTS 7→ TEMP

service : P(P INGREDIENTS)

cup = {}

kettle = {}

plate = {}

ingrTemp = {}

service = {cup}

18

Prepare
∆TeaState

teabag? : CHOICE

sugar? : INGREDIENTS

water? : INGREDIENTS

cold : TEMP

cup = {}

kettle = {}

ingrTemp′ = ingrTemp ⊕ { water? 7→ cold }

cup′ = cup ∪ { teabag? , sugar? }

kettle′ = kettle ∪ { water? }

service′ = service

BoilKettle
∆TeaState

water? : INGREDIENTS

hot : TEMP

water? ∈ kettle

water? 7→ cold ∈ ingrTemp

ingrTemp′ = ingrTemp ⊕ { water? 7→ hot }

ingrTemp′ = ingrTemp 	 { water? 7→ cold }

cup′ = cup

service′ = service

19

PourTea
∆TeaState

teabag? : CHOICE

sugar? : INGREDIENTS

water? : INGREDIENTS

cold : TEMP

water? 7→ hot ∈ ingrTemp

sugar? ∈ cup

teabag? ∈ cup

cup′ = cup ∪ { water? }

kettle′ = kettle \ { water? }

ingrTemp′ = ingrTemp

service′ = service

AddCake
∆TeaState

cake? : INGREDIENTS

plate′ = plate ∪ { cake? }

cup′ = cup

kettle′ = kettle

ingrTemp′ = ingrTemp

service′ = service ⊕ {plate′}

20

D OZCGa LATEX file

21

22

E A Breakdown of the Specification for Checking

TwoCards

CreditCard

limit : N

limit = 5000

CreditCard

balance : Z

balance + limit ≥ 0

INIT

balance : Z

balance = 0

Withdraw
∆CreditCard

amount? : N

amount? ≤ balance + limit

balance′ = balance − amount?

Deposit
∆CreditCard

amount? : N

balance′ = balance + amount?

WithdrawAvail
∆CreditCard

amount! : N

amount! = balance + limit

balance′ = − limit

23

CreditCard

CreditCard

balance : Z

TwoCards

TwoCards

c1 , c2 : CreditCard

totalbal : Z

c1 6= c2

totalbal = c1 . balance + c2 . balance

withdraw1

c1 .withdraw

withdraw2

c2 .withdraw

tranferAvail

c1 .withdrawAvail
o
9 c2 .deposit

