
Narrative Structure of Mathematical Texts

Fairouz Kamareddine, Manuel Maarek, Krzysztof Retel, and J. B. Wells

ULTRA group, Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/

Abstract. There are many styles for the narrative structure of a mathe-
matical document. Each mathematician has its own conventions and tra-
ditions about labeling portions of texts (e.g., chapter, section, theorem or
proof) and identifying statements according to their logical importance
(e.g., theorem is more important than lemma). Such narrative/struc-
turing labels guide the reader’s navigation of the text and form the key
components in the reasoning structure of the theory reflected in the text.

We present in this paper a method to computerise the narrative structure
of a text which includes the relationships between labeled text entities.
These labels and relations are input by the user on top of their natural
language text. This narrative structure is then automatically analysed
to check its consistency. This automatic analysis consists of two phases:
(1) checking the good-usage of labels and relations (i.e., that a “proof”
justifies a “theorem” but cannot justify an “axiom”) and (2) checking
that the logical precedences in the document are self-consistent.

The development of this method was driven by the experience of com-
puterising a number of mathematical documents (covering different au-
thoring styles). We illustrate how such computerised narrative structure
could be used for further manipulations, i.e. to build a skeleton of a
formal document in a formal system like Mizar, Coq or Isabelle.

1 Introduction

The past forty years have seen a sharp increase in the use of the computer by the
mathematician for his work purposes. Such use covers communication, author-
ing, processing, and checking/verifying mathematical knowledge. There exists
already a number of flexible computer tools that allow to produce aesthetic
presentations of a mathematical document. This presentation, among others,
comprises of a clear structure of a document, and usage of a ’fancy’ and easy to
read fonts and symbols. However, the presentation of a document and its struc-
ture also depends on the style of the mathematician and is usually expressed in
terms of structural components (e.g., chapter or section) and mathematical com-
ponents (e.g., lemma or proof). Moreover, a clear appearance of such components
as well as explicitly specified hyperlinks between such components enhances the
readability of the document and makes the navigation of a text more enjoyable.

Different styles of writing mathematics. The presentation of a mathemat-
ical document is a matter of writing style and involves among other things, a

narrative structure of the document. This narrative structure plays an impor-
tant narration role throughout the theory presented. Clearly expressed hyper-
links between mathematical components show logical dependencies which help
the reader recognize the theory structure of a paper before reading the details.

We prove that two congruences can be
added or subtracted from each other provided
both have the same modulus.

Let
a ≡ b (mod m) and c ≡ d (mod m). (2)

In order to prove that a + c ≡ b + d (mod m)
and a − c ≡ b − d (mod m) it is sufficient to
apply the identities

a + c − (b + d) = (a − b) + (c − d)

and (a − c) − (b − d) = (a − b) − (c − d).

Similarly, using the identity

ac − bd = (a − b)c + (c − d)b,

we prove that congruences (2) imply the
congruence ac ≡ bd (mod m).

Consequently, we see that two congruences
having the same modulus can be multiplied by
each other. [...]

It follows from the theorem on the
multiplication of congruences that a
congruence can always be multiplied
throughout by any integer and that each side
of a congruence can be raised to the same
natural power. [...]

W.Sierpiński [12, Chapter V, §1]

The reader could find his way while
reading the document depending on
how the structure and dependencies
are expressed. One could produce a
clear structure of a document by spec-
ifying explicitly where the important
parts (e.g., sections, definitions, etc.)
start and end and also where the de-
pendencies are clearly expressed. In
such case, the reader has a clear view
of the theory in the document (see
Figure 8). Otherwise, if the mathe-
matician writing style is newspaper-
like, the reader will have a difficult
task finding his way in the document
(see for instance example above).

Motivations. In this paper we con-
centrate on the computerisation of the
narrative structure of a document. Our main motivations are as follow:
1. To handle the structure of a mathematical document as it appears on paper and

at the same time allowing further computerisation and analysis. Our proposed
annotation system can deal with different styles of writing mathematics.

2. To allow the presentation of a text with different layouts. Currently the pre-
sentation of the structure of a documents is rather linear. For instance, it may
not be clear which parts (chunks of text) of a mathematical document depend
on which (which theorem depends on which lemma or definition etc.). Ideally
the presentation of a document should be flexible, and allow to manipulate
the view of the document to produce fully automatically different views on
the structure of a document: dependency graph, graph of logical precedences,
skeleton of the document in a chosen formal system, etc.

3. To allow further formalisation. Capturing the narrative structure of a docu-
ment is not only for computerisation purposes, but also for further formalisa-
tion. The automatically generated views of the narrative structure of a text
are very important to generate further forms of the text including a more
formalised version (in a chosen formal system) as we illustrate in this article.

Contributions. Our contributions can be summarised as follows:
1. A Document Rhetorical aspect (DRa) ontology and a related annotation sys-

tem. We present an ontology and an associated markup system, that offer a
way to explicit the traditional components of a mathematical text (such as
chapters, sections, proofs) and the dependencies between them. The ontology
is very easy for the mathematician to use and requires no extra skills.

2. Automatic processing of the narrative structure of a text. Automated pro-
grams take the mathematician’s DRa annotated mathematical text and build
a number of internal representations and screen views of the narrative struc-
ture of the text. This includes: a dependency graph that represents relations
between annotated parts of text, and its graph of logical precedences. The
internal representations are used for further consistency analysis and formal-
isation while the screen views show the reader the narrative structure.

3. Reuse of the narrative structure of a document. We show how the automati-
cally generated representations of the narrative structure of a document lead
to a skeleton of a formal document in the Mizar Language. Similar steps lead
to formal skeletons in other formal systems.

Fig. 1. MathLang project roadmap.
This diagram illustrates both the MathLang decomposition by means of knowledge aspects
and the MathLang authoring process. The central piece represents a MathLang document
while the corner pieces are elements of the authoring process.

CML (top-left corner) is the starting
point of any MathLang authoring. The
blobby shape indicates that CML is
highly automation-unfriendly. TSa, pre-
sented in [4,3], offers facilities to asso-
ciate portions of text with their meaning
in terms of computerised data.

CGa (top-right corner) makes explicit
the grammatical role played by the el-
ements of the texts. Its shapes mimic
those of CML but it has a more precise
structure. An automatic checking vali-
dates this grammatical aspect [5].

DRa (bottom-left corner) gives the nar-
rative structure of a text which includes
the relationships (pictured as arrows) be-
tween labeled text entities (pictured as
polygons) (Section 2). GoLP is an inter-
pretation of these relationships in terms
of logical precedence (Section 3).

Starting from a MathLang document we
experimented with further computeri-
sations/formalisations (Section 5 and
[2]). We illustrate this point (bottom-
right corner) with a proof-tree like in-
terpretation which is a possible starting
point for building a formalised proof.

Thick arrows draw the MathLang authoring process which starts with CML and continues
to further formalisations. CGa and DRa steps could be made simultaneously or separately.

Outline. In Section 1.1 we present the MathLang roadmap. Section 2 describes
our approach to annotating the structure of mathematical documents and gives
the DRa ontology used in the annotation system. Section 3 presents automatic
transformations of the document’s narrative structure into different views. We
also present a formal mathematical model describing those automatically gener-
ated views. In Section 4 we present the analysis process of the dependency graph
generated from the annotation. In Section 5 we express how the structure and
its different views are used to build a skeleton of a part of Mizar article. Finally,
in Section 6 we describe related work, conclude and discuss future work.

1.1 The MathLang project roadmap

Since 2001, the MathLang project, has developed a number of prototypes for
computerising mathematics. MathLang aims to give alternative techniques for
capturing the mathematical knowledge of a mathematical text in a way that
permits the transformation of this knowledge into new computerised and/or for-
malised versions while accommodating different degrees of formalisation, differ-
ent mathematical editing/checking tools and different proof checkers. We started
from de Bruijn’s Mathematical Vernacular [1] (MV), and Nederpelt’s Weak Type
Theory (WTT) whose proof theory was developed by Kamareddine [6] and were
faced with the huge challenge of how to really create a path from original math-
ematical texts into fully formalised ones and how would this path differ for
different choices of texts, text editors, logical frameworks, and proof checkers.

Extensive computerisations of different mathematical texts (some taken fully
from natural language to different levels of computerisation and finally to full
Mizar), continue to shape the MathLang language. Its expressiveness has been in-
creased in comparison with MV and WTT. Moreover, MathLang adopted to de-
compose the computerisation process by means of knowledge components called
aspects. In the current development of MathLang we have formalised and imple-
mented three aspects: CGa and TSa (see below), and DRa which is the subject
of this article. Figure 1 illustrates how the MathLang aspects are combined.

The Core Grammatical aspect (CGa) is a formal language derived from
MV and WTT which explicits the grammatical role played by the elements of a
mathematical text. CGa has a finite set of grammatical categories: Terms, sets,
nouns, adjectives, phrases, statements, declarations and contexts/local-
scoping, definitions, steps, blocks. The MathLang automated type system [5]
checks whether the reasoning parts of a document are coherently built.

The Text and Symbol aspect (TSa) builds the bridge between a mathemat-
ical text and its grammatical interpretation and adjoins to each CGa expression
a string of words and/or symbols which aims to act as its representation. We
added information on how each CGa element should be printed on paper or on
screen. This makes MathLang’s encoding of mathematical texts faithful to tra-
ditional mathematical authoring [4]. TSa adds on top of a mathematical text a
new dimension to the document where colored boxes represent the grammatical
categories of the CGa. We implemented TSa in a plugin for the scientific text
editor TEXmacs (http://www.texmacs.org/).

2 Annotating the narrative structure of a document

This section gives our approach to annotate mathematical documents. The math-
ematical text on the left hand column of Figure 8 is used as our main example.

2.1 What does the mathematician have to do?

To annotate a mathematical text, the mathematician follows three easy steps:
1. He wraps chunks of text with unique boxes and names each box. Unicity

allows avoiding problems when relating between some boxes. For our example
of Figure 8, the names are: S2, D1, D2, T 1, PT 1, T 2, L1, PL1, PT2.

2. He assigns to each (name of a) box, structural or/and mathematical rhetorical
roles which this box may play. The user can either use the structural/mathe-
matical roles listed in Table 1, or specify his own. For our example of Figure 8,
we assigned the roles stated in the left hand column in the table below.

3. He explicits the relations between wrapped chunks of texts using the relation
names of Table 1. For our example of Figure 8, the relations are presented in
the right hand side of the table below.

Assigned rhetorical roles Relations

(S2, hasStructuralRhetoricalRole, section)
(D1, hasMathematicalRhetoricalRole, definition)
(D2, hasMathematicalRhetoricalRole, definition)
(T1, hasMathematicalRhetoricalRole, theorem)
(PT1, hasMathematicalRhetoricalRole, proof)
(T2, hasMathematicalRhetoricalRole, theorem)
(L1, hasMathematicalRhetoricalRole, lemma)
(PL1, hasMathematicalRhetoricalRole, proof)
(PT2, hasMathematicalRhetoricalRole, proof)

(PT1, justifies, T1)
(PT2, justifies, T2)
(PL1, justifies, L1)
(PT1, uses, D1)
(PT2, uses, L1)
(PL1, uses, T1)
(PL1, uses, D1)

We use the RDF triples
[16] to represents a state-
ment of a relationship be-
tween the things denoted
by the names of boxes an-
notated by mathematician
that it links (see triples in
the table). Each triple is expressed by subject-predicate-object triple, where a
predicate (i.e., a property) denotes a relationship. The order in a triple between
subject and object is significant, and when transformed into a dependency graph
the direction of the arc the triple makes, always points toward the object.

2.2 The annotation system ontology

Looking at different styles of mathematical knowledge representation we can
distinguish two kinds of document structural units: division elements and math-
ematical units. Division elements express a textual structure (e.g., chapter or
section) of a mathematical text. Mathematical units, are usually expressed in
mathematical textbooks and papers in terms of theorem, lemma or remark.
Some mathematical units, for instance “proof”, are more or less hinted by the
authors’ style of writing (see the example in the introduction). The human reader
is able to recognise and infer them only by looking carefully at the original text.

We express and tag these structural units (division elements and mathemat-
ical units) explicitly. By explicit annotations of structure units we refine the
content of the already captured original text, and at the same time we give a
wider possibility for (semi)automatic text manipulation (see Sections 3 and 5).

Ontology. The literature contains many definitions of an ontology. Roughly
speaking, an ontology [17] is a representation of terms with their relationships

in a specific domain. An ontology in computer science describes: (1) individ-
uals/instances of a class; the basic objects of ontology (e.g., “Bach” is an in-
stance of class “Person” (http://www.foaf-project.org/); (2) classes/abstract
groups, sets, or collections of objects (e.g., “Person”); (3) relations/proper-
ties, ways that objects can be related to one another, e.g., relation childOf
(http://vocab.org/relationship/), could be used to present a statement in terms
of RDF triple: (“Sebastian Bach”,childOf,“Ambrosius Bach”).

DRa ontology in a nutshell. To model our DRa ontology we used the OWL-
DL Web Ontology Language, which is the OWL sub-language so-named due to
its correspondence with description logics [14]. An OWL ontology may include
description of classes, instances of them and properties between their elements.

Fig. 2. Part of the DRa annotation system ontology.

The information presenta-
tion using OWL is very pow-
erful in the way that it is
suitable for exchanging in-
formation and processing by
other software applications.

Following OWL, our DRa
ontology explicits the formal
description of classes (whose
names start with capital letter, e.g., StructuredUnit), individuals (e.g., section)
and properties/relations (whose names start with small letter, e.g., justifies or
hasMathematicalRhetoricalRole) in a domain of DRa.

The DRa concepts are given as three disjoint OWL classes [15] (see Figure 2):
1. StructuredUnit.
2. MathematicalRhetoricalRole whose instances are lemma, proof, etc.
3. StructuralRhetoricalRole whose instances are chapter, section, etc.

Relations between various instances are given as OWL object properties [15]:
1. the ownership relation between structural units and the roles played in a text,

i.e. hasMathematicalRhetoricalRole and hasStructuralRhetoricalRole.
E.g., in Figure 8, (D1, hasMathematicalRhetoricalRole, definition).

2. The relations between instances of the class StructuredUnit:
(a) relatesTo, justifies, subpartOf, uses, exemplifies, inconsistentWith.

The relations of the first kind (item 1) are modeled as object properties (i.e., link
individuals of one class to individuals of another class). The relations presented
in item (2) are modeled as subproperties of a generic object property – specifies,
i.e. (A, specifies, B), where A, B are instances of class StructuredUnit.

Relations between instances of the classes MathematicalRhetoricalRole or Struc-

turalRhetoricalRole and the XML schema datatype (xsd:string) are given as OWL
datatype properties [15] (i.e., they link individuals of a class to the XML Schema
datatypes [18]): hasOtherMathematicalRhetoricalRole and hasOtherStructuralRhetor-

icalRole. The existence of these relations gives the freedom if one wants to pro-
vide a new label not appearing in Table 1, this is possible through the usage of
a variant property called hasOtherStructuralRhetoricalRole for division elements
and hasOtherMathematicalRhetoricalRole for mathematical units. The range of

values of such properties is restricted to the XML Schema datatype ”string”.
(A, hasOtherMathematicalRhetoricalRole, discussion).

Description
Instances for the hasStructuralRhetoricalRole property:
preamble, part, chapter, section, paragraph, etc.
Instances for the hasMathematicalRhetoricalRole prop-
erty: lemma, corollary, theorem, conjecture, definition, ax-

iom, claim, proposition, assertion, proof, exercise, example,
problem, solution, etc.

Relation
Types of relations: relatesTo, justifies, subpartOf, uses,
exemplifies, inconsistentWith

Table 1. DRa annotations.

Since both division elements
and mathematical units express
the boundaries of chunks of
text, we included them into one
class (StructuredUnit) within the
DRa ontology. The two dis-
joint classes: StructuralRhetorical-

Role and MathematicalRhetorical-

Role allow to represent the different roles played by division elements and math-
ematical units. Instances of the first class are conventional names for division
elements which might at the same time express the hierarchical level of a doc-
ument structure, i.e., chapter, section, etc. Whereas, all instances of the class
MathematicalRhetoricalRole are the common labels and names for mathematical
units, i.e., theorem, corollary, etc. All instances of the classes StructuralRhetor-

icalRole and MathematicalRhetoricalRole, are fixed conventional labels used to
annotate mathematical documents.

The DRa ontology allows to relate particular instance of the class Structure-

dUnit with any instance of StructuralRhetoricalRole and MathematicalRhetorical-

Role via the properties hasStructuralRhetoricalRole and hasMathematicalRhetor-

icalRole respectively. We allow the use of both properties when relating to an
instance of a class StructuredUnit. This enables to specify, for instance, that a
chunk of text plays the structural role “section” and concurrently plays the math-
ematical role “theorem”. By stating two properties simultaneously in a document
annotation we allow to encode different styles of writing mathematics.

While annotating the narrative feature of a document, we make explicit cor-
relations between distinct recognised chunks of text. For this, within the DRa
ontology, we introduced other properties which describe relations between in-
stances of the class StructuredUnit. These properties are mainly oriented to rep-
resent dependencies between mathematical units and/or division elements. Our
DRa ontology clarifies the important relationships in a text. The properties used
to represent relations between chunks of text, have human readable names: re-

latesTo, justifies, subpartOf, uses, inconsistentWith, exemplifies. In a formal system,
some of these properties have formal meanings:
1. (v1, justifies, v2) – v1 describes a proof object that proves the formula v2.
2. (v1, uses, v2) – (1) All/some variables under the general quantifiers that have

been applied in a formula v2 have been instantiated in formula v1 which could
be proved via simple reasoning where v2 appears among references needed to
prove v1. (2) The formula v2 has been unfolded or folded in the formula v1.

3. (v1, subpartOf, v2) – (1) if v2 is a formula, then v1 is an inseparable part of
that formula; (2) if v2 is a proof object, then v1 is part of that proof object.

4. (v1, inconsistentWith, v2) – if v1 and v2 are proof objects of one formula, then
the environment in which those proof objects were achieved is inconsistent.

3 Automatic transformation of a DRa annotated text

In this section we show how to use the DRa annotated text to automatically cre-
ate a number of views of the text including the dependency graph (that represents
relations between annotated parts of text) and the graph of logical precedences.
These views and graphs are formally described in this section.

G = (V, A, E)
V = {v | v = nodeId} – set of vertices
A = {a | a = (v, r) ∧ r ∈ MR ∪ SR ∧ MR ∩ SR = ∅} – set of vertices attributes
E = {e | e = (vsrc , α, vanch) ∧ vsrc , vanch ∈ V ∧ α ∈ Ld} – set of edges

where
Ld = {relatesTo, justifies, subpartOf, uses, inconsistentWith, exemplifies} – the set of allowed labels in a
dependency graph
MR – the set of MathematicalRhetoricalRoles, cf. Table 1
SR – the set of StructuralRhetoricalRoles, cf. Table 1
nodeId – a unique name/identifier given by the user while wrapping the text with boxes

Fig. 3. Formal presentation of a dependency graph.

3.1 The automatically generated dependency graph of a document

A document’s dependency graph is a directed labeled graph with attributes
assigned to the vertices (see Figure 3). The vertices (resp. attributes resp. edges)
of such graph are the names of boxes (resp. mathematical or structural rhetorical
roles resp. relations) specified by the user during the first (resp. second resp.
third) step of the annotation of the document described Section 2.1.

S2

D1

D2

T1

PT1

T2

L1

PL1

PT2

uses

uses

justifies

uses

uses

justifies

uses

justifies

D1

D2

T1

PT1

T2

L1

PL1

PT2

≺

≺

≺

≺

≺

≺

≺

≺

Fig. 4. Dependency graph and GoLP
On the left hand side we have the auto-
matically generated presentation of the de-
pendency graph constructed from the input
of the mathematician in Section 2.1 for our
main example of Figure 8. The right hand
side of the figure presents automatically gen-
erated GoLP from the dependency graph.

Figure 4 (and the right hand side of
Figure 8) presents the dependency graph
of our particular example. This graph con-
sists of (1) relations between parts of the
text which are represented by visible ar-
rows, and (2) graph nodes which have
specified (but not visible) mathematical
or/and structural rhetorical roles. Depen-
dencies between the annotated chunks of
text play an important role in mathemat-
ical knowledge representation. Thanks to
those dependencies, the reader finds his
own way while reading the text without
the need to understand all its subtleties.
Moreover, we will show in the next sec-
tions that these dependencies give the
ability to present other views on a doc-
ument, and structuring the skeleton of a
document in a formal language Mizar. De-
pendencies graph (view as in Figure 4)
are found automatically from the mathe-
maticians’ input in Section 2.1.

3.2 Logical precedences of mathematical relations

The annotation identifies and makes explicit different parts of the text, stores
either the mathematical or structural or both roles of each chunk of text, and
annotates the relations between recognised chunks of text (see Section 2.1). The
usage of the DRa system allows us to express relations explicitly in the comput-
erised version of the original text. This explicit representation of relations allows
to build a graph of logical precedences between different chunks of the text.

The logical precedence between two chunks of text indicates the relative
positions of the chunks in a sequence of reasoning steps. These steps, together
with other steps in the document, contribute to the analysis of the logical cor-
rectness of the original text. Logical precedence is independent of the sequential
appearance of the chunks of text in a document. For instance, in Figure 8, the
“Proof” (node PT 1) is stated after “Theorem 1.19” (node T 1). However, the
logical precedence between node PT 1 and node T 1 is the other way (see the
direction of the arrow established between both nodes shown in Figure 4). In
such case we say that PT 1 logically precede T 1.

We assume the following kinds of logical precedences, namely: strong logical
precedence, weak logical precedence and not-specified logical precedence , anno-
tated in the paper as: ≺, � and ⋍ respectively.

Relation Annotation triple Logic precedence
pattern

relatesTo (A, relatesTo, B) A ⋍ B

subpartOf (A, subpartOf, B) A � B

justifies (A, justifies, B) A ≺ B

inconsistentWith (A, inconsistentWith, B) B ≺ A

uses (A, uses, B) B ≺ A

exemplifies (A, exemplifies, B) B ≺ A

Table 2. Logical precedencies of specific relations

In Section 2.2 we gave a
DRa ontology which allows to
explicit the relations between
recognised StructuredUnits in
a document. Each such stated
relation expresses its own log-
ical precedence (see Table 2).

3.3 The automatically generated graph of logical precedences:GoLP

Graph transformation

Trans : GDG → G′
GoLP

Trans((v, a, e)) = (v′
, e

′)

(where v′ = Trans
V

(v)

and e′ = Trans
E

(e))

Vertex transformation

Trans
V

: VDG → V ′
GoLP

Trans
V

(v) = v

Edge transformation

Trans
E

: EDG → E′
GoLP

Trans
E

((vsrc, relatesTo, vanch)) = (v′
src , ⋍, v

′
anch)

Trans
E

((vsrc, justifies, vanch)) = (v′
src ,≺, v

′
anch)

Trans
E

((vsrc, subpartOf, vanch)) = (v′
src ,�, v

′
anch)

Trans
E

((vsrc, uses, vanch)) = (v
′
anch , ≺, v

′
src)

Trans
E

((vsrc , inconsistentWith, vanch)) = (v′
anch , ≺, v

′
src)

Trans
E

((vsrc , exemplifies, vanch)) = (v′
anch , ≺, v

′
src)

(where v′
src = Trans

V
(vsrc) and v′

anch = Trans
V

(vanch))

Fig. 5. Dependency graph transformation function.

Using the logical prece-
dence of each relation
(see Table 2), one can
automatically build for
a mathematical text, a
graph of logical prece-
dences (GoLP). Figure 4
gives the automatically
generated GoLP for our
main example. GoLP is
a directed graph with la-
beled edges, achieved by
automatic transformation
of the dependency graph
using the transformation
function Trans (see Fig-
ure 5). In a GoLP, the direction of an edge together with a label of that edge

expresses the logical precedence corresponding to the relation in a dependency
graph from which the edge (in GoLP) was achieved. Figure 6 gives the formal def-
inition of a graph of logical precedences. Assume that G is the dependency graph
(DG) shown in Figure 4 and G′ is the graph of logical precedences (GoLP) shown
in Figure 4. Using the transformation function Trans shown in Figure 5, we can
automatically transform G into G′.

G′ = (V ′, E′)
V ′ = {v′ | v′ = nodeId} – set of vertices
E′ = {e′ | e′ = (v′

src , α
′, v′

anch) ∧ v′
src, v′

anch ∈ V ′ ∧ α
′ ∈ Lp} – set of edges

where Lp = {⋍,�,≺} – the set of logical precedences in GoLP

Fig. 6. Formal presentation of a graph of logical precedences (GoLP).

4 Automatic analysis of the dependency graph and GoLP

This section explains the checking of the DRa annotation done in two phases:
1. Checking the annotation of distinct roles of recognised fragments of text and

the good-usage of labels and relations.
2. Checking that the GoLP logical precedences are self-contained.

Pre-analysis of the dependency graph The first phase of checking catches
some inconsistencies while representing different roles of recognised chunks of
text and stated dependencies between them. E.g., if two chunks of text were
annotated as “proof” resp. “axiom”, and if a relation justifies is stated between
them (i.e. (proof, justifies, axiom)), the first stage validation gives a warning to
the user while analyzing such stated relation. It returns two warnings: one on
the relation type – which might/should be different, and another on the role
specified for each chunk of text – which was mistakenly specified.

This checking captures other cases. Assume that one has specified simultane-
ously two MathematicalRhetoricalRole for a chunk of text, for instance “axiom”
and “proposition”. In such a case the analysis will point a warning stating that
“axiom” cannot be provable, whereas “proposition” can be proved. Similarly, if
one simultaneously states two StructuralRhetoricalRole for one chunk of text, the
analysis will point the warning, if they extensively differ, for instance “chapter”
and “subsection”. Where the difference between a “chapter” and a “subsection”
is that the background knowledge of a “chapter” is something like an external
library, whereas for “subsection” the context is more specific and composed of
small chunks of text from the previous sections or chapters.

Checking the consistency of labels in a GoLP To allow the analysis of
a GoLP we have identified a number of common relational properties for logi-
cal precedences (see Table 3). These properties are reusable while checking the
labeling consistency in a GoLP – see following section.

We give an extended version of transitive closure of a directed graph, which
we call extended transitive closure. A transitive closure of a directed graph (built
using for example Roy-Warshall’s algorithm [10,11]) differs from our extended
transitive closure of the graph in the data stored in the latter. We give a formal
definition of the transitive/extended transitive closure of a directed graph.

Relational
properties

Weak logical precedence Strong logical precedence

reflexive C � C

irreflexive ¬(C ≺ C)
asymmetric C ≺ C′ =⇒ ¬ (C′ ≺ C)
antisymmetric C � C′ ∧ C′ � C =⇒ C = C′

transitive A � B ∧ B � C =⇒ A � C A ≺ B ∧ B ≺ C =⇒ A ≺ C

(A ≺ B ∧ B � C) ∨ (A � B ∧ B ≺ C) =⇒ A ≺ C

Table 3. Relational properties of logical precedences

Let us take a directed graph G = (V, E) where V is a set of vertices and
E is a set of directed edges denoted as (v, w), where v, w ∈ V . We denote by
π(v,w) = {v, v0, v1, . . . , vk, w} a path from the initial vertex v to the terminal
vertex w in G, which goes through the vertices v0, v1, . . . , vk, where k ∈ N.
A transitive closure of graph G is a graph G+ = (V, E+) such that E+ con-
tains an edge (v, w) if and only if G contains a path π(v,w). The extended
transitive closure of graph G is a graph G∗ = (V, E+, Π∗) such that Π∗ =
{[π1

(v,w); π
2
(v,w); . . . ; π

k
(v,w)] | v, w ∈ V ∧ πi

(v,w) 6= π
j

(v,w) for i, j ∈ N, i 6= j} if

and only if π(v,w) ∈ E+. We denote by [π1
(v,w); π

2
(v,w); . . . ; π

k
(v,w)] the list of all

possible paths from vertex v to vertex w in the graph G+.

The extended transitive closure of a GoLP contains: (1) the vertices of the
GoLP (2) the edges (which we get while building a normal transitive closure
using Roy-Warshall’s algorithm) and (3) the list of all possible paths that create
each edge in the original transitive closure of a graph. From such stored data
we can generate a list of labels for each edge in the extended transitive closure
by reusing the relational properties of logical precedences (see Table 3). Once we
build the extended transitive closure of the GoLP, we check for each edge if the
paths corresponding to that edge are consistently labeled.

We illustrate the analysis of consistent labeling on the GoLP based on our
example. Take the nodes D1 and PL1, and the edge (D1, PL1) (see Figure 4). In
the extended transitive closure of our GoLP we have two paths that form an edge
(D1, PL1): (1) a direct path denoted πd

(D1,PL1) = {D1, PL1}, (2) an indirect

path denoted πind
(D1,PL1) = {D1, PT 1, T 1, PL1}. The direct path is labeled with

a strong logical precedence symbol ≺, denoted as π
d,≺
(D1,PL1). When evaluating

the label of the second indirect path πind
(D1,PL1), we have to take into account the

relational properties of the logical precedences shown in Table 3. In our case, we
use the transitivity of strong logical precedence (symbol: ≺) between the three
edges: (D1, PT 1), (PT 1, T 1), (T 1, PL1). From this, we obtain a label ≺ of an

indirect path πind
(D1,PL1), denoted π

ind,≺
(D1,PL1), which has the same label as a direct

path π
d,≺
(D1,PL1). Finally, we can say that the edge (D1, PL1) in the graph of

logical precedences (GoLP) is labeled consistently.

Labeling consistency validation is performed on each existing edge in the
extended transitive closure of GoLP built from a dependency graph of the original
document. Once we go through the whole checking of the graph we can say that
the GoLP is valid according to the consistent labeling.

5 From the document narrative structure to the formal

document skeleton in formal systems

So far, the mathematician’s DRa annotations of his text in Section 2.1 have
been used to automatically produce the dependency graph and the GoLP of the
text which explicit the narrative, structural and logical features of the text. In
this section, we explain how the automatically generated dependency graph and
GoLP are used for further processing and formalisation of the text into formal
proof checkers. In particular, we express how the dependency graph together
with the GoLP are reused to build a skeleton of a part of a Mizar article – Text-

Proper. We do not go into the technical details. Instead, we present roughly
the transformation hints based on our main example resulting in the Mizar
Text-Proper skeleton of Figure 7. For extensive details on the passage from the
dependency graph and the GoLP into Mizar Text-Proper, Mizar formal proof
sketch FPS and full Mizar, see [2]

In Section 2.1, the mathematician specified that a big box named S2 is an en-
tire section in the document. In Mizar the Text-Proper part of a document could
be divided into a sequence of Sections, where each Section starts with begin and
consists of a sequence of theorems and definitions together with their proofs.

S2

D1

D2

T1

PT1

T2

L1

PL1

PT2

uses

uses

justifies

uses

uses

justifies

uses

justifies

begin :: Section
:: Title ...

definition
:DEF1:

end;

definition
:DEF2:

end;

theorem TH1:
proof
...
... by DEF1 ;
...
end;

LEM1:
proof
...
... by DEF1,TH1;
...
end;

theorem TH2:
proof
...
... by LEM1;
...
end;

Fig. 7. Transformation into Mizar skeleton.
The left hand side reproduces the dependency graph
of our example (Figure 8). On the right hand side we
show the Mizar Text-Proper skeleton of the same ex-
ample. The arrows from left to right show how the de-
pendency graph is used to build the Mizar Text-Proper
skeleton. 2 stands for holes (incomplete proofs).

The division of the Text-

Proper into Sections has no
impact on the correctness of
the Mizar document. Hence,
the whole box is indicated
to be a section by specify-
ing explicitly begin at the
very top of the right hand
side of Figure 7. It also con-
sists of two lines ::Section

and ::Title ... which are
treated as Mizar comments,
and are solely oriented for the
Mizar user consumption, or
the reader of the Mizar file.
Inside ::Title ... it is a
good practice (in the Mizar
community) to specify the ti-
tle of this Section of the Mizar
document.

Since the mathematician
specified for the box D1 the
MathematicalRhetoricalRole def-

inition, then it is trans-
formed into Mizar syntax as:
definition :DEF1: D1 end; (see Figure 7). In Mizar we introduce the label
DEF1 for this definition to be able to refer to it in further reasoning steps.

Since the mathematician specified for the box T 1 the MathematicalRhetor-

icalRole theorem, then it is transformed into Mizar syntax as: theorem T 1 .
Moreover, since the box PT 1 has the MathematicalRhetoricalRole proof, then we
transform it into: proof 1 end;. Moreover, since a block of steps having the
mathematical role proof is in the relation justifies with a single statement, we
can say that this is a particular Justification in Mizar, which is transformed into
a specific form. See the corresponding transformation arrows in Figure 7.

In the dependency graph of our main example we also specified that some
blocks of text use other blocks. For instance a block of text named PT 2 uses

statement L1 . Here, we transform PT 2 into a specific Mizar Proof block,
which contains an expression with Straightforward-Justification to statement
L1 , where in Mizar it is reused by referring to a label (i.e., LEM1) that was
assigned to a statement L1 during the transformation into the Mizar syntax.

During the transformation of the dependency graph, we use the GoLP of
our main example to be able to put annotated and named chunks of text into a
proper Mizar order inside the Mizar skeleton.

The above transformation process leads to a part of a Mizar Text-Proper

skeleton of a Mizar document (given in Figure 7 for our main example).

The grammatical information of the original text, which is captured by the
CGa aspect of MathLang and stored in the MathLang document, can be then
used to fill more details in the current skeleton of the Mizar document. This
better filled document could be transformed later into a proper Mizar document.
The work describing these transformation and usage of the MathLang document
for the migration process into the Mizar language, has been described in [2]

6 Related Work, Conclusions and Future Work

Many studies have been carried on the structure of documents. For exam-
ple, the Text Encoding Initiative Guidelines are international standards that
enable the representation of a variety of literary and linguistic texts (http:
//www.tei-c.org/). DocBook (http://www.docbook.org), provides a system
for writing a structured document using XML. Another tool is OMDoc ([13] -
Open Mathematical Documents, see below). All these mentioned systems have
the possibility to separate and divide a document into a number of different
structural components (sections or mathematical assertions) and allow annotate
them in the computerised version of a document. However, our proposed markup
system is simpler and is concentrated only on the annotation of the narrative
structure of mathematical documents, whereas others are more oriented for cap-
turing also documents subtleties. We believe that separating the concerns and
the steps of computerisations can play a very helpful role in developing computer
tools that can aid the various levels of computerisation and formalisation.

OMDoc vs DRa – a short comparison. OMDoc presents mathematical
knowledge on three levels: the object and formula level, the statement level, and
the theory level. What is made explicit by the DRa markup, is similar to the
statement level and partly to the theory level in the OMDoc system. The OM-
Doc markup distinguishes the knowledge elements of a theory into constitutive

ones like symbols, axioms, and definitions (which present the essence of the anno-
tated theory) and non-constitutive ones such as assertions, their proofs, examples
(which illustrate properties and attributes of mathematical objects determined
by the constitutive statements). This shows a different approach to annotating
the same knowledge. The aim of introducing the DRa is to be able to catch and
store the narrative structure of the text, and simultaneously allow to stay as
close as possible to the original document and the style it was written in. There-
fore, on the DRa markup we do not distinguish constitutive or non-constitutive
statements. We recognize only one class of elements, called StructuredUnit, and
we distinguish the roles they play in mathematical knowledge representation.

Therefore, the purposes/aims of OMDoc and DRa are different. As already
mentioned, all instances of the class MathematicalRhetoricalRole in the DRa on-
tology, are presented as separated disjoint classes in the OMDoc ontology [19].
This means that “axiom” is an ontology class in the OMDoc ontology, where in
the DRa it is expressed as an instance (individual) of a class MathematicalRhetor-

icalRole. This particular name “axiom” expresses a role of the text labeled by
that name, and hence in the DRa ontology we annotate it by stating the prop-
erty hasMathematicalRhetoricalRole whose range value is an appropriate instance
(i.e., “axiom”) of a class MathematicalRhetoricalRole.

<definition xml:id="node -D1.def">

<CMP>A subset A ⊂ R is inductive if [...]
<assertion xml:id="thm-T1" type="theorem ">

<CMP>Let J be a subset of Z+ [...]
<proof xml:id="proof -PT1" for="#thm -T1">

<CMP>J is inductive so J contains [...]

Both annotation systems
OMDoc and DRa allow to
markup dependencies between
statements. In the OMDoc file
format they are implemented
by means of the for attribute to OMDoc’s elements (e.g., <proof

for="#id-of-assertion">). A possible encoding of a part of our main example
shown in Figure 8 in OMDoc is sketched1on the right hand side. Within the
DRa system we annotate the relation as RDF triple, and it might be expressed
in the MathLang internal file using any kind of XML-RDF recommendations.

The other and main advantage of DRa over OMDoc is a possible analysis of
the dependency graph and the GoLP, which are automatically built from the
performed annotation. This analysis allows to check the annotation of the narra-
tive/rhetorical aspect of a document (see Section 4). Although OMDoc gives a lot
of elements and constructions that can be used to structure mathematical doc-
uments, these allow the user some software compatibility but no validation yet.
The DRa annotation system gives the user a validation tool making it possible
to analyse the well formation/encoding of the rhetorical aspect of a document.

Other work [8,9] present a method to express the logical structure of a doc-
ument and hyperlinks between chunks of mathematical text that enhance the
readability of a document and the navigation throughout the text. Proposed
methods detect the logical structure of a text and several types of hyperlinks
from printed mathematical documents. Our approach differs in the sense that we
propose an annotation system that allows to express such logical structure and

1 For readability and brevity, we show only the opening tag of each XML element for
most elements; we use indentation to express nesting.

hyperlinks/relations while authoring a document. Moreover, we use the depen-
dency graph achieved from the annotation to build a formal document skeleton
(as we have done in Mizar and can be done in other systems).

Conclusions. We have presented in this paper our approach to computerise
the narrative aspect of mathematical texts. We built a DRa ontology which
described formally the domain of narrative/structural representations of math-
ematical knowledge in a document. The ontology allows to share a common
understanding of the structure of the represented knowledge among other peo-
ple and software agents. The ontology separates a domain knowledge (DRa) from
the operational knowledge – the actual annotation. By using the ontology we
annotated/marked up our main example shown in Figure 8.

We presented the meaning behind the DRa annotation and gave automated
tools which generate different representations of the document structure. We
showed how the encoded Document Rhetorical aspect annotation could be vali-
dated for checking the well formation of the annotation. We also expressed which
mistakes made during annotation we are able to automatically catch. Finally we
demonstrated how the dependency graph and the graph of logical precedences
are used to build the skeleton of Mizar Text-Proper.

Future work. MathLang is an ongoing project. The DRa encoding system
is a part of the MathLang project. As future work, we need to concentrate
on the evaluation and improvement of the DRa system. We need to finish the
implementation of the DRa validation rules and test them on a bigger examples.
We have to work further on the DRa ontology. In particular we have to refine
the instances of a class StructuralRhetoricalRole. Namely, we need to separate
the depth level of structural units labels from the actual meaning of a unit. For
instance “section” and “subsection”, for the representation purposes, differ only
on the embedded relation. Therefore we have to investigate how the depth level
can be incorporated within the DRa ontology.

We also need to investigate how a mathematician could add his own intended
relation to the DRa system. For instance, he might want to add the explanationOf

relation which could be used to express that (example, explanationOf, definition).
We have to incorporate this kind of possibilities within the DRa markup system.

Another advantage is that we do not provide yet another concrete syntax
for mathematical encoding. Instead, we incorporate the markup of the narrative
aspect of a mathematical text into the existing encoded document. We believe
that a clear separation between different aspects of mathematical knowledge
and their markup brings a clear guidance for non expert authors. This guidance
mainly helps to extract from the original text, different aspects of mathematical
knowledge at different phases of its computerisation.

References

1. N.G. de Bruijn. The mathematical vernacular, a language for mathematics with
typed sets. In Workshop on Programming Logic, Sweden, 1987.

2. Fairouz Kamareddine, M. Maarek, K. Retel and J.B. Wells. Gradual computeri-
sation/formalisation of mathematical texts into mizar. http://www.macs.hw.ac.

uk/~retel/, 2007.
3. Fairouz Kamareddine, R. Lamar, M. Maarek and J.B. Wells. Restoring Natural

Language as a Computerised Mathematics Input Method. http://www.macs.hw.

ac.uk/~mm20/, 2007.
4. Fairouz Kamareddine, M. Maarek, and J. B. Wells. Flexible encoding of mathe-

matics on the computer. In Mathematical Knowledge Management, 3rd Int’l Conf.,

Proceedings, volume 3119 of LNCS, pages 160–174. Springer, 2004.
5. Fairouz Kamareddine, M. Maarek, and J. B. Wells. Toward an object-oriented

structure for mathematical text. In Mathematical Knowledge Management, 4th

Int’l Conf., volume 3863 of LNAI. Springer, 2006. Pages 217–233.
6. Fairouz Kamareddine and R. Nederpelt. A refinement of de Bruijn’s formal lan-

guage of mathematics. J. Logic Lang. Inform., 13(3):287–340, 2004.
7. Jesper M. Moller. General topology. Authors’ notes, Available at http://www.

math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf, last visit 2007-02-25.
8. K. Nakagawa and M. Suzuki. Mathematical knowledge browser with automatic

hyperlink detection. In Mathematical Knowledge Management, 4th Int’l Conf.,
volume 3863 of LNAI. Springer, 2006.

9. K. Nakagawa, A. Nomura and M. Suzuki. Extraction of Logical Structure from
Articles in Mathematics In Mathematical Knowledge Management, 4th Int’l Conf.,
volume 3863 of LNAI. Springer, 2006.

10. B. Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.
11. S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.
12. W. Sierpiński. Elementary Theory of Numbers. PWN, Warszawa, 1964.
13. Michael Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-

ments (Version 1.2). Volume 4180 of LNAI, Springer Verlag, 2006.
14. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

W3C Recommendation, 2004.
15. M. K. Smith, Ch. Welty and D. L. McGuinness. OWL Web Ontology Language

Guide. W3C Recommendation, 2004.
16. O. Lassila and R. R. Swick Resource Description Framework (RDF) Model and

Syntax Specification. W3C Recommendation, 1999.
17. T. Gruber. What is an Ontology? http://www-ksl.stanford.edu/kst/

what-is-an-ontology.html, last visit 2007-02-25.
18. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C Recommen-

dation, 2001.
19. Ch. Lange. SWiM – A Semantic Wiki for Mathematical Knowledge Management.

Technical Report, December, 2006.

A Original and DRa-annotated text of our example

2. The integers and real numbers

We shall assume that real numbers R exists with all
the usual properties: (R, +, ·) is a field, (R, +, ·, <)
is an ordered field, (R, <) is a linear continuum
(1.15).
What about Z+?

1.17. Definition.

A subset A ⊂ R is inductive if 1 ∈ A and
a ∈ A =⇒ a + 1 ∈ A

There are inductive subsets of R, for instance R

itself and [1, ∞).
1.18. Definition.

Z+ is the intersection of all inductive subsets of R.

We have that 1 ∈ Z+ and Z+ ⊂ [1, ∞) because

[1, ∞) is inductive so 1 = min Z+ is the smallest
element of Z+.

1.19. Theorem. (Induction Principle)

Let J be a subset of Z+ such that

1 ∈ J and ∀n ∈ Z+ : n ∈ J =⇒ n + 1 ∈ J

Then J = Z+.

Proof.

J is inductive so J contains the smallest induc-
tive set Z+.

2

1.20. Theorem.

Any nonempty subset of Z+ has a smallest element.

Before the proof, we need a lemma.
For each n ∈ Z+, write

Sn = {x ∈ Z+ | x < n}

for the set of positive integers smaller than n (the
section below n). Note that S1 = ∅ and Sn+1 =

Sn ∪ {n}.
1.21. Lemma.

For any n ∈ Z+, any nonempty subset of Sn has a
smallest element.

Proof.

Let J ⊂ Z+ be the set of integers for which

the lemma is true. It is enough (1.19.) to show
that J is inductive. 1 ∈ J for trivial reason that
there are no nonempty subsets of S1 = ∅. Sup-
pose that n ∈ J. Consider a nonempty subset A

of Sn+1. If A consists of n alone, then n=minA

is the smallest element of A. If not, A contains
integers < n, and then min(A∩Sn) is the small-
est element of A. Thus n + 1 ∈ J.

2

Proof of Theorem 1.20.

Let A ⊂ Z+ be any nonempty subset. The in-
tersection A ∩ Sn is nonempty for some n, so it
has a smallest element (1.21.). This is also the
smallest element of A.

2

[...]

2. The integers and real numbers

We shall assume that real numbers R exists with all
the usual properties: (R, +, ·) is a field, (R, +, ·, <)
is an ordered field, (R, <) is a linear continuum
(1.15).
What about Z+?

1.17. Definition.

A subset A ⊂ R is inductive if 1 ∈ A and
a ∈ A =⇒ a + 1 ∈ A

D1

There are inductive subsets of R, for instance R

itself and [1, ∞).
1.18. Definition.

Z+ is the intersection of all inductive subsets of R.D2

We have that 1 ∈ Z+ and Z+ ⊂ [1, ∞) because

[1, ∞) is inductive so 1 = min Z+ is the smallest
element of Z+.

1.19. Theorem. (Induction Principle)

Let J be a subset of Z+ such that

1 ∈ J and ∀n ∈ Z+ : n ∈ J =⇒ n + 1 ∈ J

Then J = Z+.

T1

Proof.

J is inductive so J contains the smallest induc-
tive set Z+.

PT1

2

1.20. Theorem.

Any nonempty subset of Z+ has a smallest element.T2

Before the proof, we need a lemma.
For each n ∈ Z+, write

Sn = {x ∈ Z+ | x < n}

for the set of positive integers smaller than n (the
section below n). Note that S1 = ∅ and Sn+1 =

Sn ∪ {n}.
1.21. Lemma.

For any n ∈ Z+, any nonempty subset of Sn has a
smallest element.

L1

Proof.

Let J ⊂ Z+ be the set of integers for which

the lemma is true. It is enough (1.19.) to show
that J is inductive. 1 ∈ J for trivial reason that
there are no nonempty subsets of S1 = ∅. Sup-
pose that n ∈ J. Consider a nonempty subset A

of Sn+1. If A consists of n alone, then n=minA

is the smallest element of A. If not, A contains
integers < n, and then min(A∩Sn) is the small-
est element of A. Thus n + 1 ∈ J.

PL1

2

Proof of Theorem 1.20.

Let A ⊂ Z+ be any nonempty subset. The in-
tersection A ∩ Sn is nonempty for some n, so it
has a smallest element (1.21.). This is also the
smallest element of A.

PT2

2

[...]

S2

uses

uses

justifies

uses

uses

justifies

uses

justifies

Fig. 8. Fragment of text without and with dependency graph.
The original text [7, Chapter III, §2] of presented example is taken from J.M. Moller’s
notes [7] regarding general topology and is reproduced on the left hand side of the figure.
The right hand side of the figure shows the automatically generated dependency graph for
the text where relations between parts of the text are represented by visible arrows and
graph nodes have specified (but not visible) mathematical or structural rhetorical roles.

