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A Translation of the Foundations of Analysis’ first chapter

This section includes the full translation of the first chapter of E. Landau’s Foundations of Anal-
ysis [Lan51] in MathLang. The original translation is an XML file which we input by hand into
the machine. An XSL transformation is then carried out to obtain a BTEX code which is then
compiled into the rendering below. Our goal is to go further in the future and develop a software
that transforms this rendering into a text which is closer to the English text originally written by
the author. The following rendering is mainly experimental. It should not be seen as an outcome
for MathLang.

Beginning of our MathLang translation of the first chap-
ter of Foundations of Analysis [Lan51]

Section 1: Azioms {1}
DVenz = (1)
z:N,y:Nz=yby==z (2)
z:N,y:N,z:Nye=y, y=z>r=2z (3)
>Ax1() := 1 : natural number (4)
>Ax1():=1:N (5)
>Ax1 (6)
z : N >Ax2(z) := 3.0y : successor(x) (7)
>V .nAx2(x) (8)
z:N,y:N, z =y >CoAx2(z,y) =2 =y’ (9)
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@ : N >=(Jeinatural numberl : successor(x))

>V nAx3 ()

z:N,y:N, 2’ =y DpAxd(z,y):=z =y
>VanVynAxd(z,y)

z:N,y:N, Axd(z,y) Dy #Zzory ==z

M :SET, B:STAT, B = 1:9M, I :STAT, I = Vg.onz' : M
>Ax5(9M, B, I) :=71 natural number C 9

(Def 1) >1: N
z:N, (Def S) >z’ : N
>Ax5(N, (18), (19))

z:N,y:N,z #y >Thl(z,y) =2 #4vy'
z:N
y: N

2" =y, Axd(z,y) Dz =y

z : N D>Th2(z) :=z # 2’

oM . SET
Va:om Th2(z)
Ax1, Ax3(1) p1' #1
(25), (Def Th2) >1 : M
z: M
>z £
(27), Thi(z',z) >z’ # '
(28), (Def Th2) pa’ : 9N
Ax5(9, (26),(29)) >N C M
(30) DVE:NThZ(J))
z:N, z #1 >Th3(z) = Jyz = v’

oM . SET
1:9M |
Ve Juai® = u
>1:9M
z:IM
u:N |
r=1u
(Def S) pa’ =/
(34), (Def Th3) >z’ : M
Ax5(9M, (33),(34)) DN C M

(36) >V Th3(z)

+(z,1) =2’
>+ (z,y') = (z +y)

88 88

M : SET
Vy.oma(z,y) = b(z,y) |
(Def a(42)) >a(z,1) =’
(Def b(asy) >z’ = b(z,1)
(46), (47) >a(z,1) = b(z,1)
(48) >1: 9m

y: M
a(z,y) = b(z,y)
CoAx2(z,y) >(alz,y)
(Def ag43)) >a(z,y’) =
(Def b(ysy) >b(z,y") =

Nt
Il

<

(53) >y : M
Ax5(9M, (49), (54)) >N C M
(55) >Vya(z,y) = b(z,y)

M : SET

z#y, z' =y and Axd(z,y) = =z =y >Thl(z,y)

: N
: N >sum(z,y) := Noun.y(z =z + y)
:N, z: NpThd(z,y,2) =z +y ==z

"= (b(z,y))

(
(43), (50), (45) >a(z, ’) = b(w7y’)

Section 2: Addition

Proof Theorem 1

Proof Theorem 2

Proof Theorem 3

Definition 1
Proof Theorem 4

Proof Theorem 4 part A {a, b}

Proof Theorem 4 part A 1

Proof Theorem 4 part A I

{a, b}
Proof Theorem 4 part B
Proof Theorem 4 part B I|




V. omT
z: N
Yy

+1=a"andVyuz+y =(@+y) |
|
1

: N |
t+y=1y
>pr+l1l=1+4+1
(Def +(38)) >l1+1= 1’
(57), (58) >z +1=1'
>1" =g’
(59), (60) >z +1=2a'
pr+y =1+y
(Def +(38)) >14+y =9"
(62), (63) >z +y =y"
(Def +35)) DL4+y =1y
(
(

65) >x+y=1y

66) >y = (z+y)'

(64), (67) >z +y' = (z+y)
(61), (68) >1: M

z M
Vyn3zmz =a +y |
y: N |
e ty=(z+y)
>z’ +1=(z+1)
(Def +(38)) >(z+1)" =z"
(70), (71) >z’ +1 =2z"
>$I+y’ — ($+y,)’
(Def +(39)) >(z+y') = (z+y)"”
>(z+y)" = (2" +y)
(73), (74), (75) >z’ +y' = (2’ +y)’
(72), (76) >z’ : M
Ax5(9Mm, (69), (77)) DN C M
(78) >VeunVyn3..nTha(z, y, 2)
z:N,y:N, z:Np>Thd(z,y,2) i=(z+y)+z=z+ (y+ 2)

Proof Theorem 5 part 1

z: N
y:N ]
M : SET |
V=:om Th5 (2, y, 2)
(Def +(as)) D@ Fy)+1= (2 +y)
(Def +(39)) D(z+y) = +y'
(Def +(38)) Dz +y' =z + (y+ 1)
(81), (82), (83) d(z+y)+1=a+ (y+1)
(84), (Def Th5) >Th5(z,y,1)
(85) >1:9m

z:M

z : 9 >Thb(z,y, z)

(Def +(s0)) >(x + y) + 2 = ((z + ) + 2)'
(87) (2 +9) + 2)' = (0 + (y + 2))’

(Def +(s0y) >z + (y +2) =2+ (y+2)’
(Def +(39)) >z + (y+2) =+ (y+2")
(88), (89), (90), (91) >d(z+y) +2' =+ (y+2')
(92) >Th5(z,y,2")

(93) >z’ : M

Ax5(9m, (86),(94)) >N C M

(95) >VeunVy 3w Thi(z,y, 2)
z:N,y:NpTh6(z,y):=z+y=y+z

Proof Theorem 6 part I

y: N
2 : SET |
V..on Th6(z, y)
(Def +38)) Py +1 =1
{251} pl+y=1vy
(98), (99) Pl+y=y+1
(100) >Th6(1, y)
(101) >1:9m

z: M

Th6(z,y) Do +y=y+ua

(103) >(z +y)' = (y + )’

(Def +(39)) >(y+1z) =y +a'
(104), (105) >p(z+y) =y +a’
{252} pa’ +y=(z+y)

(107), (Def +(39)) D2’ +y =y + 2’

Proof Theorem 4 part B I

Proof Theorem 5 part I

Proof Theorem 6 part II

Proof Theorem 5

Proof Theorem 6

{2.5.

{2.5.3.



(108) >Thé(z’, y) (109)
(109) >a’ : M (110)
Ax5(9M, (102), (110)) >N C M (111)
(111) BVa Yy Thé(z, y) (112)
z:N,y:ND>Th7(z,y):=y#axz+y (113)
Proof Theorem 7 {2.5.5}
Proof Theorem 7 part I {2.5.5.1}
z:N
2 : SET |
Vy:om Th7(z, y)
Ax3(z) >l #a (114)
(114), (Def +(35)) DL # @ + 1 (115)
(115) >Th7(z, 1) (116)
(116) >1: M (117)
Proof Theorem 7 part II {2.5.5.2}
y:IM
Th7(z,y) Dy Az +y (118)
(118), Thi(z,4) >y’ # (= + )’ (119)
(119, (Def +(s0)) By’ # 2z + ¥’ (120)
(120) >Th7(z,y") (121)
(121) pa’ - M (122)
Ax5(9M, (117), (122)) >N C M (123)
(123) >V ¥y Th7(z, ) (124)
z:N,y:N,z:N,y#zp>Th8(z,y,2) :=z+y#ao+z (125)
Proof Theorem 8 {2.5.6}
Proof Theorem 8 part I {2.5.6.1}
y: N
z:N |
y £z |
9 : SET |
Voo Th8(z, y, 2)
Thi(y, 2) Dy’ # 2 (126)
(126), {2.5.1} D1+ y#£ 142 (127)
(127) >Th8(1, y, 2) (128)
(128) >1: 9 (129)
Proof Theorem 8 part I {2.5.6.2}
z M
Th8(z,y,z) Pe+y#ax+ =z (130)
(130), Thi(z +y,z + 2) >(z +y)' # (z +2)’ (131)
(131), {252} pa’ +y#a' + 2 (132)
(132) >Th8(2',y, 2) (133)
(133) o’ : M (134)
Ax5(9M, (129), (134)) >N C M (135)
(135) >V, Th8(z,y, z) (136)
Theorem 9 fcagel, case2, case3} {2.5.7}
z:N, y:N pcasel(z,y) =az =y (137)
z:N, y:N pcase2(z,y) =y =y +u (138)
z:N, y:N pcase3(z,y) :=J,qy =z +v (139)
z: N, y: N >Th9(z,y) := xor(casel(z, y), xor(case2(z, y), case2(z, y))) (140)
Proof Theorem 9 {2.5.7.1}
Proof Theorem 9 part A {2.5.7.1.1}
z:N, y:N, Th7(z,y)
>casel(z,y) = —(case2(z,y)) and case2(z,y) =—> —(casel(z,y)) (141)
z:N,y:N, Th7(z,y)
>casel(z,y) = —(case3(z,y)) and case3(z,y) = —(casel(z,y)) (142)
z: N
y: N |
case2(z,y) |
case3(z,y) |
w: N
(Def case2) be =y + u (143)
v:N

(Def case3) by+u=(z+v)+u (144)
Th5(z,v,u) >(z+v)+u=z+ (v+u) (145)
Thé(z,v+u) dez+ (v+u)=(v+u)+z (146)
(143), (144), (145), (146) po = (v+1u) + @ (147)
Th7(z,v + ) >Impossible(z = (v + u) + x) (148)
z: N, y:N, (148)

>case2(x,y) = —(case3(z,y)) and case3(z,y) —> —(case2(z,y)) (149)
(141), (142), (149)
>VeVyi—(casel(z,y)) and —(casel(x,y)) and —(case2(z,y)) (150)
Proof Theorem 9 part B {2.5.7.1.2}
Proof Theorem 9 part B I {2.5.7.1.2.1}
z: N

[ Vy:.omcasel(x,y) or case2(w,y) or case3(z,y) |
[ Th3(1) o =1 or Jumaw = o’

|
M : SET | |
|
|

(151)



(151), (Def 4+(38)) >z =1 or Iymz =1+ u (152)
(152) >casel(z,1) or case2(z,1) (153)
(153) >1: M (154)
Proof Theorem 9 part B II {2.5.7.1.2.2}

y: M

casel(z,y)

(Def =(38)) >y' =y +1 (155)
>y+l=z+1 (156)
(155), (156) >y’ =z + 1 (157)
(157) >case3(z,y") (158)
case2(z, y)
w: N
(Def case2) Do =y + u (159)
u=1
159) pe =y +1 (160)
(160), (Def +(s5)) B = o' (161)
(161) >casel(z,y’) (162)
uw#£1
w: N

Th3(u) Du = w'

(163)
(163), (Def +(38)) Du=1+w (164)
(159), (164) pz =y + (1 + w) (165)
Th5(y,1,w) by + (1+w) = (y+1) +w (166)
(Def +38)) D(y+ 1) +w=y +uw (167)
(165), (166), (167) >z =y' + w (168)
(168) >case2(z,y’) (169)

case3(z, y)
v:N

(Def case3) by =z + v (170)
(170), CoAx2(y, @ + v) >y’ = (z +v)’ (171)
(Def +(30)) >(a +v)' = + o/ (172)
(171), (172) >y’ =z + v’ (173)
(173) >case3(z,y") (174)
(175)
(176)
(177)

(158), (162), (169) >y : M
Ax5(9M, (154), (175)) >N C M
(176), (150) >Ve.1Vy 1 Th(z, y)

{casel, case2, case3}

Section 3: Orderin, {3}
z:N,y:Npz>y:=Jypnr=y+u (178)
z:N,y:Nper<y:=J,qny=z+v (179)
z:N,y:NpThlO(z,y):=ez=yorz>yorz<y (180)
Proof Theorem 10 {3.1}
z:N, y:N, Tho(z,y), (Def >), (Def <) >Thl0(z,y) | (181)
z:N,y:N,z>ypThll(z,y) =y < (182)
Proof Theorem 11 {3.2}
z: N
y: N
z>yD>Iunz=y+u (183)
y<zPDIynr=y+u (184)
(183), (184) >V4uVyxThil(z,y) (185)
z:N,y:N, 2z <ypThl2(z,y) =y <z (186)
Proof Theorem 12 {3.3}
z: N
y: N
z<yD>I,pny=z+v (187)
y>zD>I,ny=xz+v (188)
(187), (188) >VonVynThl2(z, y) (189)
z:N,y:Npz>y:=az>yoraz=y (190)
z:N,y:Npey=e<yorz=y (191)
2N YN,z >y bThid(z,y) =y < o (192)
Proof Theorem 13 {3.4}
z: N
y: N

z=vy, (2)Dy== (193)

z >y, Thll(z,y) Dy < z (194)

(193), (194) >VeuVy ' Thl3(z,y) (195)
(196)
{

z:N,y:N, o <y >Thld(z,y):=y >z
Proof Theorem 14
z: N
y: N
v=y, (2)>y== (
z <y, Thl2(z,y) by >z (
(197), (198) >VemVy.nThld(z,y) (199
(
{

z:N,y:N,z:N,z<y,y<z>Thl5(z,y,2):=z < z
Preliminary Remark




z:N
T >y |
y>z
Thil(z,y) by < z (201)
Thil(y,z) >z <y (202)
(201), (202), Thl5(z,y,z) bz < @ (203)
(203), Thll(z,z) Da > = (204)
Proof Theorem 15 {3.7}
z:N
y:N ]
z:N |
v:N ]
w: N |
y=z+v |
z=y+w
>z =(z+v)+w (205)
(205), Ths(z,v,w) >(z +v)+w =z + (v + w) (206)
(206), (Def <) pa <z (207)
z:N,y:N,z:N,z<y, y<z>Thl6(z,y,2):=z < z (208)
z:N,y:N,z:N, 2 <y,y <z >Thl6(z,y,2) :=a < z (209)
Proof Theorem 16 {3.8}
z:N
y: N |
: N
r=y,y<zpPr<z (210)
r<y,y=zpr<z (211)
z<y,y<z This(z,y,2) ba < z (212)
(210), (211), (212) B>VeuVyV=Th16(z, y, 2) (213)
z:N,y:N,z:N, 2 <y,y<z>Thl7(z,y,z) :=a < 2 (214)
Proof Theorem 17 {3.9}
z: N
y: N |
z: N
r=y,y=zDr =2 (215)
z=vy,y<z Thl6(z,y,z) da < z (216)
z<vy,y==z, Thl6(z,y,z) Dr < z (217)
z<vy,y<z, Thl6(z,y,z) Dr < z (218)
(215), (216), (217), (218) >V Vyn V= Thl6(z, y, 2) (219)
z:N,y:Np>Thi8(z,y):=z+y >z (220)
Proof Theorem 18 {3.10}

z:N,y:N, (Def >), z4+y=ua+y >Thl8(z,y) (221)
z:N,y:N,z:N,z >y >Thl9(z,y,z):=z+z2>y+=z (222)
z:N,y:N,z:N,z =y >Thl9(z,y,z):=z+z=y+ =z (223)
z:N,y:N,z:N,z <y p>Thl9(z,y,z) =z +z2<y+=z (224)
Proof Theorem 19 {3.11}
Proof Theorem 19 case 1 {3.11.1}
z: N
y: N |

T >y |

w: N
(Def >)pr=y+u (225)

z:N

(225) pe+z=(y+u)+=z (226)
(226), Thé(y,uw) >(y +u) + 2= (v+y) + = (227)
(227), Th5(u,y,2) >(u+y)+z=u+ (y + 2) (228)
(228), Thé(u,y +2) Du+(y+2)=(y+2)tu (229)
(229), (Def >) Dz +2>y+2 (230)

Proof Theorem 19 case 2 {3.11.2}
|
z2:Npzt+z=y+z | (231)
Proof Theorem 19 case 3 {3.11.3}
z <y
Dy >a (232)
z:N

(232), {3.11.1} Dy + 2z >z +2 (233)
233)pr+z<y+z (234)
(230), (231), (234), z:N,y: N,z >y orz =y or z <y >V..yThl9(z,y, z) (235)
: (236)

(237)

(
z:N,y:N,z:N, 2+ 2>y+ 2z >Th20(z,y,2) ;=2 >y 236
z:N,y:N,z:N,z+2z=y+ 2z >Th20(z,y,2) ;= =y 237
z:Nyy:N,z:N,z+2<y+z>Th20(z,y,2) ;=2 <y (238)
Proof Theorem 20 {3.12}

{311}, z:N,y:N,z:N,e+z>y+zore+z=y+zore+z2<y+z

>Th20(z, y, z) (239)
z:N,y:N,z:N,u:N,z >y, z>up>Th2l(z,y,z,u):=x+2>y+u (240)
Proof Theorem 21 {3.13}




z:N
w:N|
T >y |
z>u
Thl9(z,y,z) Doz +2z>y+z (241)
Thé6(y,z) Dy+z=z2+y (242)
(Def Th19(222)) Dz +y > u+y (243)
Thé(u,y) Du+y=y+u (244)
(242), (243), (244) Dy +2>y+u (245)
(241), (245) >Th21(z,y, z,u) (246)
z:N,y:N,z:N,u:N,z >y, 2>up>Th22(z,y,z,u):=z+z2>y+u (247)
z:N,y:N,z:N,u:N,z >y, z>up>Th22(z,y,z,u):=x+2>y+u (248)
Proof Theorem 22 {3.14}
z:N
y: N |
z:N |
w: N
z =y, z>u, Th19(z,u,z) de+ 2> y+u (249)
z >y, z=u, Th19(z,y,2) De+2>y+u (250)
z >y, z>u, Th2l(z,y,z,u) Dr+2>y+u (251)
(249), (250), (251) >Th22(z, y, z, ) (252)
z:N,y:N,z:N,u:N,z >y, 2> up>Th23(z,y,z,u):=z+z2>y+u (253)
Proof Theorem 23 {3.15}
z:N
y: N ]
z:N |
w: N
r=y,z=ubr+z=y+u (254)
x>y, z>u, Th22(z,y,z,u) e+ 2z >y+u (255)
Tz >y, z>u, Th22(z,y,z,u) Dr+2>y+u (256)
(254), (255), (256) >Th23(z,y, z, ) (257)
z:Np>Th24(z) =2 >1 (258)
Proof Theorem 24 {3.16}
z: N
z=1
bz > 1 (259)
w: N
z=u
(Def T 3s)) D’ =u+1 (260)
Du-+1>1 (261)
(260), (261) >z > 1 (262)
(259), (262) >V, Th24(z) (263)
z:N,y:N,y >z p>Th25(z,y) =y >a+1 (264)
Proof Theorem 25 {3.17}
z: N
y: N |
y>ua |
w: N
(Def >)py=a+u (265)
Th24(u) pu >1 (266)
(265), (266) >Th25(z,y) (267)
z:N,y:N,y<z+1pTh26(z,y):=y<z (268)
Proof Theorem 26 {3.18}
z: N
y: N ]
~(y <)
Dy > @ (269)
Th25(y,z) by >z + 1 (270)
M : SET, Vy.one : natural number >Th27(91) :=1: M (271)
Proof Theorem 27 {3.19}
N : SET
Th27 (%) |
M SET |
VemVymz Sy
z: N, Th24(z) >p1 <z (272)
(272) >1: M (273)
y:My+1>yp-(y+1:M) (274)
(274) D= (Vez @ M) (275)
m: 9, Ax5(I, (273),m +1:9M) DN C M (276)
(275), (276) >3mim—(m + 1 : M) (277)
m: M
=(m+1:9M)
>V,.qm < n (278)
=(m : M)
>Vp.mm < n (279)
(279), n: M, Th25(n,m) >bm+1 < n (280)



| (280) >m+1:9M
(281) pm : N

Section 4: Multiplication

=

:Np.(2,y) =2yt

: N >product(z, y) := Noun..n(z = z.y)
N, z: N pTh28(z,y,2) i=z.y = 2

B8R 8 8
2222
e ww V

Definition 6

Proof Theorem 28

Proof Theorem 28 part A {a, b} |

y:Npa(z,y') := (a(z,y)) + =
>b(z,1) (=
y:Npb(z,y') := (b(z,y)) + @

M : SET
Vy:ma(z,y) = bz, y) |
(Def a(zs7)) Da(z,1) =z
(Def b(2sey) D> = b(z, 1)
(
(

291), (292) >a(z,1) = b(z, 1)
293) >1: M

y: M
a(z,y) = b(z,y)
>(a(x,y)) + @ = (b(z,y)) +1
(Def a(2ss8)) >a(x,y') = (a(z,y)) + 1
(Def b(290y) >b(z,y") = (b(z,y))
(288), (295), (290) >a(z,y’) =
(298) >y’ : M

Ax5(9n, (294), (299)) >N C M

(300) >Vy.ma(z,y) = b(z,y)

M : SET
Veomw.l=a and Vyuey =cy+a |
z: N |

z=1|
y:N ]

Ty=y

>r.l=1

(Def .(283)) D1 ==

(302), (303) pa.l=z

>z.y =y

(Def +38)) Dy =y +1

>y+l=zy+z

(305), (306), (307) >y’ =z.y +
(304), (308) >1: M

z:IM

VynIzmz = 2.y |

y:N |
T y=z.y+z
>zr.l=z1+1
(Def -(283)) >rl+l=z+1
(Def +(38)) Dz +1 =2’
(310), (311), (312) >z'.1 =2z
Dz'.y' — w'yr _,’_y/
(Def -(284)) Dz.y' + y’ = (wy + 17) + yl
Th5(z.y7 z, y') I>(I.y + z) —+ y' =z.y+ (I + y’)
(Def +(30)) Pz.y+ (z+y) =z.y+ (z+y)
(Def +(39)) Da.y+ (z +y) =z.y+ (2’ +y)
Thé(z',y) Dz.y+ (z' +y) =2y + (y +2')
Tho(z.y,y,2") Dey+ (y+2') = (e.y +y) +a'
(Def .(284)) D(z.y+y) +2' =a'y+a
(314), (315), (316), (317), (318), (319), (320), (321)

Dz’.y' _ x’.y—i—z’

(313), (322) >a’ : M

Ax5(9m, (309), (323)) >N C M

(324) >VYpniVyn3-.iTh28(z, y, 2)

z:N,y:Np>Th29(z,y) :=z.y = y.w

|

Proof Theorem 28 part A 1

Proof Theorem 28 part A I

{a, b}
Proof Theorem 28 part B
Proof Theorem 28 part B I

Proof Theorem 28 part B I1

Proof Theorem 29
Proof Theorem 29 part I




V. om Th29(z, y)

(Def .(283)) Dy.l =y
{421} ply=y

(327), (328) pluy = y.1
(329) >Th29(1, y)
(330) >1: 9

z: M
Th29(z,y) Dz.y =y.@
332) prz.y+y=yx+vy
(Def .(284)) Dy-¢ +y = y.z'
(333), (334) pz.y+y = y.a’
{422} b2’ y=zy+y
(334), (336) pa'.y =y.a’
(337) >Th29(z2', y)
(338) >a’ : M
Ax5(9, (331), (339)) >N C M
(340) D>V Vy:nTh29(z, y)
z:N,y:N, z:NP>Th30(z,y,2) :=z.(y+2) =z.y+z.2

Preliminary Remark

z:N,y:N, z:N, (Def Th30), (Def Th29) pa.(y +2) =z.y+ 2.2

Proof Theorem 30
Proof Theorem 30 I

z: N
y:N |
T SET |
V.. Th30(z,y,2) |
(Def +(35)) Dz.(y +1) = 2.9
(Def .(284)) Dz.y' = 2.y +
(Def .(283)) Dz.y + = = z.y + x.1
(344), (345), (346) >da.(y+1) =z.y + .1
(347) >1: 90

z:IM
Th30(z,y,2) be.(y+z2) =z.y+z.2
(Def +(35)) Dz.(y+2') =z.(y + 2)’
(Def .(284)) Da.(y+2) =z.(y+2) + (y+2)
(349) pr.(y+2)+z=(zy+z.2)+z
Thb(z.y,z.z,z) >D(z.y+a.2)+z=z.y+ (z.2 + )
(Def .(284)) Da.y+ (z.2 +2) = vy + 2.2
(350), (351), (352), (353), (354) >z.(y+2') =z.y+z.2'
(355) >a’ - M

Ax5(9M, (348), (356)) >N C oM

(357) >VauiVy Vo' Th30(z, v, 2)

z:N,y:N, z:NP>Th3l(z,y,2) := (z.y).2 = z.(y.2)

z:N

y: N ]

T SET |
Ve:mTh31(z,y,2) |
(Def .(283)) D>(z.y).1=z.y
(Def .(283)) Da.y = x.(y.1)
(360), (361) > (z.y).1 = .(y.1)
(362), (Def Th5) >Th31(z,y,1)
(363) >1: 9

z:M
z : M >Th3l(z,y, z)
(Def .(284)) >(z.9).2" = (z.y).z + 2.y
(365) >(z.y).z+zy==z.(y.2)+z.y
Th30(z, 9, 2) Be.(y.2) + oy = .(y. + y)
(Def .(284)) Da.(y.2+y) = z.(y.2")
(366), (367), (368), (369) >(z.y).2' = .(y.2')
(370) >Th31(z,y,z")
(371) >z’ : M
Ax5(9M, (364), (372)) >N C M

Proof Theorem 32

Proof Theorem 31 part II

Proof Theorem 29 part I

Proof Theorem 30 IT

Proof Theorem 31
Proof Theorem 31 part I

Proof Theorem 32 case 1

(373) >VeniVyn3l..nTh31(z, y, 2)
z:N,y:N, z:N, 2z >y >Th32(z,y,2) :=x.2 > y.2
z:N,y:N,z:N, 2=y >Th32(z,y,z) :=x.2 = y.z
z:N,y:N,z:N, 2 <y >Th32(z,y,2) :=z.2 < y.2
z: N
y: N
T >y
|




|| (Def >) b=yt | (378)
2: N |
(378) pz.z = (y + u).z (379)
Th30(z,y,u) >(y+u).z = y.z +u.z (380)
(Def >) py.z4+u.z>y.z (381)
(379), (380), (381) D>x.z > y.2 (382)
Proof Theorem 32 case 2 {4.7.2}
|
z2:Npz.z=y.z | (383)
Proof Theorem 32 case 3 {4.7.3}
<y |
>y>z | (384)
z2: N |
(384), {4.7.1} >y.z > z.2 | (385)
(385) dz.z < y.z | (386)
(382), (383), (386), z : N,y : N,z >y oraz =y or z <y >V..yTh32(z,y, z) (387)
z:N,y:N,z:N, 2.2 >y.z >Th33(z,y,z) == >y (388)
z:N,y:N,z:N, 2.2 =y.2 >Th33(z,y,z2) == =y (389)
z:N,y:N,2:N,z.2 <y.z2 >Th33(z,y,2) :=z < y (390)
Proof Theorem 33 {4.8}
{47}, 2:N,y: N, z:N,z.2>yz orz.z=y.z or z.2 < y.z
DThBB(z,y,z) (391)
z:N,y:N,z:N,u:N,z >y, z>u>Th34(z,y,z,u) :=z.2 > y.u (392)
Proof Theorem 8} {4.9}
z:N
y: N |
z:N |
uw:N |
T >y |
z>u

Th32(z,y,2) Dx.z2 > y.z (
Th29(y, z) Dy.z2 = 2.y (
(Def Th32(375)) >z.y > u.y (
Th29(u,y) Du.y = y.u (396
(394), (395), (396) >y.z > y.u (
(393), (397) >Th34(z,y, z, u) (

(

z:N,y:N,z:N,u:N,z >y, 2>u>Th35(z,y,z,u) :=z.2 > y.u 399
z:Nyy:N,z:N,u:N,z >y, 2> up>Th35(z,y,z,u) :=z.2 > y.u (400
Proof Theorem 35 {4.10}
z:N
y:N |
z:N |
w: N

z =1y, z>u, Th32(z,u,z) Dz.2 > y.u (401)
z >y, z=u, Th32(z,y,2) >z.z > y.u (402)
z >y, z>u, Th3d(z,y,z,u) >zr.z > y.u (403)
(404)
(405)

(401), (402), (403) >Th35(x,y, 2, u)

z:Nyy:N,z:N,u:N,z >y, 2> u>Th36(z,y,z,u) :=z.2 > y.u 405
Proof Theorem 36 {4.11}
z:N
y: N |
z: N ]
w: N

T=y,z=uDr.z=y.u ( )
z 2y, z>u, Th3b(z,y,z,u) Dr.z2 > y.u (407)
z >y, z>u, Th35(z,y,z,u) >er.z > y.u (408)
(406), (407), (408) >Th36(z, v, 2, u) (409)

End of our MathLang translation of the first chapter of
Foundations of Analysis [Lan51]

B Foundations of Analysis’ first chapter

This section of the appendix contains the original text of the first chapter (translated from German
to English by F. Steinhardt) of E. Landau’s Foundations of Analysis [Lan51, Lan30].

Beginning of the original first chapter of Foundations
of Analysis [Lanb1]
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B.1 Natural Numbers

B.1.1 Axioms

We assume the following to be given:

A set (i.e. totality) of objects called natural num-
bers, possessing the properties - called axioms- to be
listed below.

Before formulating the axioms we make some re-
marks about the symbols = and # which be used.

Unless otherwise specified, small italic letters will
stand for natural numbers throughout this book.

If z is given and y is given, then either x and y are
the same number; this may be written

r=Yy

(= to be read “equals”); or z and y are not the same
number; this may be written

TFy

(# to be read “is not equal to0”).
Accordingly, the following are true on purely logical
grounds:

x = z for every x (1)
Ife=ytheny=2x (2)
Ife=y,y=zthenz =2 (3)

Thus a statement such as
a=b=c=d,
which on the face of it means merely that
a=0bb=c,c=d,
contains the additional information that, say,
a=c,a=d,b=d.

(Similarly in the later chapters.)
Now, we assume that the set of all natural numbers
has the following properties:

Axiom 1 1 is a natural number.

That is, our set is not empty; it contains an object
called 1 (read “one”).

Axiom 2 For each z there ezists exactly one natural
number, called the successor of x, which will be denoted
by x'.

In the case of complicated natural numbers xz, we
will enclose in parentheses the number whose succes-
sor is to be written down, since otherwise ambiguities
might arise. We will do the same throughout this book,
in case of z + y,zy,x — y, —z,zY, etc.

Thus, if

then
Axiom 3 We always have

' # 1.

That is, there exists no number whose successor is

11

Axiom 4 If

then

That is, for any given number there exists either
no number or exactly one number whose successor is
the given number.

Axiom 5 (Axiom of Induction) Let there be given
a set M of natural numbers, with the following proper-
ties:

I) 1 belongs to M
II) If © belongs to M then so does z'

Then M contains all the natural numbers.

B.1.2 Addition

Theorem 1 If

T Fy
then

£y

Proof Otherwise, we would have
T =y
and hence, by Axiom 4,

T =y.

Theorem 2

' # x.

Proof Let 91 be the set of all x for which this holds
true.

I) By Axiom 1 and Axiom 3,
1 #1;
therefore 1 belongs to 9.
II) If = belongs to M, then
x #x,
and hence by Theorem 1,
(") #a/,
so that @’ belongs to 9.

By Axiom 5, 9t therefore contains all the natural num-
bers, i.e. we have for each z that

x #z.

Theorem 3 If

r#£1,
then there exists one (hence, by Aziom 4, exactly one)
u such that

z=u'.



Proof Let 91 be the set consisting of the number 1
and of all those z for which there exists such a u. (For
any such x, we have of necessity that

r#1
by Axiom 3.)
I) 1 belongs to M.

II) If 2 belongs to M, then, with u denoting the num-
ber x, we have
' =,
so that z’' belongs to 9.

By Axiom 5, 90t therefore contains all the natural num-
bers; thus for each

r#1
there exists a uw such that

z=u'.

Theorem 4 , and at the same time Definition 1 To

every pair of numbers x,y, we may assign in exactly

one way a natural number, called x +y (+ to be read
“plus”), such that

x+1=2a for every x (4)

z+y = (x+y) for every x and everyy (5)

T + y is called the sum of x and y, or the number ob-
tained by addition of y to x.

Proof

A) First we will show that for each fixed z there is at
most one possibility of defining = + y for all y in
such a way that

r+1=2a

and
z+y = (z+y) for every y.
Let ay and by be defined for all y and be such that
a1 =x', by =/,
Ayr = (a‘y),’ by’ = (by)l

Let 91 be the set of all y for which

for every y.

Gy = by.

a1 =’ = b1;

hence 1 belongs to 9.
IT) If y belongs to 9, then
ay = by,

hence by Axiom 2,

(ay)" = (by)'s
therefore

ay = (ay)" = (by)" = by,

so that y’ belongs to M.

Hence 91 is the set of all natural numbers; i.e. for
every y we have
ay = by.

B) Now we will show that for each it is actually pos-
sible to define xz + y for all y in such a way that

r+1=2a
and
z+y = (x+y) for every y.

Let 991 be the set of all = for which this is possible
(in exactly one way, by A))

I) For
=1,
the number
ety=y
is as required, since
r+1=1 =41,
z+y =) =(z+y).

Hence 1 belongs to 9.

ITI) Let z belong to M, so that there exists an
z + y for all y. Then the number

o ty=(z+y)
is the required number for z/, since
T +1l=(z+1) = ()
and
? 4y =@ty) = (@+y)) = @ +).
Hence ' belongs to 9.
Therefore 91 contains all z.

Theorem 5 (Associative Law of addition)
(@+y)+z=a+(y+2)

Proof Fix z and y, and denote by 9t the set of all 2z
for which the assertion of the theorem holds.

1)
(z+y)+l=(x+y) =z+y =z+ (y+1);
thus 1 belongs to 9.
IT) Let z belong to 9. Then
(z+y)+z=2+(y+2),
hence
(@+y)+2' =(@+y)+2) =@+ +2)
=z++2) =2+ +2),

so that z’ belongs to 1.
Therefore the assertion holds for all z.

Theorem 6 (Commutative Law of Addition)
rT+y=y-+x.

Proof Fix y, and 9 be the set of all x for which the
assertion holds.
I) We have
y+1l=y,
and futhermore, by the construction in the proof
of Theorem 4,
l+y=y,
so that
l+y=y+1
and 1 belongs to 9.



II) If z belongs to 9, then
T+y=y+u,
Therefore
(z+y) =@y+z) =y+a".

By the construction in the proof of Theorem 4,
we have
o +y=(z+y),
hence
' +y=y+a,
so that ' belongs to 9.

The assertion therefore holds for all z.

Theorem 7
y£z+y.

Proof Fix z, and let 9 be the set of all y for which
the assertion holds.

1)
1#a,
1£z+1;
1 belongs to 9.
II) If y belongs to 9, then
y#z+y,
hence
Y #(x+y)s
y #Fo+y,
so that gy’ belongs to M.

Therefore the assertion holds for all y.

Theorem 8 If
y#z
Then
T+y£x+ 2.

Proof Consider a fixed y and a fixed z such that
y # 2,
and let 91 be the set of all x for which
ztyZz+z,

y #7,

1+y#1+2;

hence 1 belongs to 9.
II) If z belongs to 9, then

z+y#c+z,

hence
(@+y) # (@ +2),

o +y#a +z

so that z’ belongs 9.

Therefore the assertion holds always.

Theorem 9 For given x and y, exactly one of the fol-
lowing must be the case:

1)
z=y.
2) There exists a u (exactly one, by Theorem 8) such
that
=y +u.

3) There exists a v (exactly one, by Theorem 8) such
that
y=x+wv.
Proof

A) By Theorem 7, cases 1) and 2) are incompatible.
Similarly, 1) and 3) also follows from Theorem T7;
for otherwise, we would have

r=y+u=(z+v)tu=z+(v+u) =(v+u)+tzx.

Therefore we can have at most one of the cases 1),
2) and 3).

B) Let z be fixed, and let 9 be the set of all y
for which one (hence by A), exactly one) of the
cases 1), 2) and 3) obtains.

I) For y =1, we have by Theorem 3 that either
r=1= Y
(case 1))

or
z=u =14+u=y+u
(case 2)).

Hence 1 belongs to 9.

II) Let y belong to M. Then either (case 1) for
Y)
r=Y,
hence
Y =y+l=a+1
(case 3) for y');

or (case 2) for y)

T=y+tu,
hence if
u=1,
then
z=y+1l=y
(case 1) for y');
but if

u# 1,
then, by Theorem 3,

u=w =1+ w, (6)
z=y+(Q+w)=(w+1)+w=y +w)
(case 2) for y');

or (case 3) for y)

y=z+uv,
hence
Yy =(@+v) =z+v
(case 3) for y').
In any case, y’ belongs to 9.

Therefore we always have one of the cases 1), 2) and
3).



B.1.3 Ordering

Definition 2 If
r=y+u
then
x> .

(> to be read “is greater than.”)
Definition 3 If
y=x+v
then
z < y.
(< to be read “is less than.”)

Theorem 10 For any given x, y, we have exactly one
of the cases
=y, >y, r<y.

Proof Theorem 9, Definition 2 and Definition 3.

Theorem 11 If

T >y
then

y <z

Proof Each of these means that

rT=y+u
for some suitable w.
Theorem 12 If
<y
then
Yy >x.

Proof Each of these means that
y=x+v

for some suitable v.

Definition 4

v

r=y

means
T >y orxr=y.

(Z to be read “is greater than or equal to.”)

Definition 5
zZy
means
r<yorxr=y.

(£ to be read “is less than or equal t0.”)

Theorem 13 If

T2y
then

y<w
Proof Theorem 11.
Theorem 14 If

zly
then

y2y
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Proof Theorem 12.

Theorem 15 (Transitivity of Ordering) If
r<y,y<z,
then
<z
Preliminary Remark Thus if
T>Y,y >z,

then
x> 2,

since
2 <y, y<z,2<x;

but in what follows I will not even bother to write down
such statements, which are obtained trivially by simply
reading the formulas backwards.

Proof With suitable v, w, we have

y=x+v,z=y+w,
hence

z=(z+v)tw=z+ (v+w)z<z.

Theorem 16 If
zSyy<z orz<yy<z,

then
r < z.

Proof Obvious if an equality sign holds in the hypoth-
esis; otherwise, Theorem 15 does it.

Theorem 17 If
r<y,y Sz,

then

8
A
w

Proof Obvious if two equality signs hold in the hy-
pothesis; otherwise, Theorem 16 does it.
A notation such as

a<ble<d

is justified on the basis of Theorem 15 and 17. While
its immediate meaning is

a<bb<ce<d,
it also implies, according to these theorems, that, say
a<ca<db<d.

(Similarly in the later chapters.)

Theorem 18
T+y> .

Proof
r+y=x+y.



Theorem 19 If
T>y, orx=y, orx <Yy,
then

r+z>y+z, orr+z=y+z, orx+z<y+2z,

respectively.
Proof
1) If
T >y
then
T =y+u,

zt+z=y+u)+tz=(uty)t+z=u+(y+2)=

(y+2)+u,
rT+z>y+ =2
2) If
T =1y
then clearly
rT+z=y+ =z
3) If
r <y
then
y>z,
hence, by 1),
y+z>z+2,
r+z<y+=z.

Theorem 20 If
r+z>y+z, orr+z=y+z, orx+z<y-+2,
then
T >y, orxz =1y, orx <y, respectively.
Proof Follows from Theorem 19, since the three cases

are, in both instances, mutually exclusive and exhaust
all possibilities.

Theorem 21 If

r>yY,z>u,
then

T +2z>y+u.
Proof By Theorem 19, we have

rT+z>y+z

and
yt+tz=z+y>ut+y=y+u
hence
T +2z>y+u.

Theorem 22 If
TZ2Y,Z2>U0rT>Y,2 2 U,

then
z+z2y+u.
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Proof Follows Theorem 19 if an equality sign holds in
the hypothesis, otherwise from Theorem 21.
Theorem 23 If
Y,z z u,
then

T+z2y+u.

Proof Obvious if two equality signs hold in the hy-
pothesis; otherwise Theorem 22 does it.

Theorem 24

Proof Either

or
r=u =u+1>1.

Theorem 25 If

y>x
then
yZxz+1l
Proof
y=z+tu,
w21,
hence
y2ao+1
Theorem 26 If
y<z-+1
then
ySaw.

Proof Otherwise we would have
y>x
and therefore, by Theorem 25,
y2ao+1

Theorem 27 In every non-empty set of natural num-
bers there is at least one (i.e. one which is less than
any other number of the set).

Proof Let 91 be the given set, and let 9t be the set of
all z which are < every number .

By Theorem 24, the set 91 contains the number 1.
Not every z belongs to 9; in fact for each y of 9t the
number y + 1 does not belong to 91, since

y+1>y.

Therefore there is an m in 9 such that m + 1 does
not belong to 9M; for otherwise, every natural number
would have to belong to 9, by Axiom 5.

Of this m I now assert that it is < every n of N,
and that it belongs to 9. The former we already know.
The latter is established by an indirect argument, as
follows: If m did not belong to 91, then for each n of N
we would have

m < n,
hence, by Theorem 25,

m+1<mn

thus m+1 would belong to 9, contracdicting the state-
ment above by which m was introduced.



B.1.4 Multiplication

Theorem 28 and at the same time Definition 6 To
every pair of numbers x,y, we may assign in ecactly
one way a natural number, called x -y (- to be read
“times”; however, the dot is usualy omitted), such that
z-1=ux for every z, (8)

-y = (x-y)+x for every T and every y. 9)

-y is called the product of x and y, or the number
obtained from multiplication of x by y.

Proof (mutatis mutandis, word for word the same as
that of Theorem 4)

A) We will first show that for each fixed x there is at
most one possibility of defining zy for all y in such

a way that

z-1=2a'

and
zy' = zy + x for every y.

Let ay and by be defined for all y and be such that

a1 =z, by =,
ay =ay +x, by =by+ax forevery y.

Let 91 be the set of all y for which

ay = by.

a1 =z = by;
hence 1 belongs to 9.
II) If y belongs to 9, then

ay = by,
hence,
ayr = ay +T =by +T=by,
so that y’ belongs to M.

Hence 9 is the set of all natural numbers; i.e. for
every y we have
ay = by.
B) Now we will show that for each z it is actually pos-
sible to define zy for all y in such a way that
z-l=zx
and
2y’ = zy + = for every y.
Let 1 be the set of all « for which this is possible
(in exactly one way, by A))
I) For
r=1,
the number
Ty =Y
is as required, since
z-l=1=u,
oy =y =y+1=axy+uz.

Hence 1 belongs to 9.

II) Let x belong to M1, so that there exists an zy
for all y. Then the number
dy=ay+y

is the required number for z’, since

2 l=z-1+1l=zc+1=2
and

U ! !l I

dy =y +y = (wy+az)+y =

ay+(x+y) =ay+(x+y) =ay+(a'+y) =

ey +(y+a')=(zy+y)+a' =a'y+a".
Hence ' belongs to 9.
Therefore 91 contains all x.

Theorem 29 (Commutative Law of Multiplication)

Ty = yT.
Proof Fix y, and let 9t be the set of all z for which
the assertion holds.
I) We have
y-1=y,
and futhermore, by the construction in the proof
of Theorem 28,
L-y=uy,
hence
lL-y=y-1,
so that 1 belongs to 9.
II) If = belongs to M, then
Ty = yzx,
hence
y+y=yr+y=y.
By the construction in the proof of Theorem 28,
we have
a'y =zy +y,
hence
a'y = ya',
so that ' belongs to 9.
The assertion therefore holds for all z.

Theorem 30 (Distributive Law)
z(y+ z) = zy + z2.

Preliminary Remark The Formula
(y+ 2)x =yx + zx

which results from Theorem 30 and Theorem 29, and
similar analogues later on, need not be specifically for-
mulated as theorems, nor even be set down.

Proof Fix z and y, and let 9 be the set of all z for
which the assertion holds true.

I
) zy+)=zy =sy+x=zy+az-1;
1 belongs to 9.
II) If z belongs to M, then
z(y + 2) = xy + xz,
hence
vy+72)=z((y+2))=aly+2)+z=

(zy +z2) + 2 =2y + (2 + T) = Y + T2/,
so that 2z’ belongs to 1.
Therefore, the assertion always holds.
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Theorem 31 (Association Law of Multiplication)

(zy)z = 2(y2).

Proof Fix z and y, and let 91 be the set of all z for
which the assertion holds true.

1)
(zy) - 1=wmy ==(y-1);
hence 1 belongs to 9.
II) Let z belong to 9. Then

(zy)z = z(y2),

and therefore, using Theorem 30,

(zy)z" = (zy)ztay = z(y2)+ay = x(yz+y) = x(yz'),

so that 2’ belongs to 9.
Therefore 9 contains all natural numbers.
Theorem 32 If
T>y, orx=y, orx <y,
then

Tz > Yz, or xy = yz, or xz < yz, respectively.

Proof
1) If
T >y
then
r=Y + u,
zz=(y+u)z =yz+uz > yz.
2) If
T=y
then clearly
Tz =yz.
3) If
r <y
then
y >z,
hence by 1),
Yz > xz,
Tz < Yz.

Theorem 33 If
Tz > Yz, or xz =Yz, or xz < Yz,
then

x>y, orz=y, orx <y, respectively.

Proof Follows from Theorem 32, since the three cases
are, in both instances, mutually exclusive and exhaust
all possibilities.

Theorem 34 If
r> Y,z >u,

then
Tz > yu.

Proof By Theorem 32, we have
Tz > Yz

and
Yz =2y > uy = yu,
hence
rZ > Yyu.

Theorem 35 If
T2y,z>uorz>y,z2u,

then
Tz > Yyu.

Proof Follows from Theorem 32 if an equality sign
holds in the hypothesis; otherwise from Theorem 34.

Theorem 36 If

then

Proof Obvious if two equality signs hold in the hy-
pothesis; otherwise Theorem 35 does it.

End of the original first chapter of Foundations of Anal-

ysis [Lanb1]
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