Appendix

MathLang: experience-driven development of a new mathematical language

Fairouz Kamareddine, Manuel Maarek and J. B. Wells
ULTRA Group*
Heriot-Watt University
Edinburgh, Scotland

This document is an appendix to [KMW]. It is composed by the translation of the *Foundations* of *Analysis*' first chapter into MathLang (Section A) and by E. Landau's original text (Section B).

References

[KMW] Fairouz Kamareddine, Manuel Maarek, and J B Wells. MathLang: experience-driven development of a new mathematical language. To appear in Electronic Notes in Theoretical Computer Science.

[Lan30] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.

[Lan51] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation of [Lan30] by F. Steinhardt.

A Translation of the Foundations of Analysis' first chapter

This section includes the full translation of the first chapter of E. Landau's Foundations of Analysis [Lan51] in MathLang. The original translation is an XML file which we input by hand into the machine. An XSL transformation is then carried out to obtain a LATEX code which is then compiled into the rendering below. Our goal is to go further in the future and develop a software that transforms this rendering into a text which is closer to the English text originally written by the author. The following rendering is mainly experimental. It should not be seen as an outcome for MathLang.

Beginning of our MathLang translation of the first chapter of Foundations of Analysis [Lan51]

	Section 1: Axioms	{1}
$ hd orall_{x:\mathbb{N}} x = x$		(1)
$x: \mathbb{N}, y: \mathbb{N}, x=y \triangleright y=x$		(2)
$x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N}, x=y, y=z \triangleright x=z$		(3)
$\triangleright Ax1() := 1 : natural number$		(4)
$\triangleright \operatorname{Ax1}() := 1 : \mathbb{N}$		(5)
⊳Ax1		(6)
$x : \mathbb{N} \triangleright \operatorname{Ax2}(x) := \exists_{y \in \mathbb{N}} y : \operatorname{successor}(x)$		(7)
$ hd orall_{x:\mathbb{N}} \operatorname{Ax2}(x)$		(8)
$x: \mathbb{N}, y: \mathbb{N}, x = y \triangleright \operatorname{CoAx2}(x, y) := x' = y'$		(9)

^{*}http://www.macs.hw.ac.uk/ultra/

```
x: \mathbb{N}, y: \mathbb{N}, x = y \triangleright x' = y'
                                                                                                                                                                                                                     (10)
x: \mathbb{N} \triangleright \operatorname{Ax3}(x) := x' \neq 1
                                                                                                                                                                                                                     (11)
x\,:\mathbb{N}\,\rhd\neg(\exists_{x:\mathtt{natural}\ \mathtt{number}}1:\mathtt{successor}(x))
                                                                                                                                                                                                                     (12)
\begin{array}{l} \triangleright \forall_{x:\mathbb{N}} \operatorname{Ax3}(x) \\ x:\mathbb{N}, \ y:\mathbb{N}, \ x' = y' \ \triangleright \operatorname{Ax4}(x,y) := x = y \end{array}
                                                                                                                                                                                                                     (13)
                                                                                                                                                                                                                     (14)
 \begin{array}{l} \mathbb{E} : \mathbb{N}, \ y : \mathbb{N}, \ x = y \\ \geqslant \forall_{x : \mathbb{N}} \forall_{y : \mathbb{N}} \mathrm{Ax4}(x, y) \\ x : \mathbb{N}, \ y : \mathbb{N}, \ \mathrm{Ax4}(x, y) \\ \geqslant y' \neq x \ \ or \ \ y' = x \end{array} 
                                                                                                                                                                                                                     (15)
                                                                                                                                                                                                                     (16)
 \mathfrak{M}: \operatorname{SET}, B: \operatorname{STAT}, B \Longrightarrow 1: \mathfrak{M}, I: \operatorname{STAT}, I \Longrightarrow \forall_{x:\mathfrak{M}} x': \mathfrak{M}

hd Ax5(\mathfrak{M},B,I) := \uparrow \text{ natural number } \subset \mathfrak{M}
                                                                                                                                                                                                                     (17)
 (Def 1) \triangleright 1 : \mathbb{N}
                                                                                                                                                                                                                     (18)
x: \mathbb{N}, (\mathrm{Def}\, \mathrm{S}) \triangleright x': \mathbb{N}
                                                                                                                                                                                                                     (19)
\triangleright Ax5(\mathbb{N}, (18), (19))
                                                                                                                                                                                                                     (20)
                                                                                                                                                 Section 2: Addition
                                                                                                                                                                                                                      \{2\}
x : \mathbb{N}, y : \mathbb{N}, x \neq y \triangleright \mathrm{Th1}(x, y) := x' \neq y'
                                                                                                                                                                                                                     (21)
                                                                                                                                                     Proof Theorem 1
                                                                                                                                                                                                                  \{2.1\}
       y:\mathbb{N}
       \begin{array}{c} \overrightarrow{x'} = \overrightarrow{y'}, \ \operatorname{Ax4}(x,y) \ \triangleright x = y \\ x \neq y, \ x' = y' \ \ and \ \operatorname{Ax4}(x,y) \implies x = y \ \triangleright \operatorname{Th1}(x,y) \end{array}
                                                                                                                                                                                                                     (22)
                                                                                                                                                                                                                     (23)
x: \mathbb{N} \triangleright \operatorname{Th2}(x) := x \neq x'
                                                                                                                                                                                                                     (24)
                                                                                                                                                     Proof Theorem 2
                                                                                                                                                                                                                  \{2.2\}
    \mathfrak{M}: \operatorname{SET}
       (25)
         (25), (Def Th2) \triangleright 1 : \mathfrak{M}
x : \mathfrak{M}
                                                                                                                                                                                                                     (26)
           \begin{array}{c|c} \hline x : x \\ \hline \triangleright x' \neq x \\ \hline (27), \ Th1(x', x) \ \triangleright x'' \neq x' \\ \hline (28), \ (Def \ Th2) \ \triangleright x' : \mathfrak{M} \\ \end{array} 
                                                                                                                                                                                                                     (27)
                                                                                                                                                                                                                     (28)
                                                                                                                                                                                                                     (29)
         Ax5(\mathfrak{M}, (26), (29)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                     (30)
                                                                                                                                                                                                                     (31)
 (30) \, \triangleright \forall_{x:\mathbb{N}} \mathrm{Th2}(x)
 x: \mathbb{N}, x \neq 1 \triangleright Th3(x) := \exists_{u:\mathbb{N}} x = u'
                                                                                                                                                                                                                     (32)
                                                                                                                                                     Proof Theorem 3
                                                                                                                                                                                                                  \{2.3\}
    \mathfrak{M}: \operatorname{SET}
        1:\mathfrak{M}
           \forall_{x:\mathfrak{M}}\exists_{u:\mathbb{N}}x'=u
            \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                    (33)
              x:\mathfrak{M}
                 u:\mathbb{N}
                      x = u
                        (Def S) \triangleright x' = u'
                                                                                                                                                                                                                     (34)
                       (34), (Def Th3) \triangleright x' : \mathfrak{M}
                                                                                                                                                                                                                     (35)
            Ax5(\mathfrak{M}, (33), (34)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                     (36)
 (36) \, \triangleright \forall_{x:\mathbb{N}} \, \mathsf{Th3}(x)
                                                                                                                                                                                                                     (37)
                                                                                                                                                                Definition 1
                                                                                                                                                                                                                  \{2.4\}
x\,:\mathbb{N}\,\rhd\!+\!(\,x,1\,):=\,x^\prime
                                                                                                                                                                                                                     (38)
x : \mathbb{N}, \ y : \mathbb{N} \ \triangleright + (x, y') := (x + y)'
                                                                                                                                                                                                                     (39)
x: \mathbb{N}, y: \mathbb{N} \triangleright \operatorname{sum}(x, y) := Noun_{z: \mathbb{N}}(z = x + y)
                                                                                                                                                                                                                     (40)
x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \triangleright \mathrm{Th} 4(x, y, z) := x + y = z
                                                                                                                                                                                                                     (41)
                                                                                                                                                     Proof Theorem 4
                                                                                                                                                                                                                  \{2.5\}
                                                                                                              Proof Theorem 4 part A {a, b}
                                                                                                                                                                                                              {2.5.1}

\begin{array}{c}
x : \mathbb{N} \\
 \triangleright \mathbf{a}(x, 1) := x'
\end{array}

                                                                                                                                                                                                                     (42)
    y: \mathbb{N} \triangleright \mathbf{a}(x, y') := (\mathbf{a}(x, y))'
                                                                                                                                                                                                                     (43)
    \triangleright \mathbf{b}(x,1) := x'
                                                                                                                                                                                                                    (44)
    y: \mathbb{N} \triangleright b(x, y') := (b(x, y))'
                                                                                                                                                                                                                     (45)
                                                                                                                         Proof\ Theorem\ 4\ part\ A\ I
                                                                                                                                                                                                          {2.5.1.1}
        \mathfrak{M}:\operatorname{SET}
            \frac{\forall_{y:\mathfrak{M}} \, \mathbf{a}(x,y) = \mathbf{b}(x,y)}{(\mathrm{Def} \, \mathbf{a}_{(42)}) \, \triangleright \mathbf{a}(x,1) = x}
                                                                                                                                                                                                                    (46)
             (\text{Def b}_{(44)}) \triangleright x' = b(x, 1)
                                                                                                                                                                                                                     (47)
             (46), (47) \triangleright a(x, 1) = b(x, 1)
                                                                                                                                                                                                                     (48)
             (48) > 1 : \mathfrak{M}
                                                                                                                                                                                                                     (49)
                                                                                                                       Proof Theorem 4 part A II
                                                                                                                                                                                                          \{2.5.1.2\}
               y:\mathfrak{M}
                 \mathbf{a}(x,y) = \mathbf{b}(x,y)
                    \overline{\operatorname{Co}\operatorname{Ax}2(x,y)} \triangleright (\operatorname{a}(x,y))' = (\operatorname{b}(x,y))'
                                                                                                                                                                                                                     (50)
                    (51)
                                                                                                                                                                                                                     (52)
                    (53)
                                                                                                                                                                                                                     (54)
         Ax5(\mathfrak{M}, (49), (54)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                     (55)
                                                                                                                                                                                                                    (56)
        (55) \, \triangleright \forall_{y:\mathbb{N}} \mathbf{a}(x,y) = \mathbf{b}(x,y)
                                                                                                                                                         \{a, b\}
                                                                                                                                Proof Theorem 4 part B
                                                                                                                                                                                                              \{2.5.2\}
                                                                                                                                                                                                           \{2.5.2.1\}
                                                                                                                         Proof Theorem 4 part B I
\mathfrak{M}: \operatorname{SET}
```

```
\forall_{x:\mathfrak{M}}x+1=x' and \forall_{y:\mathbb{N}}x+y'=(x+y)'
                       x + y = y'
                        \triangleright x + 1 = 1 + 1
                                                                                                                                                                                                                      (57)
                        (Def +_{(38)}) \triangleright 1 + 1 = 1'
                                                                                                                                                                                                                      (58)
                        (57), (58) \triangleright x + 1 = 1'
                                                                                                                                                                                                                      (59)
                        \triangleright 1' = x'
                                                                                                                                                                                                                     (60)
                        (59), (60) \triangleright x + 1 = x'
                                                                                                                                                                                                                      (61)
                       (53), (53) \Rightarrow x + y' = 1 + y'

(53) \Rightarrow x + y' = 1 + y'

(54), (54) \Rightarrow x + y' = y''

(54), (55) \Rightarrow x + y' = y''
                                                                                                                                                                                                                     (62)
                                                                                                                                                                                                                      (63)
                                                                                                                                                                                                                     (64)
                        (Def +_{(38)}) \triangleright 1 + y = y'
                                                                                                                                                                                                                      (65)
               \begin{cases} (65) \triangleright x + y = y' \\ (66) \triangleright y'' = (x+y)' \\ (64), (67) \triangleright x + y' = (x+y)' \end{cases} 
                                                                                                                                                                                                                      (66)
                                                                                                                                                                                                                     (67)
                                                                                                                                                                                                                      (68)
         (61), (68) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                     (69)
                                                                                                                       Proof Theorem 4 part B II
                                                                                                                                                                                                           \{2.5.2.2\}
           x:\mathfrak{M}
              \forall_{y:\mathbb{N}}\exists_{z:\mathbb{N}}z=x+y
                y : \mathbb{N}
                       x' + y = (x + y)
                        \triangleright x' + 1 = (x + 1)
                                                                                                                                                                                                                      (70)
                        (\text{Def} +_{(38)}) \triangleright (x + 1)' = x''
                                                                                                                                                                                                                      (71)
                       (70), (71) \triangleright x' + 1 = x''
\triangleright x' + y' = (x + y')'
                                                                                                                                                                                                                     (72)
                                                                                                                                                                                                                      (73)
                        (Def + (39)) \triangleright (x + y')' = (x + y)'' 
 \triangleright (x + y)'' = (x' + y)' 
                                                                                                                                                                                                                     (74)
                                                                                                                                                                                                                      (75)
                 \begin{bmatrix} (73), (74), (75) \triangleright x' + y' \\ (72), (76) \triangleright x' : \mathfrak{M} \end{bmatrix} 
                                                                                                                                                                                                                     (76)
                                                                                                                                                                                                                      (77)
       Ax5(\mathfrak{M},(69),(77))\, \rhd \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                     (78)
(78) \, \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \exists_{z:\mathbb{N}} \mathrm{Th} 4(x,y,z)
                                                                                                                                                                                                                     (79)
x : \mathbb{N}, \ y : \mathbb{N}, \ z : \mathbb{N} > \text{Th} 5(x, y, z) := (x + y) + z = x + (y + z)
                                                                                                                                                                                                                     (80)
                                                                                                                                                  Proof Theorem 5
                                                                                                                                                                                                               \{2.5.3\}
                                                                                                                               Proof Theorem 5 part I
                                                                                                                                                                                                           \{2.5.3.1\}
  x:\mathbb{N}
       y:\mathbb{N}
              \forall_{z:\mathfrak{M}} \mathrm{Th5}(x,y,z)
                (Def +_{(38)}) \triangleright (x + y) + 1 = (x + y)'
                                                                                                                                                                                                                     (81)
                (\text{Def} + (39)) \triangleright (x + y)' = x + y'
                                                                                                                                                                                                                     (82)
                                                                                                                                                                                                                      (83)
                (Def +_{(38)}) \triangleright x + y' = x + (y+1)
                (81), (82), (83) \triangleright (x+y) + 1 = x + (y+1)
                                                                                                                                                                                                                      (84)
                 (84), (Def Th5) \triangleright Th5(x, y, 1)
                                                                                                                                                                                                                      (85)
                (85) ⊳1: 300
                                                                                                                                                                                                                      (86)
                                                                                                                            Proof Theorem 5 part \dot{H}
                                                                                                                                                                                                           \{2.5.3.2\}
                  z:\mathfrak{M}
                    z: \mathfrak{M} \triangleright \mathrm{Th5}(x, y, z)
                                                                                                                                                                                                                     (87)
                    z: y (y) = x (x, y, z) 
 (\text{Def } + (39)) \triangleright (x + y) + z' = ((x + y) + z)' 
 (87) \triangleright ((x + y) + z)' = (x + (y + z))' 
 (\text{Def } + (39)) \triangleright (x + (y + z))' = x + (y + z)' 
 (\text{Def } + (39)) \triangleright x + (y + z)' = x + (y + z') 
 (88), (89), (90), (91) \triangleright (x + y) + z' = x + (y + z') 
 (89) \triangleright (715(x - y - z')) 
                                                                                                                                                                                                                     (88)
                                                                                                                                                                                                                     (89)
                                                                                                                                                                                                                     (90)
                                                                                                                                                                                                                     (91)
                    (92) \triangleright Th5(x, y, z')
                                                                                                                                                                                                                      (93)
               (93) \triangleright x' : \mathfrak{M}
                                                                                                                                                                                                                     (94)
               Ax5(\mathfrak{M},(86),(94)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                     (95)
\begin{array}{l} (95) \, \triangleright \forall_{x\,:\mathbb{N}} \forall_{y\,:\mathbb{N}} \exists !_{z\,:\mathbb{N}} \mathrm{Th} 5(x,y,z) \\ x\,:\mathbb{N},\,\,y\,:\mathbb{N} \, \triangleright \mathrm{Th} 6(x,y) := x+y = y+x \end{array}
                                                                                                                                                                                                                     (96)
                                                                                                                                                                                                                     (97)
                                                                                                                                                                                                               \{2.5.4\}
                                                                                                                                                  Proof Theorem 6
                                                                                                                              Proof Theorem 6 part I
                                                                                                                                                                                                           \{2.5.4.1\}
            \forall_{x:\mathfrak{M}}\operatorname{Th}6(x,y)
                                                                                                                                                                                                                     (98)
             (Def + (38)) > y + 1 = y'
             \{2.5.1\} \triangleright 1 + y = y'
                                                                                                                                                                                                                     (99)
             (98), (99) \triangleright 1 + y = y + 1
                                                                                                                                                                                                                   (100)
             (100) \triangleright \mathsf{Th} 6(1, y)
                                                                                                                                                                                                                   (101)
             (101) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                   (102)
                                                                                                                            Proof Theorem 6 part II
                                                                                                                                                                                                           {2.5.4.2}
               x:\mathfrak{M}
              \begin{array}{l} x: \mathfrak{M} \\ \hline \text{Th} 6(x,y) \rhd x + y = y + x \\ (103) \rhd (x+y)' = (y+x)' \\ (\text{Def} +_{(39)}) \rhd (y+x)' = y + x' \\ (104), (105) \rhd (x+y)' = y + x' \\ \{2.5.2\} \rhd x' + y = (x+y)' \\ (107), (\text{Def} +_{(39)}) \rhd x' + y = y + x' \end{array}
                                                                                                                                                                                                                   (103)
                                                                                                                                                                                                                   (104)
                                                                                                                                                                                                                   (105)
                                                                                                                                                                                                                   (106)
                                                                                                                                                                                                                   (107)
                                                                                                                                                                                                                   (108)
```

```
 | \hspace{.1in} (108) \hspace{.1in} \rhd \mathsf{Th6}(x^{\,\prime}, y)
                                                                                                                                                                                                                                                                                              (109)
                (109) \triangleright x' : \mathfrak{M}
                                                                                                                                                                                                                                                                                              (110)
               Ax5(\mathfrak{M},(102),(110)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                                                                                              (111)
 \begin{array}{l} (111) > \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \mathrm{Th6}(x,y) \\ x:\mathbb{N}, \ y:\mathbb{N} > \mathrm{Th7}(x,y) := y \neq x+y \end{array} 
                                                                                                                                                                                                                                                                                              (112)
                                                                                                                                                                                                                                                                                             (113)
                                                                                                                                                                                                     Proof Theorem 7
                                                                                                                                                                                                                                                                                         \{2.5.5\}
                                                                                                                                                                           Proof Theorem 7 part I
                                                                                                                                                                                                                                                                                    \{2.5.5.1\}
            \mathfrak{M}:\operatorname{SET}
                \forall_{y:\mathfrak{M}}\operatorname{Th7}(x,y)
                Ax3(x) \triangleright 1 \neq x
                                                                                                                                                                                                                                                                                             (114)
                 (114), (Def +_{(38)}) \triangleright 1 \neq x + 1
                                                                                                                                                                                                                                                                                              (115)
                 (115) \triangleright \operatorname{Th7}(x, 1)
                                                                                                                                                                                                                                                                                             (116)
                 (116) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                                                                                              (117)
                                                                                                                                                                        Proof\ Theorem\ 7\ part\ \dot{I}\dot{I}
                                                                                                                                                                                                                                                                                   \{2.5.5.2\}
                      y:\mathfrak{M}
                      \frac{\nabla}{\mathrm{Th7}(x,y)} \triangleright y \neq x + y
                                                                                                                                                                                                                                                                                              (118)
                      (118), Th1(x, y) > y' \neq (x + y)'
                                                                                                                                                                                                                                                                                              (119)
                      (119), (Def +_{(39)}) \triangleright y' \neq x + y'
(120) \triangleright \text{Th}7(x, y')
                                                                                                                                                                                                                                                                                              (120)
                                                                                                                                                                                                                                                                                              (121)
                     (121) \triangleright x' : \mathfrak{M}
                                                                                                                                                                                                                                                                                              (122)
                Ax5(\mathfrak{M}, (117), (122)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                                                                                              (123)
 \begin{array}{l} (11) \quad \text{Ass}(x), \\ (123) \quad \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \operatorname{Th7}(x,y) \\ x:\mathbb{N}, \ y:\mathbb{N}, \ z:\mathbb{N}, \ y \neq z \ \triangleright \operatorname{Th8}(x,y,z) := x + y \neq x + z \end{array} 
                                                                                                                                                                                                                                                                                              (124)
                                                                                                                                                                                                                                                                                             (125)
                                                                                                                                                                                                     Proof Theorem 8
                                                                                                                                                                                                                                                                                         {2.5.6}
                                                                                                                                                                            Proof Theorem 8 part I
                                                                                                                                                                                                                                                                                   \{2.5.6.1\}
     y:\mathbb{N}
               u \neq z
                      m : SET
                          \forall_{x:\mathfrak{M}} \operatorname{Th} 8(x,y,z)
                            \operatorname{Th} 1(y, z) \triangleright y' \neq z
                                                                                                                                                                                                                                                                                             (126)
                            (126),\;\{2.5.1\}\;\triangleright 1+y\neq 1+z
                                                                                                                                                                                                                                                                                              (127)
                           (127) \triangleright Th8(1, y, z)
                                                                                                                                                                                                                                                                                              (128)
                            (128) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                                                                                              (129)
                                                                                                                                                                         Proof Theorem 8 part II
                                                                                                                                                                                                                                                                                   \{2.5.6.2\}
                               x: \mathfrak{M}
                               \overline{\operatorname{Th8}(x,y,z)} \triangleright x + y \neq x + z
                                                                                                                                                                                                                                                                                              (130)
                                (130), Th1(x + y, x + z) \triangleright (x + y)' \neq (x + z)'
                                                                                                                                                                                                                                                                                              (131)
                                (131), \{2.5.2\} \triangleright x' + y \neq x' + z

(132) \triangleright \text{Th8}(x', y, z)
                                                                                                                                                                                                                                                                                              (132)
                                                                                                                                                                                                                                                                                              (133)
                                (133) \triangleright x' : \mathfrak{M}
                                                                                                                                                                                                                                                                                              (134)
                            \operatorname{Ax5}(\mathfrak{M},(129),(134)) \, \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                                                                                              (135)
                 (135) \triangleright \forall_{x:\mathbb{N}} \operatorname{Th8}(x,y,z)
                                                                                                                                                                                                                                                                                              (136)
                                                                                                                                                  Theorem 9 {case1, case2, case3}
                                                                                                                                                                                                                                                                                         \{2.5.7\}
x\,:\mathbb{N},\,y:\mathbb{N}\,\rhd\!\mathrm{casel}(x,y):=x=y
                                                                                                                                                                                                                                                                                             (137)
x:\mathbb{N}, y:\mathbb{N} 
ightharpoonup \operatorname{case2}(x,y) := \exists_{u:\mathbb{N}} x = y + u
                                                                                                                                                                                                                                                                                              (138)
x: \mathbb{N}, y: \mathbb{N} \triangleright \operatorname{case3}(x, y) := \exists_{v: \mathbb{N}} y = x + v
                                                                                                                                                                                                                                                                                             (139)
x: \mathbb{N}, \ y: \mathbb{N} \ \rhd \mathsf{Th} 9(x,y) := \mathsf{xor}(\mathsf{case} 1(x,y), \mathsf{xor}(\mathsf{case} 2(x,y), \mathsf{case} 2(x,y)))
                                                                                                                                                                                                                                                                                             (140)
                                                                                                                                                                                                Proof\ Theorem\ 9
                                                                                                                                                                                                                                                                                   \{2.5.7.1\}
                                                                                                                                                                    Proof Theorem 9 part A
                                                                                                                                                                                                                                                                              \{2.5.7.1.1\}
x:\mathbb{N},\;y:\mathbb{N},\;\mathrm{Th7}(x,y)

ightharpoonup \operatorname{case1}(x,y) \implies \neg(\operatorname{case2}(x,y)) \ \ and \ \operatorname{case2}(x,y) \implies \neg(\operatorname{case1}(x,y))
                                                                                                                                                                                                                                                                                             (141)
 x: \mathbb{N}, \ y: \mathbb{N}, \ \operatorname{Th7}(x, y)
       \triangleright \operatorname{case1}(x,y) \implies \neg(\operatorname{case3}(x,y)) \text{ and } \operatorname{case3}(x,y) \implies \neg(\operatorname{case1}(x,y))
                                                                                                                                                                                                                                                                                             (142)
     x:\mathbb{N}
           y:\mathbb{N}
             case2(x, y)
                      case3(x, y)
                          u:\mathbb{N}
                            (\underline{\mathrm{Def \ cas}} \mathrm{e2}) \ \triangleright x = y + u
                                                                                                                                                                                                                                                                                             (143)
                                (\overline{\text{Def case 3}}) \triangleright y + u = (x + v) + u
                                                                                                                                                                                                                                                                                              (144)
                                 Th 5(x, v, u) \triangleright (x+v) + u = x + (v+u)
                                                                                                                                                                                                                                                                                              (145)
                                Th 6(x, v + u) \triangleright x + (v + u) = (v + u) + x
                                                                                                                                                                                                                                                                                              (146)
                                (143), (144), (145), (146) \triangleright x = (v + u) + x
                                                                                                                                                                                                                                                                                              (147)
     \left| \begin{array}{c|c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ 
                                                                                                                                                                                                                                                                                             (148)

ho \operatorname{case2}(x,y) \implies \neg(\operatorname{case3}(x,y)) \ \ and \ \operatorname{case3}(x,y) \implies \neg(\operatorname{case2}(x,y))
                                                                                                                                                                                                                                                                                             (149)
 (141), (142), (149)
       \rhd \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \neg (\operatorname{case1}(x,y)) \ \ and \ \ \neg (\operatorname{case1}(x,y)) \ \ and \ \ \neg (\operatorname{case2}(x,y))
                                                                                                                                                                                                                                                                                             (150)
                                                                                                                                                                    Proof Theorem 9 part B
                                                                                                                                                                                                                                                                              {2.5.7.1.2}
                                                                                                                                                          Proof Theorem 9 part B I
                                                                                                                                                                                                                                                                        \{2.5.7.1.2.1\}
           \mathfrak{M}:\operatorname{SET}
                \forall_{y:\mathfrak{M}} \operatorname{case1}(x,y) \ or \ \operatorname{case2}(x,y) \ or \ \operatorname{case3}(x,y)
               Th3(1) \triangleright x = 1 or \exists_{u:\mathbb{N}} x = u
                                                                                                                                                                                                                                                                                              (151)
```

```
(151), (Def +_{(38)}) \triangleright x = 1 or \exists_{u:\mathbb{N}} x = 1 + u
                                                                                                                                                                                                                                                                                                                                                                                                                           (152)
                          (152) \triangleright case 1(x,1) or case 2(x,1)
                                                                                                                                                                                                                                                                                                                                                                                                                           (153)
                                                                                                                                                                                                                                                                                                                                                                                                                           (154)
                          (153) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                                                                                                                                                                                          {2.5.7.1.2.2}
                                                                                                                                                                                                                        Proof Theorem 9 part B \stackrel{.}{II}
                                      casel(x, y)
                                        \overline{(\mathrm{Def} =_{(38)})} \triangleright y' = y + 1
                                                                                                                                                                                                                                                                                                                                                                                                                           (155)
                                        \triangleright y + 1 = x + 1
                                                                                                                                                                                                                                                                                                                                                                                                                          (156)
                                         (155), (156) \triangleright y' = x + 1
                                                                                                                                                                                                                                                                                                                                                                                                                           (157)
                                         (157) \triangleright \mathbf{case3}(x, y')
                                                                                                                                                                                                                                                                                                                                                                                                                          (158)
                                      case2(x, y)
                                             u:\mathbb{N}
                                                \overline{(\mathrm{Def case 2})} \triangleright x = y + u
                                                                                                                                                                                                                                                                                                                                                                                                                         (159)
                                                 u = 1
                                                        (159) \triangleright x = y + 1
                                                                                                                                                                                                                                                                                                                                                                                                                           (160)
                                                        (160), (Def + (38)) \triangleright x = y'
                                                                                                                                                                                                                                                                                                                                                                                                                           (161)
                                                        (161) \triangleright \operatorname{case1}(x, y')
                                                                                                                                                                                                                                                                                                                                                                                                                          (162)
                                                      u \neq 1
                                                        w:\mathbb{N}
                                                               \overline{\mathrm{Th3}(u)} \triangleright u = w'
                                                                                                                                                                                                                                                                                                                                                                                                                           (163)
                                                               (163), (Def + (38)) \triangleright u = 1 + w
                                                                                                                                                                                                                                                                                                                                                                                                                           (164)
                                                               (159), (164) \triangleright x = y + (1+w)
                                                                                                                                                                                                                                                                                                                                                                                                                           (165)
                                                              \begin{array}{ll} (159), (154) & \forall x = y + (1 + w) \\ Th5(y, 1, w) & \forall y + (1 + w) = (y + 1) + w \\ (Def_{(38)}) & \forall (y + 1) + w = y' + w \\ (165), (166), (167), & \forall x = y' + w \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                           (166)
                                                                                                                                                                                                                                                                                                                                                                                                                           (167)
                                                                                                                                                                                                                                                                                                                                                                                                                           (168)
                                                             (168) \triangleright case 2(x, y')
                                                                                                                                                                                                                                                                                                                                                                                                                          (169)
                                        case3(x,y)
                                                (Def case3) \triangleright y = x + v
                                                                                                                                                                                                                                                                                                                                                                                                                           (170)
                                              (Def +(39)) \triangleright y = x + v

(170), \operatorname{CoAx2}(y, x + v) \triangleright y' = (x + v)'

(Def +(39)) \triangleright (x + v)' = x + v'

(171), (172) \triangleright y' = x + v'
                                                                                                                                                                                                                                                                                                                                                                                                                           (171)
                                                                                                                                                                                                                                                                                                                                                                                                                           (172)
                                                                                                                                                                                                                                                                                                                                                                                                                           (173)
                                               (173) \triangleright \mathsf{case3}(x,y')
                                                                                                                                                                                                                                                                                                                                                                                                                           (174)
                                 (158), (162), (169) \triangleright y : \mathfrak{M}
                                                                                                                                                                                                                                                                                                                                                                                                                           (175)
                \operatorname{Ax5}(\mathfrak{M},(154),(175)) \, \rhd \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                                                                                                                                                                                                                                                                           (176)
   (176), (150) \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \mathsf{Th} 9(x,y)
                                                                                                                                                                                                                                                                                                                                                                                                                           (177)
                                                                                                                                                                                                                                          {case1, case2, case3}
                                                                                                                                                                                                                                                                                          Section 3: Ordering
                                                                                                                                                                                                                                                                                                                                                                                                                                  {3}
x: \mathbb{N}, y: \mathbb{N} > x > y := \exists_{u: \mathbb{N}} x = y + u
                                                                                                                                                                                                                                                                                                                                                                                                                           (178)
\begin{array}{l} x: \mathbb{N}, \ y: \mathbb{N} \rhd x \leq y: = \exists_{v:\mathbb{N}} y = x + v \\ x: \mathbb{N}, \ y: \mathbb{N} \rhd x \leq y: = \exists_{v:\mathbb{N}} y = x + v \\ x: \mathbb{N}, \ y: \mathbb{N} \rhd \mathrm{Th} 10(x,y) := x = y \ or \ x > y \ or \ x < y \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                           (179)
                                                                                                                                                                                                                                                                                                                                                                                                                           (180)
                                                                                                                                                                                                                                                                                               Proof Theorem 10
                                                                                                                                                                                                                                                                                                                                                                                                                            \{3.1\}
x: \mathbb{N}, \ y: \mathbb{N}, \ \operatorname{Th} 9(x,y), \ (\operatorname{Def} \ >), \ (\operatorname{Def} \ <) \ \rhd \operatorname{Th} 10(x,y)
                                                                                                                                                                                                                                                                                                                                                                                                                           (181)
x : \mathbb{N}, y : \mathbb{N}, x > y \triangleright \text{Th} 11(x, y) := y < x
                                                                                                                                                                                                                                                                                                                                                                                                                           (182)
                                                                                                                                                                                                                                                                                               Proof Theorem 11
                                                                                                                                                                                                                                                                                                                                                                                                                           \{3.2\}
               y:\mathbb{N}
               x > y \triangleright \exists_{u:\mathbb{N}} x = y + u
                                                                                                                                                                                                                                                                                                                                                                                                                           (183)
       y < x > \exists_{u:\mathbb{N}} x = y + u
                                                                                                                                                                                                                                                                                                                                                                                                                           (184)
\begin{array}{l} \left(183\right), \left(184\right) \rhd \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \mathsf{Th} \mathsf{11}(x,y) \\ x:\mathbb{N}, \, y:\mathbb{N}, \, x < y \rhd \mathsf{Th} \mathsf{12}(x,y) := y < x \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                           (185)
                                                                                                                                                                                                                                                                                                                                                                                                                           (186)
                                                                                                                                                                                                                                                                                               Proof Theorem 12
                                                                                                                                                                                                                                                                                                                                                                                                                           {3.3}
       x:\mathbb{N}
              y:\mathbb{N}
              x < y > \exists_{v:\mathbb{N}} y = x + v
                                                                                                                                                                                                                                                                                                                                                                                                                           (187)
   \begin{vmatrix} y > x & \forall \exists v : \exists v
                                                                                                                                                                                                                                                                                                                                                                                                                           (188)
                                                                                                                                                                                                                                                                                                                                                                                                                           (189)
 x : \mathbb{N}, y : \mathbb{N} \triangleright x \geqslant y := x > y \text{ or } x = y
                                                                                                                                                                                                                                                                                                                                                                                                                           (190)
 x:\mathbb{N}, \, y:\mathbb{N} \, \rhd \! x \leqslant y := x < y \ or \ x = y
                                                                                                                                                                                                                                                                                                                                                                                                                           (191)
 x\,:\mathbb{N},\,y:\mathbb{N},\,x\geqslant y\rhd\operatorname{Th} 13(x,y):=y\leqslant x
                                                                                                                                                                                                                                                                                                                                                                                                                           (192)
                                                                                                                                                                                                                                                                                               Proof Theorem 13
                                                                                                                                                                                                                                                                                                                                                                                                                           {3.4}
     x:\mathbb{N}
        y: \overline{\mathbb{N}}
        x = y, (2) \triangleright y = x

x > y, Th11(x, y) \triangleright y < x
                                                                                                                                                                                                                                                                                                                                                                                                                           (193)
                                                                                                                                                                                                                                                                                                                                                                                                                           (194)
  \begin{array}{l} (193),\,(194) \,\,\rhd \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \operatorname{Th} 13(x,y) \\ x:\mathbb{N},\,y:\mathbb{N},\,x\leqslant y \,\,\rhd \operatorname{Th} 14(x,y):=y\geqslant x \end{array} 
                                                                                                                                                                                                                                                                                                                                                                                                                           (195)
                                                                                                                                                                                                                                                                                                                                                                                                                            (196)
                                                                                                                                                                                                                                                                                               Proof Theorem 14
                                                                                                                                                                                                                                                                                                                                                                                                                           {3.5}
      x:\mathbb{N}
        y:\mathbb{N}
        (197)
                                                                                                                                                                                                                                                                                                                                                                                                                           (198)
  \begin{array}{l} (197),\,(198) \,\, \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \text{Th} 14(x,y) \\ x:\mathbb{N},\,y:\mathbb{N},\,z:\mathbb{N},\,x < y,\,y < z \,\, \triangleright \text{Th} 15(x,y,z) := x < z \end{array} 
                                                                                                                                                                                                                                                                                                                                                                                                                           (199)
                                                                                                                                                                                                                                                                                                                                                                                                                           (200)
                                                                                                                                                                                                                                                                                    Preliminary\ Remark
                                                                                                                                                                                                                                                                                                                                                                                                                           {3.6}
  x:\mathbb{N}
 y:\mathbb{N}
```

```
\overline{\mathrm{Th}11(x},y) > y < x
                                                                                                                                                         (201)
                                                                                                                                                         (202)
               \operatorname{Th} 11(y, z) \triangleright z < y
               (201), (202), Th15(z, y, x) \triangleright z < x
                                                                                                                                                         (203)
               (203), Th11(z, x) \triangleright x > z
                                                                                                                                                         (204)
                                                                                                           Proof Theorem 15
                                                                                                                                                         {3.7}
  x:\mathbb{N}
         z:\mathbb{N}
                 y = x + v
                                                                                                                                                         (205)
                     (205), \text{Th}5(x, v, w) \triangleright (x + v) + w = x + (v + w)
                                                                                                                                                          (206)
        (206), (Def <) > x < z
                                                                                                                                                          (207)
\begin{array}{l} \mathbf{x}:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x\leqslant y,\ y< z \ \triangleright \mathrm{Th} 16(x,y,z) := x< z \\ x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x< y,\ y\leqslant z \ \triangleright \mathrm{Th} 16(x,y,z) := x< z \end{array}
                                                                                                                                                          (208)
                                                                                                                                                          (209)
                                                                                                           Proof Theorem 16
                                                                                                                                                         {3.8}
         z:\mathbb{N}
                                                                                                                                                         (210)
         x = y, y < z \triangleright x < z
        x < y, \; y = z \; \triangleright x < z
                                                                                                                                                         (211)
        x < y, y < z, \operatorname{Th} 15(x, y, z) > x < z
                                                                                                                                                         (212)
 (210),\,(211),\,(212)\,\,\triangleright\forall_{x\,:\mathbb{N}}\,\forall_{y\,:\mathbb{N}}\,\forall_{z\,:\mathbb{N}}\mathrm{Th}16(x,y,z)
                                                                                                                                                         (213)
x:\mathbb{N}, y:\mathbb{N}, z:\mathbb{N}, x\leqslant y, y\leqslant z \triangleright \mathrm{Th} 17(x,y,z):=x\leqslant z
                                                                                                                                                         (214)
                                                                                                           Proof Theorem 17
                                                                                                                                                         {3.9}
        z:\mathbb{N}
                                                                                                                                                         (215)
         x = y, y = z \triangleright x = z
         x = y, y < z, Th16(x, y, z) \triangleright x < z
                                                                                                                                                         (216)
         x < y, y = z, \operatorname{Th} 16(x, y, z) \triangleright x < z
                                                                                                                                                         (217)
        x < y, y < z, \operatorname{Th} 16(x, y, z) \triangleright x < z
                                                                                                                                                          (218)
 (215),\,(216),\,(217),\,(218)\,\,\rhd\forall_{x\,:\mathbb{N}}\forall_{y\,:\mathbb{N}}\forall_{z\,:\mathbb{N}}\mathrm{Th}16(x,y,z)
                                                                                                                                                          (219)
 x: \mathbb{N}, y: \mathbb{N} \triangleright \mathrm{Th} 18(x, y) := x + y > x
                                                                                                                                                          (220)
                                                                                                           Proof Theorem 18
                                                                                                                                                        {3.10}
x : \mathbb{N}, y : \mathbb{N}, (\text{Def } >), x + y = x + y \triangleright \text{Th18}(x, y)
                                                                                                                                                         (221)
x:\mathbb{N}, y:\mathbb{N}, z:\mathbb{N}, x>y \Rightarrow Th19(x, y, z):=x+z>y+z
                                                                                                                                                         (222)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x=y > Th19(x,y,z):=x+z=y+z
                                                                                                                                                         (223)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x< y>\mathrm{Th}19(x,y,z):=x+z< y+z
                                                                                                                                                         (224)
                                                                                                           Proof Theorem 19
                                                                                                                                                        {3.11}
                                                                                            Proof Theorem 19 case 1
                                                                                                                                                     {3.11.1}
        x > y
            u:\mathbb{N}
            (Def
                                                                                                                                                         (225)
                        (\cdot) \triangleright x = y + u
               (225) > x + z = (y + u) + z
                                                                                                                                                         (226)
               (226), Th6(y, u) \triangleright (y + u) + z = (u + y) + z
                                                                                                                                                         (227)
               (227), Th5(u, y, z) \triangleright (u + y) + z = u + (y + z)
(228), Th6(u, y + z) \triangleright u + (y + z) = (y + z) + u
                                                                                                                                                         (228)
                                                                                                                                                         (229)
               (229), (Def >) \triangleright x + z > y + z
                                                                                                                                                         (230)
                                                                                            Proof Theorem 19 case
                                                                                                                                                     {3.11.2}
        (231)
                                                                                            Proof Theorem 19 case
                                                                                                                                                    \{3.11.3\}
        x < y
                                                                                                                                                         (232)
         \triangleright y > x
           z:\mathbb{N}
            (232), \{3.11.1\} > y + z > x + z
                                                                                                                                                         (233)
        (233) \triangleright x + z < y + z
                                                                                                                                                         (234)
 (230), (231), (234), x : \mathbb{N}, y : \mathbb{N}, x > y \text{ or } x = y \text{ or } x < y \triangleright \forall_{z : \mathbb{N}} \text{Th} 19(x, y, z)
                                                                                                                                                         (235)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x+z>y+z\ {
ho} \ \underline{\operatorname{Th}} \ 20(x,y,z):=x>y
                                                                                                                                                         (236)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x+z=y+z\ 
ightharpoons {\operatorname{Th}} 20(x,y,z):=x=y
                                                                                                                                                         (237)
x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N}, x+z < y+z \triangleright \operatorname{Th} 20(x, y, z) := x < y
                                                                                                                                                         (238)
                                                                                                           Proof Theorem 20
                                                                                                                                                       {3.12}
\{3.11\},\; x:\mathbb{N},\; y:\mathbb{N},\; z:\mathbb{N},\; x+z>y+z\;\; or\; x+z=y+z\;\; or\; x+z< y+z

ightharpoonupTh20(x, y, z)
                                                                                                                                                         (239)
 x:\mathbb{N},\,y:\mathbb{N},\,z:\mathbb{N},\,u:\mathbb{N},\,x>y,\,z>u\,\,{\triangleright}\,\mathrm{Th}\,21(x,y,z,u):=x+z>y+u
                                                                                                                                                         (240)
                                                                                                           Proof Theorem 21
                                                                                                                                                       {3.13}
```

```
\overline{x} > y
                                       \overline{\mathrm{Th}\,19(\,x\,,\,y,\,z\,)}\,\,\triangleright\!x\,+\,z\,>\,y\,+\,z
                                                                                                                                                                                                                                                                                                                                                    (241)
                                      \mathrm{Th}\, 6(y,z)\, \rhd \! y+z=z+y
                                                                                                                                                                                                                                                                                                                                                    (242)
                                       (\mathsf{Def}\, \mathsf{Th} \mathsf{19}_{(222)}) \, \rhd z + y > u + y
                                                                                                                                                                                                                                                                                                                                                    (243)
                                       \mathrm{Th}\, 6(u,y) \triangleright u + y = y + u
                                                                                                                                                                                                                                                                                                                                                    (244)
                                       (242),\,(243),\,(244)\,\rhd y+z>y+u
                                                                                                                                                                                                                                                                                                                                                    (245)
                        (241), (245) \triangleright Th21(x, y, z, u)
                                                                                                                                                                                                                                                                                                                                                    (246)
\begin{array}{l} \text{Th} & \text{Th} &
                                                                                                                                                                                                                                                                                                                                                    (247)
                                                                                                                                                                                                                                                                                                                                                    (248)
                                                                                                                                                                                                                                            Proof Theorem 22
                                                                                                                                                                                                                                                                                                                                                {3.14}
                        u:\mathbb{N}
                        x = y, z > u, Th19(z, u, x) \triangleright x + z > y + u
                                                                                                                                                                                                                                                                                                                                                    (249)
                        x > y, z = u, \text{ Th19}(x, y, z) > x + z > y + u
                                                                                                                                                                                                                                                                                                                                                    (250)
                        x>y,\,z>u,\,{\rm Th}21(x,y,z,u)\,\,{\triangleright}x+z>y+u
                                                                                                                                                                                                                                                                                                                                                    (251)
                 (249), (250), (251) \triangleright \text{Th} 22(x, y, z, u)
                                                                                                                                                                                                                                                                                                                                                    (252)
             \mathbb{N},\;y:\mathbb{N},\;z:\mathbb{N},\;u:\mathbb{N},\;x\geqslant y,\;z\geqslant u\;\rhd \mathrm{Th}\,23(x,y,z,u):=x+z\geqslant y+u
                                                                                                                                                                                                                                                                                                                                                    (253)
                                                                                                                                                                                                                                            Proof Theorem 23
                                                                                                                                                                                                                                                                                                                                                 \{3.15\}
             y:\mathbb{N}
                 z:\mathbb{N}
                        u:\mathbb{N}
                        x = y, z = u \triangleright x + z = y + u
                                                                                                                                                                                                                                                                                                                                                    (254)
                (255)
                                                                                                                                                                                                                                                                                                                                                    (256)
                                                                                                                                                                                                                                                                                                                                                    (257)
            \mathbb{N} \triangleright \operatorname{Th} 24(x) := x \geqslant 1
                                                                                                                                                                                                                                                                                                                                                    (258)
                                                                                                                                                                                                                                             Proof Theorem 24
                                                                                                                                                                                                                                                                                                                                                 {3.16}
            x = 1
            \triangleright x \geqslant 1
                                                                                                                                                                                                                                                                                                                                                   (259)
            u:\mathbb{N}
              x = u'
                 (\text{Def} +_{(38)}) \triangleright u' = u + 1
\triangleright u + 1 > 1
                                                                                                                                                                                                                                                                                                                                                    (260)
                                                                                                                                                                                                                                                                                                                                                    (261)
              (260), (261) \triangleright x \geqslant 1
                                                                                                                                                                                                                                                                                                                                                    (262)
 (259),\,(262)\,\rhd\forall_{x:\mathbb{N}}\mathrm{Th}24(x)
                                                                                                                                                                                                                                                                                                                                                    (263)
 x: \mathbb{N}, y: \mathbb{N}, y > x \triangleright \text{Th} 25(x,y) := y > x + 1
                                                                                                                                                                                                                                                                                                                                                    (264)
                                                                                                                                                                                                                                             Proof\ Theorem\ 25
                                                                                                                                                                                                                                                                                                                                                 {3.17}
            y:\mathbb{N}
               y > x
                     u:\mathbb{N}
                          (Def >) \triangleright y = x + u
                                                                                                                                                                                                                                                                                                                                                    (265)
                        Th24(u) \triangleright u \geqslant 1
                                                                                                                                                                                                                                                                                                                                                    (266)
             (265), (266) \triangleright \text{Th} 25(x, y)
                                                                                                                                                                                                                                                                                                                                                    (267)
x: \mathbb{N}, \ y: \mathbb{N}, \ y < x+1 \ 
ightharpoons \operatorname{Th} 26(x,y) := y \leqslant x
                                                                                                                                                                                                                                                                                                                                                    (268)
                                                                                                                                                                                                                                             Proof Theorem 26
                                                                                                                                                                                                                                                                                                                                                {3.18}
            y:\mathbb{N}
                     \neg (y \leqslant x)
                                                                                                                                                                                                                                                                                                                                                    (269)
                   Th25(y, x) \triangleright y \geqslant x + 1
                                                                                                                                                                                                                                                                                                                                                    (270)
 \mathfrak{M}: \operatorname{SET}, \, orall_{x:\mathfrak{M}} x: \operatorname{natural\ number\ } 
ho\operatorname{Th} 27(\mathfrak{M}):=1:\mathfrak{M}
                                                                                                                                                                                                                                                                                                                                                    (271)
                                                                                                                                                                                                                                             Proof Theorem 27
                                                                                                                                                                                                                                                                                                                                                 {3.19}
      \mathfrak{N}: \operatorname{SET}
            Th27(\mathfrak{N})
                  \mathfrak{M}:\operatorname{SET}
                         (272)
                         (272) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                                                                                                                                                                                                    (273)
                         \begin{array}{l} y:\mathfrak{N},\ y+1>y \, \rhd \neg (y+1:\mathfrak{M}) \\ (274) \, \rhd \neg (\forall_{x:\mathbb{N}}x:\mathfrak{M}) \\ m:\mathfrak{M},\ \mathrm{Ax5}(\mathfrak{M},(273),m+1:\mathfrak{M}) \, \rhd \mathbb{N} \subset \mathfrak{M} \end{array}
                                                                                                                                                                                                                                                                                                                                                    (274)
                                                                                                                                                                                                                                                                                                                                                    (275)
                                                                                                                                                                                                                                                                                                                                                    (276)
                          (275), (276) \triangleright \exists_{m:\mathfrak{M}} \neg (m+1:\mathfrak{M})
\boxed{m:\mathfrak{M}}
                                                                                                                                                                                                                                                                                                                                                   (277)
                                      \neg (m+1:\mathfrak{M})
                                      \triangleright \forall_{n:\mathfrak{N}} m \leqslant n
                                                                                                                                                                                                                                                                                                                                                   (278)
                                        \neg (m : \mathfrak{N})
                                              \overrightarrow{\triangleright \forall_{n : \mathfrak{N}}} \overrightarrow{m} < n  (279), n : \mathfrak{N}, Th25(n, m) \triangleright m + 1 \leqslant n 
                                                                                                                                                                                                                                                                                                                                                    (279)
                                                                                                                                                                                                                                                                                                                                                    (280)
```

```
(281)
                                                                                                                                                                            (282)
                                                                                                            Section 4: Multiplication
                                                                                                                                                                            {4}
{4.1}
                                                                                                                                   Definition 6
x\,:\mathbb{N}\,\rhd.(x,1):=\,x
                                                                                                                                                                            (283)
x:\mathbb{N},\ y:\mathbb{N}\ \triangleright.(x,y'):=x.y+x
                                                                                                                                                                            (284)
x:\mathbb{N},\ y:\mathbb{N}\ 	riangleright{
ho}\operatorname{product}(x,y):=Noun_{z:\mathbb{N}}(z=x.y)
                                                                                                                                                                            (285)
x: \mathbb{N}, \ y: \mathbb{N}, \ z: \mathbb{N} \ \triangleright \text{Th} 28(x, y, z) := x.y = z
                                                                                                                                                                            (286)
                                                                                                                        Proof Theorem 28
                                                                                                                                                                            \{4.2\}
                                                                                       Proof Theorem 28 part A {a, b}
                                                                                                                                                                         {4.2.1}
   \triangleright \mathbf{a}(x,1) := x
                                                                                                                                                                            (287)
   y: \mathbb{N} \triangleright \mathbf{a}(x, y') := (\mathbf{a}(x, y)) + x
                                                                                                                                                                           (288)
                                                                                                                                                                            (289)
   \triangleright b(x, 1) := x
   y: \check{\mathbb{N}} \, \triangleright \dot{\mathbf{b}}(x,y') := (\mathbf{b}(x,y)) + x
                                                                                                                                                                           (290)
                                                                                                 Proof Theorem 28 part A I
                                                                                                                                                                     {4.2.1.1}
      \mathfrak{M}:\operatorname{SET}
         \forall_{y:\mathfrak{M}} \mathbf{a}(x,y) = \mathbf{b}(x,y)
          (\operatorname{Def} \mathbf{a}_{(287)}) \triangleright \mathbf{a}(x,1) = x
                                                                                                                                                                           (291)
                                                                                                                                                                           (292)
          (Def b_{(289)}) \triangleright x = b(x, 1)
                                                                                                                                                                            (293)
          (291), (292) \triangleright a(x, 1) = b(x, 1)
          (293) ⊳1: 30
                                                                                                                                                                            (294)
                                                                                              Proof Theorem 28 part A II
                                                                                                                                                                     {4.2.1.2}
          y:\mathfrak{M}
              a(x,y) = b(x,y)
                                                                                                                                                                            (295)
                \triangleright (\mathbf{a}(x,y)) + x = (\mathbf{b}(x,y)) + 1
                \begin{array}{l} (\text{Def a}_{(288)}) \rhd \mathsf{a}(x,y') = (\mathsf{a}(x,y)) + 1 \\ (\text{Def b}_{(290)}) \rhd \mathsf{b}(x,y') = (\mathsf{b}(x,y)) + 1 \end{array}
                                                                                                                                                                            (296)
                                                                                                                                                                            (297)
                 (288), (295), (290) \triangleright a(x, y') = b(x, y')
                                                                                                                                                                            (298)
       (299)
                                                                                                                                                                            (300)
      (300) \triangleright \forall_{y:\mathbb{N}} \mathbf{a}(x,y) = \mathbf{b}(x,y)
                                                                                                                                                                           (301)
                                                                                                                              {a, b}
                                                                                                       Proof Theorem 28 part B
                                                                                                                                                                         {4.2.2}
                                                                                                                                                                     {4.2.2.1}
                                                                                                 Proof Theorem 28 part B I
   \mathfrak{M}: \operatorname{SET}
      \forall_{x:\mathfrak{M}} x.1 = x \text{ and } \forall_{y:\mathbb{N}} x.y' = x.y + x
         x:\mathbb{N}
             x = 1
                   x \cdot y = y
                   \triangleright x.1 = 1
                                                                                                                                                                            (302)
                    (Def_{\cdot(283)}) \triangleright 1 = x
                                                                                                                                                                            (303)
                   (302), (303) \triangleright x.1 = x 
 \triangleright x.y' = y'
                                                                                                                                                                            (304)
                                                                                                                                                                            (305)
                   (Def +_{(38)}) \triangleright y' = y + 1
                                                                                                                                                                            (306)
                    y + 1 = x.y + x 
 (305), (306), (307) \triangleright x.y' = x.y + x 
                                                                                                                                                                            (307)
                                                                                                                                                                            (308)
       (304), (308) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                           (309)
                                                                                               Proof Theorem 28 part B II
                                                                                                                                                                     {4.2.2.2}
          x:\mathfrak{M}
          \forall_{y:\mathbb{N}}\exists_{z:\mathbb{N}}z=x.y
                y: \overline{\mathbb{N}}
                   x' \cdot y = x \cdot y + x
                   \triangleright x'.1 = x.1 + 1
                                                                                                                                                                            (310)
                   (Def .(283)) \triangleright x.1 + 1 = x + 1
                                                                                                                                                                            (311)
                    (Def +_{(38)}) \triangleright x + 1 = x'
                                                                                                                                                                            (312)
                   (310), (311), (312) \triangleright x'.1 = x' 
 \triangleright x'.y' = x.y' + y'
                                                                                                                                                                            (313)
                                                                                                                                                                            (314)
                   \begin{array}{l} (\text{Def}_{(284)}) \triangleright x.y' + y' = (x.y+x) + y' \\ \text{Th5}(x.y,x,y') \triangleright (x.y+x) + y' = x.y + (x+y') \\ (\text{Def}_{(39)}) \triangleright x.y + (x+y') = x.y + (x+y)' \\ (\text{Def}_{(39)}) \triangleright x.y + (x+y)' = x.y + (x'+y) \end{array}
                                                                                                                                                                            (315)
                                                                                                                                                                            (316)
                                                                                                                                                                            (317)
                                                                                                                                                                            (318)
                   Th6(x', y) \triangleright x.y + (x' + y) = x.y + (y + x')
                                                                                                                                                                            (319)
                   Th5(x,y,x') \triangleright x.y + (y+x') = (x.y+y) + x'

(Def. (284) \triangleright (x.y+y) + x' = x'.y + x'
                                                                                                                                                                            (320)
                                                                                                                                                                            (321)
             (322)
                                                                                                                                                                            (323)
  \begin{vmatrix} \operatorname{Ax5}(\mathfrak{M}, (309), (323)) & \rhd \mathbb{N} \subset \mathfrak{M} \\ (324) & \rhd \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \exists_{z:\mathbb{N}} \operatorname{Th} 28(x, y, z) \end{vmatrix} 
                                                                                                                                                                            (324)
                                                                                                                                                                            (325)
 x: \mathbb{N}, \ y: \mathbb{N} \triangleright \mathrm{Th} 29(x, y) := x.y = y.x
                                                                                                                                                                            (326)
                                                                                                                        Proof Theorem 29
                                                                                                                                                                            {4.3}
                                                                                                        Proof Theorem 29 part I
                                                                                                                                                                         {4.3.1}
  y:\mathbb{N}
  \mathfrak{M}:\operatorname{SET}
```

```
\forall_{x:\mathfrak{M}}\operatorname{Th}29(x,y)
          \overline{(\mathrm{Def} \cdot_{(283)}) \triangleright y.1} = y
                                                                                                                                                                (327)
          \{4.2.1\} \triangleright 1.y = y
                                                                                                                                                                (328)
          (327), (328) \triangleright 1.y = y.1
                                                                                                                                                                 (329)
          (329) > Th 29(1, y)
                                                                                                                                                                (330)
          (330) > 1 : \mathfrak{M}
                                                                                                                                                                (331)
                                                                                                Proof Theorem 29 part II
                                                                                                                                                             \{4.3.2\}
            \overline{\mathrm{Th}29(\,x\,,\,y)}\,\,\triangleright\!x.\,y=\,y.x
                                                                                                                                                                (332)
                                                                                                                                                                (333)
             (332) \, \triangleright x.y + y = y.x + y
             (\text{Def }._{(284)}) \triangleright y.x + y = y.x
                                                                                                                                                                (334)
             (333), (334) \triangleright x.y + y = y.x'
                                                                                                                                                                (335)
            \{4.2.2\} \triangleright x'.y = x.y + y

\{334\}, (336) \triangleright x'.y = y.x'
                                                                                                                                                                 (336)
                                                                                                                                                                 (337)
             (337) \triangleright Th 29(x',y)
                                                                                                                                                                (338)
            (338) \triangleright x' : \mathfrak{M}
                                                                                                                                                                (339)
         A \times 5(\mathfrak{M}, (331), (339)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                (340)
 \begin{array}{l} (340) \, \, \forall \forall x : \mathbb{N} \, \forall y : \mathbb{N} \, \text{Th} 29(x,y) \\ x : \mathbb{N}, \, y : \mathbb{N}, \, z : \mathbb{N} \, \triangleright \text{Th} 30(x,y,z) := x.(y+z) = x.y + x.z \end{array} 
                                                                                                                                                                (341)
                                                                                                                                                                (342)
                                                                                                            Preliminary Remark
                                                                                                                                                                 \{4.4\}
x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N}, \text{ (Def Th30)}, \text{ (Def Th29)} \triangleright x.(y+z) = x.y + x.z
                                                                                                                                                                (343)
                                                                                                                Proof Theorem 30
                                                                                                                                                                 \{4.5\}
                                                                                                          Proof Theorem 30 I
                                                                                                                                                             \{4.5.1\}
  x:\mathbb{N}
      y:\mathbb{N}
         \mathfrak{M}: \operatorname{SET}
           \forall_{z:\mathfrak{M}} \mathrm{Th} 30(x,y,z)
             (Def +_{(38)}) \triangleright x.(y+1) = x.y'
                                                                                                                                                                (344)
             (\text{Def }._{(284)}) \triangleright x.y' = x.y + x
                                                                                                                                                                (345)
             (\text{Def }._{(283)}) \triangleright x.y + x = x.y + x.1
                                                                                                                                                                (346)
             (344), (345), (346) \triangleright x.(y+1) = x.y + x.1
                                                                                                                                                                (347)
             (347) \triangleright 1 : \mathfrak{M}
                                                                                                                                                                (348)
                                                                                                        Proof Theorem 30 II
                                                                                                                                                             \{4.5.2\}
               z:\mathfrak{M}
                \overline{\text{Th30}(x}, y, z) \triangleright x.(y+z) = x.y + x.z
                                                                                                                                                                (349)
               (\text{Def} +_{(38)}) \triangleright x.(y + z') = x.(y + z)'
                                                                                                                                                                (350)
                (\text{Def }._{(284)}) \triangleright x.(y+z)' = x.(y+z) + (y+z)
                                                                                                                                                                (351)
                (349) \triangleright x.(y+z) + x = (x.y+x.z) + x
                                                                                                                                                                (352)
                Th5(x.y, x.z, x) \triangleright (x.y + x.z) + x = x.y + (x.z + x)
                                                                                                                                                                (353)
                                                                                                                                                                (354)
                (Def.<sub>(284)</sub>) \triangleright x.y + (x.z + x) = x.y + x.z'
                (350), (351), (352), (353), (354) \triangleright x.(y+z') = x.y + x.z'
                                                                                                                                                                (355)
                (355) \triangleright x' : \mathfrak{M}
                                                                                                                                                                (356)
           Ax5(\mathfrak{M}, (348), (356)) \triangleright \mathbb{N} \subset \mathfrak{M}
                                                                                                                                                                (357)
(357) \hspace{0.1cm} \triangleright \forall_{x:\mathbb{N}} \forall_{y:\mathbb{N}} \forall_{z:\mathbb{N}} \mathsf{Th} 30(x,y,z)
                                                                                                                                                                (358)
\overrightarrow{x}: \mathbb{N}, \ y: \mathbb{N}, \ z: \mathbb{N} \ \triangleright \text{Th} 31(\overrightarrow{x}, \overrightarrow{y}, z) := (x.y).z = x.(y.z)
                                                                                                                                                                (359)
                                                                                                                Proof Theorem 31
                                                                                                                                                                {4.6}
                                                                                                 Proof Theorem 31 part I
                                                                                                                                                             \{4.6.1\}
         \mathfrak{M}:\operatorname{SET}
            \forall_{z:\mathfrak{M}}\mathrm{Th}31(x,y,z)
             (\text{Def }._{(283)}) \triangleright (x.y).1 = x.y
                                                                                                                                                                (360)
             (\text{Def }._{(283)}) \triangleright x.y = x.(y.1)
                                                                                                                                                                (361)
             (360), (361) \triangleright (x.y).1 = x.(y.1)
                                                                                                                                                                (362)
             (362), (Def Th5) > Th31(x, y, 1)
                                                                                                                                                                (363)
             (363) ⊳1: M
                                                                                                                                                                (364)
                                                                                                Proof Theorem 31 part II
                                                                                                                                                             {4.6.2}
               z: \mathfrak{M} \triangleright \operatorname{Th} 31(x, y, z)
                                                                                                                                                                (365)
                (\mathrm{Def}_{\;\; \cdot(284)})\; \rhd (x.y).z' = (x.y).z + x.y
                                                                                                                                                                (366)
                (365) \triangleright (x.y).z + x.y = x.(y.z) + x.y
                                                                                                                                                                (367)
                \operatorname{Th} 30(x,y,z) \, \triangleright x.(y.z) + x.y = x.(y.z+y)
                                                                                                                                                                 (368)
                (\text{Def }._{(284)}) \triangleright x.(y.z + y) = x.(y.z')
                                                                                                                                                                 (369)
                (366), (367), (368), (369) \triangleright (x.y).z' = x.(y.z')
                                                                                                                                                                (370)
                (370) \triangleright \mathsf{Th} \, 31(x,y,z')
                                                                                                                                                                (371)
              (371) \triangleright x' : \mathfrak{M}
                                                                                                                                                                (372)
(373)
                                                                                                                                                                (374)
                                                                                                                                                                (375)
                                                                                                                                                                (376)
                                                                                                                                                                (377)
                                                                                                                Proof Theorem 32
                                                                                                                                                                 \{4.7\}
                                                                                                 Proof Theorem 32 case 1
                                                                                                                                                             {4.7.1}
```

```
(378)
             (\mathsf{Def} \ >) \ \triangleright x = y + u
               z:\mathbb{N}
                 \overline{(378)} \triangleright x.z = (y+u).z
                                                                                                                                                                         (379)
                 \mathsf{Th30}(z,y,u) \, \triangleright (y+u).z = y.z + u.z
                                                                                                                                                                         (380)
                 (Def >) \triangleright y.z + u.z > y.z
                                                                                                                                                                          (381)
                (379), (380), (381) \triangleright x.z > y.z
                                                                                                                                                                         (382)
                                                                                                      Proof Theorem 32 case
                                                                                                                                                                      {4.7.2}
         x = y
                                                                                                                                                                         (383)
         \overline{z: \mathbb{N} \triangleright} x.z = y.z
                                                                                                      Proof Theorem 32 case 3
                                                                                                                                                                      \{4.7.3\}
          x < y
                                                                                                                                                                         (384)
             (384), \{4.7.1\} > y.z > x.z
                                                                                                                                                                         (385)
            (385) \triangleright x.z < y.z
                                                                                                                                                                         (386)
\begin{array}{l} \text{T1-1} & \text{CSD}, \\ \text{(382), (383), (386), } x: \mathbb{N}, \ y: \mathbb{N}, \ x>y \ \ \text{or} \ x=y \ \ \text{or} \ x< y \ \rhd \forall_{z: \mathbb{N}} \text{Th} \\ \text{32}(x,y,z) \\ x: \mathbb{N}, \ y: \mathbb{N}, \ z: \mathbb{N}, \ x.z>y.z \ \rhd \text{Th} \\ \text{33}(x,y,z) := x>y \end{array}
                                                                                                                                                                          (387)
                                                                                                                                                                         (388)
                                                                                                                                                                          (389)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ x.z=y.z \ \rhd \text{Th} \\ 33(x,y,z):=x=y.z
x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N}, x.z < y.z \triangleright \text{Th} 33(x, y, z) := x < y
                                                                                                                                                                          (390)
                                                                                                                     Proof Theorem 33
                                                                                                                                                                         \{4.8\}
\{4.7\}, \ x: \mathbb{N}, \ y: \mathbb{N}, \ z: \mathbb{N}, \ x.z > y.z \ \ or \ x.z = y.z \ \ or \ x.z < y.z
    \triangleright \text{Th}33(x, y, z)
                                                                                                                                                                         (391)
x:\mathbb{N},\;y:\mathbb{N},\;z:\mathbb{N},\;u:\mathbb{N},\;x>y,\;z>u\; \rhd \mathrm{Th} 34(x,y,z,u):=x.z>y.u
                                                                                                                                                                          (392)
                                                                                                                       Proof Theorem 34
                                                                                                                                                                         \{4.9\}
                   \begin{array}{l} \overline{\mathrm{Th}32(x,y,z)} \rhd x.z > y.z \\ \mathrm{Th}29(y,z) \rhd y.z = z.y \end{array}
                                                                                                                                                                         (393)
                                                                                                                                                                         (394)
                   \big(\operatorname{Def Th} 32_{(375)}\big) \, \rhd z.y > u.y
                                                                                                                                                                         (395)
                    Th29(u, y) \triangleright u.y = y.u
                                                                                                                                                                         (396)
                   (394),\,(395),\,(396)\,\rhd\!y.z>y.u
                                                                                                                                                                         (397)
                  (393), (397) \triangleright \text{Th34}(x, y, z, u)
                                                                                                                                                                         (398)
     \begin{array}{c|c} | & | & | & (393), (397) \rhd \operatorname{Th}34(x,y,z,u) \\ : \mathbb{N}, \ y : \mathbb{N}, \ z : \mathbb{N}, \ u : \mathbb{N}, \ x \geqslant y, \ z > u \rhd \operatorname{Th}35(x,y,z,u) := x.z > y.u \end{array}
                                                                                                                                                                         (399)
x:\mathbb{N},\ y:\mathbb{N},\ z:\mathbb{N},\ u:\mathbb{N},\ x>y,\ z\geqslant u\ \rhd \mathrm{Th}35(x,y,z,u):=x.z>y.u
                                                                                                                                                                         (400)
                                                                                                                      Proof Theorem 35
                                                                                                                                                                        {4.10}
      y:\mathbb{N}
             \overline{x=y}, z>u, \text{ Th} 32(z,u,x) \ \triangleright x.z>y.u
                                                                                                                                                                         (401)
            x > y, z = u, Th32(x, y, z) \triangleright x.z > y.u
                                                                                                                                                                         (402)
            x > y, z > u, Th34(x, y, z, u) \triangleright x.z > y.u
                                                                                                                                                                         (403)
            (401), (402), (403) \triangleright Th35(x, y, z, u)
                                                                                                                                                                         (404)
          , y: \mathbb{N}, z: \mathbb{N}, u: \mathbb{N}, x \geqslant y, z \geqslant u \triangleright \operatorname{Th36}(x, y, z, u) := x.z \geqslant y.u
                                                                                                                                                                         (405)
                                                                                                                      Proof Theorem 36
                                                                                                                                                                        {4.11}
             x = y, z = u > x.z = y.u
                                                                                                                                                                         (406)
            x\geqslant y,\,z>u,\,{\rm Th}35(x,y,z,u)\,\,\triangleright x.z>y.u
                                                                                                                                                                          (407)
             x > y, z \geqslant u, Th35(x, y, z, u) \triangleright x.z > y.u
                                                                                                                                                                         (408)
            (406), (407), (408) \triangleright Th36(x, y, z, u)
                                                                                                                                                                         (409)
```

End of our Math Lang translation of the first chapter of $Foundations\ of\ Analysis\ [{\rm Lan51}]$

B Foundations of Analysis' first chapter

This section of the appendix contains the original text of the first chapter (translated from German to English by F. Steinhardt) of E. Landau's Foundations of Analysis [Lan51, Lan30].

Beginning of the original first chapter of Foundations of Analysis [Lan51]

B.1 Natural Numbers

B.1.1 Axioms

We assume the following to be given:

A set (i.e. totality) of objects called natural numbers, possessing the properties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and \neq which be used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this book.

If x is given and y is given, then either x and y are the same number; this may be written

$$x = y$$

(= to be read "equals"); or x and y are not the same number; this may be written

$$x \neq y$$

 $(\neq to be read "is not equal to").$

Accordingly, the following are true on purely logical grounds:

$$x = x$$
 for every x (1)

If
$$x = y$$
 then $y = x$ (2)

If
$$x = y$$
, $y = z$ then $x = z$ (3)

Thus a statement such as

$$a = b = c = d$$
.

which on the face of it means merely that

$$a = b, b = c, c = d,$$

contains the additional information that, say,

$$a = c, a = d, b = d.$$

(Similarly in the later chapters.)

Now, we assume that the set of all natural numbers has the following properties:

Axiom 1 1 is a natural number.

That is, our set is not empty; it contains an object called 1 (read "one").

Axiom 2 For each x there exists exactly one natural number, called the successor of x, which will be denoted by x'.

In the case of complicated natural numbers x, we will enclose in parentheses the number whose successor is to be written down, since otherwise ambiguities might arise. We will do the same throughout this book, in case of $x+y, xy, x-y, -x, x^y$, etc.

Thus, if

$$x = y$$

then

$$x' = y'$$
.

Axiom 3 We always have

$$x' \neq 1$$
.

That is, there exists no number whose successor is 1.

Axiom 4 If

$$x' = y'$$

then

$$x = y$$
.

That is, for any given number there exists either no number or exactly one number whose successor is the given number.

Axiom 5 (Axiom of Induction) Let there be given a set M of natural numbers, with the following properties:

- I) 1 belongs to M
- II) If x belongs to \mathfrak{M} then so does x'

Then $\mathfrak M$ contains all the natural numbers.

B.1.2 Addition

Theorem 1 If

 $x \neq g$

then

$$x' \neq y'$$
.

Proof Otherwise, we would have

$$x' = y'$$

and hence, by Axiom 4,

$$x = y$$
.

Theorem 2

$$x' \neq x$$
.

Proof Let \mathfrak{M} be the set of all x for which this holds true.

I) By Axiom 1 and Axiom 3,

$$1' \neq 1$$
;

therefore 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$x' \neq x$$
.

and hence by Theorem 1,

$$(x')' \neq x'$$

so that x' belongs to \mathfrak{M} .

By Axiom 5, $\mathfrak M$ therefore contains all the natural numbers, i.e. we have for each x that

$$x' \neq x$$
.

Theorem 3 If

$$x \neq 1$$
,

then there exists one (hence, by Axiom 4, exactly one) u such that

$$x = u'$$
.

Proof Let \mathfrak{M} be the set consisting of the number 1 and of all those x for which there exists such a u. (For any such x, we have of necessity that

$$x \neq 1$$

by Axiom 3.)

- I) 1 belongs to \mathfrak{M} .
- II) If x belongs to \mathfrak{M} , then, with u denoting the number x, we have

$$x' = u'$$

so that x' belongs to \mathfrak{M} .

By Axiom 5, $\mathfrak M$ therefore contains all the natural numbers; thus for each

$$x \neq 1$$

there exists a u such that

$$x = u'$$
.

Theorem 4, and at the same time **Definition 1** To every pair of numbers x,y, we may assign in exactly one way a natural number, called x+y (+ to be read "plus"), such that

$$x + 1 = x' \text{ for every } x \tag{4}$$

$$x + y' = (x + y)'$$
 for every x and every y (5)

x + y is called the sum of x and y, or the number obtained by addition of y to x.

Proof

A) First we will show that for each fixed x there is at most one possibility of defining x + y for all y in such a way that

$$x + 1 = x'$$

and

$$x + y' = (x + y)'$$
 for every y.

Let a_y and b_y be defined for all y and be such that

$$a_1 = x',$$
 $b_1 = x',$ $a_{y'} = (a_y)',$ $b_{y'} = (b_y)'$ for every y .

Let ${\mathfrak M}$ be the set of all y for which

$$a_y = b_y$$
.

I)

$$a_1=x'=b_1;$$

hence 1 belongs to \mathfrak{M} .

II) If y belongs to \mathfrak{M} , then

$$a_y = b_y$$
,

hence by Axiom 2,

$$(a_y)' = (b_y)',$$

therefore

$$a_{y'} = (a_y)' = (b_y)' = b_{y'},$$

so that y' belongs to \mathfrak{M} .

Hence ${\mathfrak M}$ is the set of all natural numbers; i.e. for every y we have

$$a_y = b_y$$
.

B) Now we will show that for each x it is actually possible to define x+y for all y in such a way that

$$x + 1 = x'$$

and

$$x + y' = (x + y)'$$
 for every y.

Let \mathfrak{M} be the set of all x for which this is possible (in exactly one way, by A))

I) For

$$x = 1$$

the number

$$x + y = y'$$

is as required, since

$$x + 1 = 1' = x',$$

 $x + y' = (y')' = (x + y)'.$

Hence 1 belongs to \mathfrak{M} .

II) Let x belong to \mathfrak{M} , so that there exists an x+y for all y. Then the number

$$x' + y = (x + y)'$$

is the required number for x', since

$$x' + 1 = (x + 1)' = (x')'$$

and

$$x' + y' = (x + y')' = ((x + y)')' = (x' + y)'.$$

Hence x' belongs to \mathfrak{M} .

Therefore \mathfrak{M} contains all x.

Theorem 5 (Associative Law of addition)

$$(x + y) + z = x + (y + z).$$

Proof Fix x and y, and denote by \mathfrak{M} the set of all z for which the assertion of the theorem holds.

I)

$$(x + y) + 1 = (x + y)' = x + y' = x + (y + 1);$$

thus 1 belongs to $\mathfrak{M}.$

II) Let z belong to $\mathfrak{M}.$ Then

$$(x + y) + z = x + (y + z),$$

ence

$$(x + y) + z' = ((x + y) + z)' = (x + (y + z))'$$

= $x + (y + z)' = x + (y + z'),$

so that z' belongs to \mathfrak{M} .

Therefore the assertion holds for all z.

Theorem 6 (Commutative Law of Addition)

$$x + y = y + x.$$

Proof Fix y, and \mathfrak{M} be the set of all x for which the assertion holds.

I) We have

$$y+1=y',$$

and futhermore, by the construction in the proof of Theorem 4,

$$1+y=y',$$

so that

$$1+y=y+1$$

and 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$x + y = y + x,$$

Therefore

$$(x + y)' = (y + x)' = y + x'.$$

By the construction in the proof of Theorem 4, we have

$$x' + y = (x + y)',$$

hence

$$x' + y = y + x',$$

so that x' belongs to \mathfrak{M} .

The assertion therefore holds for all x.

Theorem 7

$$y \neq x + y$$
.

Proof Fix x, and let \mathfrak{M} be the set of all y for which the assertion holds.

I)

$$1 \neq x',$$

$$1 \neq x + 1;$$

1 belongs to \mathfrak{M} .

II) If y belongs to \mathfrak{M} , then

$$y \neq x + y$$
,

hence

$$y' \neq (x+y)',$$

$$y' \neq x+y',$$

so that y' belongs to \mathfrak{M} .

Therefore the assertion holds for all y.

Theorem 8 If

 $y \neq z$

Then

$$x + y \neq x + z$$
.

Proof Consider a fixed y and a fixed z such that

$$y\neq z,$$

and let \mathfrak{M} be the set of all x for which

$$x+\,y\neq\,x+z\,,$$

I)

$$y' \neq z',$$

$$1 + y \neq 1 + z;$$

hence 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$x + y \neq x + z$$
,

hence

$$(x+y)' \neq (x+z)',$$

$$x' + y \neq x' + z$$

so that x' belongs \mathfrak{M} .

Therefore the assertion holds always.

Theorem 9 For given x and y, exactly one of the following must be the case:

x = y.

2) There exists a u (exactly one, by Theorem 8) such that

$$x = y + u$$
.

3) There exists a v (exactly one, by Theorem 8) such

$$y = x + v$$
.

Proof

1)

A) By Theorem 7, cases 1) and 2) are incompatible. Similarly, 1) and 3) also follows from Theorem 7; for otherwise, we would have

$$x = y + u = (x + v) + u = x + (v + u) = (v + u) + x.$$

Therefore we can have at most one of the cases 1), 2) and 3).

- B) Let x be fixed, and let \mathfrak{M} be the set of all y for which one (hence by A), exactly one) of the cases 1), 2) and 3) obtains.
 - I) For y = 1, we have by Theorem 3 that either

$$x = 1 = y$$

(case 1))

or

$$x = u' = 1 + u = y + u$$
 (case 2)).

Hence 1 belongs to M.

II) Let y belong to $\mathfrak{M}.$ Then either (case 1) for y)

$$x = y$$
,

hence

$$y' = y + 1 = x + 1$$
 (case 3) for y');

or (case 2) for y)

$$x = y + u$$

hence if

$$u=1,$$

then

$$x = y + 1 = y'$$
 (case 1) for y');

but if

$$u \neq 1$$
,

then, by Theorem 3,

$$u = w' = 1 + w,$$
 (6)

$$x = y + (1 + w) = (y + 1) + w = y' + w(7)$$
(case 2) for y');

or (case 3) for y)

$$y = x + v$$
,

hence

$$y' = (x + v)' = x + v'$$
(case 3) for y').

In any case, y' belongs to \mathfrak{M} .

Therefore we always have one of the cases 1), 2) and 3).

B.1.3 Ordering

Definition 2 If

x = y + u

then

$$x > y$$
.

(> to be read "is greater than.")

Definition 3 If

y = x + v

then

$$x < y$$
.

(< to be read "is less than.")

Theorem 10 For any given x, y, we have exactly one of the cases

$$x = y, x > y, x < y.$$

Proof Theorem 9, Definition 2 and Definition 3.

Theorem 11 If

x > y

then

$$y < x$$
.

Proof Each of these means that

$$x = y + u$$

for some suitable u.

Theorem 12 If

x < y

then

$$y > x$$
.

Proof Each of these means that

$$y = x + v$$

for some suitable v.

Definition 4

 $x \ge y$

means

$$x > y \text{ or } x = y.$$

(≥ to be read "is greater than or equal to.")

Definition 5

 $x \leq y$

means

$$x < y \text{ or } x = y.$$

 $(\leq to be read "is less than or equal to.")$

Theorem 13 If

 $x \geqq y$

then

$$y \leq x$$
.

Proof Theorem 11.

Theorem 14 If

 $x \leq y$

then

$$y \geqq y$$
.

Proof Theorem 12.

Theorem 15 (Transitivity of Ordering) If

x < y, y < z,

then

$$x < z$$
.

Preliminary Remark Thus if

x > y, y > z,

then

since

$$z < y, y < x, z < x;$$

but in what follows I will not even bother to write down such statements, which are obtained trivially by simply reading the formulas backwards.

Proof With suitable v, w, we have

$$y = x + v, z = y + w,$$

hence

$$z = (x + v) + w = x + (v + w), x < z.$$

Theorem 16 If

$$x \le y, y < z, \text{ or } x < y, y \le z,$$

then

$$x < z$$
.

 ${\bf Proof}$ Obvious if an equality sign holds in the hypothesis; otherwise, Theorem 15 does it.

Theorem 17 If

$$x \leq y, y \leq z,$$

then

$$x \leq z$$
.

Proof Obvious if two equality signs hold in the hypothesis; otherwise, Theorem 16 does it.

A notation such as

$$a < b \le c < d$$

is justified on the basis of Theorem 15 and 17. While its immediate meaning is $\,$

$$a < b, b \le c, c < d,$$

it also implies, according to these theorems, that, say

$$a < c, a < d, b < d.$$

(Similarly in the later chapters.)

Theorem 18

x + y > x.

Proof

$$x + y = x + y.$$

Theorem 19 If

 $x > y, \ or \ x = y, \ or \ x < y,$

then

 $x+z>y+z, \ or \ x+z=y+z, \ or \ x+z< y+z,$ respectively.

Proof

1) If

then

$$x = y + u$$
,

$$x + z = (y + u) + z = (u + y) + z = u + (y + z) =$$

 $(y + z) + u,$

$$x + z > y + z$$
.

2) If

$$x = y$$

then clearly

$$x + z = y + z.$$

3) If

then

$$y > x$$
,

hence, by 1),

$$y+z\,>\,x+z\,,$$

$$x + z < y + z$$
.

Theorem 20 If

$$x + z > y + z, \ or \ x + z = y + z, \ or \ x + z < y + z,$$

then

$$x>y, \ or \ x=y, \ or \ x< y, \ respectively.$$

Proof Follows from Theorem 19, since the three cases are, in both instances, mutually exclusive and exhaust all possibilities.

Theorem 21 If

then

$$x + z > y + u$$
.

Proof By Theorem 19, we have

$$x + z > y + z$$

and

$$y + z = z + y > u + y = y + u$$

hence

$$x + z > y + u$$
.

Theorem 22 If

$$x \ge y, z > u \text{ or } x > y, z \ge u,$$

then

$$x + z \ge y + u$$
.

Proof Follows Theorem 19 if an equality sign holds in the hypothesis, otherwise from Theorem 21.

Theorem 23 If

$$x \geqq y, z \geqq u,$$

then

$$x + z \ge y + u$$
.

Proof Obvious if two equality signs hold in the hypothesis; otherwise Theorem 22 does it.

Theorem 24

$$x \ge 1$$
.

Proof Either

$$x = 1$$

or

$$x = u' = u + 1 > 1.$$

Theorem 25 If

then

$$y > x$$
$$y \ge x + 1.$$

Proof

$$y = x + u,$$

$$u \geq 1$$
,

hence

$$y \ge x + 1$$
.

Theorem 26 If

$$y < x + 1$$

then

$$y \leq x$$
.

Proof Otherwise we would have

and therefore, by Theorem 25,

$$y \ge x + 1$$
.

Theorem 27 In every non-empty set of natural numbers there is at least one (i.e. one which is less than any other number of the set).

Proof Let $\mathfrak N$ be the given set, and let $\mathfrak M$ be the set of all x which are \leq every number $\mathfrak N$.

By Theorem 24, the set \mathfrak{M} contains the number 1. Not every x belongs to \mathfrak{M} ; in fact for each y of \mathfrak{N} the number y+1 does not belong to \mathfrak{M} , since

$$y+1>y.$$

Therefore there is an m in \mathfrak{M} such that m+1 does not belong to \mathfrak{M} ; for otherwise, every natural number would have to belong to \mathfrak{M} , by Axiom 5.

Of this m I now assert that it is \leq every n of \mathfrak{N} , and that it belongs to \mathfrak{N} . The former we already know. The latter is established by an indirect argument, as follows: If m did not belong to \mathfrak{N} , then for each n of \mathfrak{N} we would have

hence, by Theorem 25,

$$m+1 \leq n$$
;

thus m+1 would belong to $\mathfrak{M},$ contracdicting the statement above by which m was introduced.

B.1.4 Multiplication

Theorem 28 and at the same time **Definition 6** To every pair of numbers x, y, we may assign in exactly one way a natural number, called $x \cdot y$ (\cdot to be read "times"; however, the dot is usually omitted), such that

$$x \cdot 1 = x \text{ for every } x,$$
 (8)

$$x \cdot y' = (x \cdot y) + x \text{ for every } x \text{ and every } y.$$
 (9)

 $x \cdot y$ is called the product of x and y, or the number obtained from multiplication of x by y.

Proof (mutatis mutandis, word for word the same as that of Theorem 4)

A) We will first show that for each fixed x there is at most one possibility of defining xy for all y in such a way that

$$x \cdot 1 = x'$$

and

$$xy' = xy + x$$
 for every y .

Let a_y and b_y be defined for all y and be such that

$$a_1 = x,$$
 $b_1 = x,$ $a_{y'} = a_y + x,$ $b_{y'} = b_y + x$ for every y .

Let \mathfrak{M} be the set of all y for which

$$a_u = b_u$$
.

I)

$$a_1 = x = b_1;$$

hence 1 belongs to M.

II) If y belongs to \mathfrak{M} , then

$$a_{\nu} = b_{\nu}$$

hence.

$$a_{y'} = a_y + x = b_y + x = b_{y'},$$

so that y' belongs to \mathfrak{M} .

Hence $\mathfrak M$ is the set of all natural numbers; i.e. for every y we have

$$a_y = b_y$$
.

B) Now we will show that for each x it is actually possible to define xy for all y in such a way that

$$x \cdot 1 = x$$

and

$$xy' = xy + x$$
 for every y .

Let \mathfrak{M} be the set of all x for which this is possible (in exactly one way, by A))

I) For

$$x = 1$$
,

the number

$$xy = y$$

is as required, since

$$\begin{aligned} x \cdot 1 &= 1 = x, \\ xy' &= y' = y + 1 = xy + x. \end{aligned}$$

Hence 1 belongs to M.

II) Let x belong to \mathfrak{M} , so that there exists an xy for all y. Then the number

$$x'y = xy + y$$

is the required number for x', since

$$x' \cdot 1 = x \cdot 1 + 1 = x + 1 = x'$$

and

$$x'y' = xy' + y' = (xy + x) + y' =$$

$$xy + (x + y') = xy + (x + y)' = xy + (x' + y) =$$

$$xy + (y + x') = (xy + y) + x' = x'y + x'.$$

Hence x' belongs to \mathfrak{M} .

Therefore \mathfrak{M} contains all x.

Theorem 29 (Commutative Law of Multiplication)

$$xy = yx$$
.

Proof Fix y, and let $\mathfrak M$ be the set of all x for which the assertion holds.

I) We have

$$y \cdot 1 = y$$
,

and futhermore, by the construction in the proof of Theorem 28,

$$1 \cdot y = y$$
,

hence

$$1 \cdot y = y \cdot 1,$$

so that 1 belongs to \mathfrak{M} .

II) If x belongs to \mathfrak{M} , then

$$xy = yx$$

hence

$$xy + y = yx + y = yx'$$
.

By the construction in the proof of Theorem 28, we have

$$x'y = xy + y,$$

hence

$$x'y = yx',$$

so that x' belongs to \mathfrak{M} .

The assertion therefore holds for all x.

Theorem 30 (Distributive Law)

$$x(y+z) = xy + xz.$$

Preliminary Remark The Formula

$$(y+z)x = yx + zx$$

which results from Theorem 30 and Theorem 29, and similar analogues later on, need not be specifically formulated as theorems, nor even be set down.

Proof Fix x and y, and let \mathfrak{M} be the set of all z for which the assertion holds true.

I)

$$x(y + 1) = xy' = xy + x = xy + x \cdot 1;$$

1 belongs to M.

II) If z belongs to \mathfrak{M} , then

$$x(y+z) = xy + xz,$$

hence

$$x(y + z') = x((y + z)') = x(y + z) + x =$$

$$(xy + xz) + x = xy + (xz + x) = xy + xz',$$

so that z' belongs to \mathfrak{M} .

Therefore, the assertion always holds.

Theorem 31 (Association Law of Multiplication)

$$(xy)z = x(yz).$$

Proof Fix x and y, and let $\mathfrak M$ be the set of all z for which the assertion holds true.

I)

$$(xy) \cdot 1 = xy = x(y \cdot 1);$$

hence 1 belongs to M.

II) Let z belong to \mathfrak{M} . Then

$$(xy)z = x(yz),$$

and therefore, using Theorem 30,

$$(xy)z' = (xy)z + xy = x(yz) + xy = x(yz+y) = x(yz'),$$

so that z' belongs to \mathfrak{M} .

Therefore $\mathfrak M$ contains all natural numbers.

Theorem 32 If

$$x > y$$
, or $x = y$, or $x < y$,

then

$$xz > yz$$
, or $xy = yz$, or $xz < yz$, respectively.

Proof

1) If

then

$$x = y + u$$
,

$$xz = (y+u)z = yz + uz > yz.$$

2) If

$$x = y$$

then clearly

$$xz = yz$$
.

3) If

 $_{
m then}$

$$y > x$$
,

hence by 1),

$$xz < yz$$
.

Theorem 33 If

$$xz > yz$$
, or $xz = yz$, or $xz < yz$,

then

$$x>y, \ or \ x=y, \ or \ x< y, \ respectively.$$

Proof Follows from Theorem 32, since the three cases are, in both instances, mutually exclusive and exhaust all possibilities.

Theorem 34 If

then

$$xz > yu$$
.

Proof By Theorem 32, we have

and

$$yz = zy > uy = yu$$
,

hence

$$xz > yu$$
.

Theorem 35 If

$$x \geqq y, z > u \text{ or } x > y, z \geqq u,$$

then

$$xz > yu$$
.

Proof Follows from Theorem 32 if an equality sign holds in the hypothesis; otherwise from Theorem 34.

Theorem 36 If

$$x \ge y, z \ge u,$$

then

$$xz \geq yu$$
.

Proof Obvious if two equality signs hold in the hypothesis; otherwise Theorem 35 does it.

End of the original first chapter of Foundations of Analysis [Lan51]