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C.1 Solutions for Chapter 1

Solution C.1. [Of Exercise 1.1.] Say = = age of Diophantus, then his son
was born when Diophantus had § + {5 + % + 5 years. The son lived half his
father’s life which is §. Diophantus lived for four more years after his son
died. So, the entire life of Diophantus is the period up to his son’s birth +
the life of his son + 4 which is: z = § + 75+ % +5+ 5 +4, hence z = 84. So
Diophantus lived till 84, his son lived till 42. When his son died, Diophantus
was 80 years old.

Solution C.2. [Of Exercise 1.2.] n_><55+_20 —n=4

Solution C.3. [Of Exercise 1.3.] %ﬁ—% —-n=_8.

Solution C.4. [Of Exercise 1.4.] nme—i_ka —n=k.

Solution C.5. [Of Exercise 1.5.] As can be seen from the pictures below,
if we divide the cake into 6 pieces (as in the ballroom), instead of 8 pieces
(as in the seminar room), we get a larger piece of cake if we are in the

ballroom. This is a general phenomena. If m < n then % > % We will

see this in more details in later chapters.
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Solution C.6. [Of Exercise 1.6.] In step 4, we divided by (a — ) which is 0
and hence the division is not allowed. Furthermore, if @ = b = 0 then many
other steps are false (give these steps).

Solution C.7. [Of Exercise 1.7.] The false step here is that we passed from
the squares to the numbers themselves in step 6. As we saw in Section 1.2,
each positive number has two squares roots, one positive and one negative.
Hence, the fact that the squares of two numbers are equal does not mean
that the numbers are equal.

Solution C.8. [Of Exercise 1.8.] The second interest rate of 10% of the
total value added to the sum at the end of every six months is better. This
can be seen as follows:

1st Year 2nd Year
Int 1 Int 2 Int 1 Int 2
Sum after 1st Half of Year | 40,000 | 44,000 | 48,000 | 53,240
Sum after 2nd Half of Year | 48,000 | 48,400 | 57,600 | 58,564
Total interest for Year 8,000 8,400 9,600 10,164

Solution C.9. [Of Exercise 1.9.] The given so-called proof is not a proof
of anything. It is true that since all sides involve positive numbers, we can
square all sides and still get the same inequalities. But this has no implication
on the truth or falsity of the inequalities we started from. That is, although
81 < 84 < 100 is true, this does not imply that either of V3+7 < /20 and
V3 + V7 > /19 is true. In order to prove that both V3 + V7 < V20 and
V34 V7 > /19 hold (which they do), we follow the proof by contradiction
method as follows:
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e Assume \/EZ V3 +4/7.

Then 19 > 10+2V21.
Hence 9 > 2v/21.
So 81 > 4.
Contradiction.
Hence \/1—9 < \/§ + \/7

e Assume V3 + V7 > v/20.
Then 10+ 2v21 > 20.
Hence 2421 > 10.
So 84 > 100.

Contradiction.

Hence \/§ + ﬁ < \/%

Solution C.10. [Of Exercise 1.10.] The problem here is that in the third
step we considered Py, P, -, Py and P, --- , Py, Py4+1 to have at least one
common element. If the inductive case we are trying to prove in step 3 above
involves k + 1 < 3 (say k = 1) then when looking at P;, P, and splitting it
into the two subcollections P; and P, which have no common elements, then
we will not be able to deduce that the age of P; is the same as the age of
P;,. For example, we know that the property holds for £k = 1 and so proving
it for k + 1 = 2 by taking the sets {P1} and {P>} where the age of P; is 50
years and the age P» is 20 years does not allow us to say that all elements
of {Py, P,} have the same age.

Solution C.11. [Of Exercise 1.11.] The first requested figure is on the left
below. The second figure is on the right. In both figures, the boundary is
a collection of straight lines but where the collection is leaning towards a
curve. In the second figure, the curve is more pronounced. The more we
reduce the length of the connecting lines, the more curve-like the boundary
becomes.
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G

Solution C.12. [Of Exercise 1.12.] Let a and b be the sides of the rectangle.
Then, the area of the rectangle is A = ab and the perimeter is P = 2(a +b).

Since (a + b)? — (a — b)? = 4ab = 4A then 44 = (—Ig)2 — (a — b)2. That
is, A = (%)2 - (a_—rb)z. Now, since (143—)2 and (LZ_—b)Q are positive, to

maximise A we need to minimise (%+ b)2. Hence to maximise A we need to
have a = b. Therefore, the rectangle with maximum area whose perimeter
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is P is the square whose side is %

Solution C.13. [Of Exercise 1.13.]

1=2)

2=1)

Assume 1 holds. If by contradiction 2 does not hold, then let C' be a
circle whose area is A and perimeter is P and let B be a planar shape
whose area is A and whose perimeter is P’ < P. Now, let C’ be the
circle C' whose perimeter is P’ (and hence the area A’ of C’ is strictly
smaller than A). By 1, since the perimeters of C’ and B are equal, the
area of B is smaller than the area of C’. That is, A is smaller than A’.
Contradiction.

Assume 2 holds. If by contradiction 1 does not hold, then let C' be a
circle whose area is A and perimeter is P and let B be a planar shape
whose area is A’ > A and whose perimeter is P. Now, let C’ be the
circle C' whose area is A’ and hence its parameter is P’ > P. By 2,
since the areas of C’ and B are equal, the perimeter of C’ is smaller
than that of A’. That is, P’ is smaller than P. Contradiction.

Solution C.14. [Of Exercise 1.14.]

1.

2.

(L+7+72+74+1)(T-1) = T+ TP+ B+ T4+ — (L7472 + T3+ 74 =
5 2 3 4_ 70 —1
7 — 1. HGHC61+7+7 —|—7 +7 _ﬁ
1424224234 42 = (142422428 4. 42" (2 -1) =

24224284 42" — (142422422 - 277 =2" — 1.
Hence 1 +2+22 423 ... 4271 =2m — 1,

Solution C.15. [Of Exercise 1.15.]

1.

3.

In the Moscow Papyrus, the numbers used for h, a, and b were resp. 6,
4, and 2, and the answer given for V was 56. If we fill these numbers

inV= %;h(a2 +ab + b%) we get indeed that 56 = %6(42 +4 x 24 22).

(a): (a®+ab+b2)(a—b) = a®+ ab+ ab® — (a®b+ ab® +b3) = a® — b>.
3_ 13
Hence, a®? +ab+b%2 = & _2 .

(b): Without loss of generality, assume that a = b+ 1. Then,
a?+ab+b*=0b+1)?+b0b+1)+b>=3b>+3b+1=a>—b>
Hence, a®+ab+b? = a® — b> when a and b are two consecutive integers.

Left to the reader.
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C.2 Solutions for Chapter 2

Solution C.16. [Of Exercise 2.1.] According to Dichotomy, the runner
needs to reach half of the 100 km (that is 50 km), then half of the re-
maining 50 km (that is 25 km) and then half of the remaining 25 km and
so on. According to Dichotomy, the runner can never reach his destina-
tion because to do so, he would need to cross an infinite sequence of points
100/2,100/4,100/8,100/16,100/32,---. The runner needs to complete an
infinite serie of tasks which is impossible.

Solution C.17. [Of Exercise 2.2.] According to Dichotomy, the frog needs
to reach half the way to the pond, then half of the remaining way and then
half of the remaining way and so on. According to Dichotomy, the frog can
never reach the pond because to do so, it would need to cross an infinite
sequence of points. The frog needs to complete an infinite series of tasks
which is impossible.

Solution C.18. [Of Exercise 2.3.] At the start, Achilles (A) is at point 0
and the tortoise (7') is at point 100. By the time A reaches point 100, 7" will
have reached point 110. By the time A does another 10 meters and reached
point 110, T" will have 1 meter and reached point 111. By the time A does
another 1 meters and reached point 111, T" will have done another 0.1 meter
and reached point 111.1. This process continues ad infinitum and we always
see that T is ahead of A.
Here are the positions of T resp. A:

T 100 110 111 11+ i+ 4 dy 11+ 5+ 16+ 1000

A0 100 110 111 111+ﬁj 1“*1%4“171%

Solution C.19. [Of Exercise 2.4.] ZBAC = 30° and ZACB = 90°.

Solution C.20. [Of Exercise 2.5.] We will show that ZACB = 90°. The
proof of ZADB = 90° is similar. It is clear that the two triangles AOC' and
BOC are isosceles since OA = OB = OC.

Hence, Z/OAC = Z/OCA and Z/OCB = Z0BC.

But, Z/OAC + /OCA+ ZAOC = Z/OBC + Z0OCB + Z/BOC = 180°.

So, 2Z0CA+ LAOC +2/0CB + £ZBOC = 360°.

Since 2Z0CA+2/0CB =2/ACB and ZAOC + £ZBOC = ZAOB = 180°,
we get 2/ACB + 180° = 360°. Hence, ZACB = 90°.
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Solution C.21. [Of Exercise 2.6.] It is clear that the two triangles AOC
and BOC' are isosceles since OA = OB = OC.

Hence, ZOAC = ZOCA and ZOCB = /Z0BC.

But, ZOAC + LOCA + LAOC = LOBC + ZOCB + ZBOC = 180° and
ZLAOB + LAOC + ZCOB = 360°.

Solving these equations we get: ZAOB + (180° — 2ZACO) + (180° —
2/0CB) = 360°.

Hence, ZAOB = 2(LACO + LOCB) = 2/LACB.

C

Solution C.22. [Of Exercise 2.7.] From each of A, B, C' and D, draw the
tangent to the circle and let these tangents meet at E, F', G and H. Then,
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each of OBEC, OAHB, OCFD, ODGA and EFGH is a square. Moreover,
the area of the square EF'GH is twice the area of the square ABCD. So,
area of square ABCD = % area of square EFGH > % area of circle ABCD
and we are done.

B

H E

A C
Q)

G F
D

Solution C.23. [Of Exercise 2.8.] Let us draw the tangent to the circle at
point I and the tangent join BC at L and AD at K. We see that the area of
the parallelogram ABLK is twice that of the triangle ABI. Hence, the area
of the triangle ABI = % the area of parallelogram ABLK > % the part of

the circle enclosing triangle ABI.

Solution C.24. [Of Exercise 2.9.] For each of the 16 triangles, if the sides
are of length a, b and ¢ where the side of length c is opposite the right angle,
then ¢ = v/a? + b2. For the smallest triangle, both sides adjacent to the
right angle are of length 1 and hence, the remaining side is of length /2.
Similarly, for the second smallest triangle, since it has two sides of lengths 1
and v/2 resp., the length of the third side is v/3. And so on we establish the
length of all the sides opposite the right angle.

Solution C.25. [Of Exercise 2.10.]
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Solution C.26. [Of Exercise 2.11.]

O O O @] @] @] @]

@] @] @] ©) ©) ©) ©)

O O O @] @] @] @]

O O O @] @] @] @]

Solution C.27. [Of Exercise 2.12.]

e Proposition 23: On the left hand side diagram, we have odd addi-
tions of odd numbers. On the right hand side, we have 1 4+ addition
of even numbers which is odd since by Euclid IX Proposition 21, any
addition of even numbers returns even.
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[©]
o (o]
o——o0 [Cantany) o——o0 [Cansand)
o—O % o—O o0 o0
(¢] [©] (0] @)

You could also show Proposition 23 using other numbers and giving
more details as follows:

Assume the numbers are AB, BC, C'D where the numbers are 7, 11
and 3.

A B C D

Following Knorr, the first 3 lines of the diagram below represent these
3 numbers AB (line 1), BC' (line 2) and C'D (line 3). The 4 following
lines represent resp. the numbers AB (line 4), BC (line 5), C'D minus
unit (line 6), and then the unit (line 7). By Proposition 22, the addition
of lines 4 and 5 is even and the number at line 6 is even and hence by
Proposition 21, the total of lines 4, 5 and 6 is even. But the number
at line 7 is unit, and hence the total at lines 4, 5, 6 and 7 is odd (since
it is an even number + 1).

1 o —9o—o—0o—0o

2 L e J
3 ——o—

4 o o o o o o

) L o S S J
6 . °

7. °

e Proposition 24: We start on the left hand side diagram and end on

the right hand side.
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Oii iio o (¢]

Again here, we will use other numbers to demonstrate the proposition
again and giving more details:

Assume the numbers are AB and BC where the numbers are 10 and
4.

4 ¢ B

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has
a half part and hence is even by definition.

e Proposition 25: We start on the left hand side diagram and end on
the right hand side.

RIS P

Another example here is as follows:

Assume the numbers are AB and BC where the numbers are 10 and
5.

A C

>
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Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). Line 4 represents the number
BC' from which a unit is subtracted. The unit is now in line 5. The
vertical lines show subtraction, after which we are left with the number
at line 6 which does not have a half part and hence is odd by definition.

1 o —o o L
2 — o . — o

3 N . N . N .
4.

5. .

6 ——o— o . o o o

e Proposition 26: Assume the numbers are AB and BC where the

numbers are 9 and 5.

A C B

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has
a half part and hence is even by definition.
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e Proposition 27: Assume the numbers are AB and BC where the
numbers are 11 and 4.

A C B

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has a
1 unit more than an even number and hence is odd by definition. If an
odd number is multiplied by an odd number, then the product is odd.

1 ° 3 ° ° 3 ° °
2.
3 ——eo——o . ——eo——o

e Proposition 28: Assume the numbers are AB and BC where the
numbers are 5 and 6.

A B C D

Let us recall here the definition of multiplication from Euclid (Defini-
tion 15, book VII).

A number is said to multiply a number when that number
which it multiplies is added to itself as many times as there
are units in the other, and thus some number is produced.

Following Knorr, the first 2 lines of the diagram below represent these 2
numbers AB (line 1) and C'D (line 2). The remaining 5 lines represent
the addition of the second number to itself as many times as there
are units in the first number. Since we are adding even numbers, by
Proposition IX, 21, the result is even.
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1 — . —

2 ——o— — oo
3 o — — o o
4 ———eo— — oo
5 ———o—o L )
6 o — — o o
7 o — — o o

e Proposition 29: Assume the numbers are AB and BC where the
numbers are 5 and 7.

Following Knorr, the first 2 lines of the diagram below represent these 2
numbers AB (line 1) and C'D (line 2). The remaining 5 lines represent
the addition of the second number to itself as many times as there are
units in the first number. Since we are adding odd numbers, an odd
number of times, by Proposition IX, 23, the result is odd.
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1 — o . — o

2 — o o . — o ——o
3 — o o . o o
4 — o —o ° — o o
5 [ Y ° [ Y
6 — o o . o o
7 — o o . o o

Solution C.28. [Of Exercise 2.14.]
1. (3,4,5), (5,12,13), (8,15,17), (7,24, 25), (20,21, 29).

2. In a Pythagorean triple (a, b, c), we know that ¢ > a and ¢ > b. Hence,
¢ # 1. Also, ¢ # 2 since otherwise by Theorem 2.5.5, both a and b need
to be even which is impossible since they can only be 1. Furthermore,
¢ # 3 since by Theorem 2.5.8, one of a, b needs to be even (2) and
the other needs to be odd (1) and we can check that 12 + 22 # 32
Moreover, ¢ # 4 because by Corollary 2.5.7, both a and b need to be
multiples of 4 and hence both need to be 4 which is absurd. Now we
check if ¢ = 5. By Theorem 2.5.8, one of a, b needs to be odd and
the other even. So the only choices are: (1 and 4) or (2 and 3) or (3
and 4). A quick check would demonstrate that (1,4,5) and (2,3,5)
are not a Pythagorean triples but (3,4,5) is. Furthermore, this is
a primitive Pythagorean triple and 5 is the smallest integer ¢ where
(a, b, c) a Pythagorean triple.

3. Since (3,4,5) is a Pythagorean triple, then for any number k& > 1,
(3k, 4k, 5k) is a Pythagorean triple. Pick 100 triples from these.

4. If (a,b, c) is a primitive Pythagorean triple and both a and b are even
then by Theorem 2.5.9, ¢ is even. This means that all of a, b, and ¢
are divisible by 2 which contradicts the primitivity of the Pythagorean
triple. Hence, a and b cannot both be even.
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5. If (a,b,c) is a primitive Pythagorean triple and both a and b are odd

then by Theorem 2.5.10, c is even. This contradicts Theorem 2.5.5,
which states that when ¢ is even then both a and b must be even.
Hence a and b cannot both be odd.

. Assume (a,b,c) is a primitive Pythagorean triple and a is odd. By

Theorems 2.5.10 and 2.5.5, ¢ is odd and b is even. If c+ b and ¢ — b
have a common factor d > 1 then for some k,k’, ¢ +b = kd and
¢c—b=Fkd Hence 2¢c = d(k + k') and 2b = d(k — k'). So, d is a
common factor for 2¢ and 2d. Since b and ¢ do not share any common
factors, d = 2. Hence (c+b)(c—b) = ¢? —b* = a® = d*kk’ = 4kK’. So,
a® is even which contradicts Theorem 2.4.2 which states that since a
is odd, a® must be one more than a multiple of 4 which is odd. Hence,

¢+ b and ¢ — b have no common factor d > 1.

. Assume (a,b,c) is a primitive Pythagorean triple. If ¢ is even then

by Theorem 2.5.5, all of a, b and ¢ are even and have 2 as a common
factor contradicting the primitivity of (a,b,c). Hence c is odd.

Solution C.29. [Of Exercise 2.15.] (m?—n?)?+4m?n? = m*+n*4+2m?n? =
(m? +n?)2. Hence, (m? — n?,2mn, m? + n?) is a Pythagorean triple.
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C.3 Solutions for Chapter 3

Solution C.30. [Of Exercise 3.1.]

1. (a)

(b)

(c)

Ry is reflexive on NT because for any m in N, by reflexivity of
=, m-m =m-m and so, mR;m.

R, is symmetric on NT because for any m,n in NT, if mRn then
m-m =n-n and by symmetricity of =, n-n = m -m and hence
nRim.

R, is transitive on Nt because for any m,n,p in N*, if mRin
and nRyp then m-m =n-n and n-n = p-p and by transitivity
of =, m-m = p-p and hence mRyp.

R, is an equivalence relation because it is reflexive, symmetric,
and transitive.

R, is reflexive on NT because for any m in NT, by reflexivity of
=, m+m =m + m and so, mRam.

R is symmetric on NT because for any m,n in N*, if mRyn then
m + m = n + n and by symmetricity of =, n +n = m + m and
hence nRom.

R; is transitive on N because for any m,n, p in NT, if mRyn and
nRop then m4+m =n+n and n+n = p + p and by transitivity
of =, m +m = p+ p and hence mRsp.

R is an equivalence relation because it is reflexive, symmetric,
and transitive.

R3 is not reflexive on N*. For example, choose m = 1 then there
is no p in NT such that m - p = m + p. In fact, for any p in N,
m-p=1-p=pand m+p=1+p. There is no p in N* such
that p =1+ p. Hence 1 R3l.

R3 is not symmetric on N*. For example, choose m = 5 and
n = 4. Then, there is p = 1 such that m - p = n 4+ p. That is:
5.-1=4+1.

But, there is no p such that n-p=4-p =>5+p. There is no p in
N+ such that 3p = 5. Hence, 5R34 but 4 R3b.

Rj3 is not transitive on N*. For example, choose m = 5, n = 4
and k = 3. Then, 5R34 (take p = 1) and 4R33 (again take p = 1).
But there is no p in N* such that 4p = 3 and so there is no p in
N* such that 5-p =3 + p. Hence 5 f33.
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(d) Rs is not an equivalence relation on N because it is not all of
reflexive, symmetric, and transitive. In fact, it is none of them.

4. (a) Ry is not reflexive on NT. For example, choose m = 1 then there
is no p in NT such that m - m = m + p. In fact, for any p in N,
m-m=1-1=1and 14+ p # p. Hence 1 R41.

(b) R4 is not symmetric on N*. For example, choose m = 5 and
n = 1. Then, there is p = 4 such that m -n = n + p. That is:
5-1=1+4.

But, there is no p such that n-m =1-5 =5+ p. There is no p
in NT such that 5 =5+ p. Hence, 5R41 but 1 £45.

(¢) Transitivity of Ry is left as an exercise.

(d) equivalence of Ry is left as an exercise.

Solution C.31. [Of Exercise 3.2.] Let a = [1}], b = {g} and ¢ = [£] be

5] -([4)+ )

- 2] [Pqﬁ]
_ 'm(ps+q7")]
n(gs)
_ _n(mps—&—mqr)}
n(ngs)
_ '(mp)(m)Jr(W)(m?“)]
(ng)(ns)
mp mr
- _n—q} s

- 1)+ 5] )

= a-,b+,a-c.

rational numbers.

a- (b+,c)

Solution C.32. [Of Exercise 3.3.]
1.




C.3. SOLUTIONS FOR CHAPTER 3 19

Solution C.33. [Of Exercise 3.4.] Let a = [1] and b = [g} By Theo-
q

Bl

7]

1. By Theorem 3.2.21, we know that (a=!)~* = [Z]. Hence, (a=!)~! =

rem 3.2.21, we know that a=* = []%] and b™!

a.
2. ab =[] -, [g] = [%} nd By Theorem 3.2.21, (ab)~! = Vrll_%]
But a~'b~! =[] {%} = [%—%} Hence, (ab)~! =a~'b~ L

-1
3. By definition, % = a-. b~!. Hence, by 2., resp. 1., (%) =al.,

—1y— - - b
(b)) !'=a'l . b=b-a 1:5

-1 e
4. By 3 above, (%) a= g a _ Associativity of -, (bypal),a=
b (a~!., a) =lnverse for -y _Identity for -y,

5. Left to the reader to prove that (ab) ' -.a=b"!,

Solution C.34. [Of Exercise 3.5.] Let three rationals a =[], b = [

and ¢ = [g]

]
q )

1. Ifa+, b =a+, c then
(2] +, [2] = [%] +» [5], hence

[’ITM]*FTLP} = {ms—i—nr} and so
ns
mg +mnp_ms +nr
nq s and

(mg + np)ns = magns + npns = ng(ms + nr) = ngms + ngnr. So,
maqns + npns = ngms + ngnr and by commutativity, associativity and
cancellation we get ps = gr and finally, b = {g} = [g] =c.

2. Ifa-.-b=a-cthen

]+ [§] = [R]+ [5], bence | TF] = [5] and s0

ngV% and mpns=ngmr, so ps=qr and g % Finally, b = {%} =

T _
[s]=c
Solution C.35. [Of Exercise 3.6.] If we start with nonzero even naturals,
then the identity for multiplication property (property 10 of Figure 3.1)
would fail since there is no identity e on nonzero even naturals such that
e-m = m-e = e. However, all other properties 1..9 hold, simply replace
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nonzero natural by nonzero even natural. Then, all definitions except Defini-
tion 3.2.18 remain exactly the same except that nonzero natural is replaced
by nonzero even natural. All lemmas and theorems (except Theorem 3.2.20)
hold exactly as they are, just make sure that whenever you see monzero
natural, simply replace it by nonzero even natural.

As for Definition 3.2.18, it should be replaced by

Definition C.3.1. The nonzero natural rational n,., which corresponds to
the nonzero even natural n is defined by

2n
ny=|—|.
2
And, Theorem 3.2.20 remains the same except for the definition of 1,
which should be 1, = [%}
This exercise illustrates the fact that if we start with a natural number

system without a multiplicative identity, the rational number system we get
adds one.

Solution C.36. [Of Exercise 3.8.] Assume m ©n € «, p© g € § and
r© s €. Then

- (B+i7) on)-i[(p©q) +c (ros)
]

onli[(p+r)o(g+s)
(p+r)+nlg+s) e (mig+s)+np+r))

(m
(mp 4+ ng + mr +ns) © (mqg + np + nr + ms)]

((mp + nq) + (mr +ns)) & ((mq + np) + (nr 4+ ms))]
(

(

mp +ngq) & (mq + np)] +; [(mr + ns) & (nr + ms)]
mon) (pOq)+i[(mon)-(ros)
= aifHia.

[m
[m
[
= |
[
[
[

Solution C.37. [Of Exercise 3.9.] Assume m©n € a, p©& g € S and
rosecn.

e Cancellation for addition:
at+; f=a+; 7y =
men|+ipeqg=[men]+;[ros =
[(men)+c(pog]=[(mon)+.(ros) =
[(m+p)en+q)]=[m+r)en+s)]=
(m+p)on+qg)=((m+r)o(n+s) =
m+p+n+s=n+qg+m+r—
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pts=q+r—=—
POqEros—
pog=[ros|=p=r.

e Cancellation for multiplication: Assume « # 0.
ayB=a;y7 =
(men]ilpeq=mon]i[res—=
[(men)-c(pegl=I[men)-.(ros]—=
[(mp + nq) © (mq + np)] = [(mr + ns) © (ms + nr)] =
((mp +nq) © (mg + np)) = ((mr +ns) © (ms +nr)) =
mp +ng+ms+nr =mq-+np-+mr+ns—
m(p+s)+n(g+r)=mlg+r)+nlp+s) =

—Ifm>nthenm=n+tand n(p+s)+tlp+s)+nlg+r) =
n(g+r)+tlg+r)+nlp+s) =
tip+s)=tlg+r) =
pt+ts=q+r—
pPOIETros=—
pod=lrosf=pB=1.

— Case m < n is similar to above case.
Solution C.38. [Of Exercise 3.10.] ]

L. mi+in; = [(p+m)Op|+i[(p+n)op] = [(p+m)Op) +c((p+n)Op)| =
(p+m+pt+n)o@+pl=[p+p+m+n)c(p+p)=(m+n).

c((p+n)op)] =

2. miin; = [(p+m)opl-i[(p+n)op]=[((p+m)Sp)-
= [p(m+n)+2pp+

[((p+m)(p+mn)+pp)© ((p+m)p+plp+n))]
mn) © (p(m +n) + 2pp)] = (mn);.

Solution C.39. [Of Exercise 3.11.] Assume a = [m © n].
Liia=((p+1)©p s [men] = ((p+1)©p) - (mom)] = [(mp+1)+
pn) © (pm +n(p +1))] = [(pm + pn +m) © [(pm + pn +n)] = [m & n).
Similarly we can show that a -; 1; = a.

Solution C.40. [Of Exercise 3.12.] We do the case for (N*,+) and leave
the other case to the reader.

By definition of N* as given at the start of Chapter 3, the laws of closure,
commutative, associative and cancellations all hold for + on NT. Hence,
(Nt +) is a commutative cancellation semigroup.

Solution C.41. [Of Exercise 3.13.] Since yoz = woy then by commutativity
zoy = woy and by cancellation z = w. Hence, since zoz = yow and z = w
then by cancellation z = y.
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x and z (hence y and w) do not need to be equal. For example, in (NT,.)
we can take x =y = 10 and z = w = 5.

Solution C.42. [Of Exercise 3.14.] By Definition 3.4.1 and Theo-
rems 3.4.18, 3.4.19 and 3.4.20, we only need to show the cancellation law
for o4 on Sy. Let a = [(z,y)], b = [(«/,y')], and ¢ = [(u,v)] be elements in
Sy such that aog ¢ = bogc. Then

[(z,y) * (u,v)] = [(z",y')  (u, v)] and hence [(z o u,y o v)] = [(+" 0 u,y o v)]
So, zouoy' ov = yovox'ou and hence xoy’ = yox’ and so, [(z,y)] = [( Y]
Therefore, a = b.

This means, (Sg4,04) is a commutative cancellation semigroup.

Solution C.43. [Of Exercise 3.15.] (QT,-,.) is a commutative cancellation
semigroup by Theorems 3.2.14, 3.2.1.5. and 3.2.16 and Exercise 3.5.

(Z,+;) is a commutative cancellation semigroup by Theorems 3.3.13, 3.3.14
and 3.3.15 and Exercise 3.9.

(Qt,+,) and (Z, ;) are also commutative cancellation semigroups for the
same reasons as that (Q%,-,.) and (Z, +;).

Solution C.44. [Of Exercise 3.16.] We build (Q*,-,) from (NT,.). We
know by Lemma 3.4.2 that (N, ) is a commutative cancellation semigroup.

1. We write (z,y) as %

2. We build a congruence =< on N* x N* based on (N*,-) as follows:

(z,y)=(u,v) iff z-v=1y-u. In our notation, %x% iffx-v=y-u.

By Theorem 3.4.9 < is an equivalence relation.

3. The operation -y on N* x NT inherited from - is defined by
(,y) ¢ (u,v) = (z-u,y-v). In our notation R

T
G I = o
4. §Iie}value of% is [%]x ={%: %x%} We define Q* = {[%]x cx,y €

5. The operation -,. corresponding to - is defined as follows: If a = [%]x

and b = [%]<, define a-, b = | = [T]=.

v r ==

6. Closure Law. For all a and b in QF, a-,. b is an element of QT
uniquely determined by a and b. See Theorem 3.4.18.

7. Commutative Law. For all a and b in QF, we have a-. b = b -, a.
See Theorem 3.4.19.
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Associative Law. For all a, b and ¢ in Q", we have (a . b) -, ¢ =
a- (b c). See Theorem 3.4.20.

Cancellation law for -, on Q*. For all a, b and ¢in Q% if a-,.c = b-,.c,
then a = b. See Exercise 3.14.

(Q*,-.) is a commutative cancellation semigroup. See Exer-
cise 3.14.

N* is a subset of Q. For each z in NT, z,, = [%]x isin QT. See
Definition 3.4.22 and Lemma 3.4.21.

Identity for QT. Define 1, to be [£]x for some z in NT. For all a in
Q*, we have 1, -, a =a-, 1, = a. See Theorem 3.4.26.

Inverses for Dyads. If a = [%]x, define a=! to be [%]x We have

a,at=1,=a"1-. a See Theorem 3.4.29.

We build (Z, +;) from (N*,+). We know by Lemma 3.4.2 that (N, +) is a
commutative cancellation semigroup.

1.

2.

We write (z,y) as 2 © y.

We build a congruence 2 on Nt x N* based on (N*, +) as follows:

(z,y) = (u,v) iff £ +v = y+ u. In our notation, z Sy = u O v iff
r+v=y+u.

By Theorem 3.4.9 = is an equivalence relation.
The operation +. on N* x N* inherited from + is defined by

(z,y) +c (u,v) = (z + u,y +v). In our notation, Oy +.uSv =
r+uoy+o.

. The value of 0y is [z Oyl = {uSv:udv = xSy} We define

Z={lzroyl=:zye N}

The operation +; corresponding to + is defined as follows: If a = [z &
Y]~ and b = [uSV]~, define a+;b = [xOY+,.uSV]|~ = [ + uOY + V]~

Closure Law. For all a and b in Z, a+; b is an element of Z uniquely
determined by a and b. See Theorem 3.4.18.

Commutative Law. For all a and b in Z, we have a+; b = b +; a.
See Theorem 3.4.19.
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Associative Law. For all a, b and ¢ in Z, we have (a 4, b) +; ¢ =
a+; (b +4; ¢). See Theorem 3.4.20.

Cancellation law for -. on Z. For all a, b and cin Z, if a4+, ¢ = b+,
then a = b. See Exercise 3.14.

(Z,+;) is a commutative cancellation semigroup. See Exer-
cise 3.14.

NT is a subset of Z. For each x in N*, z; = [y + x © y|~ is in Z. See
Definition 3.4.22 and Lemma 3.4.21.

Identity for Z. Define 0; to be [x © z]~ for some z in N*. For all a
in Z, we have 0; +; a = a +; 0; = a. See Theorem 3.4.26.

Inverses for Dyads. If a = [z © y|~, define —a to be [y © z]~. We
have a +; —a = 0; = —a +; a. See Theorem 3.4.29.

We build (Q, +,+) from (QT,+,). We have already built (Q*,+,) in Sec-
tion 3.2 and there, we have also shown the closure, commutative, associative
and cancellation laws for +,. Hence, we know that (QT,+,) is a commuta-
tive cancellation semigroup.

1.

2.

For z,y € QT, we write (z,y) as x © y.

We build a congruence ~ on Q% x Q% based on (Q%, +,) as follows:
(z,y) ~ (u,v) iff z 4, v = y +, u. In our notation, x Sy ~ u S v iff
T +,0 =Y+, u.

By Theorem 3.4.9 ~ is an equivalence relation.

The operation 4. on Qt x QT inherited from -+, is defined by
(z,y) +e (u,v) = (x 4+ u,y +» v). In our notation, r Oy +~ uS v =
T+, UuOY +, 0.

The valueof zcyis [z 0 yl. ={ucv:ucv~zoy}. We define
Q={lzoyl~:2,ycQ'}.

The operation 4+, corresponding to +, is defined as follows: If a =
[Tyl and b = [uO V], define a+, b = 2Oy +o uO V. =
[+, uSy+r V]

Closure Law. For all a and b in Q, a+, b is an element of Q uniquely
determined by a and b. See Theorem 3.4.18.
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Commutative Law. For all a and b in Q, we have a +,» b = b+, a.
See Theorem 3.4.19.

Associative Law. For all a, b and ¢ in Z, we have (a +,+ b) 4+, ¢ =
a+p (b4, ¢). See Theorem 3.4.20.

Cancellation law for -.» on Q. For all a, b and ¢ in Q, if a4+, ¢ =
b+, ¢, then a = b. See Exercise 3.14.

(Q,+,/) is a commutative cancellation semigroup. See Exer-
cise 3.14.

Qt is a subset of Q. For each z in Q", z,v = [y +, 2 © y] is in Q.
See Definition 3.4.22 and Lemma 3.4.21.

Identity for Q. Define 0, to be [z & z].. for some z in QT. For all a
in Q, we have 0, +,» a = a+,7 0, = a. See Theorem 3.4.26.

Inverses for Dyads. If a = [z © y|~, define —a to be [y & z].. We
have a +,» —a = 0, = —a +,» a. See Theorem 3.4.29.
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C.4 Solutions for Chapter 4

Solution C.45. [Of Exercise 4.1.]

1. This is because there is no element of @), and so every element of ) is
an element of every other set. When you study logic in Chapter 6, you
will learn that something that is false will imply anything you want.
We also know that for all objects a, a € () and hence, a € ) is false
which will imply anything including a € S. Hence, for all objects a, if
a € () then a € S and by the definition of subset, §) C S.

2. By above, ) C S. If also S # 0 then by definition of proper subset,
fcs.

3. Let S and T be sets.

e Assume S = T. Then, by the principle of Extensionality of
Page 86, for every z, (x € S if and only if x € T). Hence,
for every z, ((if z € S then € T) and (if © € T then z € 5)).
Thus, for every z, (if x € S then € T) and for every z, (if x € T
then € S). That is: SCT and T C S.

e Assume S C T and T C S. Then, (for every z, if z € S, then
x €T) and (for every z, if z € T, then z € S). Hence, for every
x, ((if z € T, then z € S) and (if x € S, then x € ST)). Thus,
for every x, (x € S if and only if x € T)) and by the principle of
Extensionality of Page 86, S =T.

4. Left to the reader.
5. Left to the reader.

Solution C.46. [Of Exercise 4.2.]

Clearly 0 € {0}.
Since 0 € {0} then {0} # 0. Hence, By Lemma 4.1.2, § C {0}.
The proof of the remaining item is similar to the above.

Solution C.47. [Of Exercise 4.3.]
Since S C N, 0 € S, and whenever n € S we also have n + 1 = {n} € S,
then by the induction axiom for N, S = N.

Solution C.48. [Of Exercise 4.4.]
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1. One direction is clear by Lemma 4.1.4.1. We do the other direction,
using the induction axiom for N. Assume T'= {n € N:if m € N and
N, is in one-to-one correspondence with N.,, then m =n }. We will
show that T' = N using the induction axiom for N.

Clearly, 0 € T because () is the only set in one-to-one correspondence
with 0.
Assume n € T. We will show n+1 € T. Let m € N be such that N_,,
is in one-to-one correspondence (say f) with N, 1. We need to show
that m = n+ 1. First, note that m # 0 because n+ 1 # 0 and we have
0eT.

e If the correspondence f takes m —1 € N.,,, to n € N, 11 then
f is also a one-to-one correspondence between N_,,_; and N,
and since n € T', we have n = m — 1 and hence m =n + 1.

e If the correspondence f takes m —1 € N.,,, to y € N, 11 where
y < n and also a certain x € N,,, to n € N, 41, then let g be
the one-to-one correspondence between N_,,_1; and N.,, which
corresponds m — 1 to y and every j < m — 1 to its correspondence
by f. Clearly g is a one-to-one correspondence between N, 1
and N, and since n € T, we have m — 1 = n. Therefore, m =
n+ 1.

Hence by the the induction axiom for N we have T'= N.

2. Again, we will use the induction axiom for N. Let us say that
N.,, uniquely associates! to N, if every element of N_,, corre-
sponds to a unique element of N.,, and no two different elements of
N, correspond to the same element of No,,. Let T = {n € N :
if m € N and N.,,, uniquely associates to N, then m < n}. We will
show that T' = N using the induction axiom for N. Clearly, 0 € T.
Assume n € T. We will show n+1 € T. Let m € N be such that N_,,
uniquely associates to N.,,+1. We need to show that m < n 4 1. If
m = 0, there is nothing to show. Assume m # 0.

e If there is no ¢« € N, such that i associates to n € N.,,+1, then
the same unique association from N, to N.,,;1 is also a unique
association from N_,, to N, and since n € T, we have m < n.
Hence, m <n + 1.

e Assume f is the unique association from N, to N., 1. If there
is k € N, such that k associates by f to n € N.,41, then
take the association g from N.,, 1 to N, such that for every

INote that this is the definition of an injection which we study later on.
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i € Nop,_1 where ¢ # k, the association by g to ¢ is the same
as the association by f. For k, the association by g to k is the
association by f to m — 1. Clearly, N.,,_1 uniquely associates to
N., and since n € T', we have m — 1 < n. Hence, m <n + 1.

Hence by the the induction axiom for N we have T'= N.
Solution C.49. [Of Exercise 4.5.]

1. We write A\ {z} instead of B. Since A is a finite non empty set and
x € A, then let |A| = n where n > 0 and let there be a one-to-one
correspondence between A and N_,,. If z corresponds to n — 1 then
the same one-to-one correspondence between A and N, is also a one-
to-one correspondence between A\ {z} and N, _; because we have
removed the x and n — 1 from A resp. N.,,. If on the other hand z
corresponds to m < n — 1 and there is an =’ € A which corresponds
to n — 1 then we take the correspondence between A\ {z} and N1
which takes any y # 2’ to what it corresponded to earlier, but we take
2’ to what z corresponded to earlier. That is:
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Clearly, this is a one-to-one correspondence between A\{x} and N,,_4
and hence A\ {z} is finite and |A\ {z}|=n—1=|A4] — 1.

2. We write AU{x} instead of B. Since A is a finite set then by definition,
there is a one-to-one correspondence between A and N_,, for some n €
N and |A| = n. Since x ¢ A, then the above one-to-one correspondence
between A and N.,, can be extended into a one-to-one correspondence
between AU {z} and N.,4;1 by associating z to n. Hence, AU {z} is
finite and |[AU {z}| =n+ 1= |A| + 1. That is:

Since then | AU{z} < N, U{n} =N, |

3. We will use the induction axiom for N. Let us say that A in-
jectively associates? to N, if every element of A corresponds to

a unique element of N_,, and no two different elements of A cor-
respond to the same element of N.,. Let T = {n € N :

if A injectively associates to N.,, then A is finite and [A] <n}. We
will show that 7' = N using the induction axiom for N. Clearly, 0 € T'
since if A injectively associates to N then A is empty and hence A is

in one-to-one correspondence with N and A is finite and |A] =0 < 0.
Assume n € T'. We will show n+1 € T'. Let A such that A injectively

2Note that this is the definition of an injection which we study later on.
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associates to N, 1. Call this association f. We need to show that A
is finite and |A| < n+ 1. If A = (), there is nothing to show. Assume
A#0,

e If there is no x € A that associates to n € N, 41, then all el-
ements on A are associated to elements of N, and the same
injective association f from A to N.,41 is also a injective asso-
ciation from A to N.,, and since n € T, we have that A is finite
and |A| <n. Hence, A is finite and |A| <n+1. So,n+1€T.

e If there is x € A such that z associates to n € N, 41, then
take the association from A\ {z} to to N.,, which keeps to each
element of A\ {z} the same association in N, ;1. Obviously this
is an injective association from A\ {2} to N, and since n € T,
we deduce that A\ {z} is finite and |A \ {z}| < n. By item 2
above, A = (A\{z})U{z} is finite and |A| = |[A\{z}|+1 < n+1.
So,n+1eT.

Hence by the the induction axiom for N we have T'= N.

4. Since B is finite then by definition there is an n € N such that B is in
one-to-one correspondence with N, and |B| = n. We can easily show
that this one-to-one correspondence between B and N_,, associates to
every element of A a unique element of N_,, such that no two different
elements of A correspond to the same element of N,,. Hence, by 3 A
is finite and |A| < n.

5. If B is finite then by 4 above, A is also finite. Absurd since A is infinite
by hypothesis.

Solution C.50. [Of Exercise 4.6.] Let % € Q where a1, a2 € Z. Without
loss of generality, we can assume that as is a positive integer. Let n € NT.

Now, ¢/ % is an nth root for the equation asx™ + (—aq) = 0. Hence, ¢/ g—;

is algebraic.
Solution C.51. [Of Exercise 4.7.]

1. The polynomials of height 4 are: x3, 222, 22+, 22—z, 2 +1, 22 — 1,
r+2,x—2,2x+1, 2z — 1.

2. The polynomials for height 5 which give all the new numbers listed
under height 5 in the proof of Theorem 4.1.13 are as follows:
x + 3 and x — 3 which give resp. the numbers —3 and 3.
3z 4+ 1 and 3z — 1 which give resp. the numbers —% and %
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22 — 2 which gives the numbers —+/2 and V2.

222 — 1 which gives the numbers —%\/5 and %\/5

22 — 2 — 1 whose solutions are % + % 5 and % — % 5.

2% 4+ z — 1 whose solutions are —% — 21/5 and —1 + %\/5

2
2% — z + 1 whose solutions are 1 — %\/3 and § + %\/5
-3 — $V3 and —%—&-%\/3.

22 + x + 1 whose solutions are
Solution C.52. [Of Exercise 4.8.]

1. The one-to-one correspondence below shows that £ the set of positive
even integers is countable.

1 & 2=¢
2 & 4d=ey
3 & = €3
4 < 8= €4
n < 2n=e,
To show that E' is countable, we write E as 0,e1, —eq,eg, —€3,---. We

can then find a one-to-one correspondence with the nonzero natural
numbers as follows:

1 < 0
2 & 2
3 & =2
4 < 4
5 & —4

2n if n is even
—n+1if nis odd

3

2. In the same spirit as above, the one-to-one correspondence below shows
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that O the set of positive odd integers is countable.

1 & 1=o0;
2 & 3=o09
3 & b=o03
4 7204

n < 2n—1=o,

To show that O is countable, we write O as 0, 01, —01, 02, —02,---. We
can then find a one-to-one correspondence with the nonzero natural
numbers as follows:

T W N
T
\

if n —11is even
if —n 4+ 2 is odd

3 3
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Solution C.53. [Of Exercise 4.9.]

1. We need to prove that for any x, z € SU S if and only if x € S. But
by the definition of union, x € SU.S if and only if x € S or x € S, and
this is clearly the same as x € S.

2. Since = € () for every object z, we have

rePuS & zx€PorxzecsS
& zxe s
& zeSorxel
& xeSul.

3. We need to prove that x € SUT if and only if x € T U S. We have

reSUT & xeSoraxzeT
o xeTorxeS
& rxeTuUs.

Solution C.54. [Of Exercise 4.10.]

1. We need to prove that for any z, z € SN S if and only if x € S. But
by the definition of intersection, x € SN S if and only if x € S and
x € 5, and this is clearly the same as x € S.

2. For any z, if x € NS then x € (), but this is impossible. Therefore,
for no xz, is x € PN S. The proof is similar for z € SN (.

3. We need to prove that x € SN T if and only if z € T'NS. We have

zreSNT & xzeSandaxeT
& geTandzxe S
S zeTn§s.

Solution C.55. [Of Exercise 4.11.]

zreSUTNR) & zeSor(xeT andx€R)
& (reSorzxeT)and (x€SorzeR)
& (xeSUT)and (x € SUR)
& e (SUT)N(SUR)
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Solution C.56. [Of Exercise 4.12.] We only prove the first item and leave
the rest to the reader.

1. We prove AN B = A as follows:

erxcANB&rxcAandx € B=z € A

ercA=zrecAandre A= ACB c Aandre B=
r € ANB.

We prove AU B = B as follows:

ercAUBozcAorze B8N ACB  cBorreB=
xr € B.

serxeB=>rxcAorzxeB=>2xcAUB.
Solution C.57. [Of Exercise 4.13.]

1. @ and N, are 2 different elements of PN_,, which are finite sets. They
are different because n # 0 and hence N, # . Clearly # and N,
are finite and || = 0 and |[N.,| = n.

2. 0 and {0} are 2 different elements of PN, which are finite sets. They
are different because {0} # ). Clearly ® and {0} are finite and |}| = 0
and |{0}| = 1.

3. N>, and N>, are 2 different elements of PN>,, which are infinite
sets. They are different because n € N>,, but n € N>, ;. They are
infinite because each can be put in one-to-one correspondence with N
as follows:

N < N, N < Ny
m <+ m-+n m < m+n+1

4. If S € PN>,, then S C N>,,. By Corollary 4.1.15, S is countable.

Solution C.58. [Of Exercise 4.14.] Since (0,1] € R\ N,>2 and by Theo-
rem 4.1.17, (0, 1] is uncountable, then R\N,,>2 is uncountable. Otherwise, by
Theorem 4.1.14, (0, 1] would also be countable contradicting Theorem 4.1.17.

Solution C.59. [Of Exercise 4.15.]

1. e Assume f is bijective. Then, (for every b € T, there is a unique
a € S such that f(a) = b). Obviously, f is surjective. If for some
a,b € S, f(a) = f(b) then since f(a) € T, there can only be one
member ¢ € S such that f(c) = f(a) = f(b). Hence, a =b=c¢
and f is injective.
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e Assume f is injective and surjective. Let b € T. By surjection,
there is a € S such that f(a) = b. If there is also a’ € S such that
f(a’) =b, then f(a) = f(a’) and by injection, a = a’. Hence, for
every b € T, there is a unique a € S such that f(a) = 0.

Let b € T. Since f is bijective, there is a unique a € S such that
f(a) = b. Hence, there is a unique a € S such that f~1(b) = a, and
so, f~1 is a function. Moreover, if b,b’ € T such that a = f~1(b) =
7)) = a then b = f(a) = f(a’) = b’ and hence, f~! is injective.
Finally, for any a € S, since f is a function, f(a) € T and hence, there
is b € T such that f~1(b) € S. Moreover,

o If x € S then since f is bijective, there is a unique y € T such
that f(x) = y. But, f(z) = y iff f~1(y) = . Hence, 1g(z) =
v = fHy) = f7'(f(z)) and so, f~' o f(z) = 1s(z) and so,
flof=1s.

e The proof that f o f~! = 14 is similar to the above item.

(a) Since f and g are functions, let a € S, then there is a unique
b in T such that b = f(a) and hence, there is a unique ¢ in V
such that ¢ = g(f(a)). Hence, there is a unique ¢ in V' such that
c¢=go f(a) and go f is a function from S to V.

(b) Assume f and g are injective and a,b € S.
go fla) =go f(b) =9 injective f(a) = f(b) _. [ injective , _
Hence g o f is injective.

(¢) Assume f and g are surjective.

¢ € V =g surjective 35 ¢ 7 guch that g(b) = ¢ —[f surjective
Jda € S such that f(a) = b and g(b) = ¢ = Ja € S such that
g(f(a)) = c. Hence g o f is surjective.

(d) Assume f and g are bijective. Hence, f and ¢ are injective and
surjective. Hence, by the above two items g o f is both injective
and surjective and so, it is bijective.

4. Easy. Left to the reader.
5. Define g : PS — PT such that for any S’ C S, we set g(S') = f[9'] =

{f(a):a € 8'}. Clearly g(S’) C T. We invite the reader to show that
g is a function. We will show that g is bijective.

o Assume g(S1) = g(Sz2). Let a € S1. Then f(a) € g(S1) = g(S2)
and hence there is o/ € Sy such that f(a) = f(a’). Since f is
injective then a = a’ € Sy and so, S; C S3. Similarly we show
Se C 57 and so, g is injective.
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o Let 7" e PT and S’ ={a € S: f(a) € T'}. Clearly S’ € PS. We
show that ¢(S’) =T":

— If b € g(S’) then for some a € S, b= f(a) and hence b € T".

— If b € T then since f is surjective there is a € S such that
b= f(a). Hence by definition a € S’ and b € g(5’).

Hence ¢ is surjective.

6. If fis/(x) = fis/(y) then f(x) = f(y) and hence since f is injective, we
have x = y. Therefore, f|s/ is injective.

7. If we take g : S" — S such that g(a) = a, then it is easy to show that
g is an injection.

Solution C.60. [Of Exercise 4.16.] Let y € f[A]. Then, y = f(a) for some
a € A. Then, y = f(a) for some a € B. Hence y € f[B].

Let z € f~1[C]. Then, z € S and f(x) € C. Then, z € S and f(z) € D.
Then z € f~1[D].

Solution C.61. [Of Exercise 4.17.] h is a function because if z € Ay U As,
then since A1 N Ay = (), x is either exclusively in A; or exclusively in A3 and
in each case, h(z) is a unique element in By U Bs since f and g are functions.

Let z,y € A; U A such that h(z) = h(y). If z,y € Ay then f(z) =
h(z) = h(y) = f(y) and by injectivity of f, = y. The same proof holds if
2,y € Ay. The cases that (r € A; and y € As) or (x € Ay and y € Ay)
cannot hold since otherwise, we would have (h(z) € B; and h(y) € Bs)
or resp. (h(z) € By and h(y) € By) which would contradict By N Ba = ().
Therefore, whenever z,y € A; U As such that h(x) = h(y), we have x =y
and h is injective.

Let y € By U By. Then, since By N By = (), y is either exclusively
in By or exclusively in Bs. In the first case, by surjectivity of f, there is
x € Ay € Ay U Ay such that h(x) = f(z) = y. In the second case, by
surjectivity of g, there is x € Ay C A; U Ay such that h(z) = g(x) = y.
Hence, h is a surjection.

Solution C.62. [Of Exercise 4.18.] h is a function because if z € J,,~; An,
then since for all n # m, A, N A,, = 0, = is exclusively in one of the A4,’s
(say z € A,) and h(x) = f,(x) is a unique element in | J,,~, By since f, is a
function.

Let z,y € UJ,,>; An such that h(z) = h(y). If for some n > 1, z,y € A,
then f,(z) = h(z) = h(y) = f.(y) and by injectivity of f,, * = y. The
cases that x € A,, and y € A,,, where n # m cannot hold since otherwise,
we would have (h(z) = f,(x) € B, and h(y) = fm(z) € B,,) which would
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contradict B,, N By, = (). Therefore, whenever z,y € J,,~; An such that
h(z) = h(y), we have z = y and h is injective. B

Let y € U,>; Bn. Then, since for all n # m, B, N B, = 0, y is
exclusively in one of the B;’s (say B,) and by surjectivity of f,, there is
z € Ay, C U, > An such that h(z) = f,(x) = y. Hence, h is a surjection.

Solution C.63. [Of Exercise 4.19.]
1. e Case S7 U Ss:

be f[Sl U SQ] =
for some a, (a € S1 U Sz and b= f(a)) &
for some a, ((a € S; or a € Sg) and b = f(a)) &
for some a, ((a € S1 and b = f(a)) or

(a € Sy and b= f(a))) <
for some a, (a € S; and b= f(a)) or
for some a, (a € Sz and b = f(a)) &

(b€ f[Si] or b e fS]) &
be f[51] U f[SQ]

e Case |J=; S;:

be U, S <

for some a, (a € U=, S; and b = f(a)) &

for some a, for some i € N*, (a € S; and b= f(a)) &
for some 7 € NT| for some a, (a € S; and b = f(a)) &
for some i € N*, b € f[S;] &

be Uz, flSi]

2. e Case S1NSsy:

be f[Sl N SQ] =
for some a, (a € S1 NSy and b= f(a)) =
for some a, (a € S7 and a € Sy and b = f(a)) =
for some a, (a € S; and and b= f(a)) and
(a € Sy and b= f(a)) =
for some a, (a € S1 and b = f(a)) and
for some a, (a € Sy and b = f(a)) =
(b€ f[51] and b € f[S3]) =
(b e flSiN f[S2])
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be f[Sﬂ N f[SQ} =
(b€ f[S1] and b € f[S2]) =

for some a, (a € S1 and b = f(a)) and

for some o, (@’ € Sy and b= f(a')) =

for some a € Sy, a’ € Sy, b= f(a) = f(a') = 0I-
/

for some a € Sy, a’ € S, a =ad’ and b= f(a) = f(d) =
for some a € S1 NS, b= f(a) =
bEf[S1ﬂSZ]

Now, if f is not injective, S; = {a}, So = {a’}, a # o’ and f(a) =
f(a’) = b then SlﬁSQ = @, f[Sl ﬂSg] = @, and f[Sl]ﬂf[SQ] = {b}
e Case S\ Sa:

be flSi]\ f[S2] =

(b € f[S1] and b & f[S2]) =

(for some a € S1, b= f(a) and for all ¢’ € Sy, b # f(a')) =
(for some a € S1\ S2, b= f(a)) =

be fIS1\ 5]

be f[S1\ S2] =

for some a € S1 \ So, b= f(a) =
for some a € Sy, b= f(a) =

be f[Si]

So far we have shown that f[S7 \ So] C f[S1] and f[S1]\ f[S2] C
fIS1\ S2].

— If f is injective, b € f[S7 \ S2] and b € f[S2] then for some
a € S1\ Sy, a €85y, b= f(a) = f(a'). Since f is injective
then a = o/ and hence a ¢ S; \ S2 contradiction. Hence, if
b€ f[S1\ 5] then b € f[S1]\ f[Sa].

— To give an example that f[S;\ Sa2] = f[S1]\ f[S2] fails when
f is not injective, take S; = {a}, So = {d'}, a # d/, f(a) =
f(a’). Then, Si\ Sz = {a}, f[S1\ S2] = {f(a)} but f[Si]\
f1S2] = 0.

e Case N2, Si:

be FINZ, 51 =

for some a, (a € ;= S; and b = f(a)) =

for some a, (for alli € N*, a € S; and b = f(a)) =
(for all : € NT, for some a, a € S; and b = f(a)) =
(for alli € N*, be f[Si]) =

be N, 715
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be N2, fSi] =
for all i € N*, b € f[S;] =

for some a1, a; € 51 and b= f(a1) =

for all i € NT, for some a;, for some a1,

a; € Si,ay € S1, and b= f(a;) = f(a1) =f inj.

for all i € NT, for some a;, for some aq,

a; € Si7(l1 S Sl, a1 =a; and b = f(al) =

for all i € NT, for some a;, a; € S; and b= f(ay1) =
for some ay, foralli € NT, a1 € S; and b= f(a;) =
for some a1, a1 € ;2 S; and b= f(ar) =

be 1N, 51

To give a counterexample that shows that injectivity is needed,
let S; = {i} and f(i) = 1 for each i € N*. Then, (2, S; = 0,
FINZ, il = 0 and N2, fS:] = {1}.

a€ fHT UTy) fla) e UTy
fla) €Ty or f(a) € Ty
a € fﬁl[Tl] or a c fﬁl[TQ]

ae fTUTIU f Ty

t oo

acfUT & fl@elT

for some i € NT, f(a) € T;
for some i € Nt a € f~T}]

T ¢

& aGDf*HH
=1
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a€ fHT N Ty) fla) e NTy
f(a) € Ty and f(a) € T
ac f7HTy] and a € f T3]

a€ fTHT] N fHT]

te o

ac fTINT & flaeT

for all i € NT, f(a) € T;
for all i € NT, a € f1[T}]

& ac ()T
=1

Tt ¢

Solution C.64. [Of Exercise 4.20.] Let A = {n € Ny,>1 : Sp11 C g[Ty] C
Sy and T,,41 C f[S,] C T,,}. We prove by induction on N,>; that A =
anl-

e Note that f[S] C T and so, by Exercise 4.16 g[f[S]] C g[T]. Therefore,
Sy = glf[S1]] = glf[S1] € 9[T] = g[Th] € § = S1. Hence Sy € g[Th] C
Sy. Similarly, we prove that To C f[S1] C T3. Hence, 1 € A.

e Assume that for some n > 1, S, C g[Th—1] € Sp—1 and T,
f[Sn—l} C T,—1. Then by Exercise 4.16, g[f[SnH - g[f[g[Tn—l]]]
9lf[Sn—1]] and so, S,+1 C g[Tn] € S,. Similarly, we prove T, 1
9[Sn] C Th.

NN N

Hence by induction on N;,>1, we conclude that A = N;,>1. So, for alln > 1
Sn—i—l g g[Tn] g Sn and Tn+1 g f[Sn] g Tn
Now,

1. Since for all n > 1, S, 41 C g[T,,] C S, then:
+ C Sny2 C g[Th41] C Spg1 S g[Th] € Sn--- Cg[T5] C S5 C g[T] C
Sy C g[Th] C Sy.

2. Also, since for all n > 1, T),41 C f[Sn] C T, then:

- C Tuyo C f[Sns1] € Tpe1 C f[Sn] € T+ C f[S3] C T3
f[S2] € Th C f[S1] C 1.

N
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3. Assume f is injective. By Exercise 4.19, f[S*] = f[N,—,S.] =
N2, fISn]. Since for all n, T, C Ty and S, C S, then T =

N, T = Ti NN, T __Exercise 4.12 N, T = N2

n=1
b TZO: ﬂzo:1 Tn-&o-c} 2 nZO:1 f[S&-&-l} = mZO:Q f[Sn] = f[Sl] N
ﬂn=2 f[Sn} - ﬂn=1 f[Sn] = f[ﬂn=1 Sn] = f[S*}

o I" = mzo:1 Toy1 C ﬂff:l fISn] = f1S7].
Hence, T* = f[S*].
Furthermore, by Lemma 4.2.23, we can show that fig- : §* = T™
is bijective. This is done as follows: Since f : S — T is injective and
S* C S8, hence f|g- : S* +— T is injective and so fig, : S* = f[S*] =T~
is a bijection.

Tn+1 . NOW,

4. Assume [ and g are injective.

o —Ifbe f[S,\g[Tn]] then b = f(a) where a € S, \ g[T,] and
hence b = f(a) where a € S, and a & g[T,]. So, b € f[Sy]
and b = f(a) where a & g[T},].
If b € T41 = flg[Ty]] then for some o’ € g[T},], b= f(a') =
f(a) and hence since f is injective, a = o' and a € g[T,
absurd. Hence, b & T),+1 and b € f[S,] \ Th+1-

—If b € f[Sp] \ Tny1 then b = f(a) for some a € S,, and
b Ty = flgIT]) T a € g[T,] then b = f(a) € flglT.]] =
Ty+1 absurd. Hence, b € f[S,, \ g[T%]].
Hence f[Sy \ g[Tn]] = f[Sn] \ Tat1-
e Similarly we show that g[T}, \ f[Sn]] = g[Tn] \ Sn+1-

Solution C.65. [Of Exercise 4.21.] f: NT — Z is defined by
z if n is even
f(n) = { 2 1—n

—=5* if nis odd.

Solution C.66. [Of Exercise 4.22.] Clearly this is a function because for
every x € (—1,1), f(x) is a unique value in R.

f is injective because if f(z) = f(y) then by inspection on the cases, we can
show x = y.

f is surjective because if we take 0 € R, we have 0 € (—1, 1) such that f(0) =
0. If we take y > 0 then for z = y—_lH € (0,1) we have f(z) =1 -1 =19.

Finally, if y < 0 then for x = ﬁ € (—1,0) we have f(z) =21 +1=y.

Solution C.67. [Of exercise 4.23.] Let R={A € PS: AC f(A)} and take
T =Uper A Tt is easy to show that f(T) =T
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e Note that if A € R then A C|J, .z A =T and hence by hypothesis,
£(4) C £(T).
If A € R then by definition A € PS and A C f(A) C f(T). Hence, if
A€ R then A C f(T). Therefore, T =J, .z A C f(T).

e Since T, f(T) € PS and by above, T C f(T') then by hypothesis
f(T) € f(f(T)). Hence, f(T) € R and since T' = |J .5 A, we get
fr) .

Solution C.68. [Of Exercise 4.24.]

1. Since S is infinite, then by Lemma 4.3.1.5 there is S’ C S and a
bijection g : N+ S’. By Lemma 4.2.23.6, fg : 8" = T is injective. By
Lemma 4.2.23.4, fis: : 8" — f15/[S'] is bijective. By Lemma 4.2.23.3,
fisr 09 : N fig[S'] C T is bijective. Hence, T is infinite.

2. This is a corollary of the previous item.

3. Since T is infinite, by Lemma 4.3.1.5, there is 7/ C T such that T” is
in one-to-one correspondence with N. Since f is surjective, for each
y € T' there is at least one x € S such that f(x) = y. Let us pick
for each y € S’ exactly one € S such that f(z) = y. We collect
these x’s into a set S’ C S. That is, S’ C S is such that for each
y € T', S’ contains exactly one z € S for which f(z) = y. Clearly,
there is a one-to-one correspondence between S’ and T”. Hence, there
is a one-to-one correspondence between S’ and N and S is infinite.

4. This is a corollary of the previous item.

Solution C.69. [Of Exercise 4.25.] Since S is countable, let g : N — S be
a bijection. Then, by Lemma 4.2.23, fog : N+ T is a surjection and by
Lemma 4.3.1.4, T is countable.

Solution C.70. [Of Exercise 4.26.] Let g : N — S be defined as follows:

9(0) = f(0)

g(1) = f(p1) where p; is the least p > 0 such that f(p) & {g(0)}

9(2) = f(p2) where py is the least p > 1 such that f(p) € {9(0), (1)}
g(n) = f(pn) where p,, is the least p > n — 1

such that f(p) & {g(0),--- ,g(n — 1)}

By construction, ¢ is injective because at every stage, we built g(n) to
be different from all of ¢(0),g(1),---g(n —1). But, g is also surjective. To
see this, let b € S. Since f is surjective, then b = f(n) for some n.



C.4. SOLUTIONS FOR CHAPTER 4 43
e If n =0 then g(0) = f(0) = b.

e If n > 0 then if b € {g(0),---,g(n — 1)} then we are done, else if
b ¢ {g(o)v e 7g(’ﬂ - 1)} then b = g(n)

Hence by Definition 4.1.6, S is infinitely countable.

Solution C.71. [Of Exercise 4.28.] By Corollary 4.1.15, every subset of a
countable set is countable. If S is countable, then since S\ 7' C S, we have
S\ T is also countable.

If we take S = T then S\ T = 0 is always countable no matter what S
was.

By Theorem 4.1.17, (0, 1] is uncountable. Since f : (0,1] — [0,1] such
that f(z) = x is injective, then by Lemma 4.3.1.1, [0, 1] is uncountable. Let
S =10,1] and T'= (0,1). Then, S\ T = {0} is countable.

If on the other hand, we take (0,1] which is uncountable by Theo-
rem 4.1.17, then since the functions f : (0, 1] — (0, 2] such that f(z) = z and
g:(0,1] — (1,2] such that f(x) = 2z are injective, then by Lemma 4.3.1.1,
(0,2] and (1, 2] are both uncountable. Now, if S = (0,2] and T' = (0, 1] then
(1,2] = S\ T = (0,2] \ (0,1] is uncountable.

Solution C.72. [Of Exercise 4.29.] Let P, be the set of polynomials of
degree n and let f : P, — Z"t! = Z x Z x --- x Z such that f(a,2" +
—_—

n+1 times
an12" L+ . ayx 4+ ag) = (@n,an_1, - ,a0). It is esy to show that f is
bijective and hence P, is infinitely countable. Hence, by Theorem 4.3.9,

P = U P; is (infinitely) countable. Furthermore, if p € P and R, is the
i=0

set of roots of p then R, is countable and has at most degree p elements.

Hence again by Theorem 4.3.9, the set of algebraic numbers which is U R,

peEP
is countable. It is easy to show that the set of algebraic numbers is infinite

and hence, it is infinitely countable.

Solution C.73. [Of Exercise 4.30.] Since N and Q are countable, let
0,1,2,--- respectively ¢1,qo2,--- be listings of N resp. Q. Now, we give
two listings of N x Q.

The first listing is:
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(0, q4)
/
(1,q4)
(2,q4)
(3,q4)
The second listing is:
(0,q1) —— (0, q2) (0,q3) — (0, )
(L q) (1,42) (1,q3) (1, q4)
|~
(2,q1) (2, 42) (2,43) (52,q4)
/
(3,q1) (3, 42) (3,43) (3,q4)

Solution C.74. [Of Exercise 4.31.] If SUT is finite then since S C SUT
and T C SUT, by Lemma 4.1.8.4, S and T are finite.
On the other hand, assume S and T are finite, then by definition, let f :
S — N, and g : T — N_,, be bijections where n,m € N and without
loss of generality we can assume n > m. Now, |S| = n and |T| = m. Let
f() ifzes
glx) ifxeT\S

It is easy to show that h is an injection and hence by Lemma 4.3.1.2,
SUT is finite and [SUT| < n+ m.

h:SUT +— N.pi, such that h(z) =

Solution C.75. [Of Exercise 4.32.] We show f injective by induction on N.
Let I ={n e N: for all m € N, if f(n) = f(m) then n = m}. We will show
that I = N.
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e For all m € N, if f(0) = f(m) then f(0) = f(m) = (0,0) and by
definition, m = 0. Hence 0 € I.

e Assume n € I. For all m € N, if f(n+ 1) = f(m) then

—If f(n+1) = f(m) = (0,k + 1) then by definition, m > 0 and
fn)=f(m—-1) = (k—1,0). Since n € I, then n =m — 1 and
so,n+1=m.

—If f(n+1) = f(m) = (k+ 1,1 — 1) then by definition, m > 0,
I>0and f(n) = f(m—1) = (k,1). Sincen € I, then n=m —1
and so, n+ 1 =m.

Hence, n+1 € I.

To show f surjective, we show by induction that for any (z,y) € N x N,
there is m € N such that f(m) = (z,y).

o If (x,y) = (0,0), then take m = 0.

e Assume z+y # 0 and for any (z,y’) such that either (z'+y' =z +y
and 2’ < z) or ¢’ +y' < x+vy, we have an n where f(n) = (2/,y). We
will show that there is also an m such that f(m) = (z,y).

If # = 0 then y # 0 and by Induction Hypothesis, there is n such that
f(n) = (y—1,0) and hence, f(n+1) = (0,y).

If  # 0 then by IH, there is n such that f(n) = (z — 1,y + 1) and
hence f(n+1) = (z,vy).

Now, if we take f(0), f(1), f(2),--- in this order we get:

(0,0), (0,1), (1,0), (0,2), (1, 1), (2,0), (0,3), (1,2), (2, 1), (3,0), -
\1’-/ 2 3 4

This is the listing we saw in the proof of Theorem 4.3.6 which is also the
first listing we gave in Remark 4.3.7.

Solution C.76. [Of Exercise 4.33.] Let f : N, x N, = N, such
that f(i,k) = k +i(m — 1). We leave it to the reader to show that this is a
bijection. Hence, N, x N, is finite and [N, x No,,| =n x m.

Solution C.77. [Of Exercise 4.34.] Since S and T' are non empty, let z € S
and y € T. Clearly there is a bijection between S and S x {y} respectively
Tand {z} xTand Sx{y} CSxTand {z} xT C SxT. If S x T is finite
then by Lemma 4.1.8.4, S x {y} and {«} x T are finite and hence S and T
are finite.

On the other hand, assume S and T are finite, then by definition, let f :
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S+~ N., and g : T — N, be bijections. Now, |S| =n and |T| = m. Let
h:SxTw— No, x Ney, such that h((z,y)) = (f(x),9(y)).

It is easy to show that h is a bijection. By Exercise 4.34, there is a
bijection between N.,, x N.,, and N, «,, and hence between S x T and
Nepxm and so, S x T is finite and S X T| = n x m.

Solution C.78. [Of Exercise 4.38.] Let g : N — Q x Q such that:

9(0) = (q0,90)
(90, qr+1) if n# 0 and g(n — 1) = (qx, )
(qkr1,@-1) ifn#0,1#0and g(n—1) = (qr, @)

We now leave it to the reader to show that g is a bijection.
Solution C.79. [Of Exercise 4.39.]

1. Since T is finite and S is infinitely countable, there are m € N, and
bijections f : T+ N, and g : S+ N. Let h: TU S — N such that

) f@) iteeT
h(x){g(x)—i—m ifres.

Since SNT = (), h is a function and since f and g are bijections, we
can easily prove that h is also a bijection.

2. Since T is finite and S is infinitely countable, there are m € N, and
bijections f : T+ N, and g : S+ N. Let h : T U S — N such that

) f(=) ifeeT
he) = {g(x)—l—m ifxeS\T.

h is a function and since f and g are bijections, we can easily prove
that h is also a bijection.
3. Since T and S are infinitely countable, there are bijections f : T +— N

and g : S+— N. Let h: TUS — N such that

2 ifeeT
na) =420 T

29(x)+1 ifzxes.
h is a function and since f and g are bijections, we can easily prove
that h is also a bijection.

4. There are two cases:

e S\ T is finite: Since S\ T is finite and T is infinitely count-
able, there are m € N, and bijections f : S\ T — N, and
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g: T — N Leth: SUT = (S\T)UT — N such that
if € S\T
wy [ f@izes)
glz)+m ifzeT.
Since (S\T)NT = 0, h is a function and since f and g are
bijections, we can easily prove that h is also a bijection.

e S\ T is infinitely countable: Since S \ T and T are infinitely
countable, there are bijections f: S\ T — Nand g: T — N. Let
h : SUT = (S\T)UT +— N such that h(z) =
2f(x) ifxeS\T
29(z)+1 ifzeT.
Since (S\T)NT = 0, h is a function and since f and g are
bijections, we can easily prove that h is also a bijection.
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C.5 Solutions for Chapter 5
Solution C.80. [Of Exercise 5.1.] We prove 1., first:

e Reflexive: For any set .S, the identity correspondence 1g which asso-
ciates to any element, the element itself is a one-to-one correspondence
between S and S.

e Symmetric: For any sets S and T, if f is a one-to-one correspondence
from S to T then the inverse f~! is a one-to-one correspondence from
TtoS.

e Transitive: For any sets S, T and V, if f is a one-to-one correspon-
dence from S to T and g is a one-to-one correspondence from 7" to V
then the composition g o f is a one-to-one correspondence from S to
V.

Now we prove 2.

e For any set S, f : S +— S such that f(z) = x is injective and hence
S=<S.

e For any set S, T and V, If f: S+ T and g : T — V are injective,
then go f : S — V is injective by Lemma 4.2.23.3. Hence if S X T
and T <V then S < V.

o If S < T and T < S then there is an injection from S to T" and an
injection from T to S, and by Theorem 4.2.24, S ~ T.
On the other hand, if S ~ T, say f : S+~ T is bijective then there is
obviously an injection f from S to T and an injection f~! from T to
S, and hence S < T and T < S.

o If S =( then S ~ 0.
The case of a bijection f : S — 0 when S # 0 is impossible since
otherwise, there is x € S which has no image in §.

Solution C.81. [Of Exercise 5.2.]

1. First note that ) = N.g and hence by Definition 4.1.6, #0 = 0. Now,
by Definition 5.1.4, #S = #0 iff S ~ 0 iff (by Lemma 5.1.3) S = 0.

2. If #S = #7T then S ~ T and hence by Lemma 4.3.1.1 either S and T
are both finite or they are both infinite.
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3. Since #S5 = #T ifft S ~ T, and by Theorem 5.1.3, ~ is an equivalence
relation, we can easily deduce that = is an equivalence relation on
cardinal numbers. We only show the transitive case:

If #S = #T and #T = #U then S ~T and T ~ U and hence S ~ U
and so, #S = #U.

4. Since #S5 < #T ift S X T, and by Theorem 5.1.3, < is reflexive and
transitive, we can easily deduce that < is reflexive and transitive on
cardinal numbers. We only show the transitive case:

If #S < #T and #T < #U then S <T and T < U and hence S < U
and so, #S < #U.

5. Since by Theorem 5.1.3, S <X T and T X S iff S ~ T, and since
#S <H#T it S T, and #S = #T iff S ~ T, we can easily show that
#S = #T iff (#S < #T and #T < #59).

6. #S < #T iff S X T iff there is an injection f: S+ T.

e If there is an injection f : S +— T then there is a bijection f : S —
fIS] € T and hence there is a bijection from S to a subset of T
and hence §' is equivalent to a subset of T

e If S is equivalent to a subset of T/ of T then let f : S +— T’ be a
bijection, then f :.S — T is an injection.

Hence, there is an injection f : .S +— T iff S is equivalent to a subset
of T. So, #S5 < #T iff S is equivalent to a subset of T

7. By the third item above, #S = #T iff (#S < #T and #T < #5).
Hence, #S # #T iff (#S £ #T or #T £ #5).
Now, #S < #T iff
#S < #T and #85 # #T iff
#S < #T and (#S £ #T or #T L #5) iff
(#S < #T and #S £ #T) or (#S < #T and #T £ #5) iff
(#S < #T and #T £ #5S5) iff by above item
S is equivalent to a subset of T and T is not equivalent to a subset of

S.

Solution C.82. [Of Exercise 5.3.] Since S and T are infinitely countable sets
then there is a one-to-one correspondence between N and S and a one-to-one
correspondence between N and 7. Hence, there is a one-to-one correspon-
dence between S and T and so, #S = #1 = a.

Since N.,, C N C R then N, < N <R and hence n = #N_,, < #N < #R.
Since R is uncountable then R # N and hence #R # #N and so #N < #R.
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Furthermore, since N is infinite and N.,, is finite, #N # #N_,, and so,
n < #N.
So,n<a<c.

(L n e Nt} Ob-

Solution C.83. [Of Exercise 5.4.] Let S =
| — (0,1) such that f(z) =

viously S C (0,1]. Let f : (0,1
x ifxe (0,1]\ S
#I ifz::%wherenel\ﬁL
It is easy to show that f is a one-to-one correspondence.
Now, to give a one-to-one correspondence between [0, 1] and (0, 1), let S =
{0} U{L : n e N*}. Obviously § C [0,1]. Let f : [0,1] ~ (0,1) such that
x ifxel0,1]\S
flx)= % ifx=0
ﬁ ifx:%whereneN"‘
It is easy to show that g is a one-to-one correspondence.

Solution C.84. [Of Exercise 5.5.] You could also use a different proof as
follows: By Theorem 4.1.10, Q is infinitely countable and hence Q ~ N.

By Lemma 4.2.23.5, if S ~ T then PS ~ PT, and hence, PQ ~ PN.

By the proof of Theorem 5.1.11, we have an injection f : PN — [0,1]
and since [0,1] C R then we have an injection f : PN — R.

Also, by the proof of Theorem 5.1.11, we have and an injection g : R
PQ and since PQ ~ PN then by Lemma 4.2.23.3, we have an injection
h:R~— PN.

Since f : PN — R and h : R — PN are injections, then by Theo-
rem 4.2.24, R ~ PN.

Solution C.85. [Of Exercise 5.6.] Since Q is countable then Q N [0,1] is
countable. Since the infinite set {% :n € NT} C QnNI0,1], we have QN [0, 1]
is infinite. Hence, let r : N* — QN [0,1] be a one-to-one correspondence
and denote r(n) by r, for ech n € Nt (r1,r9,--- is a listing of Q N [0, 1]).

Take the infinite countable set S = {ﬁ : n € Nt and /n is irrational}.
Similarly to QN [0, 1], let s1, s2, - - - be a listing of S. Now, let the one-to-one
correspondence ¢ : SU(QN0,1]) — S such that g(z) = o2 1 e
Sop—1 ifx=s,
Obviously g is a one-to-one correspondence.
ifzeSU@Q@nIo,1

Let f:[0,1]  [0,1]\ @ such that f(z) = {9 & €SU@N[01])
x otherwise

It is easy to show that f is a bijection.
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Solution C.86. [Of Exercise 5.7.] Let f : [—1,1] ~ [a, b] such that f(z) =
w. We show that f is bijective.

o If f(x) = f(y) then b(1+z) +a(l —x) = b(1+y) +a(l —y) and hence
b(z —y) = a(z —y).
If  # y then a = b which is a contradiction. Hence = y and f is

injective.
e Let y € [a,b] and x = W. Now, = € [—1, 1] because:
a < vy < b implies
2a < 2y < 2b implies
2a—(b+a) < 2y—(b+a) < 2b—(b+a) implies
—(b—a) < 2y—(b+a) < b—a implies
-1 < W < 1 since b—a # 0

Furthermore, f is a surjection because f(z) = y can be seen as follows:

fl@) = g(1— 2ty 4 b 4 2uplra),

= z(b;ta)(b_a—zy‘kb‘f‘a)‘FQ(b—b,a)(b—a—i—2y—b—a)
Q(blfa) (2ab - 2ay) + ﬁ(m)y — Qab)
2(bl—a) (2y(b — a))

Solution C.87. [Of Exercise 5.8.] Since S ~ T, let f: S+ T a one-to-one
correspondence between S and T'. It is easy to show that g : SUR— TUR

f(z) ifzesS
ifxeR
SURand TUR. Hence, SUR~TUR.

defined by g(z) = is a one-to-one correspondence between

Solution C.88. [Of Exercise 5.9.] Since S ~ T and R and SUT are disjoint,
then by Exercise 5.8, SUR ~ T'U R. Similarly, since R ~ U and T and
RUU are disjoint, then by Exercise 5.8, TUR=RUT ~UUT =T UU.
Since ~ is transitive and SUR~TUR~TUU, weget SUR~TUU.

Solution C.89. [Of Exercise 5.10.] If S is finite, nothing to prove. Assume
S is infinite. Since S <X N, then #S5 < #N = a. But also by Lemma 4.3.1.5,
there is S’ C S such that S’ and N are in one-to-one correspondence. So,
#8" = #N = a. But, #5 < #S. Hence, a < #S < a and therefore,
#S =a.

Solution C.90. [Of Exercise 5.11.] ® is a function because for every f €
RSYT | there is a unique pair (g,h) € R® x R such that g(x) = f(x) for
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every € S and h(z) = f(x) for every z € T.
® is an injection because if ®(f) = ®(f’) where

®(f) = (9,h) € R® x RT where g(x) = f(z) for every x € S and
h(z) = f(x) for every x € T and

e O(f") = (¢',h') € R® x RT where ¢'(z) = f(x) for every x € S and
W(z) = f(x) for every x € T,

then since for all z € S, g(z) = ¢'(x) we have g = ¢’ and also since for all
x €T, h(x) =1 (x) we have h = b’ and so, (g,h) = (¢', h').
® is a surjection because for any (g,h) € R® x RT, we can define f ¢ RSYT

such that f(z) = {?L((x)) if © i T.

Since S NT = (), we can show that f is a function and f € R°“T. Hence,

®(f) = (g, h).

Solution C.91. [Of Exercise 5.12.] Assume p(f) = p(f’) where f, f' € ST.
Let « € T. Then, p(f)(1(x)) = p(f')((2)) and so, ¢(f(¥ ™" (¥(x)))) =
(b(f’(w L(4(z)))). But, since @ is bijective, then by Lemma 4.2.23.2,
Y~ 1((x)) = x and so, gb(f(x)) = ¢(f'(x)). But, ¢ is injective and hence
f(z) = f'(x). Therefore, f = f’ and p is injective.

Now, let g € S and let f=¢togor. Recall that poop™! = 1g
and ¢ o ¢p~! = 1p.. Then, f € ST and for any z € T, p(f)(x) =
P67 0 g0 p)(a) = ¢((671 0 go V)W (@) = G~ 0 g((¥ (x)) =
P~ og(x)) = d(¢7 (g(x))) = g(x). Hence, p(f) = g and p is surjective.

Solution C.92. [Of Exercise 5.13.] Assume ®(f) = ®(f') for f, f' € (R x
S)T and let # € T. Then, ®(f) = (fi, f2) = (f{> f3) = (f') and f(z) =
(f1(x), f2(x)) = (f1(x), f4(x)) = f'(x). Hence, f = f’ and ® is injective.
On the other hand, let (g,h) € RT x ST. We construct f € (R x S)7
follows: for any =z € T, we let f(x) = (g(x), h(z)). Clearly, ®(f) = (g, h)
and hence @ is surjective.

Solution C.93. [Of Exercise 5.14.] Assume ®(f) = ®(f') = h for f, f' €
(R%)T. We need to show that f = f. We will show that for any z € T,
f(z) = f'(x). Assume z € T. For any y € S, (y,x) € S x T and h((y,z)) =
f(x)(y) = f'(x)(y). Since for any y € S, f(z)(y) = f'(x)(y), we conclude by
function extensionality that f(z) = f’(x). This is for any = € T and hence,
by function extensionality f = f’ and ® is injective.

On the other hand, let h € R¥*T. We construct f € (R®)T as follows: for
any z € T, we let f(z) € R such that for any y € S, f(z)(y) = h((y, x)).
Clearly, ®(f) = h and hence @ is surjective.
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Solution C.94. [Of Exercise 5.15.] Let ®(T) = ®(7"). Then &r = &pv.
Now,

xeTiff &r(x) =1if & (2) =1iff 2 € T'. Hence T = T” and ® is injective.
On the other hand, let g € {0,1}°. Take T'= {z € S : g(z) = 1}. Clearly
g =& = ®(T) and hence, P is surjective.

Solution C.95. [Of Exercise 5.16.] Let X € S. Then, by hypothesis there
is Y € S such that #X < #Y. But, since Y C [J S, we have #Y < #JS.
Hence, #X < #JS.

Solution C.96. [Of Exercise 5.17.] Recall that #N = a and by Theo-
rems 5.1.14 and 5.2.21, for any set S, #PS > #S5, and #PS = 2#5. Hence,
2% > a and hence a < 29,

Now, since 2 < a and a < 2% then by Theorem 5.2.23, 2% < a® and
a® < (Qa)u _Cor 5.2.20 gaa _The 5.2.9.1 20

Hence, a® = 2.
Solution C.97. [Of Exercise 5.18.]

1. e Forn=0,Uy={0} and #U, = 1.

eForn=1,U0; ={SCN:5S~N,}={SCN: |5 =1} =
{S € N: S = {m} where m € N}. Let f : U; — N such that
F({m}) = m. It is easy to prove that f is a bijection and hence
#U1 = a.

eForn=2U;={SCN:S~N,}={SCN:|S|=2}={5C
N: S ={m,p} where m,p € N}.
Let f: Uy — N x N such that f({m,p}) = (m,p) where m < p.
It is easy to prove that f is an injection and hence #Us < #(N x
N) = a.
Let g : N +— U; such that g(n) = {n,n + 1}. Then, g is injective.
Hence, a = #N < #Us,.
That is: a < #Us < a and so, #Us = a.

e Assume that for n > 1 that #U,, = a, we will show that #U,,;1 =
a.
Let f : Uy11 — NxU, such that for S € U, 11, f(S) = (k, S\{k})
where k is the smallest natural in S. It is easy to prove that f is
an injection and hence #U,+1 < #(N x U,) = aa = a.
Let g : N+ Up4q such that g(k) = {k,k+1,--- ,k+n}. Then,
g is injective. Hence, a = #N < #U, 4.
That is: a < #U,4+1 < a and so, #U,+1 = a.



54

APPENDIX C. SOLUTIONS TO EXERCISES

2. Clearly, U = |J,,cyy Un- By Theorem 4.3.9 and the first item above, U

is countable. Since U contains an infinite number of elements like {n}
where n € N, U is infinite. Hence, U is countably infinite and #U = a.

. Clearly PN = U U V. Hence, #PN = #U + #V. By Theorem 5.2.21

and Corollary 5.2.22, #PN = 27N = ¢, By the above item, #U = a.
Hence, ¢ = a + #V. Now:
e By Theorem 5.2.2, #V =0+ #V <a+ #V =c.

Note that V is infinite because for any n € N, nN = {nk : k €
N} € V and for any n,m € N where n # m we have nN # mN.
Hence, a < #V.

e a < #V, because if a = #V then ¢ = a+#V = a+a = a absurd.
e Hence, a < #V < ¢ and so, #V =c.

Solution C.98. [Of Exercise 5.19.]

1. Let S=N, T=N" 8 =N, T7"={neN:niseven}. Then S\T =

{0} and S'\T' ={n e N:nisodd}, T C S, #S = #T = #5' =
AT = #(S'\T') = a but £(S\T) = L. So #(5\ T) £ #(S'\ T").

.Assume S ~ S, T ~ T/, T CS, T CS and #S > #T then since

TN(S\T) =T'N(S'"\T") =P and S = (S\T)UT and S' = (S"\T")UT",
we have #5 = #(S\T) U #T and #5" = #(S"\T') U #T’'. Since
#8 = #8" and #T = #T", then #(S\ T) = #(S' \ T").

3. Left to the reader.

4. Left to the reader.

Solution C.99. [Of Exercise 5.20.] For allx € S, let X, ={y € T: f(y) =
xz} and let U = {X, : x € S}. Since S # 0 and f is a surjection, by the
axiom of choice, we can choose for each X, € U, a unique y,, € X, such that

Let g : S+ T such that g(z) = y,. It is easy to show that g is injective.

Solution C.100. [Of Exercise 5.21.] Since S # 0, let a € S. Let y € T. If
y = f(x) for x € S, then this x is unique because f is injective. Hence, let

g : T+~ S such that g(y) =

x  if there is z € S such that y = f(x)

a otherwise

It is easy to show that g is surjective.
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Solution C.101. [Of Exercise 5.22.] Let I = {n € N : #n = n}. Use the
induction axiom to show that I = N. Hence, 7, #7n = n.
This is not a good definition since for each n > 1, it defines 7 in terms of
7. This is not well founded. Instead, we can change the definition as follows:
0=1{},1={0}2=1{01}, 3 =1{0,1,2}, -+, forn > 1,7 =
{0,1,2,--- ,n—1}.
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C.6 Solutions for Chapter 6

Solution C.102. [Of Exercise 6.1.]

1.

2.

10.

11.

Aqgo is a wif and an atomic wif.

A; is a wif and an atomic wif.

A3V As is a wif but not an atomic wif.

(A3 V As) is a wif but not an atomic wif.
A3 V Ajp) is neither a wif nor an atomic wif.
(A3 V Aj is neither a wif nor an atomic wif.
AgA is neither a wif nor an atomic wif.

—Ag N A1 V As is neither a wif nor an atomic wif since it is ambiguous
as to which is grouped with which.

—Ag A (A1 V As) is a wif but not an atomic wif.
(mAg AN A1) V Ay is a wif but not an atomic wif.

—Ap v (A1 V Ag) is a wif but not an atomic wif.

If we take the case where all of Ag, A1, As, A3, As and Aq1qp are false then
all the wifs in this exercise are false.

If we take the case where all of Ay, Ay, Az, A5 and A1gp are true but Ag is
false then all the wifs in this exercise are true.

Solution C.103. [Of Exercise 6.2] Let A D B be ® and B D A be U. Here
is a truth table for the desired formulas.

A|B|Q |V |OAY | OVY | D | -0 | -DA-T
T|\T|T|T T T F | F F
T|F|F|T F T T | F F
F|T|T|F F T F | T F
FIF|T|T T T F | F F

(AD B)V (B D A) is a tautology and =(A D B) A—(B D A) is a contradic-
tion, whereas (A D B) A (B D A) is neither.
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Solution C.104. [Of Exercise 6.3] Let A D B be ® and =B D —A be .
Here is a truth table for the desired formulas:

P~V | -A-~D | B

SIS (N
SEEECEC I
SRR
NN
SIS
SRS
S RNSS
S =SSl
S K

All the formulas given in this exercise are tautologies.
Solution C.105. [Of Exercise 6.4] The proofs are all truth tables.

1.

ANA|ANAAA

N
N
|

A|ANB-~BAA

NN
NN NW
o>
o>
NSNS HN

3. Let @ be AN(BAC) -~ (AAB)AC.

B

Q

ANBAC) A

W
B
>
W

YAC

B T B> Bl Han | S
e s B e e Ban | v
MmN TNTNQ
TN YN
Bl s les es les Mes ln | s
RS R Bl N | e
e B s e B M B | =)

R e R e B T

Solution C.106. [Of Exercise 6.5] The proofs are all truth tables.
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1. Let @ be AN(BVC)~ (AAB)V(ANC).

A|B|C|BVC|ANBVC)|AANB|AANC | (AANB)V | ®
(ANC)
T|T|T T T T T T T
T|T|F T T T F T T
T|F|T T T F T T T
T|F|F F F F F F T
F|T|T T F F F F T
F|T|F T F F F F T
F|\F|T T F F F F T
F|F|F F F F F F T
2. Let P be AV (BAC)« (AV B)A(AVC). Then, ® is a tautology.
A|B|C|BANC|AV(BANC)|AVB|AVC | (AVB)A| ®
(AVC)
T|T|T T T T T T T
T|T|F F T T T T T
T|F|T F T T T T T
T|F|F F T T T T T
F\|\T|T T T T T T T
F\|\T|F F F T F F T
F\|\F|T F F F T F T
F|F|F F F F F F T

Solution C.107. [Of Exercise 6.6.] Let A be x € T and B be z € R. Below
we will use the tautologies z € S~z € SAz € S, 7(AV B) «~ =AA-B,
Then

xe S\ (TUR) xe€Sandz ¢ (TUR)

x €S and not x € (TUR)

x €S and not ((z € T) or (x € R))
x € S and not (A or B)

x €S and =(AV B)

x € Sand “AA-B
(xeSANzeS)AN-AN-B

(x € SA-A)A(x € SA-DB)
(xeSAxgT)N(x e SNz &R)
(e S\T)N(zx € S\ R)

ze (S\T)N(S\R).

S
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Solution C.108. [Solution of Exercise 6.7.]
1. ¥#=50 x 0! =0 = (0 + 1)! — 1. Hence the property holds for 0.

2. Assume IH which is that the property holds for n € N. We will show
the property for n + 1.
SPEETE xR =Sk x k- (n+ ) x (n+ 1) =M (n+ 1) - 14
M+ xn+)=n+D!xn+2)—1=n+2)!—-1.

Hence by induction, for every n € N, Z’,jigk: xkl=(n+1)—1.
Solution C.109. [Solution of Exercise 6.8.]
1. Ifn:Othena2=a1+a0:1:1—1—0:1—}—2’;28%.

2. Assume IH which is that the property holds for all i <n € N. We will
show the property for n + 1.
On4+1+42 = Gp41 + Gn42 =1 any1+1+ Zzzgak =1+ E£i8+1ak~

Hence, by strong induction, for all n € N,

Any2 =1+ Z’,jigak
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C.7 Solutions for Chapter 7
Solution C.110. [Of Exercise 7.2.]

1. Applying repeated/alternate subtraction (anthyphairesis) to 7 and 5

gives:

ri = ¢ X Tit1 +  Tiyo.

7T =1 x 5 + 2.
1=0 O = q X T + 7.

5 = 2 x 2 + 1.
t1=1|rm = ¢ X 7T + 3.

2 = 2 x 1 + 0.
1=2 |1y = @ X T3 + r4.

Since the one before the final 7 in the series is 1 (r3 = 1), 7 and 5 are
relatively prime.

2. Applying repeated/alternate subtraction (anthyphairesis) to 212 and

24 gives:
Ti = @i X Tip1 + Tigo.
212 = 8 x 24 +  20.
1=0|mr = qGgo X T +  ro.
24 =1 x 20 + 4.
1=1|m = q1 X T2 + r3.
20 = 5 x 4 + 0.
1=2|1r9 = q X T3 + 74

Since the one before the final r in the series is 1 (r3 = 4 # 1), it is the
GCD of 212 and 24.

Solution C.111. [Of Exercise 7.3.] Assume b < a and let 79 = a and r; = b.
Using anthyphairesis to calculate the GCD of a, b goes as follows:

T = (q; X Tit+1 + Ti+2. qo, - - - »(]i]
1=0|7r = q X 1 + 7. qo)
i1=1|rm = q X 1o + r3. CIO7QI]
1=n 'm = d(4n X Tn+1 + Tn42- [CIO7 qiy-- - q’ﬂ]

The process stops when 7,19 = 0. If r,41 = 1 then a and b are relatively
prime to one another. Else, 1,41 is the GCD of a, b.
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Using anthyphairesis to calculate the GCD of ma, mb goes as follows:

mr; = @ X Mmriy1  + mrigo. qo;- - - qi]
t=0|mrop = q X mr + mra. QO]
i=1|mri = ¢ X mre + mr3. 40, 91
1=n mr, = (n X Mrpil + mrp42. [qu q1, .- - 7qn]

Again here, the process stops when mr, 1o = 0. Since mr, 11 # 1, a and b
are not relatively prime to one another and mr, 1 is the GCD of ma, mb.

Hence we see that the characterising sequences for a/b and ma/mb are
the same, but at every stage, the remainders of ma/mb are m times the
remainders of a/b. The GCD of ma/mb is m times that of a/b if a, b have
a GCD. Else it is m.

Solution C.112. [Of Exercise 7.4.]

1) The ratio of 15 to 4 is characterised by the sequence [3, 1, 3] as is shown
in the geometric diagram below:

2) The ratio of 20 to 7 is characterised by the sequence [2, 1, 6] as is shown
in the geometric diagram below:

6o/ 111111
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3) The ratio of 15 to 10 is characterised by the sequence [1, 2] as is shown
in the geometric diagram below:

5/1 5

10

10 )

4) The ratio of 3 to 2 is characterised by the sequence [1,2] as is shown
in the geometric diagram below:

3/2 1

2 1

5) The ratio of 7 to 2 is characterised by the sequence [3,2] as is shown
in the geometric diagram below:

7/2 1
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6) The ratio of 14 to 4 is characterised by the sequence [3,2] as is shown
in the geometric diagram below:

14/4 9

Solution C.113. [Of Exercise 7.5.]
1. The ratio of v/3 to 1 is calculated as follows:

(%)

1 V3-1

Figure C.1: Ratio of V3tol

o Let 7o =+/3 and 7 = 1. Since 1 < v/3 < 2then 0 <3 —-1<1.
Letqozlandrgz\/gfl. Note 0 < r9 < 1. We have

To 2
ro=@qoXri+ry or —=(qo+ —
1 1
3 3—-1 1
V3=1+(3-1) or \/T_—1+\/_1 =1+—
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e Recall that we need to find 7;49,¢; for ¢ > 0 such that 0 < ... <
Tigo < Tig1 <71 < ...<Tre<1ry <7g and r; = @q; X Tit1 + Tito2.

Le.,
Ti + 1
=¢ Tt 7
Tit1 litl
Tit2

Let us calculate ;?“ and ¢; for i > 1.
i+2

o Leti=1 Then ™ = L — 14 1 _1:1+2—\/§:
' . e \/5711 Ve )1 V31
V31 (V3-1)(V3+1) 2
23 2-V3)(V3+1) V31

Let ¢ = 1, r3 = 2 — v/3 and note that 0 < r3 < r5. We have:

1 1
r=quXretry or —=q+ 55
T2 =
3
1=1x(V3-1)+(2-v3) or 1 1
V3 -1 2
V3-1
Hence so far:
r1 1 1 1
— = :1 :1 —_—
T9 \/3_1 T 2 +T_2
V3—1 T3
[ )
r2 2 2(\/§+1) V3 1
3 V3-1 (V3-1)(V3+1) 1
V3—1
Hence .
T2
T2

Now we see that the process is infinite as follows:

T 1 1

—1:1+ﬁ:1+—1.

T2 E 2+ 1
1+ﬁ
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So the ratio of v/3 to 1 is characterised by the repeating (after 1)
infinite sequence [1,1,2,1,2,1,2,...] which we also write as [1,1,2].

Figure C.1 shows the diagram version.

2. The ratio of v/5 to 1 is calculated as follows:

1 1 V5 —2
V5 —2
V6 -2
1
V5 —2
V6 -2

Figure C.2: Ratio of V5 to 1

o Let T():\/gand ry =1 and gg = 2. Note 0 < o < r;. We have

To T2
o =qo X T1+ 7o or — =qo+ —.
1 T1
5 5—2 1
V5=2+(/5-2) or ‘/T_:2+f1 =2+ —
V5 —2

e Recall that we need to find 7;42,¢q; for ¢ > 0 such that 0 < ... <
Tivo <Tip1 <7 < ...<1re <11 <Tp and r; = qi X Tit1 + Trigo.

Le.,
T T 1
Tit1 BT T
Ti+2
Tit1 :
Let us calculate 7 and ¢; for ¢ > 1.
142

eLet i = 1. Then 1 = 9-4v5 _ 4,

1 _
VA5 mT oz T B2
(9—-4v5) (V5 +2) oy 1 1
(VE-n(Ery L TVETREAY IS

V5 -2 "2
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a4+ L=
4+ T
T2
Now we see that the process is infinite.
So the ratio of v/5 to 1 is characterised by the repeating (after 2)
infinite sequence [2,4,4,4,...] which we also write as [2, 4].

Figure C.2 shows the diagram version.

3. The ratio of v/7 to 1 is calculated as follows:

%

37

VT =2

VT—2

Figure C.3: Ratio of VTtol

e Let ro = v/7 and r; = 1. Recall that we need to find Ti42,q; for
i>0suchthat 0 < ... <7jyo <mip1 <1 < ...<ra <711 <19
and 7; = q; X 41 + rive. Le.,

Ti - + 1
i T T
Tit2
Ti-l—l .
Let us calculate 7 and ¢; for i > 1.
1+2

e Letgo =2andry = V7—2. Note 0 < ry < 71 and ry = Qo XT1+79.
Now,

Vi=2+(\7-2) or \/T7:2+\/772: 1
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o1 _ VT +2 _ V142
.NOtethat7"2_\/7_2_(\/7_2)(\/74_2)_ T
Letq1:1andr3:3—\/7.Letqulandr4=2\/7—5.Let
g3 =1 and r5 = 8 — 3/7. Let ¢4 = 4 and r¢ = 14/7 — 37.

We have for 0 <17 < 4:

. i 1
Ty = q; X ’ri+1 + T'Z‘+2 1.e., = q; + m
Ti+1
Ti+2

Now, it is easy to show that ﬁ?j_ 2 _ 8- 3VT . Hence
14V/7 - 37

s 1

Te T2

Hence we see that this process is infinite with a chracterizing
sequence of the ration v/7 to 1 being [2,1,1,1,4,1,1,1,4,..] =
[2,1,1,1,4].

Figure C.3 shows the diagram version.

Solution C.114. [Of Exercise 7.6] The solutions are respectively; 1, 2, 3
and 4.

Solution C.115. [Of Exercise 7.7.] We only do the first two cases since the
remaining cases are similar to above.

1. For ACF and AF D: Since AF is the bisector of ZCAD and CA = AD,
then the two triangles are similar. The angles are as follows: ZCAF =
/FAD =225° /FDA=/FCA=90°. /CFA=/DFA =67.5°.

2. For BFD and BCA: Since ACF and AFD are similar, then /FDB
is a right angle. Hence, ZFDB = 90°. Since ZFBD = 45° then
/BFD = 45° and the triangles BF'D and BC A have the same angles.
Hence, they are similar.

Solution C.116. [Of Exercise 7.8.]

1. Since Theorem 7.2.5 already dealt with the case of a square of area
3, we assume n > 0. Let p be a number of the form 4n + 3. Note
that % =2n+1 and 1%1 = 2n + 2. The square of area p units has
a side of length /p. Now consider a right triangle whose legs have
lengths /p and p%l, which will mean by the Pythagorean Theorem,
that the hypotenuse has length 1%1. We will use this triangle to prove



68

APPENDIX C. SOLUTIONS TO EXERCISES

Vian +3 2n +2 a (2n 4+ 2)b

2n +1 (2n+1)b

Figure C.4: Diagram for the proof of irrationality of v/4n + 3

the irrationality of \/p. Assuming commensurability of ,/p with the
unit, there must be a right triangle whose legs have lengths a and
(2n+1)b and whose hypotenuse has length (2n+2)b where a and b are
positive integers; see Figure C.4. Now since the hypotenuse has length
(2n+2)b, it is even, and so by Theorem 2.5.5, both legs are even. This
means that @ and (2n+1)b (and hence b) are all even. Thus, we can get
a smaller triangle of the same form whose linear dimensions are half
of those of the triangle we started with. But then we have a triangle
whose legs have lengths a/2 and (2n+1)b/2 and whose hypotenuse has
length (2n+2)(b/2), or o', (2n+1)b’ and (2n+2)b’, where a = a/2 and
b = b/2. Assuming that a’ and ¥ are positive integers, this is, again,
a right triangle whose hypotenuse is even, and the above argument
can be repeated. Clearly, we cannot indefinitely repeat this argument.
Hence, there is no right triangle whose legs have lengths a and (2n+1)b
and whose hypotenuse has length (2n+ 2)b where a and b are integers.
It follows that \/p and 1 are incommunserable.

. Since Theorem 7.2.6 already dealt with the case of a square of area 5,

we assume n > 0. Let ¢ be a number of the form 8n + 5. Note that
q—;l =4n+ 2 and %1 = 4n + 3. The square of area ¢ units has a side
of length ,/g. Now consider a right triangle whose legs have lengths
\/q and % and whose hypotenuse therefore has length % by the
Pythagorean Theorem. We will use this triangle to prove that /q is
irrational. Assuming commensurability of /g, there must be a right
triangle whose legs have lengths a and (4n+2)b and whose hypotenuse
has length (4n+3)b where a and b are positive integers; see Figure C.5.
Now b is either even or odd.
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V8n+5 dn+3 a (4n+3)b

dn + 2 (4n +2)b

Figure C.5: Diagram for the proof of irrationality of v/8n + 5

If b is even, then (4n + 3)b is even, so the hypotenuse is even, and
hence, by Theorem 2.5.5, both a and (4n + 2)b are even. Then we can
construct another triangle of the same form by halving each dimension.
This cannot be repeated indefinitely, so there must be a triangle of
this form in which b is odd. It follows that (4n + 3)b is odd. Now we
may assume that a and b have no common factors, since otherwise we
can divide out these common factors, and we cannot keep doing this
indefinitely. Now, since (4n + 3)b is odd, it is not a multiple of 4. By
Theorem 7.2.1, only one of a and (4n + 2)b is a multiple of 4. If a is a
multiple of 4, then it is even, so (4n 4+ 3)b must be the sum of two even
squares and cannot be odd. Hence, a is not a multiple of 4, and so
(4n + 2)b must be a multiple of 4, from which it follows that b is even,
contradicting its being odd. Hence, there is no right triangle whose
legs have length a and (4n + 2)b, where a and b are positive integers,
and /g is incommensurable with 1.

3. Let r be a number of the form 2(2n+1) (i.e., an even number which is
not a multiple of 4.) Consider a right triangle whose legs have lengths
2/r and r — 1 and whose hypotenuse therefore has length r + 1. We
will use this right triangle to prove that /7 is irrational. Assuming
commensurability of 1/, there must be a right triangle whose legs legs
have lengths 2a and (r — 1)b and whose hypotenuse has length (r+1)b
where a and b are positive integers; see Figure C.6. Now if ¢ and b
are both even, we could divide all the linear dimensions by 2, and we
cannot do this indefinitely. So we may assume that a and b are not
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24/2(2n+1) dn +3 2a (4n +3)b

dn +1 (An+1)b

Figure C.6: Diagram for the proof of irrationality of 1/2(2n + 1)

both even. Now suppose b is even, so that a must be odd. Then b
cannot be a multiple of 4, since then the hypotenuse would also be
divisible by 4, and so by Theorem 7.2.1, 2a would also be divisible by
4, contradicting the oddness of a. Hence, b is not divisible by 4. Then
neither are (4n + 3)b (the hypotenuse) and (4n + 1)b divisible by 4,
from which it follows by Theorem 7.2.1 that 2a is divisible by 4, again
contradicting the oddness of a. Hence, b cannot be even, so it must
be odd. Then, as before, (4n + 3)b and (4n + 1)b are odd, and hence
not divisible by 4, so by Theorem 7.2.1, 2a is divisible by 4, and so a
is even. Say a = 2c¢. Now the Pythagorean condition implies that

(2a)% = ((4n + 3)b)? — ((4n + 1)b)?,
and substituting 2c¢ for a, this gives us
16¢2 = 8(2n + 1)b2.

This is equivalent to
2¢2 = (2n + 1)b%

Now since b is odd, (2n +1)b? is odd, so it cannot equal 2¢2. It follows
that there is no right triangle whose legs are 2a and (4n + 1)b and
whose hypotenuse is (4n + 3)b where a and b are positive integers.

Solution C.117. [Of Exercise 7.9.] We will prove that a positive integer
has a rational nth root if and only if it is a n-th power of a positive integer.
It is clear that if a positive integer is an nth power then it has a rational nth
root, namely the positive integer itself, so we need only prove the converse.
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Suppose k is a positive integer with a rational nth root, say g Then p and
q are positive integers, and

or

Now consider the prime factorisations of the two sides. Since p™ is an nth
power, the number of times each prime number occurs in its prime factori-
sation is a multiple of n. Similarly, the number of times each prime number
occurs in ¢" is a multiple of n. Now since the number of times each prime
factor occurs in kg™ is the same as the number of times it occurs in p™, the
number of times it occurs in k is the number of times it occurs in p” minus
the number of times it occurs in ¢". But this means that the number of times
each prime number occurs in the prime factorisation of k is the difference of
two multiples of n and is therefore a multiple of n. It follows that k is an
nth power of a positive integer.

Solution C.118. [Of Exercise 7.10.]

1. Let the angle be ZBAC. From A draw the arc of a circle to bisect
both AB and AC resp. at D and E. By Proposition 1, Book I, we can
construct the equilateral triangle DEF' as seen in the following figure.
Since AD = AFE and DF = EF then the two triangles ADF and AFFE
are similar and hence /BAF = /FAC. Hence AF is the bisector of
the angle Z/ZBAC.
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2. Let the line be AB. By Proposition 1, Book I, we can construct the
equilateral triangle ABC' as in the following picture. By 1 above, let
CD bisect the angle ZACB. Since AC = BC, ZACD = ZDCB and
since CD is common between the triangles ADC and CDB, we get
that AD = DB. Furthermore, since /ZDAC = ZDBC and ZACD =
/DCB, we get ZADC = ZBDC and hence by Definition 10, book
1, each of ZADC and ZBDC is right angle. Therefore, C'D is the
perpendicular bisector of AB.
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m

A D B

Here is another way of doing the proof which we leave to the student
to fill in the remaining details.
Let AB be the given finite straight line. It is required to construct the
perpendicular bisector of AB.

F

Describe the circle BC'D with centre A and radius AB. Again describe
the circle AFE with centre B and radius BA. [Post.3]
Join the straight lines C'F. [Post.1]

Now, C'F is the perpendicular bisector of AB. The proof will need
some other propositions along the way from Proposition 1 that was
proved in Section 7.3. We leave this to the reader.

3. Let AB be the line and C' the point. From B, draw the circle with
radius BC. From A draw the circle with radius AC. Let D be the
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other intersection of these circles. Let F' be the intersection of C'D and
AB. Since the triangles ACB and ADB are similar then ZABC =
/ABD and hence the triangles BCF and BDF are similar. Hence
/BFC = /ZBFD and by Definition 10, book 1, ZBF'C' is right angle.
See the picture below:
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C.8 Solutions for Chapter 8

5

Solution C.119. [Of Exercise 8.1.] We need to prove that if ¢ is a value or

oo or —oo, and if

lim f(x) =1 and liLn g(x) =m,

r—c

then

1.

lim [ («) — g(2)] = [ — m.

r—cC

2. If m # 0 then
lim 1@ _ L
ve g(x) m

3. If n is any positive integer, then

Hm [f(z)]" = 1"

r—cC

4. If p, q are positive integers and | > 0 whenever ¢ is even,

lim [f ()] % =

T—cC

1. We have
limg e[ f(z) — g()]
limge[f(z) + (=1)g(2)]
[limg—e f(2)] + [limgc(—1)g(2)]
I+ limg—o(—1D)][limg—c g(2)]
I+ (-1)m
I —m.
2. We have
: flx) _ im ). L
lim, . g(a:) = limg . <f( )g(x)>

1
I

€
-

L
a .

_by LF3
by LF4
by LF2

1
—— by LF4
g(fﬂ)) Y

by LF5
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3. By induction on n.
Basis: If n = 1, we have [f(z)]" = [fz)]' = f(z) and {" = ' =, and
the result follows immediately by hypothesis.
Induction step: Assume that

lim [£(2)]" = I

r—c
Then we have
limg s [f(2)* = limg[f(2))" f(2)
= (limg[f(2)]")(limg—. f(z)) by LF4
= ¥ by the induction hypothesis
= [k

4. We have

lim,_.[f(x)]

Qs

P

= limg,_,. ( v f($)>

= (limxﬁc S f(x))p by the above item 3.
(Vi by LF6

Qs

= 1

Solution C.120. [Of Exercise 8.2]

¢~ : We prove that: If ¢ is a value and if

lim f(z)=1and lim g(x)=m,

T—Cc™ T—Cc™

then

lim [f(2) - g(a)] = [ - m.

r—c—
2. If m # 0 then
LS
im

T—CT g(x) m’

3. If n is any positive integer, then

lim [f(z)]" =1"

r—rc—
4. If p, q are positive integers and | > 0 whenever ¢ even, then

lim [f(z)]7 = 14.

r—Cc—
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The proof is as follows:

1. We have lim,_,.- [f(2) — g(z)]

7

= lim,.-[f(2) + (=1)g(2)]
— flimy e £(2)] + [limyse(~1)g(x)] by LF3
= 1+ [limg_ e (—1)][limy—c g()] by LF4
= I+ (=1)m by LF2
= l—-m

f(x)

2. We have lim,_, .- “5=<
e have lim,_, e

g
= (limy— f(2))
1L

l

m-

3. By induction on n.
Basis: If n = 1, we have [f(z)]"

lim,, .- f($)ﬁ

= [fa)]' =

g(z)

lim, .- L) by LF4

by LF5

f(x) and I" =' =1,

and the result follows immediately by hypothesis.

Induction step: Assume that

lim [f()]* =

r—Cc—

Then we have lim,_,. [f(z)]F*+!

= lim, .- [f(2)]* f(2)

(lim - [ f(2)]*) (limy - f(2))
by the induction hypothesis

= ¥
lk+1.

L
q

4. We have lim,_, .- [f(z)]

= lim, .- (q f(x))p
(limw—w_ v f(x))p

(Vi

Sl

= ld.

by LF4

by the above item 3.
by LF6



78 APPENDIX C. SOLUTIONS TO EXERCISES

ct: Exactly like that of ¢—, just replace every ¢~ by c™.

Note that throughout this exercise, we only used properties LF2..LF6 of
Definition 8.1.1.

Solution C.121. [Of Exercise 8.3.]

LF13 Let f(x) = x. Since n is a positive integer, and by LF1 lim,_,. f(z) =
¢, we get by LF12.3 that lim,_,. 2" = ¢".

LF14 By LF2, lim,,.a = a. By LF13, lim,_,.2" = ¢”. Hence, by LF4,
limg . az™ = (limg—. a)(limg_ . 2™) = ac™.

LF15 Let p(z) = ap2" +an_12" "1 +...+a1x+ag where for all 0 < i < n, a;
is a constant (and of course for all 1 <4 < n, 7 is a positive integer). By
LF14, limg,_,. a;z* = a;c’ for all 0 < ¢ < n. By LF2, lim,_,.ao = ao.
Hence by n repetitions of LF3,

limg . p(x)
=limy e anx™ + ap_12™ 1 4+ ...+ limy_e a1z + lim, . ag
=™ + ap_1¢" "+ ...+ ajc+ ag = p(e).

LF16 First we need to prove that if for all z, g(x) # 0 then lim,_,. g(x) # 0.
By LF15, we have lim,_,.q(z) = ¢g(c). Since for all z, g(x) # 0, we
have ¢(c) # 0 and lim,_,. g(z) # 0. Then:

lim p(x)
lim r(z) = lim p(x) —LF12.2 ze _LF15 p(e) = r(c).

Solution C.122. [Of Exercise 8.4.] Recall that the area of a triangle is %bh
where b is the base of the triangle and h is its height. Hence, the area of

the triangle OCD is %sinm and the area of the triangle OAB is %tan x.
Furthermore, the area of the slice of the square OBC' is % Note that

%sina: < % < %tana:. Recall that tanz = g’gécfc 'Hence sin z .§ x < SIQ%.
Note that we can add absolute values to all sides without changing anything.
| sin x| | sin x| |z

. Hence — < — < .
| cos x| | sin x| | sin x| | cos x|
1 < [zl 1 | sin z|
= |sinz| — |cosz| ||
negative, as x approaches 0, cosx is positive and sin x and x have the same

Hence

Hence |sinz| < |z| <

< 1. Whether zx is positive or

Le., |cosz| <

sign. Hence, cosz < % < 1. Since lim; _ygcosz =1 and lim,_,o1 =1, by

LF7, lim, o S8 — 1,
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Solution C.123. [Of Exercise 8.5.]

LF18 lim, o tanx = lim,_0 %—Sgéﬁ - hmf—m(colsx singy _rre
(limg—0 co}sx)(hmzao blnx) _LF5 (mthmﬂo blnx> _ LF17
x—0
S T R
imcosz 1~ ™
x—0
LF19 lim. . L=cosz _qy (L—cosz)(1+cosw)
ECEC e=0 z(1 + cosx)
2 .. 2
i 1 =COS T _ 3 sin” x _
limg 9 2(1+ cosz) lim, .o 20 + cos7)
sin x sinx _LF4

(1 + cosx)

limy o (S5) limg 0 (—(1 _ilré(_ics :v)) =LFi7

Iy si

lim ( sin & ) _LF12.2 P _LF12,LF3
e=0\ T+ cosz limo(l +cosx)

z—

(1 —cosz)(1 +cosz) _
22(1 + cos )

LF20 lim,_o 2295 — lim,_,q
X

limg_.o 1 —cos’x = lim, o sin’ x _LF4
7 2%(1 4 cosx) TP 2?(1 + cos )

hmx_m(—) lim, (3 nx) (m) _LF4

hmr_m(w) hmr—>0( LY lim, o (m) _LF17
lim ( 1 ) :LF5 1 _LF3l
—0 + cosx hH%)(l 1 cos x) 5-
r—r

Solution C.124. [Of Exercise 8.6.] We need to prove that if £ > 0 and if,
for each 1 < i <k,

lim a;., = a;,
n—oo

k k
lim E i | = E a;.
n—roo

i=1 i=1

The proof is by mathematical induction on k. Basis: k = 1. Then

k
lim E ain | = lim a;p
n—oo \ 4 7 ? n—oo

i=

then
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and
k
E a; = ay,
=1

and so the conclusion follows by the hypothesis.
Inductive step. k = m + 1. By the induction hypothesis,

nh_)rr;o <; ai)n> = izzlai.
Then

lim,, 00 (Z:’jl a,;m) = limn_,oo(Z;il @in + Gmtin)
—_LSs2 lmy, o0 Doy @i + 1My 00 Gt
_IH & Hyp. Z:i1 a; + Qi
= St e,
Solution C.125. [Of Exercise 8.7.] We need to prove that

1. If k is any constant value and if

lim a, = a,
n—oo
then
lim ka,, = ka.
n—oo
2. If
lim a, =a, and lim b, = b,
n— oo n—oo
then
nh_)rr;o(an —by,)=a—>b.
We do this as follows:
1. We have
lim, oo ka, = (lim,_ e k)(lim, o0 an) by LS3
= k(lim,— oo an) by LS1
= ka.
2. We have
lim, oo(an —bp) = limp,oolan + (—1)by]

limy, 00 @p + limy, 00 (—1)by, by LS2
limy, 00 an + (=1)(lim, o0 by,) by above
a+ (—1)b

= a-—0b
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Solution C.126. [Of Exercise 8.8.] Since b # 0, we have by LS4

o1l
noeo by b

Hence,

. a : 1
hmn—>oo b_n - hmn—>oo G, b_
n n

= (limpye0 an)(limy, e bln) by LS3

Solution C.127. [Of Exercise 8.9.]

LS21. By LS17, lim, .o —n = —oc iff lim, ,,on = +o00. Since by LS11,

lim,, oo n = +00, we have lim,,_,,, —1n = —00.
LS22. Let ¢ =  —b. We have lim,eo—b, =053
(limy, s 00 —1)(limy, 500 b)) =591 —(lim,, 00 by) = —b = c¢. Hence by

LS12, limy,— 00 (an, — by) = to0.
LS23. By LS17, lim,,_,o, —b, = Foo. Hence by LS12, lim,, .~ a, —b,, = Foo.

LS24. By LS17, lim,,,o, —b,, = +00. Hence by LS12, lim,,,~(a, — b,) =
+o00.

LS25. The proof is by mathematical induction on k. Basis: k = 1. Then

k
lim Haim = lim a;,
n— oo n—oo
i=1
and
k
H a; = ay,
i=1

and so the conclusion follows by the hypothesis.

Inductive step. k = m + 1. By the induction hypothesis,

m m
lim H Gin | = H a;.
n— o0

i=1 i=1
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Then lim,, (H:’gl am)

= lim,_ s (H:il ai,n) (am+1,n)

= limpeo (IT7% @in) (imy o0 @my1,n) by LS3

(IT%, ai) (amy) by IH and Hyp.
12 ai

The proof is by mathematical induction on k.

Basis: k =1. Then lim,,_,, a,, = a by hypothesis.

Inductive step. k = m+1. By the induction hypothesis, lim,_,., al' =

a™. Then lim, . a™! _LS3 (limy, 500 a7) (limp,— 00 Gr) —IH, Hyp.

a™a = a™tt.

Assume lim, ., a, = ZFoo and lim,_,-b, = b < 0. Then
lim,, oo —byp, :ﬁ% limy, o (—1) limy, s 00 by, :ﬁ —1 x limy,_so0 by, =
—b > 0. Hence by LS13, lim, e —(anby) = lim, o0 an(—by,) = Fo0.
By LS17, lim,—o0(anb,) = Foo. The case lim, o a, = a < 0 and
lim,, o b, = £00, is similar.

By LS17, lim, .o —b, = =£oo. Hence lim, oo —(anby,) =
lim,, 00 @n(—by) _LS14 o and by LS17 lim,, o0 (anby) = —o0.

By LS4, 1imn%obi = % > 0. Hence by LS13, lim, o0 2 =

lim,, oo anbl = +o0.
n
By LS4, limy 00 1 = < 0.

Now lim,, o0 fbi _L (limy, 00 —1) (limn_>

2’3 o=

1) _LS1 _1

Hence by LS13, lim,,_, f‘g—" =lim, o ay <fbl = +o00. Finally, by

LS17, lim,,—y 00 %: = Foo.

Since a, < b, for all n > N, we have a,, — b, < 0 for all n > N. By
LS22, limy, o0 (an — by) = a — b and by LS5, a — b < 0. Hence a < b.

By LS19, lim,, o —a, = 0. Since |b,| < a,, for all n > N, then for all
n >N, —a, < b, < a,. Hence by LS9, lim,, ., b,, exists. By LS31,
limy, oo b, <0 and 0 < limy, o0 by,. Hence, lim,_,,, b, = 0. By LS6,
lim, o |br| = 0.

By LS9, lim, b, exists. By LS31, lim, b, < [ and [ <
lim,, o b,. Hence, lim,, o b, = [.
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LS34. Let b, = a for all n. By LS1, lim,, ... b, = a.

— If lim,,— 0 @y, = a then by LS20, lim,, o (an, — b,) = a—a = 0.

— If limpyo0(an, — bp) = 0 then lim, o a, exists for otherwise
if lim,, o, a, = Foo then by LS22 lim, o (a, — b,) = £oo
contradiction. By LS20, lim,, o (a, —by,) = (lim,, o0 an) —a =0
and hence lim,,_, o a,, = a.

Solution C.128. [Of Exercise 8.10.] ZABD = /BCA = 60°.
/ADB =/ADC =90°. /BAD = /DAC = 30°.
Moreover, BD = DC = % Since AB = BC = AC = 1, then

AD2 = l2 _ (%)2 — 31}3 Hence7 AD = #
The area of ABC' = %(AD)(BC) = l\/gl = \_51_512

2 2
The area of the square ADEF = ( )2 = %—
Similarly, ZA'B'D' = £ZB'C'A’ 60°. LA'D'B’ = LA'D'C' = 90°.
LB'A'D' = /D'A'C" = 30°.
Moreover, B'D' = D'C’" = —221 ={. Since A’B' = B'C’' = A’C' = 2I, then
A'D"”? = 417 — |2 = 3I%. Hence, A'D’ = /3l.
The area of A'B'C’ = S(A'D')(B'C") = 1 V3i(21) = V312,
The area of the square A’D'E'F’ = (v/31)? = 312.
Since the corresponding angles of ABC and A’B’C’ are equal, then these
triangles are similar.
Also, since all angles of both squares ADEF and A’D'E’F’ are right angles,
and since each side of ADEF is equal to half of any side of A’D'E’F’, the
two squares are similar.
Finally, the area ratio _area ABC - f g0 triangles ABC to A’B’C’ is equal

area A'B'C’
(AB )2:(1)2:(AD )2
AR 2 A'D" ADEF
: area 1258 nlA nli
And also, tj; area ratio sren ADE'E of the squares ADEF to A'D'E'F
is equal (A/D/)2 = (%)2
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C.9 Solutions for Chapter 9

Solution C.129. [Of Exercise 9.1.] We will show that for any ¢ > 0,
[l1 —Ia] < e. Let € > 0. By definition, there are M; and M, such that
if n > My then |z, — 1] < ¢/2 and if n > M, then |z, — o] < ¢/2. Let
M = max{My, Ms}. If n > M then |z, — 1] < &/2 and |z, — l2| < /2. Let
n>M. Now, |l —lo| = |l1 —2n +2n —lo| < |apn — U] + |20 — 12| <e.

Solution C.130. [Of Exercise 9.2.]
LS6.

lim, s ap =0 &

for every € > 0, there is an N such that for each n > N, |a,| < ¢ &
for every € > 0, there is an N such that for each n > N, ||a,|| < e <
lim;, 00 |an| = 0.

LS7. Suppose lim, o a, = 0. Let b,, be defined for n > k (for some k£ > 0),
and let there be a g, independent of n, such that |b,| < g for n > k.

Let ¢ > 0. By definition, there is N’ such that such that for each
n> N |a,| < % Let N = max{N’,k}. For each n > N, we have

lanbn| = |an|bn| < %g = e. Hence lim,_, oo (anb,) = 0.

LS16. Assume lim,_ o a, = oo and for all n > N for some N, we have
a, < b,. Let M > 0. By definition, there is an N such that for all
n > N, a, > M. Hence for alln > N, b, > a, > M and by definition,
lim,, o by, = 0.

LS18. We need to prove that if £ > 0 and if, for each 1 <i < k,

lim a;., = a;,
n— o0

then
k k
i (o) = Yo
=1 =1

Let £ > 0 and € > 0. By definition, for each 1 < ¢ < k, there is N; such
that such that for each n > Ny, |a; , —a;| < % Let N be the maximum

of Ni,No,---,Nj. Then, for each n > N, |Ef:1 Qip — Zle a;| <=
|3 (@i —a)] < X0 Jain —ail < kS =<
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We need to prove that:
If k£ is any constant value and if

lim a, = a,

n—oo
then
lim ka, = ka.
n—oo
Let € > 0. By definition, for each there is N such that such that for

each n > N;, |a, —a| < % Hence, for each n > N;, |ka, — ka| =

klay, —a| < k% = e. Hence, lim, o ka, = ka.

We need to prove that:
If

lim a, =a, and lim b, = b,
n— oo n—oo

then

nl;rr;o(an —b,)=a—"b.

Let € > 0. By definition, there are N7 and Ny such that such that for
each n > Ny, |a, —a| < § and for each n > Ny, |b, —b| < §. Let N be
the maximum of Ny, Na. Then, for each n > N, |a,, — b, — (a — )| <
lan, — a| + |bn, — b] < % + % =¢. Hence, lim,, o (a, — b,) = a —b.

Let M < 0 and a natural number N such that N > —M. Then, for
eachn > N, a, = —n<—N < M. Hence, lim,, -5 50 —n = —00

We need to prove that:
If lim,, — ~ @, = 00 and lim,, — b, = b, then

lim (a, — b,) = +o0.
n —r oo

1. The hypotheses are lim,, — » a, = o0 and lim,, — oo b, = b. By
the hypotheses,
(a) for every M > 0, there is N such that for n > N, a,, > M,
(b) for every € > 0, there is N such that for n > N, |b, — b| < e.
Let M > 0 be given. Then there are N; and N5 such that
(a) For n > Ny, a, > M + [b| + 1; and
(b) For n > Na, b, —b| < ¢, where if b=0, ¢ = & and if b # 0,

€ is the minimum of % and |b].
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Let N be the maximum of Ny and N5. Then for n > N,
ap, — by, > M+ |b|+1—b,.

This is clearly greater than M if b,, is 0 or negative, so suppose b,
is positive. Then b is either 0 or positive. If b is 0, then |b, —b| =

bn| < 1, so, since b, is positive, b, < 1, then —b,, > 71, and
2 2 2
1-5, > % Therefore,

1
M 4 [b] +1 = by = M+ 1 by > M+ 5 > M.

If b is positive, then |b] = b and |b—1b,| < % Hence, b—b,, > —%

and |b|—|—1—bn>1—%:%. Hence,

1
M+ b+ 14by > M+ 5 > M.

In either case, a, — b, > M.

. The hypotheses are lim,, — » a,, = —o0 and lim,, —s oo b, = b. By

the hypotheses,

(a) for every M < 0, there is N such that for n > N, a,, < M,
(b) for every € > 0, there is N such that for n > N, |b, — b| < e.

Let M < 0 be given. Then there are N; and N5 such that

(a) Forn > Ny, a, < M — |b] — 1; and

(b) For n > Na, |b, — b| < ¢, Whereifb:(),e:%andifb;éo,
€ is the minimum of % and |b)|.

Let N be the maximum of Ny and N5. Then for n > N,

an — by < M — |b| — 1 —b,.

This is clearly less than M if b, is positive or 0, so suppose b,, is
negative. Then b is 0 or negative. If bis 0, then |b, —b| = |b,| < %,

S0, since b, is negative, —b,, < %, and

1
M=|bl=1=by=M—1-by<M—1-3 <M.
If b is negative, then |b| = —b and |b — b, | < % Hence,

1 1
——<b-b,< =,
2 2
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and so,
b—1-0b, < —=.

Hence,
1
M—|b|—1—bn:M+b71—bn<Mf§<M.
In either case, a,, — b, < M.

LS23. If lim,, 5 « a, = a and lim,, — o, b,, = oo, then

n h—r>noo(an B bn) = Foo.

1. The hypotheses are lim,, —s o a,, = a and lim,, 3  b,, = co0. This
is like the first case of LS22 above with the a,, and b,, interchanged.

2. The hypotheses are lim,, -3 o, @, = a and lim, — b, = —o0.
This is like the second case of LS22 above with the roles of a,,
and b, interchanged.

LS24. If lim,, -3 o a, = 00 and lim,, — o, b,, = Foo, then

lim (a, —b,) = £oo.
n —r oo

1. The hypotheses are lim,, — o a, = oo and lim,, - o b, = —o0.
From the hypotheses,

(a) For every M > 0, there is N > 0 such that if n > N, a,, > M,
(b) For every M < 0, there is N > 0 such that if n > N, b, < M.

Let M > 0 be given. Then there are N; and N5 such that
(a) if n > Ny, a, > —A24—, and

(b) if n > Ny, b, < — L.

Let N be the maximum of Ny and N5. Then for n > N,

M M
n—bp>—+4+—=M.
“ 2 T3
2. The hypotheses are lim,, —y oo a, = —o0 and lim,, — 5 b, = o0.

From the hypotheses,

(a) For every M < 0, thereis N > 0 such that ifn > N, a, < M,
(b) For every M < 0, there is N > 0 such that if n > N, b, > M.
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Let M < 0 be given. Then there are N; and N5 such that
(a) if n > Ny, ap < %, and

(b) if n > Ny, b, > L.

Let N be the maximum of Ny and N5. Then for n > N,

M M
n—bp < —+— =M.
a < 2+2

We need to prove that:
If £ > 0 and for each 7, 0 < i < k, lim,, - » a;,, = a;, then

k k
lim Ha' = Ha'.
n — oo e ¢
i=1 i=1

Let I ={k e N*: if V0 < i < k,lim,, — o @5, = @, then

lim,, — o (Hf:1 ai,n) = Hf:l ai}'

We prove by induction that I = N*.

Clearly 1 € I. Assume k € I. We have if V0 < i < k, if lim,, — o a;., =
a;, then lim,, — o (Hle aiyn) = Hle a;. Repeating the proof we
gave for LS3 on Page 247, on lim, — o (Hle ai,n) = Hle a; and
limy, — o0 Gg+1,n = Gk41, We can show that lim, — (Hf:ll ai’n) =

Hf:rll a;. Hence, k 4+ 1 € I. Therefore, by induction, I = N* and we
are done.

If lim,, — o a, = a and if k is a positive integer, then

lim of =d".
n — oo

The proof of LS26 is similar to the proof of L.S25 where for each i,
0<1i<k, a;n = an, and each a; = a.

Left to the reader.
If lim,, — « @, = o0 and lim,, — b, = Foo, then

. @m(anbn,) = —00.

This is two results.
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1. The hypotheses are lim,, — o a, = oo and lim,, - o b, = —o0.
By the hypotheses,

(a) For every M > 0, there is N such that for n > N, a,, > M.
(b) For every M < 0, there is N such that for n > N, b, < M.

Let M < 0 be given. Then there is Ny such that for n > Ny,
an > M? and there is Ny such that for n > Ny, b, < ﬁ Let

N be the maximum of N; and Ns. Then for alln > N, b, < ﬁ
and a, > M?. Hence, —a, < —M? and —apb, > —M and so,
anb, < M.

2. If the hypotheses are lim,, - o a,, = —o0 and lim,, 3 o, b, = 00

is similar.

LS29. If lim,, — o @, = oo and lim,, — o b, = b > 0, then

This is two results.

1. The first hypothesis is lim, —s , a, = co. By the hypotheses,

(a) For every e > 0, there is N such that for n > Ny, |b, —b| <,
and
(b) For every M > 0, there is N such that for n > N, a,, > M.

Let M > 0 be given. Then

(a) There is Ny such that for all n > Ny, |b, — b| < g, and

(b) There is Ns such that for all n > Ns, a,, > %TM

Then for 1> Ny, [bn| = by — b+ < by — 0| + o] <b+§ =3P,
SO ﬁ > % Let N be the maximum of N; and Ny. Then for

ap| _ lan] _ 30M 2 _
bl = Toul ~ 2 36 M

2. The first hypothesis is lim,, -3 o, a, = —o0. By the hypotheses,

(a) For every € > 0, there is N such that for n > N, |b, —b| <,
and
(b) For every M < 0, there is N such that for n > N, a,, < M.

Let M < 0. Then
(a) There is Ny such that for all n > N, |b, — b| < g, and

n>N,
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(b) There is Na such that for all n > Ns, a,, < MQ—b

Then for n > Ny, —g<bn—b<gandso,bn>b—g:g>0.

SO |b_1| < 2. Let N be the maximum of Ny and Ns. Then for
n

b
lan| _ bM 2 _

ap | _ |Y9n]|
bl =] S 2 5 M

LS30. Left to the reader.

n> N,

LS31. Left to the reader.
LS32. Left to the reader.
LS33. Left to the reader.
LS34. Left to the reader.
Solution C.131. [Of Exercise 9.3.]

1. Let ¢ > 0, and let N be the smallest integer such that N > % > 0.

For all n > N we have % < N < n and hence % < e. Now, for each

(*%)" __Olzzl(]J”I 1 (=D" _

o = 5 < e. Hence lim,, o, ~—57— = 0.

n> N,

2. Given € > 0, we want, for large values of n:

2n—1 2<
3n+2 3 =
2n—1 2| _ -7 _ 7
But‘jer 3 _‘3(3714-2)‘_3(371—&—2)' Hence we want
T <.
3(3n+2) '

Let N be the smallest positive integer such that N > 9—76 — % Hence

6 7 7
for all n > N we have n + 9> 9z and hence —3(3n+ %) < e.
2n—1 2| _
Now, R —3‘ =
-7 7

< e. Hence by definition

-1 2

im = —.
n—oo 3N + 2 3
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Given € > 0, we want, for large values of n:

n+6 '
5 <e.
n°—6
But :{"%‘ = ’n E G ’ Hence (for n > 6) we want
1 <
€.
n—=6
Let N be the smallest integer such that N > % + 6 > 6. Hence for all
n > N we have n_lf)’ < e. Now :2"_%‘ = ’nEG‘ < e. Hence by
definition,
. n+6
lim =0.

n— 00 n2 —6

. Given € > 0, we want, for large values of n:

‘\/n2+1—n‘ <e.

But |[VaZ+l-n| = ‘(vn2+1—n>< n?+1+n)

Vn2+1+n
‘+ . Hence we want
n?+1+n
1
— < E.
nZ+1+n
But, for n > 1 we have SR — < QL Hence, we need n > 2_15
nZ+1+n n

Let IV be the smallest integer greater than 1 such that N > %a Then,
for any n > N we have n > %& and hence %n <e.

Now, |\/n2 +1-— n| =

(Vn2+1—n)(v/n?+1+4+n) :‘ 1 _ 1 <
Vn2+1+n Vn2+1+n VnZ+1+4n

21% < €. Hence by definition,

lim [\/n2+1fn] =0.

n—oo
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5. Given € > 0, we want, for large values of n:

‘\/n2+n—n—1/2’ <e.

But [Vn?+n—n—1/2| =
(VnZ4+n—(n+1/2))(vVn2+n+(n+1/2))
Vn24+n+n+1/2
—1/4 _ 1
\/n2+n+n+1/2 4v/n2 +n+4n+2

. Hence we want

g.

1
<
4v/n?2 +n+4n+2

1 1
But, for n > 1 we have < <
4vV/n2 +n+4n+2 dn+4dn +2

m = 81% Hence, we need 81% < egeorn > _ﬂlE Let N be

the smallest integer greater than 1 such that N > 61? Then, for any
n>Nwehaven>-ﬂ1EandhenceS%<E.
Now, |[vVn?+n—n—-1/2| =

(Vn2 +n—(n+1/2)(Vn2 +n+ (n+ 1/2))|

Vn2+n+(n+1/2)

—1/4

Vn?+n+n+1/2
by definition,

1 < 1
4y/n2 +n+4n+2

lim [\/n2+n—n] = %

n—oo

Solution C.132. [Of Exercise 9.4.]

1. We will show that
lim |n/(n?+1)| = 0.
n—o0

Given € > 0, we want, for large values of n (note that n > 0):
In/(n*+1)| <e.

But |n/(n? +1)| < n/n* = % Hence we want

1
— <eE.
n
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Let N be the smallest integer such that N > % > 0. Then, for any

n>Nwehaven>%andhence%<s.
Now, |n/(n*+1)| < n/n* = % < e. Hence by definition,

lim n/(n®+1) =0.

n—00

2. We will show that

lim (7n — 19)/(3n +7) = 7/3.

n—0o0

Given € > 0, we want, for large values of n (note that n > 0):

|(Tn —19)/(83n+7) —7/3| <e.

— — — 21n — 57 —21n — 49 _
But |(Tn—19)/(3n+7)—-7/3] = o _
106 |_ _ 106 _12x9 _ 12
‘3(3714— 7)‘ T 3Bn+7) < =G, = 7 - Hence we want
12
— <e.
n

12

Let N be the smallest integer such that N > 2= > 0. Then, for any

n>Nwehaven>1E—2andhence%<5.
Now, |(7n—19)/@n+7)-7/3 = |H0=pl=2p=20) =

<eE.

~106_|_ 106 _12x9 _ 12
3Bn+7)| 3Bn+7) = 9n n

Hence by definition,

lim (7n — 19)/(3n+7) = 7/3.

n—oo

3. We will show that

lim (4n+3)/(7Tn —5) = 4/7.

n—oo

Given € > 0, we want, for large values of n (note that n > 0):

[(4n+3)/(Tn — 5) —4/7| < e.
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But for n» > 1, we have |4n+3)/(Tn—5)—4/7 =

28n + 21 — 28n 4+ 20| _ 41 a4
7(Tn —5) 7(Tn — 5)

7(Tn — 5) 7("n —5)
=B < T —Bn — n Hence we want

3
—<e.
n

Let N be the smallest integer greater than 1 such that N > % > 0.

Then, for any n > N we have n > g and hence % <e.
Now, |(dn+3)/(Th—5)—4/7] = |28 +7%%n*_2§7)1 +200 -
42 3

__6 6 _3
T(n—5)|  T(tn—5) ~T(n—5) -5 "Tn-sn n<%

Hence by definition,

‘41 ‘ 41

lim (4n +3)/(Tn —5) = 4/7.

n—o0

. We will show that

lim (2n +4)/(5n + 2) = 2/5.

n—oo

Given € > 0, we want, for large values of n (note that n > 0):
|(2n+4)/(5n +2) — 2/5] < e.

But for n» > 1, we have |2n+4)/(bn+2)—2/5] =

10n +20 —10n — 4 16 < 16 < 16 _ 1
5(5n + 2) 5(5n +2) 5(7n) 32n 2n"
Hence we want

! <
— < .
2n

Let N be the smallest integer greater than 1 such that N > %5 > 0.
Then, for any n > N we have n > %& and hence %n <e.

Now, |(2n+4)/(5n+2)—2/5] = ’1%2(25%;120)71_4 =

16 16 16 _ 1
’5(571—1—2)’ SHm) S32n " 2m <F

Hence by definition,
lim (2n +4)/(5n + 2) = 2/5.

n—oo
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5. We will show that

nl;rrgo(l/n) sinn = 0.

Given € > 0, we want, for large values of n (note that n > 0):
[(1/n)sinn| < e.

| sinn|
n

But |(1/n)sinn| = < % Hence let N be the smallest integer

such that N > % Then for any n > N we have n > % and so, % <e.
Now, for any n > N we have |(1/n)sinn| = % < % <e.
Solution C.133. [Of Exercise 9.5.]
LF1. We need to prove
lim x =cand lim x =cand lim x =00 and lim x = —0o0
r—rc— r—ct T—00 T——00

— Let € > 0 be given. Let 6 = €. Then, since f(x) =« for all x, we
have that if 0 < ¢ — z < e, then |f(x) — ¢| = |z — ¢| < . Hence
by definition lim,_,.- x = c.

— Let € > 0 be given. Let 6 = €. Then, since f(x) =« for all x, we
have that if 0 < z — ¢ < e, then |f(x) — ¢| = |z — ¢| < . Hence
by definition lim,_,.+ z = c.

— Let M; > 0 and let My = M;. If > M; then f(x) = x > M.
Hence by definition lim,_, ., x = co.

— Let M7 < 0 and let My = M;. If x < Mj then f(z) = ¢ < M.
Hence by definition lim, , ., x = —o0.

LF2. We need to prove

lim k=kand lim k=%kand lim k=kand lim k=%

T—c— r—ct T—00 T——00

— Let € > 0 be given. Let § be no matter what. Then, since
f(z) =k for all x, we have that if 0 < c—x < ¢, then |f(z) —k| =
|k — k| =0 < e. Hence by definition lim,_,.- k = k.

— Let € > 0 be given. Let § be no matter what. Then, since
f(z) =k for all x, we have that if 0 < x —c < ¢, then |f(z) —k| =
|k — k| =0 < e. Hence by definition lim,_,.+ k = k.

— Let € > 0 be given. Let M > 0 be anything. If x > M then
|f(x) — k| = |k — k| =0 < e. Hence by definition lim,_, ., k = k.
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— Let € > 0 be given. Let M < 0 be anything. If z < M then
|f(z) — k| = |k —k| =0 < . Hence by definition lim,_, o k = k.

LF3. We need to prove the following:

1. If lim, 400 f(z) =1 and lim,—, 1o g(z) = m then
lim, 4 oo[f(2) + g(x)] =14+ m.

2. If lim,_, .- f(z) =1 and lim,_,.— g(x) = m then
lim - (f(2) + g(&)] = L+ .

3. If limy,_, .+ f(z) =1 and lim,_,.+ g(x) = m then
lin, e [/(2) + g(2)] = 1+ m.

The proof is as follows:

1. Let € > 0 be given. Then there are M; > 0 and My > 0 (resp.
M; < 0 and Ms < 0) such that
(a) if x > My (resp. © < My) then |f(x) — | < %, and
(b) if x > My (resp. x < My) then |g(x) — m| < %
Let M be the larger of M; and My (resp. the smaller of M; and
Ms). Then for x > M (resp. x < M) we have

(f(x) +g(x)) — (14 m)|
(f(@) = 1) + (g(z) —m)|
5f( )a—l|+|g(x) m|
7t3

E.

AN

Hence by definition lim, 1o [f(2) + g(z)] =1+ m.

2. Let € > 0 be given. Then there are é; and o such that
(a) it 0 < c—ax < 01, then |f(z) — 1| < %, and
(b) if 0 < ¢ —x < d, then |g(z) —m| < %

Let § be the smaller of §; and d3. Then for 0 < ¢ — z < J, we
have

AN

Hence by definition lim,_, .- [f(z) + g(x)] =1+ m.
3. Let € > 0 be given. Then there are 6; and J such that



C.9. SOLUTIONS FOR CHAPTER 9 97
(a) if 0 <z —c <0y, then |f(z) — 1| < %, and
(b) if 0 < & — ¢ < b2, then |g(z) —m| < %

Let 6 be the smaller of §; and d5. Then for 0 < z — ¢ < §, we
have

|[(f(2) + g(x)) = (I +m)]

?:Q

(@) = 1) + (9(x) —m)|
x) = I+ |g(z) —m|

L€
T3

I AIA
KRNI

Hence by definition lim,_,.+[f(z) + g(z)] =1+ m.
LF4. We need to prove the following:

1. If limgyyoo f(z) =1 and hmggﬁﬂEOO g(x) =m then
lim, 400 [f(2)g(7)] =

=l and lim,_,.- g(x) = m then
=Im.

—~
8

3. If limy,_,.+ f(z) =1 and lim,_,.+ g(x) = m then
x

limg, o+ [(
The proof is as follows:

1. Let € > 0 be given. Then by hypothesis there are M; > 0 and
My > 0 (resp. M1 < 0 and My < 0) such that

(a) if © > M; (resp. x < M), then |f(z) — 1 <
€

- , and
2 -
<2<|z Iy 'm'>

(b) if x > My (resp. < Ms), then |g(x) — m| <

g
2T+ 1)

(Here, |I] + 1 is used instead of |I| since ! might be 0.) Since
()l < 5y then ()| = lo()—m-+m| < lo(z)—m|+

Im| < ) + |m|. Let M be the minimum (resp. maximum)

£
2(Ji] +1
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of My and Ms. Then for > M (resp. z < M):

|f(x)g(x) — lml
f(z)g(x) = lg(x) + lg(x) — Im|
|(f(z) = Dg(z) +1(g(z) —m)|

)
)~ tlota) + Hlo(o) ~
) ( (EE 'm') ML (EY)

IA I

AN

|l|+1)

2( |l|+
(1l + gy

+
2

A
RN DN CTONN N

Hence by definition lim, 4+ [f(2)g(z)] = Im.

2. Let € > 0 be given. Then by hypothesis there are §; and J, such
that

(a) if 0 < c—x < &y, then |f(z) —1| < 5€
o —=
<2(|l|+1)

: B _ e
(b) if 0 < ¢ — & < d2, then |g(z) —m| < 20 +1)°

(Here, |I| + 1 is used instead of |!| since [ might be 0.) Note that

the second of these implies that |g(z)| < m + |m| (this is
similar to what we did on Page 97). Let ¢ be the minimum of d;
and 0. Then for 0 < c—x < 4,

, and
n |m|)

(2)a(e) —

= |F(0)g(x) - lg(x) + lg(x) — Im]

= |(f(x) - D(x) + Ug(x) —m)

< i) - l||g< )+ 1illg(z) — ml

< ( IUESY *'m'> sy
(e +1m)

<

(|l|+1)

2
S+U+1)
5+

€

Hence by definition lim,_, .- [f(z)g(x)] = Im.

3. Let € > 0 be given. Then by hypothesis there are 4; and > such
that
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B £ , and
2 -
(2(|l| Iyl 'm')

. _ _ ___£&
(b) fo<z—c< (52, then |g(.’L‘) ml < 2(|l| ¥ 1) .

(Here, |I| + 1 is used instead of |I| since [ might be 0.) Note that

. . g . .
the second of these implies that |g(z)] < EED) + |m| (this is

similar to what we did on Page 97). Let § be the minimum of d;
and d2. Then for 0 < x — ¢ < §:

(a) if 0 < x—c < 4y, then |f(z) —1] <

7(@o(a) ~im

= @) ~ lgfa) +lg(x) — Im|

= [(7@) ~Do(x) + Ug(a) - m)

< 170~ lto) + Hlota) - i

< (st +m1) + Wy
(v ')

< §+(+1)3 (|l|+1)

_ £y ¢
? 2

Hence by definition lim,_, .+ [f(z)g(x)] = lm.

LF5. We need to prove the following:

1. If limy s 4 oo f(z) = 1 # 0 then lim, 100 v = l

flz)
2. If limy,_,.- f(z) =1# 0 then lim,_, .- ﬁ = %
3. If lim, .+ f(z) =1 # 0 then lim, .+ f(lx) - %

The proof is as follows:

1. Let € > 0 be given. Let ¢/ > 0 be the minimum of |/|/2 and
(1%¢)/2. By hypothesis, there is M > 0 (resp. M < 0) such that
if x > M (resp. x < M) then

l2

|f(x )—l|<7

and
||

F) -1l < 5
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We also have f(x) > |l|/2, since otherwise we would have

== £+ F@) < - f@)] + o)< D oy

a contradiction. It follows that

1 2
< =

[f(@) ~

Hence if z > M (resp. < M) then

‘ [f(x) =]

1

f(z)

~|—
I

IA
[N}
S

|

57 1]
2 1%
22

= E&.

VANRWAN

Hence by definition, lim,_, 1. ﬁx) = %

2. Let ¢ > 0 be given. Let ¢ > 0 be the minimum of |I|/2 and
(1%¢)/2. By hypothesis, there is § > 0 such that if 0 < ¢ —x < 4§,

then
%c
|f(x) =1 < >

and
||
f@) 1< 5

We also have f(x) > |l|/2, since otherwise we would have

I
=10 = £(@) + 1) < i @)+ 1] < B Wy,
a contradiction. It follows that
1 _2
[f(@)] — [
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Hence if 0 < ¢ — x < §, then

1

f(z)

o~

VANVANR VAN
X )
=&
|

|
o

—_

Hence by definition, lim,,_, .- T = %

3. Let ¢ > 0 be given. Let ¢ > 0 be the minimum of |{|/2 and
(1%¢)/2. By hypothesis, there is § > 0 such that if 0 < z — ¢ < 6,

then )
l“e
F@)~1 < 5

and 0
@)~ < 5

We also have f(x) > |l|/2, since otherwise we would have

Lt

== fl2) +f@) <[l = fF@)+[f@)] < T+ 5 =,

a contradiction. It follows that
1 < 2
|f(@)] = 1]

Hence if 0 < x — ¢ < §, then

_ =)=l
][ ()]
[f () =1
[ f ()]
2 [f(x) =]
el

57 =1

2 1%
272

1

f()

~|—

A A IAN
?")N

Hence by definition, lim,_, .+ 7@ =
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LF6. We need to prove the following:

1. If lim, 400 f(z) =1 and if | > 0 whenever n is even, then
limg 400 W = %

2. If lim,_,.- f(z) = and if [ > 0 whenever n is even, then
lim, .. v/ 7() = VI

3. If lim,_,.+ f(z) =1 and if [ > 0 whenever n is even, then

lim, e+ { f(SL‘) = {I/Z

The proof is as follows:

1. There are three cases.

Case 1.

Case2.

I =0. Let € > 0 be given. Then there is M > 0 (resp.
M < 0) such that if > M (resp. + < M), we have
If( )| < em Hence if # > M (resp. # < M), we have
|/ f(z)] = \/ r)] < ¥/e" = e. Hence by definition,
limg 5400 § \/ \/_

[>0. Lete > O be given. Then there is M > 0 (resp. M < 0)
such that if > M (resp. x < M), we have

|f () =1 < e[ Vir1]

U

-1 < —=.
) 1<
From the second of these, it follows that f(x) and [ have the
same sign. For any n € N, let P, stand for {/ f(x)?. It follows

that for these values of x,

|/ f@) - V1
(P — W)(Pn—l + P9 Vi+ P,_3 V2. o+ Vin-1)
(Pn-1 + Py V4 Py s V24 + Vin=1)

— Lf (@) =1
‘Pn71+Pn,2{l/Z+Pn,3{l/l_2+...+ {Vln—1|
< evimy
|\"/ln71|
= €.

Hence by definition, lim,_,+o {/f(z) = V1.
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Case 3.

l < 0. Then n is odd. Let € > 0 be given. Then there is
M >0 (resp. M < 0) such that if v > M (resp. z < M), we

have

|f () =1 <e[ Vi1
!
fa) -1 <
From the second of these, it follows that f(x) and [ have the
same sign, both negative and |f(z)| = —f(z) and |I] = —1. Tt
follows that if 0 < |z — ¢| < 4,

[/ f(2) = V1 = I
= |

3

— [l
vadl
(@) = /1|

and we can prove this less than € by Case 2 above. Hence by

definition, lim, 1. ¥/ f(z) = Y.

3
:i
&

s:

3
=

2. There are three cases.

Case 1.

Case2.

Il =0. Let € > 0 be given. Then there is § > 0 such that if
0 < c—z < ¢, wehave |f(z)] <™. Hence, if 0 < c—z < 4, we
have | {/f(z)| = ¥/|f(z)| < ¥/e™ = . Hence by definition,
lim, e /f(x) = V1.
Il > 0. Let € > 0 be given. Then there is § > 0 such that if
0 < c—x <9, we have

|f () =1 <e[ Vi
U

@)~ < 5

From the second of these, it follows that f(x) and [ have the
same sign. For any n € N, let P, stand for {/f(z)?. It follows
that for these values of z,

|/ F@) = 1
(Pli W)(Pn—1+Pn_2W+Pn_3{L/l_2+...+ W)
(Pn-1 + Py o V4P s V24 + Vin-1)

|Pr_1+ Pn,QQ/Z—F Pn,g{l/l_?_|_ e {yln71|
< evimy
| \"/ln71|

= E&.



104

Case 3.

APPENDIX C. SOLUTIONS TO EXERCISES

Hence by definition, lim,_,.- {/f(z) = /1.

l < 0. Then n is odd. Let € > 0 be given. Then there is
0 > 0 such that if 0 < ¢ — x < J, we have

(@) = 1] < e[ Vin]

From the second of these, it follows that f(x) and [ have the
same sign, both negative and |f(z)| = —f(z) and |I| = —1. Tt
follows that if 0 < |z — ¢| < 4,

Vi(z) -

and we can prove this less than € by Case 2 above. Hence by

definition, lim,_,.- {/f(z) = V1.

3. There are three cases.

Case 1.

Case2.

Il =0. Let € > 0 be given. Then there is § > 0 such that if
0 < z—c <6, wehave |f(x)| < e™. Hence, if0 < z—c < §, we
have | {/f(z)| = {/|f(z)] < ¥/e™ = e. Hence by definition,
lim,_,.+ ¥/ f(x) =1

Il > 0. Let € > 0 be given. Then there is § > 0 such that if
0 < x—c<J, we have

(@) = 1] < e[ Vin]

fw <

From the second of these, it follows that f(x) and [ have the
same sign. For any n € N, let P, stand for {/ f(x)?. It follows
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that for these values of z,

Vi) -
(P — W)(Pn—l +Pn—2W+Pn_3(L/l_2+...+ Vi1
(Pn—1+Pn_2{L/Z+Pn_3{L/Z_2+..._|_ {‘/ln—l)

- |f(z) — 1]

|Pr—1 +Pn,2W+Pn,3{l/l_2+...+ C/ln71|
< evimy

|"L/ln71|
= e.

Hence by definition, lim,_,.+ {/f(z) = V1.
Case 3. [ < 0. Then n is odd. Let € > 0 be given. Then there is
0 > 0 such that if 0 < x — ¢ < §, we have

() = 1| < el Vin|

U
-l < =.
fa) <t
From the second of these, it follows that f(x) and [ have the
same sign, both negative and |f(z)| = —f(z) and |I] = —1. Tt
follows that if 0 < |z — ¢| < 6,

|/ f(z) = V1

I
3
=
—~
8
=+
3

and we can prove this less than € by Case 2 above. Hence by

definition, lim,_,.+ {/f(z) == V1.
LF7. We need to prove:

1. If g(z) < f(x) < h(x) for all x in an interval whose right end-point
is ¢, and if
lim g(z) = lim h(z) =1,
T—rCc— Tr—rC™

then
limg .- f(x) = 1.
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2. If g(x) < f(x) < h(z) for all z in an interval whose left end-point
is ¢, and if
lim g(z) = lim h(x) =1,

z—ct z—ct
then
l7:rna:~>c+ f(fl?) =1

The proof is as follows:

1. Let € > 0 be given. By hypothesis, we have

(a) there is §; > 0 such that if 0 < c—x < d, then |g(z) —1| <&,
and

(b) there is d2 > 0 such that if 0 < c—x < dg, then |h(x) —1] <e.
Let 0 be the smaller of §; and d5. Then if 0 < ¢ — z < §, we have
lg(x) — 1] < e and |h(z) — ] < e. It follows that
l—e<g(x) < flz) <h(x)<l+e,
from which it follows that |f(xz) — ] < . Hence by definition,
lim, .- f(z) =1
2. Let € > 0 be given. By hypothesis, we have

(a) there is 87 > 0 such that if 0 < z —¢ < d7, then |g(x) —| < ¢,
and

(b) there is 2 > 0 such that if 0 < x —¢ < da, then |h(z) —1] < e.

Let 0 be the smaller of §; and d5. Then if 0 < x — ¢ < §, we have
lg(x) — 1] < e and |h(z) — ] < e. It follows that

l—e<g(x) < flz) <h(e) <l+e,

from which it follows that |f(xz) — ] < . Hence by definition,
11m:r~>c+ f(i[,') =1

LF8 We need to prove the following:

1. If f(z) < g(z) for all  greater than some value, then

lim f(x) < lim g(z),

T—0o0
provided that both limits exist.
2. If f(z) < g(x) for all x less than some negative value, then

. < 1
;EEIPOO f(SL’) - ;cllgzloog@j)’

provided that both limits exist.
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3.

If f(z) < g(z) for all z in an interval whose right end-point is ¢,
then

lim f(z) < lim g(x),

r—c— Tr—Cc™
provided that both limits exist.
If f(x) < g(z) for all z in an interval whose left end-point is ¢,
then

lim f(z) < lim g(x),

z—ct z—ct

provided that both limits exist.

The proof is as follows:

1.

Suppose that

Illg)lo f(x) =1 and zlggo g(z) =m,

and suppose [ > m. Let ¢ = (I — m)/2 > 0. By hypothesis,
(a) there is M; > 0 such that if x > M, then |f(z) —1] < &, and
(b) there is My > 0 such that if x > My, then |g(x) — m| < e.

Let M be the larger of My and Ms. Then for x > M, we have
both |f(x) — | < € and |g(x) — m| < e. Then

l—m 21—l+m I+m

lme=l-—H— =7 2

and
l—m_2m—|—l—m_l+m
2 2 2

so {—e = m+e. Now the conditions | f(x)—I| < € and |g(z)—m]| <
¢ imply that g(z) < m+e =1 —¢ < f(z), contradicting the
hypothesis that f(z) < g(x). Hence lim, o f(2) < limg—y 00 g(2).

m-4+e=m-+

Suppose that

Jim  f(z) =land lim g(x) =m,

and suppose [ > m. Let € = (I — m)/2 > 0. By hypothesis,

(a) there is M; < 0 such that if x < My, then |f(z) —1] < &, and
(b) there is My < 0 such that if x < My, then |g(z) — m| < e.
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Let M be the smaller of M; and M5. Then for x < M, we have
both |f(x) —I| < € and |g(x) —m| < e. Then

l—m_21—l—|—m_l+m

l—e=1—-

2 2 2
and
n Jrlfm 2m+1l—m l+m
m =m = =
N 2 2 2
sol —e¢ = m +e. Now the conditions |f(z) — 1] < ¢ and

lg(x) —m| < e imply that g(x) < m+e =1—¢e < f(z), contra-
dicting the hypothesis that f(z) < g(x). Hence lim,,_ f(z) <
lim, oo g(x).

. Suppose that

lim f(z)=1and lim g(z)=m,
r—c— xr—c—
and suppose [ > m. Let ¢ = (I — m)/2 > 0. By hypothesis,
(a) there is §; > 0 such that if 0 < c—x < d1, then |f(x)—1| <e,
and
(b) thereis do > 0 such that if 0 < c—x < J, then |g(z) —m| < e.

Let 6 be the smaller of §; and d5. Then for 0 < ¢ — z < §, we
have both |f(x) — | < € and |g(x) —m| < e. Then

2 2 2

l—m 20-1l+m [I+m
l—e=1- =

and
lfm72m+lfmil+m

2 2 2
so l—& = m+¢e. Now the conditions | f(z)—I| < € and |g(z)—m| <
¢ imply that g(z) <m+¢e =1—¢ < f(x), contradicting the hy-
pothesis that f(z) < g(x). Hence lim,_,.- f(z) <lim,_,.- g(z).

m+te=m+

. Suppose that

lim f(x)=1and lim g(z)=m,
z—ct z—ct
and suppose [ > m. Let ¢ = (I —m)/2 > 0. By hypothesis,
(a) there is §; > 0 such that if 0 <  — ¢ < 41, then |f(z) 1| < ¢,
and
(b) there is d3 > 0 such that if 0 < x—c < 2, then |g(z)—m]| < e.
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Let 6 be the smaller of §; and d3. Then for 0 < z — ¢ < §, we
have both |f(x) — | < € and |g(x) —m| < e. Then

l—m_2l—l—|—m_l+m

lme=l-— 2 2

and
l—m_2m+l—m_l+m

2 2 2
so l—e = m+e. Now the conditions | f(x)—I| < € and |g(z)—m]| <
¢ imply that g(x) <m+¢e=1—¢ < f(z), contradicting the hy-
pothesis that f(z) < g(x). Hence lim,_,.+ f(z) < limg,_, .+ g(x).

m+e=m+

LF9. We will prove that if [ is a value and lim,_,. f(x) = lim,_,.+ f(z) =1
then lim, . f(x) = 1.
Suppose that lim, ,.- f(z) = lim,_,.+ f(z) = . Let ¢ > 0. By hy-
pothesis, there are 61 > 0 and J > 0 such that if 0 < ¢ — x < 4y,
then |f(z) =] < e and if 0 <  — ¢ < 2, then |f(x) — ] < e. Let
d = min{dy, 52} and let = such that 0 < |z — ¢| < 4.

— If x> cthen 0 <z — ¢ < < d2, and hence |f(z) — ] <e.
— If x <cthen 0 < c—x < d < d1, and hence |f(z) — 1] <e.

Hence |f(z) — ] < € and by definition lim,_,. f(z) = I.
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LF10. We need to prove the following:

1. If ¢ is a value and if lim,_,. f(x) = —oco, then lim,_,. (:c)
2. If ¢is a value and if lim,_, .~ f(z) = —oo, then lim,_, .- f(m) =
3. If ¢ is a value and if lim,_,.- f(z) = oo, then lim,_, .- f(x) =0.
4. If ¢ is a value and if lim,_, .+ f(z) = —oo, then lim,_, .+ f(lx) =0.
5. If ¢ is a value and if lim,_, .+ f(z) = oo, then lim,_, .+ f(lx) =0.
6. If lim, o f(x) = —oo then lim,_ o % =0.
7. If lim, o f(x) = 0o then limg_ f(l ) =0.
8. If limy oo f(x) = —o0 then limg o ﬁx) =0.
9. If limg oo f(2) = 0o then lim, % =0.
The proof is as follows:
1. We prove that if ¢ is a value and if lim,_,. f(z) = —oo, then

I
limg, . f( )= 0.

Assume lim,_,. f(z) = —oco. Let £ > 0. By hypothesis, there is
d > 0 such that for 0 < |z — ¢| < 9,

1
< —-.
fle) <~
It follows that for these values of z, f(z) <0, so |f(z)| = —f(z),
and
) - 0’ ! <e
@) T
Hence lim,_,.
wof ( )~
2. We prove that if ¢ is a value and if lim,_,.- f(z) = —oo, then

. 1

lim, .- T = 0.

Assume lim,_,.- f(z) = —oo. Let € > 0. By hypothesis, there is
6 > 0 such that for 0 < ¢ — x < 9,

flz) < —-.

3
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It follows that for these values of z, f(z) <0, so |f(x)| = —f(z),
and

‘%@_o’:_—q.

Hence lim,,_, .- . —

f(x)
3. We prove that if ¢ is a value and if lim,_,.- f(z) = oo, then
. 1
hmw_)c— m =0.

Assume lim,_,.- f(x) = oco. Let € > 0. By hypothesis, there is
0 > 0 such that for 0 < c¢—x < 4,

1
> —.
fla) > -
It follows that for these values of z, f(x) > 0, so |f(x)| = f(x),
and
\ -7t
—_— = €.
fl@)
Hence lim,,_, .- f(:v)
4. We prove that if ¢ is a value and if lim,_,.+ f(z) = —oo, then

lim, .+ ﬁx) =0.
Assume lim,_, .+ f(x) = —oc0. Let £ > 0. By hypothesis, there is
0 > 0 such that for 0 < x — ¢ < 4,

1
< —-.
flo) <~
It follows that for these values of z, f(x) < 0, so |f(z)| = —f(=),
and
‘ - 0' ! <e
@) T
Hence lim,_, .+ f(x) =0.
5. We prove that if ¢ is a value and if lim,_,.+ f(z) = oo, then

. 1

lim,_, .+ o)~ 0.

Assume lim,_,.+ f(z) = oco. Let ¢ > 0. By hypothesis, there is
0 > 0 such that for 0 <z — ¢ < §,

flz) > -.

3
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It follows that for these values of z, f(x) > 0, so |f(x)| = f(x),
and

' L 0’ S <e
f@) f(x)
Hence lim,_, .+ ﬁ =0.
. We prove that if lim, o f(z) = —oo then lim, %) = 0.

Assume lim,_, o, f(x) = —o0. Let € > 0. By hypothesis, there is
M > 0 such that for x > M,

fl@) < -1

€

It follows that for these values of z, f(z) <0, so |f(x)| = —f(z),

and
1 1

7=

Hence lim,_, ﬁ =0.

<e.

. We prove that if lim,_,~ f(2) = oo then lim, ﬁ =0.

Assume lim, o f(2z) = co. Let ¢ > 0. By hypothesis, there is
M > 0 such that for x > M,

f(z) >

It follows that for these values of z, f(z) > 0, so |f(z)| = f(z),

and
‘L _ 0’ _ .
f(x) flx) —
Hence lim,_, B S
(x)

. We prove that if lim,, o f(x) = —oo then lim, , ﬁ =0.

Assume limg, o f(2) = —00. Let € > 0. By hypothesis, there is
M < 0 such that for x < M,

Tt follows that for these values of z, f(x) <0, so |f(z)| = —f(x),

and
1 1

7=

< €.
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Hence lim,_,_ ﬁ =0.

9. We prove that if lim,_,_o f(2) = 0o then limy_, o %) = 0.

Assume lim,_, _, f(z) = co. Let € > 0. By hypothesis, there is
M < 0 such that for x < M,

1
fla) > -
It follows that for these values of z, f(z) > 0, so |f(z)] = f(x),
" IR
f(z) fl@)y ~

Hence lim,_, % =0.

LF11. 1. We will prove that if ¢ is a value, if

lim f(z) =0,

Tr—c

and if for all z in an open interval containing ¢, f(z) < 0 then

lim —— = —

25 Ta)

Let M < 0 be given. By hypothesis, there is § > 0 such that if
0<|z—cl <0, f(x) <0and

1

£@) =0 = —f(@) < 7.

Then for these same values of x,

1
— < M.
f(x)
Hence lim,_,. % = —00.
2. We will prove that if
2, f =0

and if f(x) > 0 for all z greater than a certain value, then

@)
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Let M > 0 be given. By hypothesis, there is § > 0 such that if
x>0, f(x) >0 and

£@) =0 = f(2) < 7.

Then for these same values of x,

1

— > M.
f(=)
: 1
Hence lim,_,oo — = co.
7 f(@)
3. We will prove that if
55, 1) =0,

and if f(z) <0 for all z greater than a certain value, then
li !
im — =—
5% 7@

Let M < 0 be given. By hypothesis, there is § > 0 such that if
x>0, f(z) <0 and

7@) =0 = —f(@) <~

Then for these same values of x,

1
— < M.
f(x)
: 1
Hence lim;_ o, 5+ = —o0.
7 f=)
4. We will prove that if
220 F2) =0

and if f(x) > 0 for all = less than a certain value, then

A0 T)

Let M > 0 be given. By hypothesis, there is § < 0 such that if
x <0, f(x) >0 and

F@) =0l = () < 5.
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Then for these same values of x,
1

— > M.
f(x)
Hence lim,_,_ ﬁ = 0.
5. We will prove that if
0 F(2) =0,

and if f(x) <0 for all = less than a certain value, then

1
lim —— =
o F0)
Let M < 0 be given. By hypothesis, there is § < 0 such that if
x <0, f(x) <0 and
1
—0l=— _—
1) 0] = —f(2) < —

Then for these same values of x,

Hence lim,_,_ ﬁ = —o0.

6. We will prove that if ¢ is a value, if
lim f(z) =0,
r—c—

and if for all  in an interval whose right end-point is ¢, f(z) > 0,
then

lim L =
T—c™ f(ZE)
Let M > 0 be given. By hypothesis, there is § > 0 such that if
O0<c—z<d, f() >0and

1
-0l = —.
|f(z) =01 = f(z) < 4;

Then for these same values of x,

Hence lim,,_, .- T
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7. If c is a value, if
lim f(x) =0,

r—c—
and if for all z in an interval whose right end-point is ¢, f(z) <0,
then
lim —— = —
oo f(z)
Let M < 0 be given. By hypothesis, there is § > 0 such that if
0<c—z<d, f(r) <0and

1
—0|=- -
7))~ 0] = —f(x) <~
Then for these same values of x,
1
— < M.
f(z)
Hence lim,,_, .- ﬁ = —00.
8. If c is a value, if
lim f(x)=0,
z—ct

and if for all z in an interval whose right end-point is ¢, f(z) > 0,
then

1m
r—ct ({L‘)
Let M > 0 be given. By hypothesis, there is § > 0 such that if
0<z—c<d, f(r) >0and

7(@) ~ 0 = f() < 7.

Then for these same values of x,

1
—>M
f(x)
Hence lim,_, .+ ﬁ = 00.
9. If ¢ is a value, if
lim f(x)=0,
z—ct

and if for all z in an interval whose right end-point is ¢, f(z) <0,
then



C.9. SOLUTIONS FOR CHAPTER 9 117

Let M < 0 be given. By hypothesis, there is § > 0 such that if
O<z—c<d, f(r) <0and

F@) =0 = —f(x) <~

Then for these same values of x,

Hence lim,,_, .+ % = —00.

Solution C.134. [Of Exercise 9.6.]

1. Prove directly from the definition that

lim 22 = 4.

T—2
Let € > 0 and let § = min{1,¢/5}. f0 < |z —2| <dthen2—-d <z <
2 + ¢ and hence since § < 1 we can easily show that |z + 2| < 5. Now,
let  be such that 0 < |z — 2| < 6. Now |2? — 4| = |z —2||]z + 2| <
(e/5) x 5 = e. Hence, lim,_,o 2% = 4.

2. Prove directly from the definition that for every value c,

lim |z| = |¢|.
Tr—c
Note that || = |z — ¢+ ¢| < |x — ¢| + |¢] hence |z| — |¢] < |z — ¢|.

Note also that |¢| < |e¢ — z| + |#| and hence |¢| — |z — ¢| < |z|. Hence
el — el < |z — c|

Let ¢ > 0. Let 0 = €. Let x be such that 0 < |z —¢| < §. Then
[lz] = ||| < |x — ¢|] < § = . Hence by definition lim,_,. |z| = |¢|.

3. Prove directly from the definition that

lim (5 — 11) = —1.

z—2

Let € > 0. Let § = ¢/5. Let x be such that 0 < |z — 2| < § = ¢/5.
Then |5z — 11 + 1| = 5|z — 2| < 55 = 5(¢/5) = €. Hence by definition
lim,_o(5z — 11) = —1.

4. Prove directly from the definition that

lim (2% +2 — 1) = 1.

r—1



118

APPENDIX C. SOLUTIONS TO EXERCISES

Let e > 0 and let 6 = min{l,e/4}. f0< |z —1] <dthenl—-d <z <
14 6 and hence since 6 < 1 we can easily show that |z + 2| < 4. Now,
let « be such that 0 < |z —1| < 6. Then |22 +z —2| = |z —1||z +2| <
(e/4) x 4 = e. Hence, lim, (2% + 2 —2) = —1.

Prove directly from the definition that

lim (z — 32?) = —2.

rz—1
Let e > 0 and let 6 = min{l,e/8}. f0< |z —1] <dthenl—-d <z <
1+ 0 and hence since 6 < 1 we can easily show that |3z +2| < 8. Now,
let z be such that 0 < |z —1| < 6. Then |z —32%+2| = |1 —z||3z+2| <
(e/8) x 8 = e. Hence, lim,_,1(z — 32%) = —2.

Prove directly from the definition that

lim (vx) = 2.

r—4

Let € > 0 and let § = min{1,3¢}. f 0 < |z —4] <dthend -0 <z <
4+ and hence since § < 1 we can easily show that \/z+2 > 3. Now, let

x be such that 0 < | — 4] < 4. Then |/z —2| = |\7§_+42| <3e/3=c¢.
Hence, lim,_,4(y/z) = 2.

Prove directly from the definition that

lim z% = -8.
r——2

We will show the more general result that

3

lim 2% = o2 for all reals a.

r—a
Let € > 0. We want § > 0 such that if 0 < |[z—a| < 6 then |23 —a?| < e.
Let § = min{1, £ }. Since 0 < |z —a| <dthena—d <z <
3a” +3a+1

a+ 6 and we can show that 22 + za +a? < (a+1)? +a(a+1)+a® =
3a?+3a+1. Now, for such z, we have: |23 —a?| = |z—a||z?+xa+d?| <

§(3a*+3a+1) < (m)(3a2+3a+1) = ¢. Hence by definition

limg_,q 2% = a®.

8. Prove directly from the definition that

4 4

lim = -
z=13x+2 5
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Let € > 0 and let 5:min{1,%5}. IfFOo<|z—1 <dthenl—-46 <
x < 14 0 and hence since § < 1 we can easily show that x > 0
and 5#2 < % Now, let 2 be such that 0 < |z — 1| < ¢. Then

4 4] (120 —x)| _ 12l -z _ 121 _ 6
sirn 4] - [R5 - B < R -al - Sl <
g%g = ¢. Hence, lim,_, ﬁz = %

Solution C.135. [Exercise 9.7.]

1. Prove that the limit of a function is unique; i.e., that a function has
at most one limit as z — c.
Assume a function f(x) has two limits /; and I3 as x — ¢. By definition,
this implies for any ¢ > 0, there are §; and 2 such that for any x: if
0 < |z —¢| <8 then |f(x) — 1] < /2 and if 0 < |x — ¢| < g then
|f(z) — l2] < e/2. Let 6 = min{d1,01}. Then for any 0 < |z —¢| < ¢
we have |f(x) — l1| < /2 and |f(z) — l2| < £/2. Hence for these z’s
l—l| = [l = f(2)+f () —lo] < Jli—f (@) ]+ 1/ (2) 1ol < 2/24¢/2 .
Hence no matter what ¢ we take, |l — l3] < &. This means Iy = lo.

2. Suppose that f is a function defined on an open interval containing c
except possibly at c itself.

1. Suppose that lim,_,. f(z) exists. Prove that lim,_,.|f(x)| exists
and lim, . |f(2)] = |limg . f(z)].
Assume lim,_,. f(x) = I. We will show that lim,_,.|f(z)| = |I|.
Let € > 0. By definition there is § > 0 such that for all z, if
0 < |z —c¢| <6 then |f(x) —1] <e. But, |[f(x)] =] < |f(x)—1]
Hence there is ¢ > 0 such that for all z, if 0 < |z — ¢| < ¢ then
[|f(x)] = |I]] <e. Thus, lim,_,. |f(z)] = ||

2. Suppose that lim,_,. |f(z)| exists. Give an example to show that
lim,_,. f(z) may not exist.

Let f(z) = {

Then, it is easy to prove that for any ¢, lim,_.|f(z)] = 1 but
lim, . f(z) does not exist.

3. Suppose that lim,_,. |f(x)| = 0. Prove that lim,_,. f(z) = 0.
Let ¢ > 0. Since limy_,.|f(z)| = 0, there is a ¢ such that if
0 < |z —e¢| < 9§ then ||f(z)|| <e. But ||f(z)|| = |f(z)|. Hence
there is a ¢ such that if 0 < |z —¢| < 6 then |f(z)| < e. By
definition, lim,_,. f(z) = 0.

1 if x is rational

—1 if z is irrational.
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3. Find

) 1
lim —
z—2+t ° — 2
and prove using the definition that this limit is correct.

We will show that lim,_,o+ ﬁ = 00. Let M > 0 and let 6 =

min{1, 3M} If0<x—2< dthen 0 <z < 3and z(z —2) <
36<3m— ]\1/! Hence for any x such that 0 < x — 2 < § we have

1 TSN B 1 _
o Sy x(x ) > M. Hence by definition lim,_,o+ T = 00

4. Find

. sin x
lim
xr—r00 X

and prove using the definition that this limit is correct.
We will show that lim,_ .. Sl%x =0. Let ¢ > 0 and let M = =
|SRL| < 1. ﬁ = ¢. Hence by definition

For any © > M we have

sin x __
T =0.

limg 00

Solution C.136. [Exercise 9.8.] This solution is also taken from [25]. As-
sume a < ¢ < cg < -+- < ¢p <b. Let zp = a and z, = b and for each
0 < i < p, let z; be such that ¢; < x; < ¢;41. Hence

To=a<c <21 << xa<Tpo1 < Cp < b=1p.

Let 1 <4 < p. Since f is monotonically increasing, lim,_, + f(x) < f(z;)
and f(z;—1) < lim,_, - f(x). Hence, f(x;) — f(zs—1) > lim,_, + f(z) —
m, - f(z). Let O’( ): m, .+ f(z)—lim,_, - f(x). Therefore:

For all 1 <i<p, f(z;) — f(zi—1) > o(c).
Now,
fb) = fla) = f(xp) = flwo) = X7y (f () — f(i1)) = T 0(co)-

Since we are only interested in discontinuity points, assume that for each
1 <i < p, f is discontinuous at ¢; and hence o(¢;) > 0. Hence, for some

n > 0, we have o(¢;) > % for each 1 <7 < p. Therefore,

F0) = f(a) = yo(er) > 7.

and

p <n(f(b) = f(a)).
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So for each n > 0, we have a finite number p of points ¢ in (a,b) such that

o(e) > % and hence we have at most p+2 points ¢ in [a, b] such that o(c) > %

(in case o(a) > % and/or o(b) > %)
For each point ¢ in A (the set of points at which f is discontinuous),

o(e) > % for some n > 0. We can write the elements of A as a sequence as
follows:

e First, list in sequence the finite set A; of points ¢ of A such that
o(c) > 1.

e Then list in sequence the finite set Az of points ¢ of A\ A; such that

o(c) > %

e Then list in sequence the finite set A3 of points ¢ of A\ (A; U A3) such
that o(c) > %;

e Repeat this process for each n > 0.

This demonstrates that A is countable
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C.10 Solutions for Chapter 10
Solution C.137. [Of Exercise 10.1.]

C2. Here is the figure for this case:

B

AWC

The proof for this case is exactly the same as the proof given at the
start of Example 10.1.1. We repeat it here:

Since DG is the perpendicular bisector of AC, AD = DC. Also, angles
/ADG and ZGDC' are both right angles. Then by Proposition 4 of
Book I on triangles ADG and GDC, AG = CG.

Since BG is the angle bisector of ZABC, ZABG = ZGBC. Also,
/BEG = /ZBFG, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF.

Since ZGFA = ZGFC are both right angles, by the Pythagorean
triples, AE? = CF? = AG? — EG? = CG? — FG?. Hence it follows
that AE = CF.

Now AB = AE + BFE and BC = BF + CF, it follows that AB = BC,
and the triangle ABC is isosceles.

C3. Here is the figure for this case:
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B

A &
D C

Since D is the middle point of AC, and D and G coincide, we have
AG = CG.

Since BG is the angle bisector of ZABC, ZABG = ZGBC. Also,
/BEG = /BFG@, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF.

Since Z/GEA = ZGFC are both right angles, by the Pythagorean
triples, AE? = CF? = AG? — EG? = CG? — FG?. Hence it follows
that AE = CF.

Now AB = AE+ BF and BC = BF + CF, it follows that AB = BC,
and the triangle ABC' is isosceles.

C4. Here is the figure for this case:

B
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Since DG is the perpendicular bisector of AC, AD = DC. Also, angles
/ADG and ZGDC' are both right angles. Then by Proposition 4 of
Book I on triangles ADG and GDC, AG = CQG.

Since BG is the angle bisector of ZABC, ZABG = ZGBC. Also,
/BEG = /BFG@, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF.

Since /GEA = ZGFC are both right angles, by the Pythagorean
triples, AE? = CF? = AG? — EG? = CG? — FG?. Hence it follows
that AE = CF.

Now AB = BE — AFE and BC = BF — CF, it follows that AB = BC,
and the triangle ABC is isosceles.

Solution C.138. [Of exercise 10.2] If in the model of Example 10.1.2, we
consider only the xy-plane, then, for each line (i.e., the set of pairs (p, q) of
rational numbers satisfying ap + bg = ¢ for rational numbers a, b, and c),
we define its slope to be —a/b if b # 0, otherwise, the line is p = ¢/a and is

parallel to the y axis (as in the red line in the figure below).

3

Let us consider two lines which are the set of points ap + bg = ¢ respectively
a/p + b/q — c/

e If b = b = 0 then each of the lines is parallel to the y axis and hence

the two lines are parallel.

If b= 0 and b’ # 0, then a # 0 (otherwise the set of points ap + bg = ¢

is not a line). Let A = (g,z—: — Z—:g). Note that the coefficients of
A are rational. Furthermore, A is in both set of points ap + bg = ¢
respectively a’p+b'q = ¢/. That is: a§+0 = cand a’§+b’c—;fb’2—,lg =
a/ S+ —a'S =c. Hence, Ais the intersection point of both lines.

If b # 0 and V' # 0 then the slopes are respectively a/b and a'/b'.

Assume a/b # o' /b/. Hence % - Z—,/ # 0. Let A = (x,y) where z =
/
c ¢

Y
ﬁ and y = l_c) — x%. Note that the coefficients of A are rational.

b
c

Note also that sincex:—,—giy then :(_;_xg:c’_xa’
a a Y=5 by b

bV

3Note that we cannot have both a and b be 0, since otherwise, we would be not be
talking of a line.
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Furthermore, A is in both set of points ap + bqg = ¢ respectively a’p +
b'q = ¢ as can be seen from the following:

— ax—i—by:ax—i—b%—xb%:am+c—am:c.

/ li
—dr+by=dz+VS -ty =do+c —dzx=<c.

4 v
Y
A~ q=2p-1 q=p+1
q=2.2
>
p=-1.5

Solution C.139. [Of Exercise 10.3] By F9, the Archimedean ordered field
includes 1, and by F1 it includes 1 + 1, 1+ 1 4 1, etc. Hence, it includes all
positive integers. By F4 it contains 0 and by F5 it contains additive inverses.
Hence, it contains all the integers. By F10 it contains multiplicative inverses
and by F6 it contains the rationals.

Solution C.140. [Of Exercise 10.4] Assume an ordered field A. Let a and
b be elements of A such that a > 0.
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e Assume A satisfies AP and b > a. By AP, There is a positive integer
n such that b < an. Hence, A satisfies AL.

e Assume A satisfies AL. We consider all the possible cases:

— If b < 0orb=0 then let n = 1 and clearly there is a positive
integer n such that b < an.

— If b > a, then by AL, there is a positive integer n such that b < an.

— If a > b > 0 then just take n = 1 and clearly there is a positive
integer n such that b < an.

Solution C.141. [Of Exercise 10.5] Let a = supS. By hypothesis, a € S.
By Definition 10.3.1, Vz € S, x < a. Hence a is a maximum of S.

Solution C.142. [Of Exercise 10.6] If S has a least upper bound which is
an element of S then by Exercise 10.5 above, this least upper bound is a
maximum of S.

Assume S has a maximum a. Then, a is an upper bound of S and by the
Axiom of Completeness AC, S has a least upper bound b. Now, since a € S
then a < b. Since a is an upper bound of S then b < a. Hence a = b and S
has a least upper bound a which is an element of S.

Solution C.143. [Of Exercise 10.7] Let S = {a1,--- ,a,} where n > 1. By
OF1 and OF2, we can order the finite set S to be by < by < --- < b,,. Hence
b, is a maximum element of S. If S has a least upper bound ¢ then by
Exercise 10.6 above, S has a least upper bound which belongs to S.

By Exercise 10.5 above, the least upper bound of S is a maximum element
of S.

Solution C.144. [Of Exercise 10.8] By the Archimedean property (Theo-
rem 10.4.4), since 1 > 0, there is m > 0 such that m > a.

Solution C.145. [Of Exercise 10.9]
Let S be a nonempty bounded set of real numbers.

1. Since S # 0, let a € S. Let [ and m be the greatest lower versus least
upper bounds of S. By definition, [ < a < m.

2. If I = m then S is a singleton set. This is because, for any a € S,
Il <a <m, but Il =m, hence all elements of .S are equal.

Solution C.146. [Of Exercise 10.10] Let g € R such that g > 0 and g < %

for some % € A. By the Archimedes Law AL, there is a positive integer n
such that c_lz < ng. Hence, for % € A we have % < g. Therefore is no

g € R such that ¢ > 0 and g < x for every z € A. Hence 0 is a greatest
lower bound (i.e., infimum) of A.
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Solution C.147. [Of Exercise 10.11] Let S and T be nonempty bounded
sets of real numbers.

1. By definition, Va € T, infT' < a. But S C T'. Hence Va € S, infT < a.
Hence inf T' < inf S.
By definition, Va € T, a < supT. But S C T. Hence Va € S,
a <sup T. Hence sup S <sup 7.
By Exercise 10.9.1, inf S < sup S. Hence inf T < inf § < sup S <
sup T'.

2. I.Ifa € S then a € SUT. Hence a < sup(SUT) and supS < sup(SUT).
Similarly, supT < sup(S UT). Hence max{supsS,supT} < sup(SUT).
II. If a € SUT then

— Either a € S and hence a < supS < max{supS, sup7'}.
— Or a € T and hence a < supT < max{supsS, supT'}.

Hence sup(S UT) < max{supS,supT}.
Hence by I and II, sup(S U T) = max{supsS, supT'}.

Solution C.148. [Of Exercise 10.12] Assume the contrary. ILe., assume
there is € > 0 such that for all z € S, x < 8 —e. Hence, supS =< 3 —«.
So, € < 0. Contradiction. Hence, for every € > 0, there exists an element x
of S such that x > 8 —e.

Solution C.149. [Of Exercise 10.13] Let € > 0. Then « — ¢ and = + ¢ are
two real numbers such that z — e < x + ¢. By the density theorem 10.4.5,
there is a rational ¢ such that + —¢ < ¢ < x +¢. Hence x < ¢+ ¢ and
g—e<z le,g—ec<x<qg+eor — < x—q < e. Inother words,
|z —g| <e.

Solution C.150. [Of Exercise 10.14] First we will show that if 7 and s are
rationals such that s # 0 then r+s1/2 is irrational. Let 7 = m/n and s = p/q
where n,p,q # 0. If 7 + sy/2 is a rational e/f, i.e., m/n + (p/q)V2 = e/f is
e
ng— —mg

rational, then %gp\/ﬁ = % Hence v2 = n#p which is rational.

Absurd. Hence r + sv/2 is irrational.

Now, since b > a then b —a > 0. Since b — a and /2 are two positive
reals, by the Archimedean property, there is a positive integer m such that
m(b—a) > V2. Hence ma + /2 < mb.

Let n be the greatest integer such that ma > n. Hence ma < n+1 < n++/2.
Also, ma + V2 > n+ 2. Hence ma < n+ v2 < ma + v2 < mb and S0,
a < % + %\/5 < b. Since a < % + %\/ﬁ < b and % + %\/5 is irrational,
we are done.
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Solution C.151. [Of Exercise 10.15] Since S and T are nonempty, let t, € T
and s, € S.

1. By hypothesis, for any s € S, s < ty. Hence S is bounded above by
to. By hypothesis, for any ¢ € T, so < t. Hence T is bounded below
by S0-

2. Since S is bounded above, by the Axiom of Completeness, sup S exists.
Since T is bounded below, by Theorem 10.4.2, inf T exists. Since by
hypothesis, any ¢ in T" is an upper bound of S, and since sup S is the
least upper bound, then sup S < t for any t € T. Hence sup S is
a lower bound of T. But inf T is the greatest lower bound. Hence
sup S <inf T.

3. Let S =(2,3] and T = [3,4). Then, forall s€ S, forallt €T, s <t
and hence SNT = {3}.

4. Let S =(2,3) and T = (3,4). Then, for all s € S, forallt € T, s < ¢,
sup S=infT =3 and SNT = 0.

Solution C.152. [Of Exercise 10.16] Since a and 1 are positive real num-
bers, then by the Archimedean property Theorem 10.4.4, there are p and m
(strictly) positive integers such that ap > 1 and m > a. Let n = max{p, m}.
Hence an > ap > 1 and n > a. That is, 1/n < a < n.

Solution C.153. [Of Exercise 10.17]

1. Since A and B are non empty and bounded above then by the Axiom

of Completeness supA and supB exist. Let a+b € S. Since a < supA
and b < supB then a + b < supA + supB. Hence supA + supB is
an upper bound of S. Since S is nonempty then by the Axiom of
Completeness supS exists. Therefore, supS < supA + supB.
Now we show that for any upper bound « of S, we have a > supA +
supB. Assume on the contrary that o < supA + supB. Then, a —
supA < supB and since supB is the least upper bound of B, there
must exist a b € B such that a — supA < b. Hence, a — b < supA.
Again, there must exist an a € A such that « — b < a. Hence, there
is a4+ b € S such that a < a + b contradicting the fact that « is an
upper bound of S. Hence o > supA + supB for any upper bound « of
S. Hence supS = supA + supB.

2. Since A and B are non empty and bounded below then by Theo-
rem 10.4.2 inf A and inf B exist. Let a +b € S. Since inf A < a and
inf B < b then inf A+ inf B < a+b. Hence inf A + inf B is a lower
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bound of S. Since S is nonempty then by Theorem 10.4.2, inf S exists.
Therefore, inf A +inf B <inf S.
Now we show that for any lower bound « of S, we have a <
inf A 4 inf B. Assume on the contrary that a > inf A + inf B. Then,
a — inf A > inf B and since inf B is the greatest lower bound of B,
there must exist a b € B such that a—inf A > b. Hence, a—b > inf A.
Again, there must exist an a € A such that « — b > a. Hence, there
is a+b € 5 such that a > a + b contradicting the fact that « is a
lower bound of S. Hence a < inf A 4 inf B for any lower bound « of
S. Hence inf S = inf A + inf B.
Solution C.154. [Of Exercise 10.18] Let § = {b + %
n is a positive integer}. Note that a and b are both lower bounds of
S and S is not empty. Hence by Theorem 10.4.2, inf S exists. We will show
that b = inf S. That is, we will show that if « is a lower bound of S then
a < b. Assume otherwise that o > b. Then, « —b > 0. By the Archimedean
property, since a« — b and 1 are real numbers, there is a positive integer n
such that n(a —b) > 1. Le.,, a > b+ % Contradicting the fact that a is a
lower bound of S. Hence, if « is a lower bound of S then o < b. This means
that b = inf S. Therefore a < b.

Solution C.155. [Of Exercise 10.19] First note that a is an upper bound of
S, and that S, is not empty. Hence, by the Archimedean property, sup S,
exists and sup S, < a. If sup S, < a then by the Density of rationals
Theorem 10.4.5, there is a rational r such that sup S, < r < a. Since r < a
then r € S,. But sup S, < r contradicts the fact that sup S, is an upper
bound of S,. Hence, sup S, = a.
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C.11 Solutions for Chapter 11

Solution C.156. [Of Exercise 11.1] | In the diagram below, we see that we
doubled the area of the square ABCD into the square EFGH. We did this
by drawing the two diagonals AC and BD and making a copy of each of
the internal triangles (AOD, DOC, AOB and BOC) by taking their mirror
image on the corresponding side of the square ABCD.

Another way of doubling the area of the square is by taking the square
AODE, drawing the diagonal AD and then making 3 copies (DOC, COB
and BOA) of the triangle AOD. The resulting square ABCD is double the
square AODE.

D
E F
A C
0
H
B G

Solution C.157. [Of Exercise 11.2] ]

1. The area of S is a2. The area of T whose side is x is 2. By our

a_ x 2 _ 9.2
formula, 2 =95 and so, z° = 2a“.

2. The formula is:
a:x=ux:3a.

In this case, 22 = 3a?.

3. The formula is:

2 2

In this case, z° = %a .

Solution C.158. [Of Exercise 11.3] Using proportions as we did in Exer-
cise 11.2, we need to find the side x of T so that a® = 2z3. We use a
temporary variable y such that a : * =z : y = y : 2a. Then,

3 1
(ﬂ) _ 2TV and 28 = 245,
T ry2a 2
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For the second case, for a temporary variable y we use the formula

a:r=x:Yy=1yY:-a.

4
Then,
a3 axy 4 3 3 3
(E) —;§§—a—§andx —Za
4

Solution C.159. [Of Exercise 11.4]

1. f(z) =6z —11.
Let ¢ > 0 and let § = ¢/6. For any ¢ € R, ¢ is in the domain of f.
Let ¢ € R. If |z — ¢| < § then |f(x) — f(¢)| = |6z — 6¢| = 6]z — ¢| <
6(£/6) = e. Hence by definition f is continuous at ¢ for any c¢. Hence
f is continuous everywhere.

2. g(x) = |zl
Let e > 0 and let § = . For any ¢ € R, ¢ is in the domain of g. Let
ceR.If |z —¢| < then |g(z) —g(c)| = ||z] —|¢|| < |z —¢| < e. Hence
by definition f is continuous at ¢ for any ¢. Hence g is continuous
everywhere.

3. h(z) =22
Let € > 0 and let § = min{1,e/(2|c| + 1)}. For any ¢ € R, ¢ is in the
domain of h. Let ¢ € R. If |x — ¢| < § then |h(x) — h(c)| = |2? — 2| =
|z — c|jx + ¢| < (2] + 1)(e/(2]¢|] + 1)) = €. Hence by definition h is
continuous at ¢ for any ¢. Hence f is continuous everywhere.

Solution C.160. [Of Exercise 11.5] Let ¢ > 0 and let 6 = ¢/|al. For
any ¢ € R, ¢ is in the domain of f. Let ¢ € R. If |z — ¢ < § then
|f(z) = f(c)] = |ax — ac| = |a]|x — ¢| < |a|(¢/|a]) = €. Hence by definition f
is continuous at ¢ for any c¢. Hence f is continuous everywhere.

Solution C.161. [Of Exercise 11.6] Let ¢ > 0. For any ¢ € R such that
¢ > 0, cis in the domain of f. Let ¢ € R where ¢ > 0. Note that |\/z—+/c| <
|V + /c| and that |\/z — /c|? < |v/Z — /||vZ + /<] = |x — ¢|. Hence if
§ =¢e? and | — ¢| < €2 then |\/z — /c|? < €2 and |\/z — \/c| < e. Hence
by definition f is continuous at ¢ for all non negative values of ¢. Hence f is
continuous everywhere.

Solution C.162. [Of Exercise 11.7] Let m = f(c¢)/2 > 0. Since f is con-
tinuous at ¢, there is § > 0 such that if |z — ¢| < § then |f(z) — f(c)] < m.
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ILe,if c—0 <z < c+3d then m < f(z) < 3m (hence f(z) > m). Let
[u,v] = (¢ = d,c+0) N[a,b]. Obviously ¢ € [u,v] C [a,b]. Now, if z € [u,v]
then ¢ —§ < x < ¢+ 0 hence |z — ¢| < ¢ and f(z) > m.

Solution C.163. [Of Exercise 11.8] We need to show that
1. f is continuous at c iff
2. limg . f(z) = f(c) iff
3. for each {x,} in I, such that lim, . 2, = ¢, we have lim, o f(2,) =
f(e).
We show 1 <= 2 as follows: Recall that

e f is continuous at c iff f is defined at ¢ and for all € > 0 there is § > 0
such that if |z — ¢| < ¢ then |f(z) — f(c)| <e.

e f has limit f(c) at ¢ (i.e., lim,—,. f(z) = f(c)) iff for all € > 0 there is
d > 0 such that if 0 < |z — ¢| < 0 then |f(z) — f(c)| <e.

1 = 2. Obviously if f is continuous at ¢ then lim,_,. f(x) = f(c).

2 => 1. On the other hand, if lim,_,. f(z) = f(c) and € > 0 then there is § > 0

such that if 0 < |z — ¢| < § then |f(x) — f(c)| < e. Hence

— If0 < |z —¢| <4 then |f(z) — f(c)] <e.
— If |x — ¢/ = 0 then x = ¢ and hence |f(z) — f(c)| =0 <e.

Therefore, if |z — ¢| < 0 then |f(z) — f(c)| < € and f is continuous.

Now we will show 1 < 3.

3 = 1. Assume for each {z,} in I, such that lim, . 2, = ¢, we have

lim, 00 f(2n) = f(c). We need to show f is continuous at c¢. As-
sume there is € > 0 such that for every 6 > 0, if |x — ¢| < § then
|f(z) — f(c)] > e. Forall n > 0, let 6,, = 1/n and let x,, in I be such
that |z, —¢| < 1/n. Hence |f(z,) — f(c)| > €. Now, {z,} isin I such
that lim, oo ©,, = ¢ and lim,,—, f(x,) # f(c). Contradiction. Hence
f is continuous at c.

1 = 3. Let a sequence {z,} in I, such that lim,_, . 2, = ¢. We need to show

that lim, o f(z,) = f(c). Le., we need to show that for all ¢ > 0,
there is M > 0 such that if z,, > M then |f(z,) — f(c)| < e.

Let € > 0. Since f is continuous, there 6 > 0 such that if |z —¢| < ¢
then |f(z)— f(c)| < e. Since lim,_,o Z,, = ¢, for this d, there is M >0
such that if x,, > M then |z, — ¢| < § and hence |f(x,) — f(c)] < e.
Hence there is M > 0 such that if z, > M then |f(z,) — f(c)| < e.
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Solution C.164. [Of Exercise 11.9]

f+g: Let £ > 0. There are §; and d2 such that if |x — ¢| < §; then |f(z)
fle)] < €/2 and if |x — ¢| < &2 then g(x) — g(c)| < €/2. Let ¢

VAN

min{dy,d2}. Now, if | — ¢ < § then |f(z) + g(z) — f(c) — g(c)|
|f(x) — f(c)] + |g(x) — g(c)| < e. Hence f + g is continuous at c.
f—g: Let € > 0. There are §; and d3 such that if |z — ¢| < 61 then |f(x) —
fle)] < /2 and if |z — ¢| < 3 then g(x) — g(c)| < /2. Let § =
min{dy,d2}. Now, if |x — ¢| < § then |f(x) — g(z) — f(c) + g(c)] <

If(z) — f(c)] + |g(z) — g(c)| < e. Hence f — g is continuous at c.

kf: Let € > 0. There is ¢ such that if |ac —c| < § then |f(z) — f(c)| < e/k.
Now, if [x —¢[ < & then |kf(z) — kf(c)] = [kl|f(z) — f(0)| <e.
fg: Note that |f(z)g(z) = f(c)g(c)| = [f(x)g(x) = f(c)g(x) + fc)g(x) —

Fglo)] < lg(@)|lf () = f()l + [f()llg(x) — g(c)]. Let e > 0. We

¢
deal with the case f(c) # 0 and leave the case f(c) = 0 as an exercise.
There are d1, do and d3 such that

— if |z — ¢| < 81 then |f(z) — f(c)] < W and

— if |f(c)| # 0 and |z — ¢| < 02 then |g(z) — g(c)| < 37 ( 1 and

— if |x — ¢| < d3 then |g(z) — g(c)| < 1 and hence |g(z)| < |g(c)|+
Let 6 = min{d1, d2,d3}. Now, if |z —c| < 0 then |f(x)g(z)— f(c)g(c)| =
[f(2)g(z) — f(e)g(x) + f(e)g(x) — [(c)g(e)] < lg(@)||f (= )— fOf +

[f()llg(x) —g(c)| < (\9(6)\+1)W+|f( o)l ‘fs( j) = € Hence

fg is continuous at c.

%: Let g(c) # 0. We prove that % is continuous at ¢ and use the above
item to deduce that g is continuous at c¢. Let ¢ > 0. There are 01, 0
such that

= If |z—cf < 1 then |g(z)—g(c)| < |g(c)|/2 (hence [g(x)] > [9(c)|/2)
and
— If |z — | < 0 then [g(x) — g(c)| < (elg(c)*)/2-
Let 6 — min{dy,6:} then |—L. — —L | — (gd—g@),
g(x) (C)

M < ((elg(@)®)/2)2/1g(e)?) = e.

lg(z)g(c)|
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Solution C.165. [Of Exercise 11.10] Let I be an interval, let ¢ be an element
of I, let g be a function whose domain includes I, and let f be defined on
an interval J that includes the image ¢g(I) = {g(z) : * € I}. Assume g is
continuous at ¢ and f is continuous at g(c). Let € > 0. Since f is continuous
at ¢ then there is a d; > 0 such that if |z — ¢| < &1 then |f(x) — f(c)] < e.
But for 41, there is ¢ such that if |z — ¢| < § then |g(x) — g(c)| < §1. Hence,
there is ¢ such that if | — ¢| < 0 then |f(g(x)) — f(g9(c))| < e and fogis
continuous at c.

Hence, if g is continuous on I and f is continuous on J, then fog is continuous
on [.

Solution C.166. [Of Exercise 11.11]

1. Let p(z) = anz™ + an_12" 1 + ...+ a1z + ap where for all 0 < i < n,
a; is a constant (and of course for all 1 < ¢ < n, i is a positive integer).
Let ¢ be a quantity.

e We first show that f(xz) = x is continuous at ¢. Note that f is
defined for ¢ and if € > 0 then let § = ¢. Now, |x — ¢| < § implies
|f(x) = flo)] <e.

e Then, we show by induction on n > 0 that for any n > 0,
gn(x) = 2™ is continuous at c. If n = 0 then it is easy to show
go(x) = 1 is continuous. Assume the property holds for n > 0
then gn11(x) = gn(x)f(z) is continuous by IH and the above item
and Theorem 11.2.4. Hence g, is continuous for any n.

e By Theorem 11.2.4, p(x) is continuous.
Hence the polynomial p(x) is continuous at every quantity.

2. A rational function is continuous at every quantity for which it is de-
fined.

A rational function f(z) is of the form % where p(x) and ¢(z) are

polynomials. f(x) is defined on all quantities ¢ such that g(c) # 0. Let

¢ be such that f(c) is defined. Then, by the above item, the polyno-

p(x)

mials p(x) and ¢(x) are continuous at ¢ and by Theorem 11.2.4, @)

is continuous at c.

Solution C.167. [Of Exercise 11.12] ]

4 2
. —2r°—(1-2 . 4 _ 9.2
1. f'(1) = ) hmx;l L ﬁ_ 1( ) = hmw_;l Z mQ; +1

lim, ; (z — 1)(x +1)? = 0.
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2. f'(x) = limg s @—:1—\/1 = lim,_,; &11
. Vr—1 T 1 1
et (s ) et T 2
. Vaz+1-1/v/12+1
3. f'(x) = lim, 1 AV +x — 1/ *
V2 — Va2 +1
2 /
hmw—)l Q(I ha 1) hma:~>1 33\/5 — z? t1
v (z = 1)v/2(22 +1)
lim, V2 — a2+ 1 « V2 4+ V22 + 1

(x—l)\/2(ﬂc2—|—1) V24?2 + 1

2 — 22— 1

“%“@_HJGHT@J+¢7—)
: z?—1

hmzal (x—l)\/m(x\/_—i—\/xz—)
- =)+ 1)

e VAR ) (v VL)

(x+1)

_ 1
V2T D) (av2+ Va2 1) 22

Solution C.168. [Of Exercise 11.13] ]

hmw—) 1

1. By Corollary 11.3.13, f/(x) = 42 — 4x.

9. f - I \/x‘i‘h_\/} - 5 r+h—=x
f (Z‘) 1Nap—0 1 1mp—0 h<m+\/§)

- 1
1 =
1mh—>0 (\/.’L‘ + h + \/E)

1
2z’

135

3. Let g1(z) = 22 + 1 and go(x) = /z. Note that h(z) = g2(g1(2)).

By the item above, g5(z) = WE By Corollary 11.3.13, g} (z) = 2z
Hence by the chain rule (Theorem 11.3.15): f'(z) = g4(g91(2)).¢1(x )
2z = L .
222 + 1 Va2 +1
4. Let h(x) = V22 +1. By the above item, h/(r) = ——%—. Since

vVarz+1

f(z) = z/h(z) then by Corollary 11.3.13 and the quotient rule (The-

orem 11.3.14), f'(z) = h(z) —zh'(z) _ vV 1_332/\/ z?+1

2+ 1 22 +1



136

i Ry

APPENDIX C. SOLUTIONS TO EXERCISES

@+ O)VR+1

1
(22 4+ 1)V +1

Solution C.169. [Of Exercise 11.14] Use the definition of the derivative to

find f'(x).
1.
f(@)
= limj_0 (@ + él —5(z +h)* — 2® + 52°
- h
— (z + h)® — 52> — 5h*> — 10zh — 2° + 52°
= a0 7
— 1 ($+h) h —].0(Eh—1'3
- 1mh—> h
= limy_o 23+ xh® 4+ 22°h + ha® + hz + 22h* — 5h% — 10zh — 3
— limy,_ 32h2 +32%h + 23 — 5h% — 10zh
= limp_0(3zh + 32% + h? — 5h — 10x)
= 322 —10z.
2. ,
Flz) = limpoo M
1 1
T2 3
Jimy, o W
lim v’ — (z + h)2
h=0 m
lithO h — 2zh
ha’(z + h)’
limy,_o =22 — 2z _ _ 2
V2 (x4 h)? 27 x>
3. f(z) = V.
fla) =ty L) 1)
= limp0 th- \/E
i, W Yrth—Vr Vetht o
i \/33 +h+Vz
= lim
ho h(@ +V7)
= i _ '
=0 T h+ vz 2T
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Solution C.170. [Of Exercise 11.15]

o Let £ >0. Let § =e. If |z — 0] = |2| < ¢ then ||z] — 0] = |z| < € and
hence |z| is continuous at 0.

° limwﬁm%%| = lim‘,,[HOJrg = limg_,0+1 = 1 whereas
lim,_,q- |:1l o] _ = lim,_,o- =lim,_,o- —1 = —1.

Hence by [LF9] of Theorem 9.3.9, lim,_,q uﬁilorl does not exist and
|z| is not differentiable at 0.

Solution C.171. [Of Exercise 11.16] Let ¢ € [0,1]. We will show that

limg . |xx\:|cc| is defined. Since x,c¢ € [0,1], then |z| = z and |¢| =
Hence lim,_,. % = lim,_,. g :g = 1. Hence |z| is differentiable on

the interval [0, 1].

Solution C.172. [Of Exercise 11.17] limw_>1+%fﬂ

lim, ,+ 21 __(2 —1) = lim, 41+ me__ 2 = lim, ,;+2=2.
2 —
lim,_,,- [z ; {( ) _ lim, Ix:ll — lim, - (x xl)_(z—&— 1)

lim, ,y;-x+1=2.
Hence lim,_, %ﬂ = 2 and f is differentiable at 1.

Since it is differentiable at 1 then it is also continuous at 1.

Solution C.173. [Of Exercise 11.18] Let n = % Note that h — 0 iff
n — 0o0. Now

1
— fle+ =)= f(c)
f'(e) = limp 0 w = limy, o0 Ql_c —

limy_s o0 (n (f(c+ Ly_ f(c))) .

Solution C.174. [Of Exercise 11.19] Corollary 11.3.12 gives the result for
r a positive integer: f/(x) = ra™ 1.

e First, we do the proof for r a negative integer. Let n = —r. Then,
=" = g%” By the quotient rule Theorem 11.3.14, f'(z) =
! n _ n—1 _
(an) _ Oz x2TTLL:,E _ xnfl — g1 — =1

e Next we do the proof for r = % where n is a positive integer. For this,

we leave it as an exercise to the reader to show the following:
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Boeh _ 11
1. lim, . 22 =€ = Lep—t,
|1
]
2. lim, . LL=C¢" — Lep—1,
11
1
Hence by [LF9] of Theorem 9.3.9, lim,_, Z==¢" = Len-1,

I~

e Finally, if f(z) = 2 where m,n are integers then let go(x) = x
and g1(xz) = ™. Note that f = g3 0 g1 and by the above, gh(x) =
1
Lom=1 and gi(z) = ma™"1. By the chain rule Theorem 11.3.15,
1 - m— m —Mm MM —
@) = ghlor(@)gi(x) = (@) n mam ! = P emmamt =

m m
m mn -1 _mMm W*l
_nflf X = _nfr .

3

Solution C.175. [Of Exercise 11.20]

e Case r = 2. limgg_,o%%m = limmﬁow
22 cos(1/x)

lim, 0 lim, o (2 cos(1/x)) =
lim,_,¢ 2 lim,_,q cos(1/z) = 0 (since cos(1/x) is bounded).

e Case r = 1. limg,_o %@ = lim,_q %MM =
lim,_,q %(1/36) = lim, 0 cos(1/x).

Now we show that lim,_, cos(1/z) does not exist. Intuitively, this is
the case because in any interval around 0, no matter how small, we
can find 2’s such that cos(1l/x) = 1 and z’s such that cos(1/x) = —1.
Hence cos(1/x) has no limit at = 0.

Solution C.176. [Of Exercise 11.21]

1. If f is neither strictly increasing nor strictly decreasing on I then let
a,b,c € I such that a < b < c and f(a) < f(c) < f(b). By the
hypothesis (IVT), there is a d such that a < d < b and f(d) = f(c).
Since d < b < ¢, f cannot be one-to-one, absurd. Hence f is either
strictly increasing or strictly decreasing on I.

2. Let f(x) and f(y) be elements in J such that f(z) < f(y). Clearly
x#yand z,y € I. Let f(z) < M < f(y). By IVT, there is z € T
such that f(z) = M. Hence, f(z) € J and J is an interval.

We need to show fj;) is continuous on all points of J (whether interior
points or end points). we only do the proof for interior points as the
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proof for end points is similar.

Let a be an interior point of .J. By the above, fi,(a) is an interior
point of I. Let ¢ > 0. We need to find § > 0 such that |y —a|] < ¢
implies |fiy(¥) — fipy(a)| < €. Since fiy(a) is interior in I, we can
find I C I such that for all x € I', |z — fj(a)] < e. By the above,
f(I') is interval and there is 6 > 0 such that |y — a| < ¢ implies

y € f(I'). Hence, |y — a| < ¢ implies | fipy (¥) — finy(@)| <e.

3. Since f is continuous on I, by 2, fi,y is continuous on J. Let c € I
such that f’(c) # 0.
Since fi;)y is continuous and for any y € J there is € I such that
f(z) =y, we have f(z) — f(c) implies z — ¢. Now,

li finv(y) — flnv(f(c)) —
Hly=1(0) y— flc)
1
i y— f(o)
y—f(c) finv(y> - fmv(f(c))
1 =
P (O (0
v=¢ finy(f(2)) = finy (f(c))
B S
T T

T—C T —cC

f(e)

Hence, f (f(c)) = f’L(c)

Solution C.177. [Of Exercise 11.22] By Theorem 11.3.5, f is continuous
on I. Let 2 be an element of J for which f'(fi,y(z)) # 0. Since f is
differentiable at f;,,(x) and f'(fi,(x)) # 0, then by Exercisel1.21.3., fi;y

is differentiable at  and f _(f(finy(2))) = Tt .1 @)y Hence, f (z) =
) inv

f,(finv(w)) )

Solution C.178. [Of Exercise 11.23]

1. First recall LF17 that we proved in Exercise 8.4 where we showed that
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limg o SI% = 1. Recall also the trigonometric formula:
A+ B A-B
sin A — sin B = 2 cos —|2_ sin 3
5 2c+h . h
. o cos sin —
Now, limy,_,o 2 (@ + Z) ST Aimy, g - 2 _
. h _h
S — sin —
limy, ¢ cos 2xé" h —h2- = limy,_,¢ cos 21:;' h limy, o —h2- = cosx.
2 2
2. Again recall LF17 that we proved in Exercise 8.4 where we showed
that lim, o 5% = 1. Recall also the trigonometric formula:
A+ B A-B
cos A — cos B = —2sin —; sin 5
94 +h . h
_ —2sin sin —
I\IOVV7 limh%(] €os (l‘ + Z) cosx = limh*,() 7 2 =
. h
sin — sin —
— limy,_,q sin W TQ = —limp_,sin 2l+rh limy, o 7 2 -
2 2

—sinx.

3. First recall that tanz = Sgéi and that cos?z + sin?z = 1. By the
cosxsin’x —sinwcos’z _

quotient rule Theorem 11.3.14, tan’z =

) ) cos®
cos“x+sin“x _ 1 _ 2
5 = —%— =sec” .
cos“ x cos“z
: __1 _ cosz 2 02
4. First recall that cotz = Tanz = sina and that cos® x+sin“z = 1. By

sinxcos’x — coswsin’z _

the quotient rule Theorem 11.3.14, cot’ x =

) ) sin? x
—Sin"Z —cos"F _ _ _ 12 — _csc? .
sin” x sin” x
5. secx = colsx' Hence, by the quotient rule Theorem 11.3.14, sec’ x =
sin x 1 sinzx
= =secrtanz.
cos2y  COST COST

6. cscx = sirllx' Hence, by the quotient rule Theorem 11.3.14, csc’ z =
—CcosT _ 1 cosz

—~3 —— : = —cscxcotx.
sin“ SINx Sinx
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x and that cos?z + sin?z = 1. Hence

) = 1 — 22 We can easily show

Recall that arcsinz = sin;

Sinv
cos?(sing, ©) = 1 — sin®(siny,

that this implies cos(sinj, ) = \/1 — sin®(sinj,, @) = V1 — 22 (the
positive rather than negative sign).

Now, we can easily establish the preconditions of Theorem 11.3.19 and

s _ 1 — 1 =
hence, arcsin’c = sinj, () sin’ (sin;, (7)) cos(siny (7))
1

inv inv
V1—gz2

Recall that arctanz = tan;j,, . Recall also that cos?z +sinz = 1

cos* + sinx _ 1
cos’x ' cos’z  cos’w

1 + tan?(tan;,, =) = sec?(tan;,, ). Le., sec?(tan;;,

2

and 1 + tan®z = sec? z. Hence

x) =1+ 22
1

nv(®) = tan’(tan;,, (x))

and hence

By Theorem 11.3.19, arctan’xz = tang

1 _ 1
sec” (tan, (z))  1+a%

Recall that arcsecx = seci,y, . Recall also that cos?x +sinz = 1

v
2 .2
and hence €95 L 4 SUL.T 12 and 1+ tan®x = sec
cos“x  cos“x  cos

tan® z = sec’ z — 1. And so, tan®(sec, (z)) = sec®(seci, (z)) — 1 =

z? — 1. Le., tan(sec;,, (z)) = £V — 1.

_ 1 _
(x) = sec’(secipy ()
1

sec(seciyy () tan(seciyy () - x tan(seciyy (7))

/ —
Note that sec  (z) =

2 2. Hence

/ — /
By Theorem 11.3.19, arcsec’xz = sec o

SeC(SeCinv(x)) tan(SECinV(x)) is always posi-
tive since sec(secjyy (7)) and tan(sec;(x)) are either both positive

or both negative. Hence to guarantee this, we replace x by |z

- . — 2 _
in Ttan(sec (@) and we replace tan(seciy ()) +va?2 —1 by
tan(secipy (z)) = va? — 1. That is, we have arcsec’z = sect (z) =

1 _ 1
x tan(secipy (7)) lz|Va2 -1
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C.12 Solutions for Chapter 12

Solution C.179. [Of Exercise 12.1]

1. Let € > 0. Then there is a positive N such that 2]\,171 < e. Just take

N any natural number such that N > log, %
Now, let n,,m > N and without loss of generality, assume m > n.

Hence m = n 4 k where k > 0. Note that 2n—1_1 < 2]\,;_1 <e.
|a’m - an| = |an+k - an| <
|an+k - an+k—1| + Ian+k—l - an+k—2| +--- |an+1 - an| <
9—(ntk=1) 4 9—(n+k=2) 4 ... L 9—n _
9—(n=1)—k 4 9—(n—1—(k=1)) 4 ... L 9—(n—1)—1 _
2*(”*1)(2*’C po—(=1) 4 .. 4 271 =
(e 1
2=l - ) <
200 = L <

Hence {a,} is a Cauchy sequence and hence by Lemma 12.1.8, it is a
sequence that converges to a limit.

2. No. Take the sequence {a, } where a,, = > _, % For this sequence,

we have that |a,4+1 —an| = ﬁ < % for all positive integers n. But
this sequence is not convergent as we will see below and hence it is
not a Cauchy sequence. The proof that it is not convergent is due to

Jacob Bernouilli and goes as follows: Let a,, = asn =1+ % + (% +

zle)-l-(%-l-%-l—%+%)+"~(2n—_11+—1+~-+§1n).Notethat{apn}isa

subsequence of {a,, } and a,, > 1—1—%4—(%4-2%)4_. . (2Ln+ . _|_2Ln) =
lyol gl gty 0 ym

It g 42+ 2 g =14 s+ o+ =144

Now, {a,, } can be shown to diverge as follows: Let M > 0 and let N
be a positive integer such that N > 2(M —1). Hence QN— +1> M. For

alln > N, a,, >1+ %— > 14+ 72} > M. Hence {a,, } is not convergent.

Solution C.180. [Of Exercise 12.2] First we prove that the sequence {r"}
converges. If ¢ > 0, let N be such that 7V < e. Then, for any n > N we
have |r"| < |r¥| < e. Hence by Lemma 12.1.6, {r"} is a Cauchy sequence.

Now we show that {a,} is a Cauchy sequence. Let ¢ > 0. Since {r"} is a
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Cauchy, there is an N > 0 such that for all n,m > N we have |[r" —r™| <
(1 —r)e. Let n,m such thatmn >m > M. Then |an — am| <370 ) lag —

n
ar—1] < Yhemit rhl = T—l:—; < e. Hence {a,} is a Cauchy sequence

and by Lemma 12.1.8 converges to a limit.

Solution C.181. [Of Exercise 12.3] Note that for £k > 1 we have |aj —
ap—1| <r¥72|ag —ay|. If a3 = ay then for all k, aj, = a1 and the sequence
is the constant sequence and it is Cauchy. We assume that as # a;.

Now, for n > m we have:

|an - am| < ZZ:mJ,_l |ak - ak—1| < ZZ:m-i—l TkiQ‘CLZ - a1| =

az — a - ag —ay| ™ — " az — a

laz T 1| DT = l2: T : 7‘1_77: = |r(21_rl)‘(rm —r"). By Ex-

ercise 12.2 above, we know that {r"} is a Cauchy sequence. Let € > 0. There
r(l1—r)

is anumber N such that for all n,m > N we have [r™ —r"| < e. Let

a2 — a1
lag —aa| r(1—7)
r(1—r) |ag — a1

lag — a;|

n>m > N. Then |a, — ap| <
r(l—r)

€.
Hence {a,} is a Cauchy sequence and by Lemma 12.1.8 converges to a limit.

(rm—r") <

Solution C.182. [Of Exercise 12.4] Let the Jacobsthal numbers be defined

as follows:
g 1 fn=1lorn=2
"2+ (D) i > 2

Note that J,, = Jp—1 + 2J,,_o.

We can easily show that a, = Qn—{l(Jn_lao + Jpay) for n > 2. Below we

show some examples:

az = %(a0+a1)
as = 2—12(a0+3a1)
as = 2—13(3a0+5a1)
a5 = 5&(5a0+11a1)
ag = 515-(11a0+21a1)
Note that
as —a; = *%((Llfao)
az —az = 2%(&1*610) = *%(@*01)
aq —az = *;15(111*@0) = *%(asfaz)
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In general, for n > 1 we have
(="

n= o

With these equations, we can show that

1
Gni1 — (a1 —ag) = —i(an —ap_1).

3
Up41 — An| = 7 |An — Gp—1 —|0n — Anp—1]-
| =1 <2 |

2

Hence by Exercise 12.3 above we know that {a,} is a Cauchy sequence and
by Lemma 12.1.8 it converges. Now,

an = (@n—an-1)+ (@n-1—an2)+ -+ (a2—a1)+ a1
n—1 n—2
= (a1 —ao) ((;zl) +(;Zl) +~'~+;Zl)+a1

= a1+ (a1 — aO)EZ;ll (;jl)k

k
Since |;T1| < 1, the geometric series X7} (—_71) converges to —11— = %
1+

Hence a,, converges to %(al — @0) +a, = 54y g QaQ.

Solution C.183. [Of Exercise 12.5] Let ¢ = sup S and and let @ € S. For

each positive integer n, ¢ — % is not an upper bound of S and hence there
is an a, € S such that ¢ — % < a, < c. We know that lim,,_,(c — %) =c
and hence by LS9, lim,,_, a, = c.

Solution C.184. [Of Exercise 12.6] Let s; = 1 and s,,11 = (s, + 1)/3 for
n>1.

1.82:%,83:%,84:% 85:%.
2. 51:1>%and52:% % Assumesn>7forn>1 Then, for
n>1, $p41 = (sp +1)/3 > ( )/3—2. Hence, s, > 1/2 for all n.

S, +1 1
Sngtl —s, = 15 <2 § 25—,

Hence for n > 1, sp4+1 < s,. Hence {sn} is a nonlncreasmg sequence.

3. Forn > 1, spq41 — s =

4. We have shown in 3. above that for all n > 1, s, < s; = 1. We have
also shown in 2. above that s, > 1/2 for all n. Hence for all n > 1,
1/2 < s, < 1. Now, {s,} is a bounded and monotone sequence, hence

by Theorem 12.1.2, {s,} has a limit {. Now, since s,11 = SL—’_rl and
both {s,} and {s,+1} have the same limit [, we have: [ = l—""rl That

is,l:%.
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Solution C.185. [Of Exercise 12.7) Let t; = L and ¢,,11 = [1—1/(n+1)2t,
for n > 1.

1. Note that for alln >1,1/2<1—1/(n+1)? < 1. Hence for all n > 1:

— t, > 0. We prove this by inductiononn > 1. ¢t; =1 > 0. Assume
tn >0 then t, 1 =[1—1/(n+1)2)t, >t,/2 > 0.

— Since t, > 0 and 1 — 1/(n+1)2 < 1, then t,,41 = [1 — 1/(n +
1)?)t,, < t,. Hence {t,} is a nonincreasing sequence.

Hence for all m > 1, 0 < t, < ¢; = 1. Now, {t,} is a bounded and
monotone sequence, hence by Theorem 12.1.2, {¢,,} has a limit /.

2.t =1=01+1)/(2). Assume t, = (n+ 1)/(2n) for some n > 1.
Then, t,y1 = [1 —1/(n+ 1)?)t, = [1 —1/(n+ 1)?](n +1)/(2n) =
(n+1?=D(n+1) _ n242n _ n+2

2n(n + 1)* n(n+1)  2(n+1)
Hence for all n, t, = (n+1)/(2n).

3. Since {tn} and {7 + 2—} have limits, then lim, o0 t, = hmn%oo(% +
o) = 3 +limase 5 = 5.

Solution C.186. [Of Exercise 12.8] We will prove that 5 =4 = 1= 2 =
4 = 5 and 1 & 3 hence establishing that 1 & 2 & 3 & 4 < 5.

5 = 4. Let I,, = {[an, by]} be a nested sequence of closed and bounded inter-
vals. Hence for each n, I,, 11 is contained in I,, and a1 < a,, < b,, < by.
Hence by the Bolzano-Weierstrass Theorem 12.1.15, there is a conver-
gent subsequence {b,, } of {b,}. Let b be the limit of {b,,}. Note
that {b,,} is a decreasing sequence and that p,, > n for all n. Hence
bp, < by, for all n and b,, < by, for all n > m. It is the case that
b < b, for all n, since otherwise, if there is an mg such that b > b,,,,
then b,, < by, < by, <b. Hence b—0by, >b—bp, for all n > mg
which contradicts the fact that b is a limit of {b,,, }. Furthermore, since
for all n, we have a,, < b, , then a, < b for all n. Hence a,, < b < b,
for all n, and b belongs to all intervals I,,.

4 = 1. Let A be a nonempty set of real numbers that has an upper bound b;.

Since A is not empty, then there is a; € A. If a1 is an upper bound of
A then a; is the least upper bound of A and we are done. Else, if a; is

not an upper bound of A then a; < by and let [a1,b1] and ¢; = Q%Jrrbl.

Repeat the same process. If ¢; is an upper bound of A, let [ag, be] =
[a1,c1] else, if ¢; is not an upper bound of A, let [ag,b2] = [c1,b1].



146 APPENDIX C. SOLUTIONS TO EXERCISES

Let cp = Q2+Tb2. Note that by is an upper bound of A and [az, bs] C
[al, bl]

Again, if we have already constructed [a,,b,] and ¢, =
such that b, is an upper bound of A and [an,b,] C [an-1,bn-1],
then we repeat the same process. If ¢, is an upper bound of A,
let [ant1,bnt1] = [an,cn] else, if ¢, is not an upper bound of A, let
an+1 ; bn+1 .

a, + b,
o on

[@n+1,bnt1] = [cn, by]. Let cnp1 =

Note that b,+1 is an upper bound of A and [ap+1,bnt1] C [an, by].

Clearly, we have [a1,b1] 2 [a2,b2] D [an,bn],- -+ such that b, is an

upper bound of A. By the nested interval theorem, there is a b €
ﬂnZI I,,. We show that b = sup A.

— b is an upper bound of A: Assume otherwise there is a ¢ € A
such that ¢ > b. Note that ¢ — b > 0. But, for each n, we have
c < b, and a, < b. By the Archimedean law, there is a positive
integer n such that by —a; < n(c—b) and hence here is an integer

N such that by —a; < 2V~!(c—b) and so, bé;_%l < c—b. Recall

that b, —a, = 1)12Ticf—1 for each n. We have for each n > N
bl—al bl—al
c—b<b,-b<b,—a, = T < N1 <c—b.

Absurd. Hence b is an upper bound of A.

— b is least upper bound of A: Let d be an upper bound of A.
We want to show that b < d. Assume otherwise that d < b. Then
b—d > 0. Similarly as we did in the above item, let N such that

b% —01 < b 4. Recall that b, — a, = 51271?_1 for each 1 and
that a,, < d and b < b,,.

b—dgbn—an:bl_al by —ax

on—1 = 9N-I <b—d.

Absurd. Hence b is the least upper bound of A.

1 = 2. This was seen as part of the proof of Theorem 12.1.2 where it was
shown for nondecreasing bounded sequences. Here, we show it for non-
increasing bounded sequences. Let {a,} be a nonincreasing sequence.
Let A be the set of all real numbers a,, in the sequence, and since A is
bounded and not empty, by the Completeness Axiom, it has a greatest
lower bound, say [. Let € > 0 be given. Then [ + ¢ cannot be a lower
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2= 4.

bound for A, so there is a positive integer N such that ay < [ + €.
Since a,, is nonincreasing, ay > a, for all n > N. Of course, for all
n,ap, >0 >1—¢, andsoifn > N,l—¢e < a, <[+ e This latter
implies that |a, — I| < e. This shows that lim, . a, = [.

This was seen as part of the proof of Theorem 12.1.11 where {[a, b,]}
is a nested sequence of closed and bounded intervals, and since the
sequences {a,} and {b,} are monotone and bounded, they have limits
a resp. b such that a < b and any z satisfying a < z < b is in all the
intervals. Furthermore, if lim,,_, o (b, — a,) = 0, then then we have

0= lim (b, —a,) = lim b, — lim a, =b—a,
n— o0 n— 00 n— oo

so a = b and z = b = a is unique.

. Let {a,} be a bounded sequence. We will find a subsequence that

converges. We do this by finding a sequence of nested closed bounded
intervals {I,,} such that for some a, a € [, >, I» and we will find a
subsequence of {a,} that converges to a. Since {a,} is bounded, let
M such that |a,| < M for every M. Let [l;,7] = [-M, M] and let

c] = ll—% We construct [la, 73] = I such that

— r2—12:—2—r1_l1 and

— if [l1, ¢1] has infinitely many elements of {a,} then Io = [I1, ¢1]
else [ca,72] has infinitely many elements of {a,} and we let Io =
[627 7’2] .

We iterate this process building [l,,+1,7n+1] = In+1 such that for ¢, =

Lﬂ%ﬂ , we have

— a1 —lpy1 = %ﬁ and

— if [I,, ¢,] has infinitely many elements of {a,} then I}, 11 = [ln, ¢4]
else ¢y, 7] has infinitely many elements of {a,, } and we let I, 11 =
[Cn, Tn]-

Obviously, {I,,} is a sequence of nested closed bounded intervals and by
the nested interval theorem 12.1.11, there is an a such that a € (), In,
and for each n, I, <l 41 <a <rp41 < r,. Since {l,,} and {r,} are
monotone bounded sequences, they converge to [ resp. r such that
In <lpy1 <l<a<r<rypp <r,. We will show that | =r.

rp — 1

We know that ry 4.1 —lp41 = 25— and hence 2(limry, 1 —liml;,41) =
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limr, —liml,. Le., 2(r —1) = r —1. Le., r = . This means [ = r = a.
Since for every n, I,, is not empty, we build our subsequence as follows:
ap, is an arbitrary element of I;. Since I» contains infinitely many
elements of {a,}, let a,, be one of these elements in I such that
an, < Gpn,. We repeat the process building the subsequence {a,, } of
{an}. It is easy to show that {a,, } converges to a. In fact, since for
every k, I, < ap, < cg, by LS33, {a,, } converges to a.

1 = 3. In the proof we gave for Lemma 12.1.8, we used both the Axiom
of Completeness (our item 1 1), and Theorem 12.1.2 (our item 2). Here,
reproduce the proof but where you replace the use of Theorem 12.1.2 (our
item 2) by a proof of it as we did in the step 1 = 2 above.

3 = 1. Let A be a non empty set that has an upper bound ¢;. Since A is non
empty, let a3 € A. If a1 is an upper bound of A then a; is the least upper
bound of A and we are done. Else, if a; is not an upper bound of A then

a; < c; and let my = & Ta, We will define a bounded Cauchy sequence

whose limit is the least upper bound of A.

We start by building three sequences {a,} increasing, {c,} decreasing,
and {m,} such that for every n, a, < m, < c,, m, = Qﬂ%ﬂ and |cpy1 —

|cn_an|
o ol

ant1| < s lens1—cn| < , a, € A and ¢, is an upper bound

|Cn — an|

L onl
of A.

e If m; is an upper bound of A, let as = a; and ¢y = my, else, if my

is not an upper bound of A, then there is as € A such that m; < as.

a9 + Co
5.

Let ¢ = ¢; and mg = Note that ¢y is an upper bound of

— ay

A, les —ag| < o1 ,Jea —al < &#7 ay < ag, ¢z < ¢ and

az < mgy < Ca.

e Assume we have a,, € A, ¢, upper bound of A and m, = & ta
as above. We repeat the process: If m,, is an upper bound of A, we
let an+1 = a, and ¢ y1 = my,, else, there is a,11 € A such that

. Cn — @
My < apg1 and cpp1 = ¢, Obviously |ep41 — apy1] < [n ”|,

an < apyt1, Cna1 < ¢ and a1 < Mpg1 < cpy1 and ane1 € A and
Cn+1 18 an upper bound of A.
o len —aa| o _
Hence, we can easily show that |c,11—an11] < S lim,, o0 Cn—ay, =0

and |cppi — cn| < ler— ] ;aﬂ for any positive i and |a,1; — an| < ler — _iall

for any positive i. Hence, we can show that {a,} and {c,} are both Cauchy
sequences. Hence by Lemma 12.1.8, {a,} and {c,} converge to a and ¢
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respectively. Since {¢,, — a,} converges to 0, a = ¢. Note that a, <a=c¢<
Cn-
Now we show that c is a lub of A.

e Forall z € A, x < ¢, for all n. Hence, x < ¢ and c¢ is an upper bound
of A.

e Next, If b is upper bound of A, then a, < b for every n and hence
a < b. Hence, ¢ < b and c is a least upper bound of A.

Solution C.187. [Of Exercise 12.9]

1. The tails of {a,} where a, = (—=1)"*' =1, -1, 1, —1, ---, were
already given in Section 12.2. If N is odd, Ty is the same as the entire
sequence, while if N is even, Ty = {—1,1,—1,1,---}. Clearly, for each
N,

infT,y =—1and supTy = 1.
Hence, liminfa, = —1 and limsup a,, = 1.
The floor terms of {a,} are all the terms ay such that N is even and
all these floor terms are equal to —1. The sequential limits are {—1,1}

because we have found a subsequence that converges to 1 and another
subsequence that converges to —1.

2. The tails of {a,} where a, = (-1)" = -1, 1, =1, 1, - - -, are as follows:
If NV is even, Ty is the same as the entire sequence, while if N is odd,
Tn ={1,-1,1,—11,---}. Clearly, for each N,

infTy =—1and supTy = 1.

Hence, liminfa,, = —1 and limsup a,, = 1.

The floor terms of {a,} are all the terms ay such that N is odd and
all these floor terms are equal to —1. The sequential limits are {—1,1}
because we can found a subsequence that converges to 1 and another
subsequence that converges to —1.

3. Left as an exercise.

Solution C.188. [Of Exercise 12.10] We do the proof first for f(a) < v <
f(b). The proof for f(b) < v < f(a) follows. Let S = {z € [a,b] : f(x) < v}.
Since S is nonempty (it contains a) and bounded above (b is an upper bound),
S has a least upper bound ¢ = sup S by the Completeness Axiom. Note that
for z € [a,b]:

1. If f(z) <vthena <z <c<hb
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2. Hence if > ¢ then f(z) > v.

3. Furthermore, since c is the least upper bound such that f(z) < v then
there is no y < ¢ such that f(x) > v for z > y.

4. Finally, since f is continuous, lim,_,. f(z) = f(c).
We show now that the value ¢ satisfies f(c) = v.

e We show first that f(c) < v. For any positive integer n, let ¢, =

c— 02_‘1. Note that ¢y = ¢ — % = c—FTa > a and that for all n,
¢, < c and by 3. above, f(c,) < v. Also, since 2" < 2"*! we have
¢n < Cpt1- S0, {cp} is an increasing sequence of elements of S such
that for all n, a < ¢, < ¢. Hence by Bounded monotone sequences
Theorem 12.1.2, {¢, } has a limit. In fact, we have that lim, _, ¢, = ¢.
By Theorem 11.2.3, lim,, o f(¢n) = f(c). Since f(c,) < v for all n
then f(c) < w.

e Now we show that f(c¢) > v. Let d,, = ¢+ b —-< for each positive integer
n and note that by 2. above, {d,} is a sequence in the complement
of S that converges to ¢ (we prove this similarly to the above item).
Since f(d,) > v for all n and the sequence {f(d,)} converges to f(c),
the inequality f(c) > v must hold.

It follows that f(c) = v.

As for the proof when f(b) < v < f(a), let g(z) = —f(x). Then g is defined
on the same interval as f and g is continuous on [a, b] and g(a) < —v < g(b).
By what we proved above, there is a ¢ € (a,b) such that g(¢) = —v. Hence

fle) =w.

Solution C.189. [Of Exercise 12.11] Assume f is not bounded on closed
interval I. Then, for each positive integer n, there is x,, € I such that
|f(zn)| > n. By the Bolzano-Weierstrass Theorem 12.1.15, {z,,} has a sub-
sequence {z,, } that converges to a limit a. Since infI <z, < sup I, then
infl < a <supl and a € I. Since f is continuous, by Theorem 11.2.3,
lim,, o0 f(zp,) = f(a) and by Exercise 9.7.2, lim, o |f(zp,)] = |f(a)|.
But for all n, |f(z,)| > n, hence |f(zp,)| > pn > n. So, |f(a)] =
limy, o0 | f(2p, )| > limy, 00 7. Absurd since f is defined at a.

Since f(I) is bounded non empty, by the Completeness Axiom, let g and [

be the greatest lower versus least upper bounds of f(I).

e For each positive n, since [ is a least upper bound of f(I), there is

yn € I such that |f(y,) — 1] < % Let ¢ > 0 and let N a positive
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1nteger such that N > . Then for each n > N we have: |f(y,) — 1| <

~ <e>0. Hence lim,, o f(yn) = I. Since I is closed and
yn € Ij\gor all n, then lim, o ¥y, =y € I. Since f is continuous then
I'=limy 00 f(yn) = flimy—o0 Yn) = f(y)-

e The proof that there is € I such that f(x) = g is similar to the
above.

Hence there are z and y in I such that f(z) =g and f(y) =

Let h(z) = ;12 and J = [-1,0). Then, h is continuous on [—1,0) with
greatest lower bound —1 and least upper bound 0. But there isno z € [—1,0)
such that h(z) = 0.

Let h'(z) = x and J = [—1,0). Then, A’ is continuous on J = [—1,0) with
greatest lower bound of J being —1 and least upper bound of J being 0. But
there is no = € [—1,0) such that h'(x) = 0.

Solution C.190. [Of Exercise 12.12]

1. Let f(x) = x—tanz. Since f is continuous on [27, 27+ %), f@2r) =2rx
and lim._,o f(27 + % —¢) = —oo, by Intermediate Value Theo-
rem 12.3.2, for € very small, there is z € [27, 27 + 72T' — ¢] such that
f(z) = 0. Hence there is z > 27 such that tanz = x.

2. Let f(x) = ¢ — cosz. Since f is continuous on [0, -7%], fl0)=-1<0

and f(g—) = 2— > 0, by Intermediate Value Theorem 12.3.2, there is
x € [0, g—] such that f(x) = 0. Since f(0) # 0 and f( ) # 0, there is
iy
27

x € (0, %), such that cosz = z.

3. If f(a) = a or f(b) = b we are done. Assume f(a) # a and f(b) # b
and let g(x) = f(x) — z. Then, since f([a,b]) C [a,b], a < f(a), f(b) <
b. Hence g(b) < 0 < g(a) and since g is continuous on [a,b], b
Intermediate Value Theorem 12.3.2, there is « € [a, b] such that g(x)
0. Hence there is « € [a, b] such that f(z) = z.

<

4. f(z) = 222 — 1 is continuous on [0,1] and f(0) = —1 and f(1) =
Since f(0) < 0 < f(1), by Intermediate Value Theorem 12.3.2, there
is € [0,1] such that f(z) = 0. But f(0) # 0 and f(1) # 0. Hence
there is « € (0,1) such that 227z = 1.

5. Assume a < b. Note that f is continuous on [a,b]. Since f(a)f(b) <0,
we know that f(a) # 0, f(b) # 0 and 0 is strictly between f(a) and
f(b). Hence by Intermediate Value Theorem 12.3.2, there is a number
2 between a and b such that f(x) = 0.
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Solution C.191. [Of Exercise 12.13] Since for any z real number,
lim,, oo % = 0, given ¢ > 0 and a real number z, there is a positive in-

teger N(e,x) such that N(e,x) > @ Henc|e ‘there is a positive integer
x
N(e, x)
Solution C.192. [Of Exercise 12.14] Since for all z € (0, 1), lim, o 2™ = 0,
given € > 0 and a real number z, there is a positive integer N(e,z) such

that N(e,z) > log, €. Hence there is a positive integer N (e, x) such that for
all n > N(e, ), |27 < [zNE2)| < gloge s = ¢,

N (e, x) such that for all n > N(e,z), |£| <

< E.

Solution C.193. [Of Exercise 12.15]

1. Let ¢ = 1. Since {f,} uniformly converges to f, there is a positive
integer N such that for each n > N, for each x € I, | f,(z) — f(z)| < 1.
Hence, for eachn > N, foreach z € I, |f,(z)| < |fn(2)—f(z)|+|f(z)—
fN+1(£E)‘ + ‘fN+1($)| <2+ MN+1. Let M = max{Ml, My, ..Mpy,2+
Mp1}. Obviously, for all n, for all z € I, |f,(z)| < M.

2. Let ¢ = 1. Since {f,} uniformly converges to f, there is a positive
integer N such that:
for each n > N, for each © € I, |f,(z) — f(x)| < 1. Hence, for each
zel, |f(@)] < [fn(@) = f@)| + [fn(@)] <1+ My, Hence fis
bounded.

Solution C.194. [Of Exercise 12.16] Let I be an interval. Suppose that
{fn} converges uniformly to f on I and that {g,} converges uniformly to g
on [.

1. Let e > 0. Since { f,,} converges uniformly to f on I and {g,,} converges
uniformly to g on I, there are positive integers N; and Ny such that:
for all x € I and all n > Ny, |f(x) — fo(x)| < e/2 and
for all z € I and all n > Na, |g(z) — gn ()| < £/2.

Let N = max{Ny, No}. Then for all z € I and alln > N

|(f(z) = g(x)) = (fu(z) + gn(2))] <
|f(z) = fu(@)] +19(z) —gn(z)] <
e/2+¢/2 =

Hence {f, + gn} converges uniformly to f + g on I.

2. For any x € R and n positive integer, let f,(z) = %, gn(z) =2, f(x) =
0 and g(x) = x. Obviously {f,} uniformly converges to f and {g,}
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uniformly converges to g. Furthermore, {f,g,} converges pointwise
to fg (imp_soo fr(2)gn () = limp oo & = 0 = f(x)g(x)). However,
{fngn} does not uniformly converge to fg. To see this, for each n, let
M, = sup{| fu(2)gn(z) — f(2)g(z)| : © € R} = sup{|7| : 2 € R} = oo.
Hence {M,,} does not converges to 0 and by Theorem 12.4.7, {f,gn}
does not uniformly converge to fg.

We could give another example where the domain of the function is

not the whole R. Here is such an example:

1

For any = € (0,1) and positive integer n, let f.(z) = 5, gn(z) = 1

x>
f(x) =0 and g(z) = % Obviously {f,} uniformly converges to f on
(0,1) and {gy, } uniformly converges to g on (0, 1). Furthermore, { f,,gn}
converges pointwise to fg (limy, oo frn(2)gn(x) = lim, 00 % =0=
f(z)g(x)). However, { fngn} does not uniformly converge to fg. To see
this, for each n, let M,, = sup{|fn(z)gn(z) — f(2x)g(z)| : z € (0,1)} =
sup{|%| cx € (0,1)} = oo. Hence {M,,} does not converges to 0 and
by Theorem 12.4.7, {f,g.} does not uniformly converge to fg.

3. Since f and g are bounded on I, then there are My and M, such that
forall z € I, |f(z)] < My and |g(z)| < M,.

Since {f,} converges uniformly to f on I there is a positive integer
N7 such that:

for all z € I and all n > Ny, |f(z) — fn(x)| < 1. Hence for all z € T
and all n > Ny, [fn(2)] < |fn(2) = f(2)[ + |f(2)] <1+ M

Let & > 0. Since { f,,} converges uniformly to f on I and {g,,} converges
uniformly to g on I, there are positive integers Ny and N, such that:
_ €
for all z € I and all n > Ny, |f(z) — fn(2)] < 5V, +1) and
_ 3
for all z € I and all n > Ny, |g(z) — gn(z)] < S, + 1)
Let N = max{Ni, Nf, Ng}. Then for all « € I and all n > N

|(f(@)g(x)) = (fn(z)gn(z))|

|f(x)g(2) = fulz)g(2)] + | fa(z)g(2) = fr(z)gn ()|
|f(z) - J;n(x)llg(@l + \fn(m)l\ggx) — gn(z)]
MQW + (51 - Mf)m
Mooz, 1) * 2
Mo Va0, 71)
+5

A IA

A

—~

5

RN
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Hence {fngn} converges uniformly to fg on I.

4. If for all n, f, and g, are bounded on I, then by Exercise 12.15.(1.
and 2.) above, there are My, M, such that for each n, for each = € I,
|fn(z)] < My and |gn(x)] < My and f and g are bounded. Then use
3. above to conclude that {f,g,} converges uniformly to fg on I.

Solution C.195. [Of Exercise 12.17] Define f on (0, 1) such that f(z) = 1

E.
Let z € (0,1). By applying the definition of limit, we can show that
lim,, 00 fn(x) = f(x). Hence the sequence {f,} converges pointwise to
f(z).

Note that for any n, for any x € (0, 1), #I < # < n. Hence each f,
is bounded. However, f(z) is not bounded on (0, 1) since lim,,_,o+ f(2) = oo.
Hence the sequence {f,} where f,(z) = an_H cannot converge uniformly

to the pointwise f(z) on (0,1). Otherwise, by Exercise 12.15.2 above, f
would be bounded.

Solution C.196. [Of Exercise 12.18] For each of the sequences of functions
given below, determine its pointwise limit on [0, 3] and give a proof whether
convergence to this limit is uniform.
2
1. Let z € [0, 3]. hmn;oo fo(x) =lim, o nx——|—1 =0.

Hence f,(z) = %I converges pointwise to f(z) =0 on [0, 3].

Let € > 0 and take N be a positive integer such that N > 9 = €. Then,

L < £

N+1 : )

Now, for all n > N, for all z € I, |fn(z) — f(z)| = |nx_+1 -0 <

2
NL—i-l < e. Hence the sequence {f,} where f,(x) = # converges
uniformly to f(z) =0 on [0, 3].

2. Let z € [0,3]. limy, 00 frn(z) = limy 00 ﬁ =0.

Hence f,(7) = 7 L 5 converges pointwise to f(x) = 0 on [0, 3].
Let € > 0 and take N be a positive integer such that N > @
3
Then, =5 <e.
Now, for all n > N, for all z € I, |fu(z) — f(z)] = |E5 — 0] <
“— < e. Hence the sequence {fn} where f,(z) = 75 converges

uniformly to f(z) = 0 on [0, 3].

3. Let f(z) =0 for all x € [0, 3]. It is easy to show that for any « € [0, 3],
lim, 00 frn(x) = f(z). Hence {f,} converges pointwise to f(x).
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Now, for all n, for all z € [0,3], fu(z) = mcgii—l = % N

1 (na: +1_ 1 _1(__1 <1

n\nrt+1 nx+1) n nx + n:

Hence for all n, for all x € [0,3], |fn(z)] = ﬁ < % Let
M,, = sup{|fn(z) — f(z)| : € [0,3]}. Then, for all n, 0 < M,, < %
Hence, lim, o M;, = 0 and by Theorem 12.4.7, the sequence {f,},
where f,(x) = ﬁ uniformly converges to f(x) on [0, 3].

4. Let f(x) =0 for all x € [0, 3]. Tt is easy to show that for any « € [0, 3],
limy, 00 fr(x) = f(z). Hence {f,} converges pointwise to f(x).
Since (yv/n|z| — 1)2 > 0, then nz? + 1 > 2y/n|z| and hence
1o _ |z
2vn = nat+1°
Hence for all n, |f,(x)| = m:|+LL1 < ﬁ Let M, = sup{|fn(z) —

f(x)] : = € [0,3]}. Then, for all n, 0 < M, < ﬁ Hence,
lim,, 0o M,, = 0 and by Theorem 12.4.7, the sequence {f,}, where
fulz) = n:c++1 uniformly converges to f(z).

5. Let
ﬂ@:{oﬁxzo

1 if0<z<3

It is easy to show that for any x € [0, 3], limy,— o0 fn(z) = f(z). Hence
{fn} converges pointwise to f(x).

Note that f is not continuous on [0, 3] whereas for each n, f, is con-
tinuous on [0, 3]. Hence by Corollary 12.4.5, the sequence {f,}, where

fnlz) = # cannot uniformly converge to f(x).

6. Let
0 fo<z<l1
flx) = % ifx=1
1 ifl<z<3

It is easy to show that for any x € [0, 3], limy,— o0 frn(z) = f(z). Hence
{fn} converges pointwise to f(x).

Note that f is not continuous on [0, 3] whereas for each n, f, is con-
tinuous on [0, 3]. Hence by Corollary 12.4.5, the sequence {f,}, where

n
fulz) = EF% cannot uniformly converge to f(x).
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Solution C.197. [Of Exercise 12.19] For each of the sequences given be-
low, determine whether there is a function to which the sequence converges
pointwise on [0, 1] and if such a function exist:

e Formally show the pointwise convergence.

e Determine whether this convergence is uniform and give a proof for
your claim.

1 ifx=0

0 ifo<z<1.

If 2 = 0 then lim, o f»(0) = 0 = f(0).

Let x such that 0 < 2 < 1. We show lim,, o fr(2) = lim, o (1 —
2?)" = 0 as follows:

Let € > 0. There is N (e, z) such that N(e,z) > log,_,2 €. Note that
since 0 < 1 — 2% < 1 then if n > m then (1 — 22)" < (1 — z%)™.

1. Define f on [0,1] such that f(x) =

Hence there is a positive integer N (e, z) such that for all n > N(e, z),
(1 —22)"| < |(1 = 22)NED)| < (1 — 2?)o81-a2° = ¢,

Hence for any « € [0, 1], limy, 00 fn(z) = f(x). Hence {f,} converges
pointwise to f(x).

Note that f is not continuous on [0, 1] whereas for each n, f, is con-
tinuous on [0, 1]. Hence by Corollary 12.4.5, the sequence {f,}, where
fn(x) = (1 — 22)™ cannot uniformly converge to f(x).

2. Let f(x) =0 for all z € [0,1]. If x = 0 then lim,, o fn(0) = 0= f(0).
Similarly, if © = 1 then lim, o f(1) =0 = f(1).
Let x such that 0 < = < 1. We show lim,, o frn(x) = lim, 0 x(1 —
x)" =0 as follows:
Let € > 0. There is N (e, ) such that N(e,z) > log; , £. Note that
since 0 < 1 —x < 1 then if n > m then (1 — )" < (1 —x)™.

Hence there is a positive integer N (e, z) such that for all n > N (e, z),

Ne, log,_, & _ & _
2(1—2)"| < |z(1 —2)VED) | <zl —2)-=T =25 =c.

Hence for any « € [0, 1], limy, 00 frn(z) = f(x). Hence {f,} converges
pointwise to f(z) on [0,1].

Furthermore, the functions f and f,, for each n are continuous and
[0,1] is closed.

Since 0 < 1—2 < 1 then for each n, 0 < (1—2)™ < 1 and hence for each
n,0< (1—2)"* < (1—2)". Since 0 < z then z(1—2z)"* < z(1—z)"
and for each z, {f,} is decreasing.
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Hence, by Dini’s theorem 12.4.9, the sequence {f,}, where f,(x) =
2(1 — )™ uniformly converges to f.

3. Let f(x) =0 for all z € [0,1]. If x = 0 then lim,,_,« fn(0) = 0= f(0).
Similarly, if x = 1 then lim, o f(1) =0 = f(1).
Let  be such that 0 < z < 1. We show lim, o fn(z) =
lim;, 0o nz(1 — )™ = 0 as follows:
First note that for any a > 0 and n > 2 we have (1 +a)” =1+ na +
n(n —1)a® n(n —1)a?
n(n —1a” > % and hence (1—|—1a)" < n(n—21)a2'
So, we look for replacing (1 — z)™ by m. But, it is possible

to find a > 0 such that 1 —z = -1% (take a = 'lf_x) Hence,

2z
(n—1)a*

Let € > 0. There is N(g,x) such that N(e,z) > ZTac + 1 and hence
a‘e

2z
— 5 < E.
(N ) —1)a ~°
Hence there is a positive integer N(g,x) such that for all n > N (e, z),

nr(l—z)" 2z 2z €.
Ina(1 —2)"| < (n—1)a® (N(g,z) — 1)a* <

Hence for any x € [0, 1], lim,, o0 fn(z) = f(x). Hence {f,} converges
pointwise to f(x) on [0,1].

2
7w < NT 3 =

nx(l—z)" = 7’L$( Y Py

1
1+a)

As for uniform convergence, recall Theorem 12.4.7. So, let us look
at M, = sup{|fn(z) — f(z)| : = € [0,1]} = sup{|nz(l —2)"| : = €
[0,1]}. Since L e [0,1], M, > nl(l - %)” =(1- %)” Hence

n n
lim, 00 My, > limy, o0 (1 — 17 = L and lim,, o, M, > 0. Hence by

Theorem 12.4.7, the sequence {f,}, where f,(z) = na(1 — z)" does
not converge uniformly to f(x).

4. Let f(z) =0 for all z € [0,1]. If z = 0 then lim,,_,« f,(0) =0 = f(0).
Similarly, if 2 = 1 then lim, o f»(1) =0 = f(1).
Let x such that 0 < 2 < 1. We show lim,, o0 fr(z) = limy 00 nz(1 —
22)" = 0 as follows:

— First note that for any a > 0 and n > 2 we have (14-a)" = 1+na+

n(n — 1)a® n(n — 1)a? 1 < 2
-2 -2 1+a)" =~ n(n—1)d*
— We will prove that if 0 < @ < 1 then lim,,_.,, na™ = 0.

Let a such that 0 < a < 1 and let b such that a = %—l—b Then

+-e > and hence (
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obviously, b > 0 and if n > 2 then by above, na™ = % <

(1+0)
2 1

< .
n(n —1b* = (n—1)b*
Let € > 0 and let N be a positive integer such that N > 1+ 5#

Then, N > 2 and W < e and for all n > N, |na"| <
1

1
-1 S (N1

2 < e. Hence lim,, o, na™ = 0.

22, Since 0 < ¥ < 1 then 0 < a < 1
)" < n(l — )" = na". Hence

— ) < lim, oo na™ = 0. So, for any z € [0,1],
(z ) and {f,} converges pointwise to f(z) on [0, 1].

Now, let a = 1 —
and 0 < nz(1
0 < limy—yoo nx(l
limy, o0 fr(z) = f

As for uniform convergence, recall Theorem 12.4.7. So, let us look at
My, = sup{|fu(z) = f(2)] : x € [0,1]} = sup{|na (1 — 2*)"| : x € [0, 1]}.

: 1 1 1 1
n > 1 n.
Since /n € [0,1], M, n\/_(l ) = /n( n)
Now, since lim, o /17 = oo and lim, (1 — —711)” = —é > 0 then

by LS13, lim,_ s v/n(1 — %)” = oo. Hence lim,_,oc M, = co. By
Theorem 12.4.7, the sequence {f,}, where f,(z) = nx(1 — 22?)" does
not converge uniformly to f(x).
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C.13 Solutions for Chapter 13

Solution C.198. [Of Exercise 13.1] Assume P; = {z; : 0 < ¢ < n} such
that a = 29 < 21 < @2 < - < xp, = b, Po = {y; : 0 < j < m} and
a =9y <Y1 <Y < -+ < Yy = b where P, C P;. Clearly, for every
1 < j < m, there is 1 < ¢ < n such that [y;_1,y;] C [z;—1,2;]. Hence, for
every 1 < j < m, thereis 1 <14 < n such that y; —y;_1] < 2; —x;_1]. Hence,
|Pi|| = maz{z; —zi—1 : 1 <i<n} <maz{y; —y—1:1 < j<m}=|P.

Solution C.199. [Of Exercise 13.2]

1. This statement says that the area between a and b under the curve of
f is unique.
Assume there are two distinct values L and L’ which are the Riemann
integral of f on [a,b]. Then, let ¢ = |[L — L'| > 0. By definition, there
are § and ¢’ such that for any tagged partition *P of [a, b],

e |'P| <6, weget |S(f,!P)—L|< %, and
o [['P| < ¢, we get |S(f,) P) — L'| < 5.

Let 6” = min{4, §'} and a tagged partition ' P of [a, b] such that ||*P|| <
§"”. Then, |S(f,' P)—L| < § and [S(f,) P) -~ L'| < §. Now, |L - L'| =
IL—S(f'P)+S(f'P) = L'| < |L—=S(f'P|+I[S(f'P)-L| <
%+%:€: |L — L'|. Absurd.

2. Obviously, since the function h is constant, the area between a and b
under the graph of h is the area of the rectangle whose sides are k and
(b — a). Hence, the area is k(b — a). The proof is as follows:
For any tagged partition ‘P = {(t;, [z;_1,2;]) : 1 < i < n} of [a,b] we
have: S(h,t P) = Ezzlh(tz)(ﬁz - xi*l) = Ei:lk(mi - ‘Ti,l) = k(b — a).
Let € > 0 and let § be any positive number. Then, for any tagged
partition ! P of [a, b] such that || P|| < § we have |S(h,! P)—k(b—a)| =
0 < e. Hence, by definition, h is Riemann integrable on [a, b] and has
k(b — a) as its Riemann integral.

3. Obviously, since the function kf always multiplies the value of f by
k, the area between a and b under the graph of kf is k-times the area
between a and b under the graph of f. The proof is as follows:

Let € > 0. By definition, there is a § > 0 such that for all tagged
partitions ‘P of [a,b] where ||!P|| < & we have |S(f,* P) — f(ff| < ﬁ

Note that if ‘P = {(t;,[zi—1,2]) : 1 < i < n} then S(kf}!P) =
(k) (zi — 1) = kX7 f(ti)(2; — @-1). Hence, for all
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tagged partitions P where ||'P|| < § we have |S(kf,! P) — k‘f:ﬂ =
|k||S(f!P) —ff fl< |k||%| = ¢. Hence, kf is Riemann integrable and

LRr=kJ] T

Obviously, the area between a and b under the graph of f 4 ¢ is the
sum of the area between a and b under the graph of f and the area
between a and b under the graph of g. The proof is as follows:

Let € > 0. By definition, there are §; > 0 and d5 > 0 such that for all

tagged partitions *P where ||*P| < & we have |S(f,! P) — f fl<5§
and [S(g,' P) — fa gl < 2' Let 6 = min{d;,d2}. Note that if tP =
{(tiy[wiz1,2:]) : 1 < i < n}then S(f+ g, ' P) =3, (f + g)(t:)(xi —

wio1) = S () (@ — 1) + Bigg(t) (v — vm1) = S(fP) +
S(g,t P). Hence, for all tagged partitions P where ||'P| < § we have

IS(f,L P)— [2 fl < § and [S(g.! P) — [} g| < §. Hence |S(f +g,' P) —
Uy f+ T ol < IS(FEP)= [7 f1+1S(9t P)— [ gl < §+%5 < e. Hence
f + g is Riemann integrable and f: f+g= f; f+ f; g.

Solution C.200. [Of Exercise 13.3]
1. Recall that w(f,I) = sup{f(z) : z € I} —inf{f(2) : z € I} > 0.

Since for any z,y € I, inf{f(z) : z € I} < f(z) < sup{f(z) : z €
I} and —sup{f(z) : z € I} < —f(y) < —inf{f(z) : z € I} then
S(uplf(z) 2 € T} — mf{f(z) : » € T}) < f(2) — 1(y) < sup{f(2) -
zelI} —inf{f(z):z €I} and so, 0 < |f(z) — f(y)| < sup{f(z):z¢€
I} —inf{f(2) : z € I}.

- Since by 1, w(f, 1) = |f(z) — f(y)| then w(f,I) = sup{|f(z) — f(y)] :

x,y € I}.

Furthermore, since for all z,y € I, f(z) — f(y) < | (x) — fy)] <
sup{|f(x) = f(y)| : 2,y € I} then for all 2,y € I, f(x) < sup{|f(x) —
f@W)| : z,y € It + f(y) and hence, sup{f(z) : z € I} < sup{|f(x) —
f@W)| : z,y € It + f(y) for all y € I. Therefore, sup{f(x) : = €
I} —sup{|f(z) — f(y)| : z,y € I} < f(y) for all y € I, and finally
suplf(2) : 2 € T} — sup{[f(x) — f(9)] 0,y € I} < inf{f(z) : z € T}.
Hence, w(f, I) = sup{[f(2) — f(y)| : z,y € I}.

Now, since for any z,y € I, f(z)—f(y) < |f(x)—f(y)|, then sup{ f(z)—
fly) : zyy € I} < sup{|f(xz) — f(y)| : z,y € I}. Moreover, since for
any z,y € I, f(z) — f(y) < sup{f(x) — f(y) : z,y € I} then for
any x,y € I, |f(x) — f(y)] < sup{f(x) — f(y) : z,y € I} and hence,
sup{|f(z) — f(y)| : z,y € T} <sup{f(x) — f(y) : x,y € I}.

Therefore, sup{|f(z) = f(y)| : z,y € I} = sup{f(z) — f(y) : z,y € I}.
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3. Since sup{f(x) : « € [¢,d]} < sup{f(z) : z € [a,b]} and —inf{f(z) :
x € [e,d]} < —inf{f(z) : z € [a,b]} then w(f,[c,d]) <w(f,][a,b]).

4. By the above case, w(f[c,d]) < w(f[c.e]) and w(f,[d,€]) <
w(f, [ere]). Hence max{w(, [ d),w(f, [d, )} < w(F, [c,e]).
As for the second inequality, let m = inf{f(z) : « € [c,e]}, M =
sup{f(z) : x € [¢,e]}, m1 = inf{f(x) : © € [¢,d]}, My = sup{f(z) :
x € [e,d]}, mo = nf{f(z) : x € [d,e]} and My = sup{f(z) : € [d, e]}.
Note that m = min{mi,ms} <= max{M;, M3} = M. Now do the
proof by the cases on the order between the m; and M;. For example,
m=m; <mg < M; < My =Mthen M —m = My —m; <
M2+M1 — Mo —Mj.

5. Since P, is a refinement of P;, the set Py N [z;_1, 2;] is a partition of
[2i—1, zi]. Consequently, since we can work with each interval [z;_1, 2]
separately, it is sufficient to consider the case in which P; = {a, b}; this
simplifies the notation in the proof considerably. Let {P; = {(v, [a,b])},
let Py ={z;:0<1i<p}, and let

tPg = {(tz’, [xi_l,a:i]) 01 S ) S p}.

It follows that

1S(f.* Po) = S(f.,! 1)l =
1P f(ta) (w5 — zim1) — f(v)(b—a)] =
ISP ft) (s — wim1) — f)ZE_ (2 — xim1)] =
X ft) (s —2ic) =2 f(v)(xi — @) =
X0 (f(t) = f(v) (@i —2im1))| <
Y0 () = fo)(@i — wio1) <
Zlew(f, [a,0])(z; — xi—1) =
w(f,la,0])(b— a).
Now we prove the general result. Assume P, = {zg,21, - ,2,} and

that for all 1 <4 <n, PoN[zi_1, 2] = {Zo@-1), T1(i—1), " - ~1:p(i71)(2-,1)}
where z;_1 = To(i—1) < T1i—1) <+ < Tp;_1y(i-1) = Zi

Assume also that *P; = {(t;,[2i-1,2]) : 1 <i<n}and forall 1 <i <
n, "Pyllzi—1, zi) = {(tji—1), [—1)—1)> Tji—)]) : 1 < 7 < pi—1}-

By above, for all 1 < ¢ < n, |S(f,)!P|lzi1,2i]) —
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S(f At [2i5 zi1)) P S wlf, [zi-1, 2i])(2i — 2i—1). Hence

|S(f7tp2) (fatpl)|

|En ls(fa P2|[ZZ 1721]) 1S(f7{( Zv[ZZ 1, %
127 (S (£ Po|[zie1, 1)) — ( A, [zi-1, 2i])
E?:1|5(f,t Polzi-1, 2i]) — (f7{( ir [zi-1, 2i])}
Ew(f, [zio1, zi]) (2 — zi-1)

O(fvpl)

zi])})l
D)l
)|

HAANIA T

Assume P, = Py U{y} where for some 1 < j <n, z;_1 <y < zj. Since

w(f7 [Z]'—l,y]) < (U(f, [Zj—lvzj]) and W(fv [yvzj]) < (U(f, [Zj—17zj])7 we
have

O(f, P) = SIZjw(f,[zim1, zi)) (2 — zim1)+
w(f, [zj-1,y))(y — zj—1) + w(f, [y, 2]) (25 — y)+
i ]+1w(f [zi—1, z]) (25 — 2i-1)
Zz 1w(f7 [zi—h Zl])(zz - Zi—l)"‘
w(f, [zj-1, 2 )y — zj—1) + w(f, [z5-1, 25]) (25 — zj-1)+
S aw(f [zic, zil) (2 — zi1)

= (faPl)

IN

If P, =P U{y1,...,Ym}, use induction on m.

O(f, b)) = X w(f, [% 1,%])(%‘ —zi1) = YL (sup{f(z) : = €
@i} — nf{f(2) ¢ @ € [ @)@ — ai1) = S sup{ (@) -
x € [xi_l,xi]}(:vi 7%1'_1) - Z?zlll’lf{f(l') S [:ci_l,:ni]}(xi — xi_l) =
S+(faP1) _Si(fvpl)‘

. Assume ‘P; = {(t;,[2i-1,2]) : 1 < i < n}. Since for all 1 < i < n,

inf{f(z) : ¢ € [zi—1, 2]} < f(t;) < sup{f(x) : © € [x;_1,24]} then
Sininf{f(z) « @ € [mimy, @i} (@ — 2im1) < L f(t)(@ — @im1) <
X2 sup{f(x): x € [zi—1, x5 (@, — xi—1).
Hence S™(f, P1) < S(f,tP1) < ST(f, Pp).

. Obviously S~ (f, P1) < sup{S—(f, P) : P is a partition of [a,b]} and

inf{ST(f, P) : P is a partition of [a,b]} < S*(f, P). Also, since by 8.
above, S™(f, P1) < ST(f, P,) for any P;, we have

sup{S~(f, P) : P is a partition of [a, b]} <

inf{ST(f, P) : P is a partition of [a,b]}.

Hence Si(fapl) < Si(f) < S+(f) < S+(f7pl)'
By 9. and 7. above, ST(f)—S~(f) < ST(f,P1)—S~(f, P1) = O(f, P,).
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Solution C.201. [Of Exercise 13.4] Proof by Contradiction: Since f
is Riemann integrable on [a, b], there exists a positive number ¢ such that
IS(f,tP)— fabf| < 0.5 (and hence |S(f,! P)| < |fabf| +0.5) for all tagged
partitions *P on [a, b] that satisfy ||*P|| < §. Assume f is unbounded on
[a,b]. Let @ = {z; : 0 < i < n} be a partition of [a,b] such that ||Q] < .
Since f is unbounded on [a, b], there is a 1 < j < n such that f is unbounded

b n
on [xj_l,:cj]. Let M = #O fa f| + 0.5 + |ZZ:1f(I7)(£ZZz — Ii—l) —

f(xj)(xj — x;j—1)]). Since f is unbounded on [z;_1,z;], let v € [x;_1,2;]
such that | f(v)| > M and hence |f(v)(x; —zj_1)| — |1 B0 f () (i — 2i21) —

Fla) (@ —z-0)| > | 2 I +0.5.

Let 'Q = ({(zi[zi—n,a));l < i < n} U {(v,[zj-1,75])}) \
{(zj,[xj_1,2;])}. Obviously, |'Q| < 4, but |[S(f,! Q)| = |Z0 f(z:)(zx; —
zi1) = f(@)ay = 2jm1) + F@)@; — w0 = 1) — @ien)l -
2 f (i) (@i = @i1)) = fag)(a; — xj—1) > | [, f] + 0.5 contradiction.

Solution C.202. [Of Exercise 13.5] Let f be Riemann integrable on [a, b].
We first show that f is Riemann integrable on [a, c| and on [¢,b]. Note that
by Theorem 13.2.1, f is bounded on [a,b]. Let ¢ > 0. By Theorem 13.2.3,
there exists a partition P = {x; : 0 < i < n} of [a,b] such that

O(f,P) =i w(f, [wic1, z])(zi —x4-1) < e

o If for some 0 < j <n, ¢ =x; then P, = {z; : 0 < i < j} is a partition
of of [a,c] and P, = {z; : j < i < n} is a partition of of [c, b] such
that O(f,P) = O(f, P1) + O(f, P2) < e. Since each of O(f, P;) and
O(f, Py) are positive, then O(f, P;) < € and O(f, P») < €. Since f is
bounded on each of [a, ] and [c, b], by Theorem 13.2.3, f is Riemann
integrable on each of [a, c] and [e, b].

o If for some 0 < j <mn, z;_1 < ¢ < x; then P’ = PU{c} is a refinement
of P and O(f, P') < O(f, P) can be seen as follows:

O(f,P) = SI_jw(f, [mi—1,zi]) (i — zim1)+
w(f, lzj-1,el) e = 24-1) + w(f fos]) (= )+
B w(fs (e ) (@ — @i-1)
Eg;llw(fa [1'1;1, (Ez])([L'l — :L'Z-,l)—k
w(f, [xj—1,25])(c = xj1) + w(f, [zj-1, 25]) (25 — )+
Z;,L:j-l-lw(fv [$i_1, -T;])(IZ — xi—l)
= Zi;fw(f, [Ti—1, zi]) (s — 2i-1)+
(s 251, 3]) (@ — 23-1)
S w(fs [wion, za]) (@ — wi21)
= O(f,P).

IN
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But, P = {z; : 0 < ¢ < j} U{c} is a partition of of [a,c] and P, =
{z; : 7 <i < n}U{c} is a partition of of [¢,b] such that O(f, P') =
O(f,P1)+O(f, P.) <O(f,P) < e. Since each of O(f, P1) and O(f, P»)
are positive, then O(f, P;) < ¢ and O(f, P») < e. Since f is bounded
on each of [a, c] and [c, b], by Theorem 13.2.3, f is Riemann integrable
on each of [a, ¢] and [c, ).

Now, since f is Riemann integrable of each of [a,c] and [c,b], by what we
just proved above, f is also integrable on each of [¢,d] and [d,b]. Hence, f
is Riemann integrable on [c, d].

Solution C.203. [Of Exercise 13.6] By Exercise 13.5, if f is Riemann inte-
grable on [a, b] then f is Riemann integrable on [a, ¢] and on [¢, b]. Conversely,
assume f is Riemann integrable on [a,c] and on [¢,b]. By Theorem 13.2.1,
f is bounded on [a, ¢] and on [c¢,b]. Hence f is bounded on [a,b]. Let € > 0.
By Theorem 13.2.3, there are P; partition of [a, ] and P, partition of [c, ]
such that O(f, P1) < % and O(f, P2) < % Let P = PLUP,. P is a partition
of [a,b] and O(f,P) = O(f,P1) + O(f, P2) < e. By Theorem 13.2.3, f is
bounded on |[a, b].

Solution C.204. [Of Exercise 13.7] We first show that f? is Riemann inte-
grable on [a, b].

By Theorem 13.2.1, f is bounded on [a,b]. Let M be a bound for f
on [a,b]. Hence, f? is also bounded (by M?) on [a,b]. Let ¢ > 0. By
Theorem 13.2.3, there is a partition P = {z; : 0 < i < n} of [a,b] such that
O(f, P) = E?le(f, [.’L‘l;l, (I}iD(l‘i — Jci,l) < ﬁ

Now, let M; = sup{f(z) : = € [zi_1,2;]} and m; = inf{f(z) : x
[i—1,2:]}. Then w(f?, [zi—1,2]) = M? —m? = (M; + m;)(M; — m;)
2M(Mi — mi). Hence, O(fZ,P) = E?le(f27 [sr:i,hxi])(xi - .’1,‘1;1)
E?:l(Mi + TTLI)(]Mz — mz)(xl — xi—l) < 2?:12M(Mi — ml)(xz — 331'_1) =

MY (M; — my)(x; — xi-1) = 2MO(f,P) < 2Mﬁ = e. Hence by

A m

Theorem 13.2.3, f? is Riemann integrable on [a, b].

Since fg = %((f +9)? — f? — ¢?), we use Theorem 13.1.8 and what we
just proved above to deduce that fg is Riemann integrable on [a, b].

Solution C.205. [Of Exercise 13.8]

1. Note that for any partition P of [a,b], O(f+,P) < O(f,P) and
O(f-,P) < O(f,P). Since f is Riemann, by Theorem 13.2.1, f is
bounded on [a,b] and hence f; and f_ are also bounded on [a,b]. By
Theorem 13.2.3 for each € > 0, there exists a partition P of [a, b] such
that O(f, P) < e. Hence for each € > 0, there exists a partition P of
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[a, b] such that O(f;,P) < O(f,P) <e and O(f_,P) < O(f,P) < e.
Hence, by Theorem 13.2.3, f; and f_ are Riemann integrable on [a, b].

2. Note that f = f — f_ and |f| = f+ + f—. Since by 1. above f; and
f— are Riemann integrable on [a,b] then by Theorem 13.1.8.1, |f| is
Riemann integrable on [a, b]. Furthermore, we have —|f| < f < |f| and

by Theorem 13.1.8.(2+3), ff;m = f;f|f| < f;f < f;\f| Hence

P F< 1A

Solution C.206. [Of Exercise 13.9] f is not necessarily Riemann integrable
on [a,b]. Take for example the function

fz) =

Since |f| is the constant function, it is Riemann integrable on [a,b] by
Theorem 13.1.8.2. However, f is not Riemann integrable on [a,b]. To see
this, let 0 < e <b—a and let P = {z; : 0 <14 < n} be any partition of [a, b].
Let 'P = {(t;, [wi—1,2:]) : 1 <@ < p} and Py = {(t}, [wi—1,25]) : 1 <i < p}
such that all ¢;s are even and all t}s are odd. Then, |S(f,! P2) —S(f,! P1)| =
155 (F(t) = f(8) (@i — wi—1)| = 2|85y (2 — @i—1)[ = 2(b—a) > . Since f
is bounded, by Theorem 13.2.2, f is not Riemann integrable on [a, b].

1 if x is even;

—1 otherwise

Solution C.207. [Of Exercise 13.10] First note that f is bounded on
[a+ ¢,b+ ] iff g is bounded on [a, b].
Assume f is Riemann integrable on [a + ¢,b + ¢]. Let ¢ > 0. By Theo-
rem 13.2.3 there exists a partition P = {z; + ¢: 0 <4 <n} of [a+ ¢,b+
such that O(f,P) < e. Now, P/ = {z; : 0 < i < n} is a parti-
tion of [a,b]. Note that w(f,[z;—1 + ¢,2; + ¢]) = w(g, [xi—1,2;]). Hence
S w(fy [zicite,xi+ o)) (wite—xi—1—c¢) = TP w(f, [Xi—1, @) (2 — xi—1).
Le., O(f,P) = O(g, P’). Hence g is Riemann integrable on [a, b].
Conversely, assume ¢ is Riemann integrable on [a,b]. Let a = o’ — ¢ and
b=V —cand ¢(x) = g(x —c) = f(z) (i.e., ¢ = f). Then, since g is
Riemann integrable on [a’ — ¢,b’ — ¢], by the previous case, f is Riemann
integrable on [d/,¥]. T.e., f is Riemann integrable on [a + ¢,b + ¢].

We will show that if f is Riemann integrable on [a + ¢, b+ ¢] then for all

e >0, \fabg - f::cpﬂ < e. Let ¢ > 0. Since f is Riemann integrable on
[a+ ¢, b+ ¢ then by above, g is Riemann integrable on [a, b]. By definition,
there are §; and d3 such that for any P, and ! P, partitions of [a + ¢, b + ]

resp. [a, b] we have:

b+c c
if |'Py]| < 61 then |S(f) Pr) — f|<§-
a-+c
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b
if ' Py || < 62 then |S(g,’ P2) 7/ gl <3
Let 6 = min{dy,d2}. And let 'P = {(t;,[z;—1,2:]) : 1 <i < n} be a tagged
partition of [a,b] such that ||*P|| < 6. Then 'P" = {(t; +c¢, [ri—1+c,z;+c]) :
1 < i < n} is tagged a partition of [a + ¢,b + ] such that ||*P’|| < § and
S(g,t P)=S(f'P’). Hence:

b b+c b b+c
[lg— LT fI <1l g—S@t P +ISUF P~ [Efl<§+5=<e.
Solution C.208. [Of Exercise 13.11]

1. Note that f is bounded by 1. We will use two methods to prove that
this function is not Riemann integrable.

e Cauchy Criterion for Riemann Inegrability. By Theo-
rem 13.2.2, f is Riemann integrable on [a,d] if and only if for
each £ > 0 there exists § > 0 such that [S(f,! P1) — S(f,! P2)| <¢
for all tagged partitions ‘ P; and ! P, of [a, b] with norms less than
5. Let e < 1. Let 'P, = {(t;, [vi—1,25] : 1 < i < n} be an arbi-
trary tagged partition of [a,b] whose tags ¢; are all rational. Let
Py = {(t;, [x}_1,2}] : 1 < i < m} be an arbitrary tagged parti-
tion of [a,b] whose tags t; are all irrational. Then, S(f,! P1) =
Z;L:l(.%’i — .%‘1;1) =b—a and S(f,t PQ) = Z?Zl(l‘i — xi,l)O = 0.
Hence, |S(f,! P1)—S(f,! P2)| =1 > . Hence, by Theorem 13.2.2,
f is not Riemann integrable on [a, b].

e Partition with small oscillation. By Theorem 13.2.3, f
is Riemann integrable on [a,b] if and only if for each € > 0,
there exists a partition P = {z; : 0 < ¢ < n} of [a,b] such
that X w(f, [zi—1,2:])(®; — ®i—1) < e. By the density of
the rationals Theorem 10.4.5, for any [a,b] and any partition
P ={x; : 0 < i < n}oflabd], w(f |ri—1,2;]) = 1 and
E?le(f, [SCi_l,IEi])(Ii — Ii—l) = E?:l(mi — xi—l) = b — a. Hence
for any € < b — a, the property fails and by Theorem 13.2.3, f is
not Riemann integrable on any interval [a, b].

2. We will show that folg = 0. Let € > 0. There is n > 0 such that
L % Hence, A, = {z €[0,1] : g(z) > %} is finite because if © € A,

n
then x = % where k,1 < n. Let |A,| be the number of elements of A4,
Lot 5 {1 if |A,| =0
and let 0 = c .
T4 otherwise.
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Let 'P be a tagged partition of [0,1] such that ||P|| < §. Let P
be the subset of *P where all the tags belong to A, and let *P, be
the subset of *P where all the tags do not belong to A,,. Obviously,
S(g,t P) = S(g,! P1) + S(g,! P2). Since g(x) > 0 for all x € [0,1] then
S(g,f Q) > 0 for any tagged partition of [0, 1].

Now, if P = {x; : 0 < i < I} and A, = {ai, - ,aqa,}
then ‘P; can contain at most 2|A,| (where for example,
{(xi, [wiz1, 24]), (x4, [wi, wi01])} € tPy).  Hence, S(g,tP) =
Steang(ti) (@i — zio1) < Dpea, (wi — xi1) < 2|4,]6 < §.

Furthermore, S(g,! P2) = Zyga,9(t:)(xi — xi-1) < Ztingn%(xi —
xi—1) < %Etigfln(mi —2;-1) < %

Hence S(g,! P) = S(g,! P1) + S(g,! ) < % + % =e.

So we have shown that for every € > 0, there is § > 0 such that for all
tagged partition P of [0.1], S(g,* P) < e. Hence by definition, fol g=0.

Note that this function is discontinuous at every rational and a function
need not be continuous to be Riemann integrable.

3. Assume that f02 h exists. Then by definition, for every € > 0 there

exists a § > 0 such that f02 h—e< S(ht!P) < f02 h + ¢ for all tagged
partitions ‘P of [0,2] that satisfy ||*P]|| < 4.

Since S(h,! P) > 0, for any 'P, we have fozh > 0. There are two
possibilities:

o If fozh = 0 then let ¢ = 2. For this ¢, there is a § > 0 such

that S(h,! P) < 2 for all tagged partitions ' P of [0, 2] that satisfy
ItP| < 4.
Let *P = {(t;,[r;—1,%;]) : 1 <i < n} be a tagged partition whose
tags are all irrationals such that ||*P|| < é. For this ‘P, we have
2 > S(h,tp) = Ezlzlh(tz)(xl - xi—l) > E?Zl(xi - xi—l) = 2,
absurd.

o If f02h > 0 then let ¢ = f02h > (0. For this ¢, there is a § > 0

such that 0 = f02 h —e < S(h,t P) for all tagged partitions ‘P of
[0,2] that satisfy ||'P|| < §. Let *P be a tagged partition whose
tags are all rationals such that ||*P|| < 6. For this P, we have
0 < S(h,! P) =0 absurd.

Note here that we could have given an easier proof as follows:
lim, 0 h(x) = oo, h(x) is not bounded on [0,2] and hence by The-
orem 13.2.1, h is not Riemann integrable.
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4. We show that r is Riemann integrable on [a,b] by applying the def-

inition of Riemann integrability. Let € > 0 and let § > 0 such that
J < % and ¢ +6 < d—4. Let 'P = {(t;,[wi—1,2:]) : 1 < i < n}
be a tagged partition of [a,b] such that ||*P|| < §. Since [c,c + §]
is of length § and ||’P|| < 4, there is an 1 < [ < n such that
¢ < t; < c+4. Similarly, thereisan 1 < k < n such that d—§ < t; < d.
Hence [c + 6,d — 0] € Uy eeql®i-1,2:] € [c —d6,d + 6]. Hence
d—c—26 S Etie[c,d] (xl — .T,;_l) S d—rc + 26.

But S(r,! P) = X7 r(ti)(zi — zi—1) = Sy,eje,q)(zi — xi—1). That is,
d—c—26 <S(rtP)<d—c+25and |S(r}!P)—(d—c)| <26 <e. So
by definition r is Riemann integrable on [a,b] and f; r=d—ec.

Solution C.209. [Of Exercise 13.12]

e If f is Riemann integrable on [a,b] and € > 0, let g. = f = h..

Then, obviously g. and h. are Riemann integrable on [a, b] and g. ()

f(z) < he(z) for all z € [a,b]. By Theorem 13.1.8, f; he —g- =
b b b b

faha_fagezfaf_faf:0<€'

Assume that for every £ > 0, there are two Riemann integrable func-

tions g and h. on [a, b] such that g.(z) < f(x) < h(z) for all x € [a, D]

and f: he — ge < e.

Let € > 0 and let ¢g. and h. be two Riemann integrable functions

on [a,b] such that g.(x) < f(z) < he(x) for all x € [a,b] and

f: he —ge < %

By Theorem 13.2.1, both h. and g. are bounded on [a, b] and hence f

is bounded on [a,b]. By definition, there are d1,d2 > 0 such that for
all tagged partition *P of [a, b],

IN

— if |'P|| < &y then [S(ge,! P) — [} ge| < §;
— if |'P|| < & then [S(he,! P) — [ he| < §.

Let § = min{d1,d2} and let *P and ‘Q be tagged partitions of [a, b]
such that ||*P|| < §. We have S(g.,! P) < S(f,t P) < S(h.,! P) and:
b £ b €
/ g — S < S(got P) and S(ho,t P) < / he+ S
a 3 a 3

Hence

b c . b c
e 5 7P £ a
/ag 3<S(f )</ah+3
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Similarly we have

b I3 t b 13
/Ggs—§<5‘(f7 Q)</a h5+§

Hence

/h _/95 ) <S(f'P) - S(f,tQ)</abha_/ang+25

That is,

R T

By Cauchy Criterion for Riemann Inegrability Theorem 13.2.2, f is
Riemann integrable.

Solution C.210. [Of Exercise 13.13] Assume f is Riemann integrable and
let € > 0. By Theorem 13.2.2, there exists § > 0 such that |[S(f,! Py) —
S(f,t Py)| < ¢ for all tagged partitions ‘P; and 'Ps of [a,b] with norms less
than §. Let P = {z; : 0 <4 < n} a partition of [a,b] such that || P| < 4.

Note that sup{f(z) — f(y) : z,y € [i—1,2;]} = w(f,[xi-1,2;]) for all
1 <4 < n. Hence for all 1 < i < n, choose t;,t, € [z;—1,2;] such that
F(t5) = F(t) = sup{f () — f() 2.y €[5 1, 2]}

Let 'Py = {(ti, [xi—1,2:]) : 1 < i < n}and "Po = {(t}, [wi—1,@i]) : 1 <
i < nh. Now, [S(f P) — S(F P = IS0 (F(8) — F(E) (@i — 21)] =
|Z2 w(f, [z 1,301])(@ — 2;-1)|] < € and we are done.

Solution C.211. [Of Exercise 13.14]

1. If f and g are continuous, then by Theorem 11.2.7 f o g is continuous
on [c,d] and hence by Theorem 13.2.7, f o g is Riemann integrable on
[c, d].

2. 4 Let € > 0. We will show that there is a partition P of [c, d] such that
O(f og,P) < e (by Theorem 13.2.3).

Since f is continuous on [a, b] then

— By Lemma 13.2.6, there exists § > 0 such that for all x,y € [a, b]
that satisfy |y — x| < d, we have |f(y) — f(x)| < —Q(dg— )

4This solution has been taken from [?] and [?]. In [?] you will also find an example
of two functions f and g where f is continuous on [a,b] and g is Riemann integrable on
[e,d], but f o g is not Riemann integrable on [c, d].
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— f is bounded on [a, b] (this comes from either the Extreme Value
Theorem 12.3.12 or from both Theorems 13.2.7 and 13.2.1 which
state that a continuous function is Riemann integrable and a Rie-
mann integrable function is bounded). Hence, let U be such that
|f(z)] < U for all x € [a,b].

Since g is Riemann integrable on [c,d] then by Theorem 13.2.3, there
is a partition P = {zg,z1, - ,2n} of [c,d] such that O(g,P) =
X wi(xy — mim1) < 45—6 where I; = [z;—1,2;] for 1 < ¢ < n and
w; = w(g, I;). Recall that w(g, [I,u]) = sup{g(x) : = € [I, u]} —inf{g(z) :
z € [l,u]} = sup{|g(z) — g(y)| : z,y € I} = sup{g(x) — g(y) : x,y € I}
by Lemma 13.1.11.

Let w} = w(f o g,1I;). Note that w; < sup{|f(z)| + |f(x)] : z,y €
[a,b]} < 2U. There are two cases:

— Either w; < ¢ and hence w} < m and %, ,,, <swj(zi—25-1) <
Zi/wi<5m($i - xi1) = mzi/wi<6($i — i) <
__ & yn R, — _ €  (d_/ =&

5@ ) i@ —Tie) = g d =) =3

— Orw; > 0 and hence ; ,, > 5wi (2 —2i-1) < 2U%; /0, >5(2i—2i-1).
But ¥ wi(®; — 2i-1) > Bjju,>ewi(T — Ti-1) > X /0,550 (25 —

Ti_1) = 0% 0, >5(x;i — xi—1) and hence ¥/, >5(v; — 2i-1) <
Yiqwi(zi — i
i=1% (l;; v 1) < —546[}; = % HenC€7 Zi/wizgwé(l‘i — 371;1) <

Since O(f 0 g,P) = Bi/u,>5wi (i — Ti1) + Bijw, <swi(Ti — i) <
% + % = ¢, we are done.

Solution C.212. [Of Exercise 13.15] We will first do the proof for the case
that f and g only differ on one value. That is, suppose there is ¢ € [a, b] such
that f(x) = g(x) for  # c and f(c) # g(c). We will show that f is Riemann
integrable implies g is Riemann integrable. Assume f is Riemann integrable
on [a,b]. Hence by Theorem 13.2.1, f is bounded. Hence g is bounded. Let
M > 0 such that |f|,|g| < M.

Let ¢ > 0. By definition, there is a § > 0 such that for any tagged
partition *P of [a,b], if |['P|| < & then [S(f/P) — [V f| < §. Let &' =
min{4, SLM}

Let ‘P be a tagged partition of [a,b] such that ||'P| < ¢ and
P ={z; : 0 <i < n}. Let ‘P, be the subset of 'P whose tags are
all c. Let P, be the subset of !P whose tags exclude c¢. Obviously,
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S(fEP)=S(ftP)+ S(f,tP) and S(g,t P) = S(g,t P1) + S(g,! P»). Note
that S(f,! P,) = S(g,* P2) and |'P;| < 2 (since either ¢ # z; for any i and
hence |"Pi| < 1; or ¢ € {a,b} and hence |"P;| < 1; or ¢ = z; for some
1<j<n-—1and |'P]<2).
Hence [S(f.' P) — S(g,! P)| = [S(f.! P1) — S(g," P1)| =
0 if |*tP|=0
l9(c) = f(O)(z; — zj-1) if 'Py = {(c, [vj-1,2;])}
l9(c) = f(o)(c —xj—1) + |g(c) = f(O) (211 — ¢)
it *Py = {(c, [zj-1,c]), (¢, [e; 2j41])}
That is, |S(f,! P) — S(g,! P)| < 2|g(c) — f(c)|d’ <4M§ < 4M8LM = %
Now, [S(g.! P) = [, f| = IS(9.) P) = S}/ P) + S(£' P) = [} f] <
S(9.0 P) = SU! P +1S(1P) = [ [l < §+§ ==
Hence, g is Riemann integrable on [a, b] and ff f= fj g.
If f and g differ on more than one point, we do the proof by induction
on the number of points on which they differ, using the above result.

Solution C.213. [Of Exercise 13.16]

1. Since F is an indefinite integral of f on interval I then F/ = f. By
Theorems 11.3.6 and 11.3.8, (F+¢)' = F'+¢ = F' = f. Hence F +¢
is an indefinite integral of f.

2. By Theorem 11.3.8, (F+G) = F' + G'".

3. By Corollary 11.3.11, (¢F)'(z) = cF'(x) = cf(x). Hence cF is an
indefinite integral of cf.



