Types in Natural Language

Fairouz Kamareddine

Logic, due to the paradoxes, is absent from the type free A-calculus. This makes such a calculus an unsuitable device for
Natural Language (NL) Semantics. Moreover, the problems that arise from mixing the type free A-calculus with logic lead
to type theory and hence formalisations of NL were carried out in a strictly typed framework. It was shown however, that
strict typing cannot capture the self-referential nature of language [6, 1, 3] and hence other approaches were needed. For
example, [6] creates a notion of floating types which can be instantiated to particular instances of types whereas [1, 3] use
a type free framework. In this paper, we will embed the typing system of [6] into a version of [3] giving an interpretation of
Parsons’ system in a type free theory where logic is present. We take the standpoint that type freeness is needed yet types
are indispensable. On this ground, by constructing types in the type free theory, we obtain a framework which can be seen
as a formalisation of Parsons’ claim that Natural Language needs type freeness in order to accommodate self referentiality
yet many sentences should be understood as implicitly typed. We improve a lot in the expressivity of Parsons’ system by
allowing him to talk about sentences that he could not talk about previously. Even more, with our flexible typing scheme,
we can allow any sentence and type check it as long as its type is not circular (i.e. paradoxical). If the type is circular, we
change the final type of the sentence so that a paradox is impossible to derive. This approach is certainly flexible.

We argue that NL cannot be rigidly typed and that if we start from the type free A-calulus, we can flexibly type NL
terms. Types are polymorphic in the sense that we allow variable types which can be instantiated to anything. For example,
the identity function has type B0 — fo, and the identity function applied to of type e will result in elements of type e.
The polymorphic power of the system comes from the ability to typecheck all polymorphic functions even those which
are problematic in other systems. For example the fixed point operator, Y = Af.(Az.f(zz))(Az.f(zz)) is typechecked to
(B2 — B2) — B2 and even YY is typechecked to f2. w = Az.zz is typechecked to (81 — B1) — (1 and w applied to itself is
typechecked to 81 . These types can be instantiated so that YI where I is Az : e.z, is typechecked to e naturally. We believe
this system is one of the first which can typecheck all the above while remaining very expressive and simple. Another nice
characteristic of the system is its ability to combine logic and the type free A-calculus while remaining consistent. So even
though the Russell sentence Az.—(zx) is a well formed sentence of the system, its type cannot be found. In fact, the system
returns an error message explaining that this sentence has a circular type. The same thing applies to Curry’s sentence
(Az.xzx — L). Finally, the typing scheme that we present has a wide range of applications (see [3, 2, 5, 4]). The reason
being that even though types are very informative either in programming language (PL) or in NL, type freeness and the
non-restricted typing schemes are a necessity in interpreting many NL and PL constructs. We believe it necessary not to
be too scared of the paradoxes to the point of using too restricted languages.

References

lerchia, an rner, R., Semantics an roperty theor, nguistics an iloso - .
[1] Chierchia, and Tu , R., S i d property theory, Linguisti d Philosophy 11, 261-302, ’88

[2] Kamareddine, F., A system at the cross roads of logic and functional programming, Science of Computer Programming
19, 239-279, *92.

[3] Kamareddine, F., and Klein, E., Polymorphism, Type containment and Nominalisation, Logic, Language and Infor-
mation 2, 171-215, ’93.

[4] Kamareddine, F., A type free theory and collective/distributive predication, Logic, Language and Information 4 (2),
85-109, 95.

[5] Kamareddine, F., Important Issues in Foundational Formalisms, Interest Group of Pure and applied Logic 3 (2,3),
291-317, "95.

[6] Parsons, T., Type Theory and Natural Language, Linguistics, Philosophy and Montague grammar, S Davis and M
Mithum (eds), University of Texas press, 127-151, ’79.



